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In chapter 2.1 and 2.2, we took advantage of both approaches by using genotype information on many cows in five breeds. These cows were genotyped with customized chips including an increasing number of confirmed or candidate causative mutations (potential QTN), discovered in large scale genome-wide association studies (GWAS) combining genotyping and whole genome sequencing (WGS). The large-scale genotyping of potential QTN across multiple breeds provided a powerful approach to prioritize between potential QTN, thus providing evidence on which markers explain genetic variance across breeds and therefore can be used to improve predictions. In chapter 2.3, we identified several novel QTL that can be used to select for reduced milking time without causing deterioration in important health traits such as clinical mastitis and somatic cell score.

In contrast with Daughter Yield Deviations, which primarily reflect the additive value of the bulls, a cow's performance is the result of additive and non-additive effects. In chapter 2.4 we studied additive effects using the Associated Weight Matrix (AWM), in combination with Partial Correlation Coefficient with Information Theory (PCIT), a network inference algorithm, to generate gene networks with regulatory and functional significance for udder related phenotypes. By exploiting correlated udder phenotypes, we increased accuracy of statistical inference and identified ten genes that directly affect mammary gland development. In chapter 2.5, we pre-selected SNP with major effect and using a Bayesian approach, estimated dominance and epistasis as explained by second order gene interactions. Dominance variance was consistent across breeds and traits and represented about 20% of the additive genetic variance. The epistatic variance estimates were more variable, from nearly zero to 19% of the additive genetic variance, with an average of 7%. This provides original research on use of sequence data to study epistasis in dairy cattle.
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Resumé

La sélection génomique (SG) révolutionne actuellement l'élevage bovin laitier. Cependant, la SG est efficace dans les populations avec de grandes populations de référence de taureaux génotypés et testés pour former les modèles de prédiction génomique, mais elle est moins efficace dans les populations plus petites. Deux approches principales sont actuellement à l'étude pour améliorer la précision des prédictions dans les races numériquement petites. La première est de développer des prédictions multi-raciales. Comme le déséquilibre de liaison (DL) entre races éloignées n'est pas assez fort pour utiliser simplement de l'information sur le génotype à grande échelle de la puce 50K, cette approche est fortement liée à l'utilisation de génotypes à haute densité et de l'information sur la séquence du génome entier (WGS). La deuxième approche consiste à génotyper un grand nombre de vaches avec phénotypes afin d'élargir la population de référence.

Dans les chapitres 2.1 et 2.2, nous avons tiré parti des deux approches en utilisant l'information génotypique sur de nombreuses vaches de cinq races. Ces vaches ont été génotypées avec des puces personnalisées comprenant un nombre croissant de mutations causales confirmées ou candidates (QTN potentiel), découvertes dans le cadre d'études d'association à grande échelle du génome (GWAS) combinant le génotypage et le séquençage du génome entier (WGS). Le génotypage à grande échelle de QTN potentiels dans plusieurs races a fourni une approche puissante pour prioriser entre ces variants et identifier les marqueurs qui expliquent la variance génétique entre les races et peuvent donc être utilisés pour améliorer les prédictions. Dans le chapitre 2.3, nous avons identifié plusieurs nouveaux QTL qui peuvent être utilisées pour sélectionner la vitesse de traite sans détériorer les caractères de santé de la mamelle tels que la susceptibilité aux mammites cliniques et le score de cellules somatiques dans le lait.

Contrairement aux écarts de performances des groupes de filles, qui reflètent principalement la valeur additive des taureaux, la performance d'une vache est le résultat d'effets additifs et non additifs.

Dans le chapitre 2.4, nous avons étudié les effets additifs avec l'approche « Association Weighted Matrix » (AWM) en combinaison avec la méthode PCIT (« Partial Correlation Coefficient with Information Theory"), un algorithme d'inférence de réseau, pour générer des réseaux de gènes ayant une signification régulationnelle et fonctionnelle pour les phénotypes liés à la mamelle. En exploitant des phénotypes corrélés, nous avons augmenté la précision de l'inférence statistique et identifié dix gènes qui affectent directement le développement de la glande mammaire. Dans le chapitre 2.5, avec une approche bayésienne, nous avons estimé les composantes de dominance et d'épistasie, dans ce dernier cas pour un jeu de variants identifiés comme ayant un effet additif significatif. La variance de dominance était assez stable entre races et entre caractères, de l'ordre de 20 % de la variance génétique additive. Les estimations de variance épistatique étaient plus variables, de presque zéro à 19% de la variance génétique additive, avec une moyenne de 7%. Il s'agit d'une recherche originale sur l'utilisation de données de séquence pour étudier l'épistasie chez les bovins laitiers.
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Sammendrag

Genomisk selektion (GS) revolutionerer i øjeblikket malkekvaegsavlen. Men hvor GS er effektiv i populationer med store referencepopulationer af genotypebestemte og afkomtestede tyre til forbedring af de genomiske praediktionsmodeller, er det mindre effektivt i mindre populationer. To hovedtilgange bliver i øjeblikket testet for at forbedre praediktionsnøjagtigheden i talmaessigt små racer. Den første tilgang er at udvikle krydsavlspraediktioner. Fordi linkage disequilibrium (LD) på tvaers af fjernt beslaegtede racer ikke er staerk nok til blot at bruge 50K genotypeinformation i stor skala, er denne tilgang taet koblet til brugen af high density genotyper og helgenomsekvens (whole genome sequence (WGS)) information. Den anden tilgang er at genotypebestemme et meget stort antal køers faenotyper, med henblik på at øge referencepopulationen. I kapitel 2.1 og 2.2 drager vi fordel af begge tilgange ved at bruge genotypeinformation på mange køer indenfor fem racer. Disse køer blev genotypebestemt med tilpassede chips inklusive et stigende antal bekraeftede eller kandiderende, kausative mutationer (potentielle QTN), afdaekket i omfattende associationsstudier på tvaers af genomet (GWAS) ved at kombinere genotypebestemmelse og helgenomsekventering (WGS). Den omfattende genotypebestemmel-se af potentielle QTN på tvaers af mange racer tilvejebragte en staerk tilgang til at kunne prioritere mellem potentielle QTN og dermed tilvejebringe bevis for, hvilke markører der forklarer genetisk variation på tvaers af racer, og derfor kan bruges til at forbedre praediktioner. I kapitel 2.3 identificerer vi adskillige nye QTL, der kan bruges til at selektere for reduceret malkningstid uden at forårsage nedgang i vigtige sundhedstraek som klinisk mastitis og somatisk cellescore. I modsaetning til Daughter Yield Deviations, der primaert afspejler den additive vaerdi af tyrene, er en kos ydeevneresultatet af additive og non-additive virkninger. I kapitel 2.4 undersøger vi additive virkninger ved at bruge Associated Weight Matrix (AWM) kombineret med Partial Correlation Coefficient with Information Theory (PCIT), der er en netvaerksinferensalgoritme, til at generere gennetvaerk med regulerende og funktionel betydning for yverrelaterede faenotyper. Ved at udnytte sammenhaengende yver-faenotyper forøgede vi nøjagtigheden af den statistiske inferens og identificerede ti gener, der direkte påvirker udviklingen af maelkekirtlerne. I kapitel 2.5 forhåndsudvaelger vi SNP med stor virkning og ved at anvende en Bayesisk tilgang, anslået dominans og epistase, som forklaret ved gen-interaktioner i sekundaer raekkefølge. Dominansvariansen var konsistent på tvaers af racer og repraesenterede omkring 20% af den additive genetiske varians. De epistatiske variansestimater var mere variable, fra naesten nul til 19% af den additive genetiske varians, med et gennemsnit på 7%. Dette tilvejebringer original forskning om brug af sekvensdata til at undersøge epistase i malkekvaeg.

To further drastically reduce the impact on the generation interval Meuwissen et al. (2001) proposed use of single nucleotide polymorphism (SNP) to predict genomic estimated breeding values (GEBV), a practice termed as genomic selection. The GEBV estimation starts with defining a reference population of animals with both genotypes and phenotypes and estimating marker effects. Several factors affect the GEBV prediction accuracy and they include, number of animals in the reference population, the heritability of the trait, and relationship between selection and animals in the reference population (Hayes et. al, 2009). Nowadays, DNA sequencing allows dairy cattle breeders to select superior animals at an earlier age using genomic selection e.g. genotyped offspring can receive an accurate GEBV within the first year after birth (Schefers and Weigel, 2012). It is therefore prudent to say that in the last two decades, the advent DNA sequencing, high-throughput genomic technologies, and the reduction in the genotyping cost has not only resulted in the discovery of many variants, including SNP, in cattle and other food animal species, but substantially increased the yearly genetic gain [START_REF] Goddard | Genomic selection in livestock populations[END_REF]. Technological advancements have allowed sequencing and genotyping of the entire bovine genome and selection of variants that explain much of the variation is continuously being explored (Nicolazzi et al., 2015). All this progress allowed animal breeding to be successful in achieving a higher genetic gain, but still as a black-box without knowing the underlying genetic mechanisms controlling the traits. However, to reach an even higher genetic gain and have a more accurate selection, it is paramount to understand the mechanisms underlying complex traits as explained by genetic variants, and how selection shapes the distribution of the genetic variants affecting these traits.

Nowadays, some of the approaches in dairy cattle being utilized to understand mechanisms underlying complex traits include use of this genomic information, primarily SNP, packaged in different density SNP arrays: Low density (LD), 50k, and high density (HD). The main challenge of using this kind of SNP arrays is variations in allele frequency spectrum from LD to sequence due to ascertainment bias resulting from SNP selection procedure (Guillot andFoll, 2009, Heslot et al., 2013). This is translated to biased population parameters and by extension decreased accuracy in genomic evaluations (Wientjes et al., 2015). This challenge can be overcome by use of whole genome sequence variants where variants can be studied as single base pairs without suffering ascertainment bias. Sequencing cows is increasingly becoming possible because of advancement in sequencing technologies and decreasing cost of sequencing but it still remains much more expensive than genotyping with a chip. Such an initiative was developed under the 1,000-bull genome consortium in dairy cattle (Daetwyler et al., 2014), where many cattle have been sequenced. The main aim of this international initiative is to sequence the main ancestors of all breeds, in order to describe the major part of the genetic variability and to impute genotyped animals to sequence with a high accuracy. Within the European dairy cattle breeding framework, a specialized chip with variants selected from sequence data has been developed i.e. the Eurogenomics custom chip. The Eurogenomics custom chip is composed of two parts: (1) ~8,000 generic (and supposedly neutral) SNP mainly from BovineLD genotyping Beadchip and the 50k chip; and

(2) a custom part selected from sequence variants based on five functional arguments: (i) known genetic variants described in literature, (ii) potential regulatory variants located in the promoter regions of genes, (iii) non-synonymous variants with strongly deleterious effect on the function of the encoded protein as predicted by Variant Effect Predictor [START_REF] Mclaren | Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor[END_REF], (iv) breakpoints of structural variants affecting genes, and (v) variants corresponding to peaks in GWAS analysis of several economic traits in cattle. Currently, the number of sequenced cattle is still much lower than the number of genotyped cattle, however, those genotyped by the Eurogenomics chip are substantial to allow for genomic prediction by way of imputing the sequence variants to genotyped cattle.

Inferring missing or ungenotyped markers

Missing markers can be predicted using genotype imputation [START_REF] Li | Genome-wide scan for positional and functional candidate genes affecting milk production traits in Canadian Holstein cattle[END_REF]. Information may be missing because of technical reasons (call rate less than 1) or because the chip used for genotyping does not include all variants. Imputation is a statistical process to infer missing marker genotypes by using linkage disequilibrium along the chromosomes. According to the methods used, this process can use family information, or population LD information, or both. Though genotyping cost have reduced over the years, genotyping cost quickly multiply as the population under selection increases. Imputation is therefore a strategic tool to reduce the genotyping cost. Usually, young animals are genotyped with a lower density panel that uniformly covers the entire genome (e.g. the EuroGenomics chip, Marete et al, 2018), and the reference population is genotyped with a higher density SNP array or fully sequenced (Hayes et al., 2012). Imputation can then be employed to recover missing information from the reference population. If properly implemented, imputation can be used to recover information from populations genotyped using different SNP panels , provided enough overlap exists between the panels. There are two types of missing data: some animals have missing genotype values at loci which are otherwise successfully typed; and there are loci which are not typed at all. Most analysis methods use only the data that has been collected, but an alternative approach that has received a lot of attention in the statistical literature is to predict missing values based on the observed data and use the complete data for analyses [START_REF] Browning | Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering[END_REF]). Here we review imputing missing genotypes at loci which are typed in the sample of interest, but which are missing for a small fraction of the animals in that sample.

The imputation method can be either rule based (e.g. Kong et al., 2008) or probabilistic (e.g. [START_REF] Browning | A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals[END_REF]). On the one hand, rule-based imputation methods rely on the linkage information from close relatives (Appendix 5: Figure 1) and are moderately accurate for sparse low-density panels. On the other hand, probabilistic models are based upon the Hidden Markov model and depend on the population linkage disequilibrium (LD) information between close SNP by modelling haplotype frequencies. Probabilistic imputation methods assume unrelated animals (Appendix 5: Figure 2) and this tends to make them very accurate but computationally intensive. The two methods above can be combined, and all animals are assumed to be related at varying degrees. In such a scenario, a deterministic mathematical model that makes use of both family and population information can be implemented (Sargolzaei et. al., 2014). As Sargolzaei et al. (2014) illustrates, the model searches for "long to short haplotypes", which represent "close to far relationships", taking ancestry information into account if known. In this project, most animals are genotyped with the Eurogenomics chip when they were young and without phenotypes. The older animals were genotyped with the 50k with a small sample genotyped with both 50k and Eurogenomics chip. Since the Eurogenomics chip contains some sequence variants, when imputed (50k + Eurogenomics), the number of sequences available substantially increases. This implies more causative mutations or highly correlated SNP would be included in the prediction models, thus potentially improving accuracy of genomic prediction. On the downside, as with any statistical process, imputation is not immune to error [START_REF] Druet | Toward genomic prediction from whole-genome sequence data: impact of sequencing design on genotype imputation and accuracy of predictions[END_REF], especially so for less frequent sequence variants (Daetwyler et al. 2014;[START_REF] Druet | Toward genomic prediction from whole-genome sequence data: impact of sequencing design on genotype imputation and accuracy of predictions[END_REF]) and this would lead to a loss in prediction reliability. This situation can be mitigated if the SNP in question is in perfect LD with the causative mutations (de los Campos et al., 2013).

GWAS, candidate gene approach and validation of variants

A genome-wide association study (GWAS) is a population-based observational study involving whole genome-wide scans with the aim of identifying associations between genetic variants (typically SNP) and a trait [START_REF] Foulkes | Applied statistical genetics with R: for population-based association studies[END_REF]. GWAS investigate the entire genome, in contrast to methods that specifically test a small number of pre-specified genetic regions. GWAS is therefore a non-candidate-driven approach because it identifies SNP and other variants in DNA associated with a trait but cannot on its own specify which genes are causal. On the contrary, candidate gene approaches involve use of loci segregating within a "candidate gene" (Fig. 1). The underlying premise is the SNP under investigation captures information about the underlying genetic variability of the gene under consideration, though the SNP may not serve as the true causal variant (i.e., SNP that are being studied are not necessarily functional. If selected carefully, sequence variants allow inclusion of the causative mutations and prediction markers in high LD with the causative mutations in the data (Box1). For genomic selection, these sequence variants can be validated by GWAS after inclusion of the sequence variants in the genotyped population through imputation. Two validation approaches are envisioned: First, we draw the original and confirmation sample from the same population and reduce the systematic differences to a minimum. This design aims at replication of a genetic association (Box2) and is equivalent to internal validation in the context of statistical models. Second, the confirmation sample stems from a population which is different than that from which the original sample was drawn. Differences between these populations may include the breed, environment, the phenotype definition, and sampling strategy. With this design, an external validation of genetic association using statistical models is attempted. In this sense, we validate the result if we obtain similar findings under different breed and phenotype. Thus, the validated genetic association shows greater generalizability (i.e., an extension of research findings and conclusions from a study conducted on a sample population to the population at large) than a replicated association. For instance, the DGAT1-K232A mutation on BTA14 was found to be associated with major effects in milk yield and composition in Dutch and New Zealand Holstein-Friesian dairy cows (Grisart et al., 2002). This result has been replicated in other species, breeds, traits correlated with milk, and different environments multiple of times (van Gastelen et al., 2018, [START_REF] Gu | Transcript analysis at DGAT1 reveals different mRNA profiles in river buffaloes with extreme phenotypes for milk fat[END_REF], Nayeri et al. 2016) Box 2| Criteria for positive replication 1. Sample size should be ample 2. Validation data should be independent of discovery data. 3. Validation phenotype should be similar to phenotype in discovery population. 4. The two populations should be similar in terms of species, breed, and environment. 5. The estimated effect should be similar in magnitude and in same direction. 6. Validation markers should be the same or in high correlation with discovery population markers. 7. Model implement in validation should be same as in discovery. 8. P-value of validation analysis should be smaller than discovery P-value.

Adapted from NCI-NHGRI Working Group, 2007

Box 1| Criteria for candidate gene selection

The SNP variants mapping a gene may be 1. Within a QTL region. 2. Different for different phenotypes. 

From GWAS to gene network

The results of a GWAS are important for cataloging of the association of many genetic markers with the trait of interest, however, they do not discern the causal variant. Integration of GWAS data and gene networks is a successful approach for causal gene prediction (Yoon et al., 2018, Reveter et al., 2013). Several studies have applied systems biology approaches e.g. biological networks such as protein-protein interaction and co-expression networks, to infer causality of genes and use GWAS results to identify biological networks for economically important cattle traits such as milk yield and growth (e.g., Pegolo at al., 2018, [START_REF] Fortes | The IGF1 pathway genes and their association with age of puberty in cattle[END_REF]. Since most quantitative traits are inherently complex (Falconer and Mackay, 1996), they're controlled by groups of genes which may be functionally related and expressed [START_REF] Ballester | Integration of liver gene co-expression networks and eGWAs analyses highlighted candidate regulators implicated in lipid metabolism in pigs[END_REF]. From GWAS results, it's possible to map gene networks and extract pathways and causal genes relevant to a phenotype of interest (e.g. Puig-Oliveras et al., 2014, Maroilley et al., 2017). For genomic selection gene networks can be used in a multi-breed and multi-trait context to pinpoint candidate genes and transcription factors that could affect phenotype (e.g., [START_REF] Ramayo-Caldas | Multi-breed and multi-trait coassociation analysis of meat tenderness and other meat quality traits in three French beef cattle breeds[END_REF]. Such an outcome would be advantageous since sequence variants mapping biologically relevant genes are more likely to shed biological knowledge and hence be of importance across populations paving way for across breed prediction. A possible use of gene network SNP would be to fit them as weighted covariates in a genomic features (gf) BLUP as opposed to traditional gBLUP (Box3). This is because SNP variants that are associated with a phenotype may not be regularly and randomly distributed over the genome, and they may map genes clustered in concomitant biological pathways and networks. The main difference between the gfBLUP and gBLUP is that the former assumes that some genomic markers contribute more to the variability of a trait and accounts for this variation by incorporating prior biological knowledge of the genetic architecture of the phenotype. Previous studies have attempted to incorporate weighted GWAS SNP in genomic prediction models with results indicating the superiority of gfBLUP to gBLUP in across breed prediction as opposed to within breed prediction (Fang et al., 2017).

From additive to non-additive inheritance

From a breeder's perspective, the main focus of quantitative genetics in the last half-century was on the methods that would quickly and efficiently predict the performance of an animal with the aim of selecting the best contributors to the next generation. In the basic animal model, more emphasis is placed on the additive genetic variance as the main genetic parameter. Additive genetic variance is also the main genetic input for GWAS and genomic prediction models. The main reason for focusing on additive genetic variance is because it's easier to model and needs lesser computational resources as opposed to estimating nonadditive genetic variances. Nonetheless, several studies have shown the substantial contribution of non-additive effects to the variation in quantitative traits [START_REF] Gengler | Influence of Dominance Relationships on the Estimation of Dominance Variance with Sire-Dam Subclass Effects[END_REF]Palucci et al., 2007;Norris et al., 2010). Understanding the non-additive part of the genetic architecture of traits is helpful for planning breeding strategies and increasing generation gains. For example, non-additive variation can be utilized by defining mating schemes that optimize beneficial allele combinations, especially when family or clonal propagation are available in a breeding program (Muñoz et al., 2014). Non-additive genetic Box 3|gBLUP and genomic features model gBLUP generally combines genomic information into BLUP as a substitute for the numerator relationship matrix. In practice, the model used to implement gBLUP is: ! = #$ + &' + (. y is a vector of phenotypes, X is a matrix relating the fixed effects to each cow, b is a vector of fixed effects, Z is the incidence matrix associating performances to individuals, g is a vector of additive genetic effects for a cow with *+,(') = /0 1 2 , and e is a vector of random normal deviates with variance 3 σ 5 2 . The normal gBLUP defines the genomic relationship matrix (G) as / = 66 7 2 ∑ 9 : (;<9 : ) where division by the denominator scales G to the numerator relationship matrix A. Terms of W are the number of copies (0, 1 or 2) of the second marker allele each cow inherited, adjusted by 2(pi -0.5) where pi is the frequency of this allele at locus i.

gfBLUP fits an extra genomic matrix that represents the action of a set of SNP variants in a genomic feature (gf) defined by genes, biological pathways, sequence annotation, or other external evidence. W is split into two matrices: within (gf) and outside (g-f) the gf. For each gf matrix, G can be adapted such that / = 6=6 > , where D is diagonal with ? @@ = (A[2D @ (1 -D @ )]) <; and m is the weight of these markers. In this case, G weights markers by reciprocals of their expected variance. W has as many rows as there are cows, and as many columns as there are markers. The gBLUP is thus transformed to gfBLUP such that ! = #$ + &' H + &' <H + ( where y is as defined above and 

I J H J <H K L ~N OP 0 0 0 R , T / H 0 H 2 0 0 0 / <H 0 <H
= = WW > ∑ 2D @ X @ (1 -2D @ X @ ) Y @Z;
Where H in the matrix of heterozygosity coefficients with element hci=0-2piqi if cow c is homozygous, and hci=1-2piqi if cow c is heterozygous at locus i; p and q are the allele frequencies, and m is the number of SNP.

Epistasis occurs when the effect of one gene (locus) is dependent on the presence of one or more 'modifier genes', i.e. the genetic background. For second order interactions, and ignoring inbreeding, the epistatic genetic relationship matrix (E) is the Hadamard product of the additive genomic relationship matrix (G) i.e. E ≈ G#G Adapted from Su et al., 2012 and non-additive genetic variance was not proportionally different from pedigree-based estimates analyzed population.

Quantitative Genomics

Classical Quantitative Genetics can be defined as a science of heredity of quantitative traits based on inferences from observed phenotypes. The inferences, in this case, can be thought of as an individual's genetic merit on a trait (i.e., its breeding value). The general principles of prediction of breeding values can be achieved by using generally mixed model equations (MME), such as BLUP, as proposed by Henderson (1963). At the core of BLUP equations is the "Numerator Relationship Matrix" (NRM) (Henderson, 1963(Henderson, , 1976)). The NRM measures the relationship coefficients between individuals based on the pedigree and the lack of selection on Mendelian sampling terms. Nowadays, technology allows us to use genotypes to reconstruct the coefficients of the relationship among individuals in the absence of a pedigree. This matrix has been given several names including the "Genomic Relationship Matrix", GRM (VanRaden 2008), "realized relationship matrix" and "Genetic Relationship Matrix" (Hayes et al. 2009). The inclusion of genotypes has given rise to Quantitative Genomics which can be defined as Quantitative Genetics + DNA structure (e.g., SNP data). Breeding values obtained from replacing NRM with GRM are termed G-BLUP estimates (GEBVs) whereas the regression of SNP effects on the produced G-BLUP estimates yields the G-BLUP solutions for SNP effects assuming the infinitesimal model for SNP effects (Legarra et al. 2009). In G-BLUP all individuals, with or without phenotype, are included in the GRM construction and predictions can be obtained in a single step. G-BLUP has also proven to perform better compared to BLUP, e.g., using 50K SNP data and approximately 4,000 dairy cows, [START_REF] Harris | Genomic selection in New Zealand and the implications for national genetic evaluation[END_REF] used Pulay mixing to generate GEBVs for milk production traits are reported an average accuracy of 0.59 compared to 0.34 for the parental average breeding values. In his paper, VanRaden (2008) used an animal model for predicting GEBVs using a GRM formed from (a) true population SNP allele frequencies, (b) base population SNP allele frequencies, and, (c) sample SNP allele frequencies. The GEBV accuracies in the order of decreasing magnitude were a>b>c. It's possible, however, to combine both marker and pedigree information thus blending information from pedigree recorded genotyped and ungenotyped animals (Legarra et al., 2009). The NRM is partitioned based on age-group (parents' vs offspring) and in case individuals are genotyped, the additional information is used to create a relationship matrix based on all available information. Aguilar et al. (2010) tested this single-step method with data on approx. six million Holstein cows and BovineSNP50 genotypes on approximately 6,000 bulls and found that genetic evaluation using an NRM augmented with SNP data afforded similar accuracies and bias to multistep approaches where pedigree and genomic evaluations were incorporated using selection indexes. G-BLUP solutions (i.e. SNP effects) can be estimated using linear or non-linear methods. BLUP is an example of a linear method where the SNP effects are assumed to be normally distributed with a constant variance. This method accounts for pedigree structure, whether known (NRMs based on pedigree information, BLUP) or inferred (GRMs based on genomic information, G-BLUP). As described by Hayes et al., 2009, G-BLUP is appealing because the only prior information required is the additive genetic variance for the trait of interest. G-BLUP is not without fault, with the main drawback being the assumption that all SNP variants have an effect, probably due to incomplete LD between SNP, and that all variants with a small effect are equally distributed. The uninformative SNP included in the prediction equations add noise into the evaluation. Inclusion of a prior distribution that can potentially better characterize the true distribution of QTL effects could help reduce this noise (i.e. a nonlinear approach by using the Bayes alphabet). Some studies have suggested equivalence between Bayesian estimation and linear modeling for dairy traits (e.g. VanRaden et al., 2009), whereas, Hayes et al. (2009) and [START_REF] Harris | Genomic selection in New Zealand and the implications for national genetic evaluation[END_REF] reported an increase in GEBV accuracy of Bayesian methods to be approximately 2%-7%. Meuwissen et al., (2001) proposed BayesA that simultaneously includes all SNPs in the model (the proportion of SNPs that do not influence the trait (π) is assumed to be 0), but the SNPs are assumed to have a variable variance and each individual SNP variance estimated using Markov chain Monte Carlo method. In effect, larger SNP effects are regressed toward zero, less than SNPs with small effects on the trait. BayesB is like BayesA except that the proportion of SNPs that do not influence the trait (π) is assumed to be different from zero (i.e. π > 0). In BayesC, π > 0 but the SNPs included in the model are assumed to have same variance. Finally, BayesCπ is a form of BayesC in which the parameter π is estimated within the analysis. Genomic selection has been shown to have largest GEBV accuracy when animals belong to the same breed. Dairy cattle, however, suffers from long range LD which has can stretch up to 10 Kb between breeds (The Bovine HapMap Consortium 2009) but stretch for much greater distances within a breed. This implies more SNP will usually be associated with a QTL in a within breed analysis as opposed to a between breed analysis. For GEBV estimation, increasing the number of individuals in the training population, rather than the number of SNP would increase the GEBV estimation accuracy (VanRaden et al. 2009). Most dairy populations, however, are small to medium herd sizes. One solution to this limitation is to combine individuals from several breeds to obtain vast numbers of individuals with which to build the GEBV prediction models (de Roos et al. 2009). Another solution would be to genotype animals from various breeds with pre-selected sequence variants and validate these variants in various breeds thus paving way for across breed prediction.

Box 5| A comparison of linear and non-linear methods for the prediction of SNP effects

Analysis

Objectives of this thesis

The overall objective of this thesis was validating pre-selected sequence variants in French and Nordic dairy cattle populations and estimate SNP interaction effects.

In chapter 2.1, we used meta-analysis to combine the results of a GWAS based on preselected sequence variants in three French dairy cattle populations. The sequence variants were selected from Nordic populations. The results of this study suggest that most detected QTL segregate in all three French breeds even though all were not significant in the withinbreed analysis. The confidence interval for some QTL decreased and they became more visible. Therefore, an important second objective of this thesis was validating the Nordic pre-selected sequence variants.

In chapter 2.2 we used a combination of P-values and T-values and validated 96% of Nordic selected sequence variants using independent French data and for several dairy production traits. One of the outputs of performing a GWAS with many correlated traits is the chance of reporting on traits that are mostly ignored, but highly correlated with economically important traits such as clinical mastitis. In this effect, as reported in Chapter 2.3, we mapped QTL affecting milking speed, and compared them to clinical mastitis and somatic cell score. We identified several QTL for milking speed with some QTL increasing milking speed with no effect on clinical mastitis.

Interaction effects were estimated for both additive and non-additive SNP effects. In chapter 2.4 we used the Association Weight Matrix in combination with a Partial Correlation and Information Theory algorithm to detect additive gene networks with regulatory and functional significance for five udder phenotypes with milk production traits considered as supportive traits. We identified several transcription factors directly involved in udder morphology. It was concluded that the SNP encoding this transcription factors can be used to select for better udder morphology.

Furthermore, since accounting for dominance and epistasis can aid in understanding the genetic architecture of milk production traits, we used a Bayesian approach to estimate dominance and epistatic variance in French and Nordic cattle breeds. This was expounded in chapter 2.5 where dominance variance was consistent across breeds and traits and epistatic variance estimates were more variable.

Chapter 2: Results

This chapter is a collection of the results obtained through the four-year Ph.D. project. The results are presented through six papers, five of which I am the primary author. Three of the manuscripts have been published in peer review journals, and two are under review, and one is in preparation. The full publication list is available in Appendix 2

2.1 A meta-analysis including pre-selected sequence variants associated with seven dairy traits in three French cattle populations 

INTRODUCTION

Ideally, the magnitude of estimated effects on the quantitative trait of interest could be used to rank single nucleotide polymorphisms (SNP) for a functional genomic study to identify causal variants. The physical locations of the associated SNP on the genome are then flagged and mined for causative mutations underlying quantitative trait loci (QTL). Causal mutations reported for QTL in previous dairy cattle studies include polymorphisms causing variation in milk production, fertility, and embryonic lethality (Grisart et al., 2002;Hoff et al., 2017;[START_REF] Michot | A missense mutation in PFAS (phosphoribosylformylglycinamidine synthase) is likely causal for embryonic lethality associated with the MH1 haplotype in Montbéliarde dairy cattle[END_REF]. Most analyses testing genomic regions, like those above, perform withinbreed GWAS [START_REF] Chang | An overview of genome wide association studies[END_REF]. Even so, our knowledge regarding causal variants in these genomic regions remains limited because the GWAS analyses yield similar P-values for many adjacent SNP variants, a consequence of linkage disequilibrium (LD). Even with a multitude of GWAS results, strong LD prevents distinguishing true causal from linked markers (Goddard and Hayes, 2009). A meta-analysis can be used to improve the resolution of QTL detection and identify causal mutations provided that LD is conserved at short distances across breeds (van den Berg, 2016). The main advantage of a meta-analysis is that it allows simultaneous analysis of many breeds by combining GWAS summary statistics across populations, thereby increasing power to detect QTL (van den Berg, 2016).

In this paper, we report an across-breed meta-analysis of GWAS summary statistics based on imputed pre-selected sequence variant genotypes from 78,772 cattle from three dairy breeds and for seven traits. The meta-analysis across breeds allowed us to characterize 142 QTL for milk production, stature, and fertility.

RESULTS

Association studies

Overall, there were 21,956 significant associations for all traits and breeds. 43% of this were associated with Holstein, 24% with Montbeliarde, 14% with Normande, 7% associated with both Holstein and Montbeliarde, 4% between Holstein and Normande, 5% between Montbeliarde and Holstein, and 3% amongst the three breeds. Production traits and stature had more significant hits across breeds, compared to fertility. As presented in Figure 1(A-E), the overlap of significant tests in any two-breed combination and for all traits was most evident between Holstein and Montbeliarde (1,621 SNP) and least apparent between Montbeliarde and Normande (1,082 SNP). 701 SNP were significantly associated with the same trait in all three breeds.

As presented in Figure 1(F-I), some of the imputed sequence variants had lower P-values compared with the 50k variants P-values. Although more than 13% of the pre-selected sequence variants had MAF between 0.5% and 5%, only 2 QTL lead SNP had MAF lower than 5%. We did not detect QTL with MAF less than 5% in Normande. Among the pre-selected sequence variants, 1,478 were significant (P < 1.03e-6). Additional file 1 presents a list of 14,501 significant meta-analysis variants. Meta-analysis heterogeneity among three breeds: As an example of the heterogeneity observed from a meta-analysis of the three breeds, we observed peaks from a combined Manhattan plot for fat and protein percentage (Figure 2A) and standardized the allelic substitution effects by the phenotypic standard deviation of fat and protein percentage metaanalysis results. We observed heterogeneity (Cochran's Q, P < 0.05) for 36 QTL from the meta-analysis in three breeds (Figure 2D). We then overlay observed breed specific QTL for these two traits and Holstein had 26 QTL in 24 chromosomes, Montbeliarde had 17 QTL in 14 chromosomes, and Normande had 16 QTL in 7 chromosomes (Figure 2C. Each dot shows the more significant P-value that was observed across both traits. Light green color represents sequence variants with P-value less than 1e-6. Figure 2: Heterogeneity in fat and protein in milk across three cattle breeds. (A) Composite Manhattan plot that shows the association of 43,421 imputed variants including 5,609 pre-selected sequence variants with fat and protein in the in the meta-analysis.

The composite Manhattan plot summarizes the results of the meta-analyses with each dot representing the more significant P-value that was observed across both traits. Light green represents sequence variants with P-value less than 1e-6. (B) Quantile-quantile plot of the meta-analyses. Green and brown color represent P-value of 43,421 imputed variants for fat and protein, respectively. (c) Overview of 59 QTL that were significant at P < 1e-6 in the meta-analysis and within-breed association studies. Each column represents one of 29 Bos taurus autosomes. Row colors are breed specific with the top row being overall meta-analysis QTL. Filled squares indicate that QTL were significant in the respective breeds and chromosome. (D) Allelic substitution effects of 36 OTL on fat and protein standardized with the phenotypic standard deviations. The vertical axis is protein, and the horizontal axis is fat. Populations in order are MON, NOR, and HOL; '+' and '-'denote positive and negative substitution effects of the alternate allele. '?' indicates that the variant did not segregate in the respective population. The P value of Cochran's Q test for heterogeneity of the effect sizes across breeds is given in parentheses, and is significant if P < 0.05 Populations in order are MON, NOR, and HOL; '+' and '-'denote positive and negative substitution effects of the alternate allele. '?' indicates that the variant did not segregate in the respective population. The P value of Cochran's Q test for heterogeneity of the effect sizes across breeds is given in parentheses, and is significant if P < 0.05

DISCUSSION

Our meta-analysis of association studies for seven traits across three dairy cattle breeds discovered 120 QTL including 13 QTL that had not been detected at P<1.03e-6 in the within-breed analyses.

Previous studies have shown the power to detect QTL may be greater in multi-breed association studies (van den Berg, 2016). In agreement with previous studies [START_REF] Pausch | Meta-analysis of sequence-based association studies across three cattle breeds reveals 25 QTL for fat and protein percentages in milk at nucleotide resolution[END_REF], Pausch et al., 2016), our results show that combining GWAS summary data from several breeds increases the power of association studies. One challenge of GWAS is the proper method to use when controlling for the effect of multiple testing when performing a large number of tests. Since we are mapping QTL, statistical significance after Bonferroni correction would suffice [START_REF] Qu | Statistical significance in genetic association studies[END_REF]. A similar approach has been used in dairy cattle [START_REF] Macciotta | Genome-wide association analysis in Italian Simmental cows for lactation curve traits using a low-density (7K) SNP panel[END_REF] and other species [START_REF] Zhang | Genome-wide association study identifies multiple susceptibility loci for craniofacial microsomia[END_REF].

Within-breed GWAS showed associated SNP for fertility had no overlap between breeds. This is probably due to small effects per locus (i.e., low power) and the action of many, fairly rare recessive lethal alleles. The meta-analysis increased the power and consequently the confidence interval for some fertility related QTL became narrower and visible. This was the case for four QTL in BTA2, 8 and 20 (Table 4).

Associated SNP in Holstein were in strong LD and thus had similar predicted effects. However, previous studies in small sample of Australian dairy breeds and beef breeds reduced power to identify segregating loci [START_REF] Raven | Multibreed genome wide association can improve precision of mapping causative variants underlying milk production in dairy cattle[END_REF][START_REF] Mcclure | Genome-wide association analysis for quantitative trait loci influencing Warner-Bratzler shear force in five taurine cattle breeds[END_REF], suggesting that sample size may be more critical in GWAS than LD.

One advantage of multi-breed analysis is that it is expected to offer more precision in refining QTL position due to the breakdown of long-range LD as a result of mapping more SNP within genes when breeds are combined (Pausch et al., 2016;[START_REF] Raven | Multibreed genome wide association can improve precision of mapping causative variants underlying milk production in dairy cattle[END_REF]. In this study, we start by performing a within-breed GWAS then using a weighted z-score model, calculate the weighted Pvalue from combining the GWAS summary of the three breeds. van den Berg et al. ( 2016) showed the meta-analysis approach to be closer to multi-breed GWAS. In our study, the meta-analysis increased the P-value for some variants while it decreased for others. For example, a region on BTA6:87296809 was strongly associated with protein yield and mapped near the protein-coding genes ODAM and CSN3 in a 120kb region. Bovine odontogenic, ameloblast-associated (ODAM) participates in structuring the extracellular matrix to attach epithelial cells to mineralized surfaces thus forming a protective seal that is antagonistic to bacterial invasion [START_REF] Fouillen | Interactions of AMTN, ODAM and SCPPPQ1 proteins of a specialized basal lamina that attaches epithelial cells to tooth mineral[END_REF] Strongly associated SNP (P < 1e-50) were identified in all three French dairy breeds. Among these were several SNP that had previously been described such as those close to the DGAT1-k232A mutation on BTA14 (Grisart et al., 2004). These SNP were highly associated with all milk production traits in all three breeds. A very significant sequence variant at BTA5:93948357 (rs209372883) associated with protein and fat in Holstein and Montbeliarde; it has previously been ascribed to a mutation in MGST1 (microsomal glutathione S-transferase 1) [START_REF] Raven | Targeted imputation of sequence variants and gene expression profiling identifies twelve candidate genes associated with lactation volume, composition and calving interval in dairy cattle[END_REF], an upstream intron variant. MGST1 is also an inflammation response gene which is highly expressed through pregnancy and lactation [START_REF] Church | EXP-PAC: Providing comparative analysis and storage of next generation gene expression data[END_REF]. Previous studies in Japanese Black cattle [START_REF] Wang | Transcriptional profiling of muscle tissue in growing Japanese Black cattle to identify genes involved with the development of intramuscular fat[END_REF] suggested upregulation of MGST1 during adipocyte development in the longissimus muscle. Slightly upstream, a highly significant peak was centered within SLC15A5, a protein-coding gene. Our results suggest that both MGST1 and SLC15A5 may contain variants affecting milk production. Raven et al., (2014) identified a fat yield QTL at 3kbp of MGST1 using a multi-breed analysis and we report a SNP which was within 2kbp of the genic region of MGST1 using meta-analysis. Studies in Canadian Holstein using a similar density chip (50k) reported several fat yield candidate genes SLC2A3 and GDF3 at 101.7-101.8 Mb and LRP6, EMP1 and DUSP16 at 97-98 Mb on BTA5 [START_REF] Li | Genome-wide scan for positional and functional candidate genes affecting milk production traits in Canadian Holstein cattle[END_REF]. This agrees with our meta-analysis results. We found highly significant region for fat with our putative SNP within 2kbp of MGST1 gene and only 200 bp from that reported for Canadian Holstein.

Another very significant QTL for milk yield in Holstein was identified on BTA20 at approximately 38Mb. The lead SNP of this QTL was located near the NNT gene which has previously been associated with immune response in dairy cows [START_REF] Weikard | Different blood cell-derived transcriptome signatures in cows exposed to vaccination pre-or postpartum[END_REF]. Majority of the associated SNP with fertility, a trait with low heritability, was 50k chip variants. For instance, rs110992367, the lead SNP for a 3.3Mb QTL for the success rate of insemination in Holstein cows was 0.38 Mb from the 5' flanking region of the G2E3 gene. Meta-analysis heterogeneity for this QTL was observed in all three breeds (P=9.5e-3), but opposite in the effect direction between Holstein and the other two breeds. The heterogeneity is important because the G2E3 gene is an essential protein-coding gene that prevents apoptotic death during embryonic development [START_REF] Brooks | G2E3 is a dual function ubiquitin ligase required for early embryonic development[END_REF]. This gene has been linked to apoptosis and cellular stress in US beef cattle [START_REF] Howard | Beef cattle body temperature during climatic stress: a genome-wide association study[END_REF] and somatic cell score in Chinese Holstein (Wang et al., 2015). This gene is a good candidate affecting cow fertility.

All QTL identified by meta-analysis were not significant in all within breed analysis (Table 1-6, Figure 2C) probably due to low power to show significance at P<1e-6 or lack of segregation in the breed [START_REF] Sham | Statistical power and significance testing in large-scale genetic studies[END_REF]. For instance, the variant mapping PLAG1 gene only segregated in the Montbeliarde breed. However, most of the QTL had an effect in the same direction in all breeds for the more significant variants, e.g., BTA18:58067310 (CEACAM18 gene, fat) and BTA10:51558941 (FAM63B gene, stature). This suggests that most detected QTL segregate in all three breeds even though they were not significant in the within-breed analysis. A limitation of this study may arise from the fact that even though the putative candidate SNP were selected from sequence data, imputation errors may reduce the significance of the sequence variant compared to 50k SNP. This is because, during imputation to 50k, most of the 50k markers are copied while most sequence variants are predicted from parental haplotypes thus can have higher imputation inaccuracy. On the plus side, sequence imputation improves coverage and avoids the cost of generating numerous whole genome sequences. In our study, the average allelic correlation (r 2 ) between real and imputed genotypes for the three breeds was > 0.97, and sequence variants that were most significant had a MAF > 15%.

MATERIALS AND METHODS

Genotyping and imputation

Cows were genotyped using the Illumina Infinium® BovineSNP50 BeadChip (50K, Illumina, San Diego, CA) and the EuroG10k SNP chip. The EuroG10k SNP chip is composed of two parts: (1) 7,931 generic (and supposedly neutral) SNP from BovineLD Genotyping BeadChip v.2 (Boichard et al., 2012). ( 2) Whole genome sequence variants -a custom part of 7,232 SNP selected from sequence data as part of 1000 Bull Genomes Project Run 4 (Daetwyler et al., 2014) based on their functional annotation. The full description of the EuroG10k chip and quality control procedure was previously described by Marete et al. (2018). To get complete marker information across individuals, we imputed all animals to 50k + selected sequence variants in two steps. First, the 50k variants were imputed, then the sequence variants. The imputation was done within breed using the FImpute software (Sargolzaei et al., 2011), and considering all genotyped animals (young and old males and females with or without phenotypic records). After imputation, 48,576 SNP distributed across 29 Bos taurus autosomes (BTA) remained. Of these, 42,967 were from the 50k chip, and 5,609 sequence variants selected in Nordic and French cattle populations. Imputation accuracy was estimated using both concordance rate and allelic squared correlation (r2). We randomly masked 20% of markers on each chromosome and 15% of cows per breed, running an imputation and comparing imputed genotypes with true genotypes by estimating a Pearson correlation coefficient. For 50k SNP, the average concordance was >0.98, and average allelic r2 was >0.97, and for sequence variants, the average concordance was >0.95, and average r2 was >0.96 for all breeds.

Phenotypes

The phenotype for the traits studied here are only expressed in cows. Production traits (milk, protein and fat yields) are obtained from test-day records expressed as 305d yields (kg). Fat content (g/kg) was calculated as 1000*(fat yield/milk yield). Protein content (g/kg) is calculated as 1000* (protein yield/milk yield). Success/failure at each insemination of lactating cows (fertility) is recorded as 1=success and 0= failure. Stature is measured as the vertical distance from the plank to the sacrum. These traits were analyzed using the French national evaluation models [START_REF] Guillaume | Genomic selection in dairy cattle[END_REF]. The model may vary according to the trait, especially for environmental factors. A cow may have multiple lactation records; therefore, the model included a permanent environmental effect (pe). Yield Deviations (VanRaden & Wiggans, 1991), as the mean performance adjusted for all environmental effects, including the pe, were obtained from the French national evaluation system. All models only included an additive genetic effect. Yield deviations for 46,732 Holstein cows, 20,096 Montbeliarde cows, and 11,944 Normande cows were available for this study.

Association Studies, Meta-Analysis, and QTL Heterogeneity

First, 48,576 SNP (sequence variants and 50k SNP) were tested individually for association with each trait within the breed. The GCTA software (Yang et al., 2011) was used to fit a mixed linear association analysis regression model to test associations between a SNP and the trait. For any given trait, the fitted model was

! = [µ + ]^+ ' + _ (a)
where y was a vector of phenotypes for all cows, µ was the mean, x was the vector of genotypes for SNP, β was the fixed allele substitution effect of the SNP, ' was the vector of random additive genetic effects with '~N(0, /0 1 2 ), and ε was a vector of random residual effects with _ ~ N(0, 30 2). The variance of y was var(d) = /0 1 2 + 30 2 where G was the genomic relationship matrix with term J ef estimated by

J ef = ; g ∑ hi :j <29 : k(i :l < 29 : ) 29 : (;<9 : ) g @Z; , (b) 
where w was the total number of SNP, m @e +no m @f were number of copies of reference allele for the p qr SNP in the s qr and t qr cows, respectively, and D @ was the frequency of reference allele estimated from the marker data (VanRaden, 2008).

To control the type I error rate and assuming all tests were independent (a conservative assumption due to LD among SNP), a Bonferroni genome-wide correction was applied for the total number of tests for each trait. The number of SNP divided the nominal type I error rate, α=5%, w=48,576 to obtain a threshold of t=1.03e-6. Any SNP whose probability of the observing the test statistics was below this value was considered genome-wide significant.

The within breed analyses was followed by a meta-analysis using weighted Z-score model as implemented in METAL software (Willer et al. 2010). The weighted Z-score model uses Pvalues and directions of effect estimates and weights individual GWAS based on the sample size to compute a Z-score, i.e.,

u v = Φ <; x1 - y z 2 { * Δb, (c) 
where u v was the Z-score for breed b, Φ was the standard normal cumulative distribution, v was the P-value, Δb was the direction of the SNP effect estimated within breed b. Overall z-score is calculated as:
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where É v = ÑN v and N was the sample size for breed b. Overall P-value was calculated as:
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We evaluated heterogeneity of the effect sizes across breeds using Cochran's Q test [START_REF] Cochran | The combination of estimates from different experiments[END_REF] as implemented in the METAL software. A QTL was deemed to segregate across populations if the heterogeneity P-value was ≤ 0.05. The functional consequence of significantly associated variants was predicted using the Variant Effect Predictor tool from Ensembl Genome Browser 90 [START_REF] Mclaren | The Ensembl variant effect predictor[END_REF]. We classified variants that (i) mapped a gene, (ii) <5-kb to known genes, and, (iii) >5-kb to any coding region. In case of multiple variants representing same gene, we keep the variant associated with most traits and with lowest P-value as representative for that gene.

Identification of QTL that segregates within and across breeds

First, significantly associated variants within genomic regions were subjectively inspected per chromosome. Second, within-breed QTL were defined as 1 Mb windows and the SNP with lowest P-value designated as lead SNP. A QTL was designated as significant in more than one breed if any of the SNP in the QTL of the other breed had a P-value lower than the genome-wide threshold (P < 1.03x10-6). The UMD3.1 (Zimin et al., 2009) bovine genome annotation was used to annotate genes centering within 1 Mb intervals on the lead SNP. We compared these annotations to known QTL for bovine milk production traits using QTLdb (Zhi-Liang, 2016) and literature review. 

Validation of SNP association from a Nordic sequence based GWAS using independent French cattle populations

INTRODUCTION

In dairy cattle, the last two decades have seen a rapid improvement in both sequencing and genotyping technologies leading to the discovery of many genomic variants and associated with various traits of economic importance [1]. These associations, however, are mostly attributed to GWAS studies in the discovery population due to small effective dairy cattle population in other breeds, regions or countries or simply lack of phenotypes in a validation population. Apart from the main advantage of minimizing the risk of false positive associations in GWAS, a validation study would also evaluate systemically if the discovered SNP in initial GWAS are spurious signals [2]. In this sense, there is a desire to validate variants discovered in initial GWAS before including them in normal genomic prediction or investing in identification of causal mutation.

A typical validation entails genotyping the same variants in an independent population and a GWAS is run for the for a similar or equivalent phenotype as in the discovery population. As described by [3], there are four criteria upon which if satisfied, we assume the variant is validated. These criteria include: (1) the same statistical test for the variants and the phenotype is used and it should be significant at a pre-defined nominal level (e.g. α = 5%).

(2) The number of individuals in the independent population should be large enough to provide statistical power so that the GWAS signal in discovery population is not missed. (3)

The direction of the genetic effect (i.e. the allele substitution effect) should be consistent with the direction of the initial GWAS. ( 4) A similar genetic model must be used to produce the test statistic in both the discovery and the validation population. The above four criteria can be unmet if the SNP that was tested in the discovery population is in linkage disequilibrium (LD) with the true causal mutation or the validation population has a breeding structure that affects its genetic constitution [4].

For dairy cattle, extensive use of breeding technologies, (e.g. artificial insemination), has led to a decline in effective dairy cattle population sizes. On the one hand, this decline has influenced LD patterns e.g. minimal LD has been reported in large regions (>1 Mb) in several dairy cattle breeds [5] in contrast to humans where LD is found up to 100 Kb [6]. GWAS, however, exploits LD and thus opening the possibility of mapping variants at every 100 Kb. On the other hand, persistent and strong LD causes variants to be strongly linked to the causal marker thus limiting QTL localization. If the LD structure is changed, studies have shown the that a reversal of the direction of the allele substitution effect can occur (i.e. 'flip-flop' effect) [7]. Inclusion of sequence variants in the analysis can reduce the LD uncertainty because it increases the probability of having the true causal mutation in the GWAS analysis [8].

As part of the 1000 bull genome project [9], the Eurogenomics consortium developed a custom chip with increasing number of putative variants selected from bovine sequence data in various cattle populations within Europe whose content have previously been described [10]. This study reports on association of SNP selected from Nordic Holstein and Danish Jersey populations (i.e. discovery population) with French Holstein, Montbeliarde, and Normande breeds (i.e. validation population).

MATERIALS AND METHODS

Selection of SNP from whole genome sequence data in Nordic cattle population

The choice of associated sequence variants was described earlier [11]. In brief, a genomewide association study (GWAS) was carried out separately for three Nordic dairy cattle breeds: Nordic Holstein, Nordic Red, and Danish Jersey. Seventeen indices in the breeding goal (Table 1) were classified into three categories broadly based on their economic importance. The analysis was done using a linear mixed model approach with sire effect as random ignoring the relationship among them. About 10 million SNP on 29 Bos taurus autosomes (BTA) were analyzed. The SNP were rank within breed based on association signal strength. Quantitative Trait Loci (QTL) regions were demarked and utmost 15, 10 and 5 QTL regions per trait in each breed for categories I, II, and III, respectively were selected. Table1

Three to five associated SNP were selected to cover each QTL, based on association strength and variants annotation. The most robust P-values and variants with an appealing functional annotation were retained. All SNP selected for a breed for all traits were collected and duplicates removed. Remaining SNP were pruned for linkage disequilibrium (LD) using PLINK software [12] where pair-wise LD (r 2 ) was set to ≥ 0.95. All selected SNP from three Nordic breeds were pooled and duplicates removed. SNP were run through Illumina Assay Design Tool (ADT) and SNP predicted to perform poorly in the assay were exchanged with new ones. The final list of SNP was included in the EuroG10k chip [10]. These included 1,623 SNP selected based on association with 17 indices in three Nordic dairy cattle breeds. 

Genotyping in the French population, quality control, and imputation

This was previously described in [10]. Briefly, cows were genotyped using the Illumina Infinium® BovineSNP50 BeadChip (50K, Illumina, San Diego, CA) and the EuroG10k SNP chip. To get complete marker information across individuals, we imputed all animals to 50k + selected sequence variants in two steps: first we imputed to 50k to recover all 50k information, using all animals genotyped with the 50k as the reference, and second, we imputed the sequence variants using all animals genotyped with version 4 of the Eurogenomics chip as reference. The imputation was done within breed using the FImpute software (Sargolzaei et al., 2011), and considering all genotyped animals (young and old males and females with or without phenotypic records). After imputation, 48,576 SNP distributed over 29 Bos taurus autosomes (BTA) remained. Of these, 46,953 were from 50k+ and 1,623 sequence variants selected from Nordic populations.

Phenotypes

Cow phenotypes studied include production traits, fertility, somatic cell score and clinical mastitis. Milk, protein and fat yields are obtained from test-day records expressed as 305d yields (kg). Fat content (g/kg) is calculated as 1000* (fat yield / milk yield). Protein content (g/kg) is calculated as 1000* (protein yield / milk yield). Fertility is defined as success/failure at each insemination of lactating cows and is recorded as success (1) or failure (0). Somatic cell counts (SCC) are obtained at each monthly test-day, and somatic cell score (SCS) are defined as SCS=3+log2(SCC/100,000). Clinical mastitis events are declared by the farmer and recorded by the technician at each test-day. The phenotype is recoded as 1 if the cow had at least one clinical mastitis event in the lactation, 0 otherwise. These traits were analyzed using the French national evaluation models [13] and phenotypes derived as the mean of the adjusted performances for all environmental effects i.e. yield deviations [14]. All models included only the additive genetic effect. 46,732 Holstein cows, 20,096 Montbeliarde cows, and 11,944 Normande cows' phenotypes expressed as yield deviations were available for this study.

Association Studies and Principle Component Analysis

Each variant was tested individually for association with each trait within breed by fitting a mixed linear association model (Yang et al., 2011) such that

! = [µ + ]^+ ' + _ (a)
where y is a vector of phenotypes for all cows, µ is the mean, x is the vector of genotypes for SNP, β is the fixed effect of the SNP, ' is the vector of genetic effects and '~N(0, /0 1 2 ) and ε is a vector of residual effect with _ ~ N(0, 30 2). Variance of y is var(d) = /0 1 2 + 30 2

where G is the genomic relationship matrix with term J ef equal to
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where w is the total number of SNP, m @e +no m @f are number of copies of reference allele for p qr SNP in s qr and t qr cows respectively and D @ is the frequency of reference allele [15]. A Bonferroni genome-wide correction was applied for the total number of tests for each trait.

The nominal type I error rate, α=5% was divided by the number of SNPs, w=48,576 to obtain a threshold of t=1.03x10 -6 . Any SNP whose test probability were below this value was considered genome-wide significant.

We studied the genomic relationships between breeds using the genomic relationship constructed using all variants for 30% randomly selected individuals of each breed. Genomic relationships were standardized and scaled based on allele frequencies estimated in the animals used to construct the genomic relationship matrix, following [15]. The EIGENSTRAT algorithm was used to perform a principal component analysis as implemented in GCTA software [16].

Criteria for prioritizing candidate SNP list between sequence variant and 50k

We did this by comparing the statistical test of the putative causal mutation (alleles C and c) and at a linked marker (alleles M and m). Let the linkage disequilibrium (LD) between C and M be r. The minor allele frequency (MAF) is p and q for C and M, respectively. The true effect of C is a, and its estimate is â. The expected apparent effect of M is u=ra, and its estimate is û. The T-test for C is

Ü(á) = |â| σ â ⁄ (1) The T-test for M is T(M) = |û| σ û ⁄ (2) 
The expectation of the apparent marker effect (ra) is smaller in absolute value than a. Assume the T-test of M is larger than the T-test of C only if the denominator is smaller and compensate for r. The error variance of â is

σ 2 (â) = σ é 2 2np(1 -p) ⁄ (3) 
with σ é 2 being the residual variance of the model and n the number of individuals analyzed;

and the error variance of û is

σ 2 (û) = σ é 2 2nq(1 -q) ⁄ (4) σ 2 (û) < σ 2 (â) if q > p (5) 
Therefore, assume p=MAF(C) < q=MAF(M). Assume that C and M are the minor alleles, therefore p = freq(C) and q = freq(M). At the gametic level:

r 2 = (freq(MC) -pq) 2 p(1 -p)q(1 -q) ⁄ (6) 
As p < q, we can assume that freq(MC) = xp, with x between 0 and 1. The haplotypic frequencies are:
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which is max for x=1. The haplotypic frequencies corresponding to r 2 maximum are Haplotypic Frequencies for , Yôö 2
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)
and equation ( 1) and (2) thus become ( 13)
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Finally, E (T(M)/T(C)) = (1-q)/(1-p) which is always < 1 meaning that, in expectation, the causal mutation has a higher test statistic than the test statistic of linked markers. Furthermore, if freq (M) = 1-q, r 2 is maximum for x=0 and r 2 = p 2 q 2 / (p(1-p)/q(1-q)), E(T(M)/T(C)) = q/(1-p) and the final conclusion is the same. If there is no genotyping or imputation error, the causal variant is always more significant than the neighboring variants.

RESULTS

Principal component analysis (PCA)

Figure 1 shows principal component analysis of the genomic relationship between Nordic breeds and French breeds. French and Nordic Holstein populations were very similar, while a small Normande cluster was closer to Holstein than either Montbeliarde or Jersey which were distinctly different. This implies more associations with French Holstein and Normande and fewer with Montbeliarde e.g. Figure 2 presents the Manhattan plot for fat percentage in three breeds, with sequence variants highlighted in blue. 

Confirmation of sequence associations in French cattle breeds

1,558 pre-selected sequence variants from GWAS in Nordic populations were genome wide significant in French populations. This represents 96% of SNP that were being validated. Figure 3 and Figure 4 We further compared association signal strength between sequence selected lead SNP and all nearby 50k SNP (Table 3). In summary: sequence selected SNP associated with milk in Montbeliarde (BTA6:88723742, P=4.95x10 -9 ) and Holstein (BTA5:93944937, P=1.15x10 ). Apart from being more significant than the closest sequence selected QTL SNP, the 50k SNP also had a greater MAF. These can be considered as good candidate SNP for the French breeds. However, other 50k SNP that flanked sequence selected QTL SNP were more significant but with a lower MAF, e.g. BTA8:65107050 (Holstein, milk), BTA9:6367757 (Montbeliarde, protein), BTA6:87199843 (Holstein, protein), and, BTA18:48150900 (success rate of insemination in lactating Holstein cows). The sequence selected SNP flanking these SNP should be eliminated from the candidate SNP list, as they were likely selected due to LD and probably not causal. 6.95 0.17 

DISCUSSION

We performed within breed GWAS in three French dairy cow populations with 48,576 SNP as an independent confirmation of 1,623 SNP selected from whole genome sequence-based association in Nordic dairy breeds. GWAS was done for five milk production traits, two traits related to mastitis and one trait related to fertility. We aimed to determine whether trait-associated SNP segregating in Nordic dairy breeds could be confirmed in French dairy cattle breeds for the same/similar trait, and whether they performed better than neighboring 50k SNP. The variants and QTL reported here are a good confirmation of previous studies [10,11], and warrant further investigation for those associated with milk production, fertility, and health traits in dairy cattle. For instance, a peak at BTA19:42838996 on a 0.2 Mb region (42.7-42.9 Mb) associated with female fertility in French Holstein, Montbeliarde and Normande breeds mapped, among others, CNP, DNAJC7, ZNF385C genes. DNAJC7 has previously been associated with cellular response to heat stress in Holstein [21] whereas ZNF385C gene, part of the Zinc finger family, has been associated with clinical mastitis [10].

QTL detection power depends on: (a) trait heritability, and (b) effect of the QTL. If the sample size is small, more likely only variants with a major effect are detected. This was the case in Normande breed where few variants were genome wide significant. Furthermore, the genetic architecture of traits such as clinical mastitis and fertility could be such that it's affected by many genes but each with a small effect. In French Holstein, however, the large dataset allowed localization and validation of sequence variants for lowly heritable traits, e.g. BTA26:20547445 (MAF=0.35, P=5.77x10 -32 ) was associated with female fertility in a 100Kb region and mapped SLC25A28 gene. SLC25A28 gene, Solute carrier family 25 member 28, is a mitochondrial iron transporter that mediates iron uptake and has been associated with differential gene expression in bovine cells [17].

For the numerically small breeds, a suggestive GWAS threshold could be more informative for validation purposes. Some variants that did not cross the Bonferroni corrected significance threshold in Normande, were validated in French Holstein. For example, the detected SNP (BTA20:36635855) on BTA20 mapping a QTL between 34-38Mb and within 1Mb of SLC1A3 gene was not significant Nordic Holstein (P =1.29x10 -04 ) but validated in French Holstein (P=5.42x10 -27 ). This gene has been associated with decreased milk quality in Holstein cows [18].

Some Nordic associate SNP could not be validated in the three French breeds. For instance, six QTL lead SNP on BTA7,11,15,18,20, and 26 mapping eight QTL (Table 2), though significant in both Nordic Holstein and French Holstein, had a higher P-value and lower Tvalue in French Holstein. However, some of the genes mapped by this SNP have been associated with important dairy cattle diseases. For instance, BTA18:57017616 at 56-58 Mb mapped among others CEACAM18 gene. This gene has previously been reported as a candidate gene for clinical mastitis [10]. BTA24:29575699 at 29-30 Mb mapped CDH2 gene. Cadherin 2 (CDH2) has been linked to fertility in dairy cows [19] by becoming upregulated and highly expressed during early stages of pregnancy. A reason for lack of proper validation of these SNP in the French populations could be due to differences in phenotype definition e.g. deregressed proof as opposed to daughter yield deviation [20]. Lack of power in the study or simply statistical error (false positive) can also lead to non-validation. To ensure robustness of selected sequence variants, validation should be done in a series of independent populations and using different study designs so that the results can be generalized for routine genomic prediction purposes.

CONCLUSION

This study provides evidence of sequence variant association with economically important dairy cattle traits in three breeds. Most of these associations are concentrated on 16 chromosomes (BTA2, BTA3, BTA5, BTA6, BTA7, BTA10, BTA11, BTA13, BTA14, BTA15, BTA16, BTA18, BTA19, BTA20, BTA24, and BTA26). These QTL regions can be included in routine genomic prediction procedure or studied further for mining causal mutations in dairy cattle.

Genome-wide association study for milking speed in French Holstein cows

Andrew Marete 

MATERIALS AND METHODS

Studied population

A total of 32,491 cows with all phenotypes (MS, SCS, and CM) and genotypes were included in this study. Milking speed score (1=slow to 5=fast) is a subjective appraisal given by the farmer and recorded by the type classifier during classification visit. There was only one score for each cow, obtained in the first half of the first lactation. Somatic Cell Counts (SCC) were obtained at each monthly test-day. SCS was defined in the usual way as SCS=3+Log2(SCC/100,000) and averaged over the lactation. CM events were declared by the farmer and recorded by the technician at each test-day. The phenotype was recorded as one if the cow had at least one clinical mastitis incidence in the lactation and zero otherwise. Yield Deviations (YD, (VanRaden and Wiggans, 1991)), i.e., performances adjusted for nongenetic effect, were obtained from the French national evaluation system (Boichard et al., 2012b). As SCS and CM might have repeated records, YD was an average over the lactations. Finally, each cow received one phenotype for each trait. Technically, the phenotypes corresponding to MS, SCS, and CM are Trait Deviations, and not Yield Deviations (as would be for milk production traits), however, to conform to the original terminology by VanRaden et. al (1991), we use the term Yield Deviation.

Cows were genotyped with different types of SNP chip, so imputation process was required to recover complete genotype information. For imputation, the whole genotyped French Holstein population (Males (young and old) and Females (with and without phenotypes)) was used as reference. Holstein males and females were genotyped with either Illumina BovineSNP50 Beadchip (50k; Illumina, San Diego, CA, USA), or the customized EuroGenomics SNP chip (LD-chip). Two successive imputation steps were carried out. In the first step, 43,800 markers from the 50k were imputed, using all 50k genotypes as a reference. This step was carried out as part of the national evaluation procedure, before this study. In the second step carried out for the present study, additional functional variants were imputed, using animals genotyped for the functional variants included in the LD-chip as reference. The LD-chip is composed of two parts: ( 

GWAS and QTL detection

Genome-wide association studies (GWAS) were performed with GCTA software (Yang et al., 2011). A mixed linear model association analysis was used to test associations between individual SNP and cows' MS, CM, and SCS. Because phenotypes were yield deviations (YD) already adjusted for non-genetic effects, for each SNP i, the fitted model per trait was

! = [µ + ]^+ ' + _
where y was the vector of YD for n cows, µ was a mean, β was the allele substitution effect of SNP i, x was the vector of genotype dosages (0, 1, or 2) for SNP i, g was the vector of polygenic effect with ' ~ N(0, /0 1 2 ) and ε was a vector of the residual effect with _ ~ N(0, where G was the genomic relationship matrix between cows. For cows j and k

J ef = 1 É Ö hm @e -2D @ k(m @f -2D @ ) 2D @ (1 -D @ ) g @Z;
where w was the total number of SNP, m @e and m @f were the number of copies of the reference allele for the p qr SNP for the s qr and k th cow and D @ was the frequency of the reference allele. To control the type I error rate, and assuming each test was independent, a Bonferroni genome-wide correction was applied. A genome-wide threshold was calculated as the ratio of the α-level to total number of tests i.e., P -value(Ü @ | ™ ´) ≤ ≠ g where α = 1% and w = 49,835. In this study, P-value = 2.01x10 -7 or -Log10 P = 6.70. A SNP was therefore considered significant if its -Log10 P was greater than 6.70.

Criteria for defining a QTL interval were as follows

1. Select all SNP with a -Log10 P value equal to or exceeding the genome-wide threshold -Log10P ≥ 6.70. 2. For each selected SNP define a 2 Mb region (1Mb on each side). 3. Within each 2Mb window, select the most significantly associated SNP as the lead SNP (m) using it's -Log10 P value (x). 4. Define a new threshold (d) at LOD drop of 2 (in our case we used -Log10 P drop of 2), i.e. (d=x-2) and select all SNP whose -Log10 P ≥ d inside the 2 Mb region. 5. Discard 2 Mb regions with <4 SNP. 6. To determine the boundaries of the QTL regions, merge 2 Mb regions using the following rules: a. Calculate LD between the lead SNP of window i and the lead SNP of downstream regions using PLINK (Purcell et al., 2007). b. A new region was defined from the starting point of interval i to the endpoint of the nearest downstream region with LD>0.2, and lead SNP of the new regions (i.e., the SNP with the lowest P-value.) was identified c. Repeat a and b until no LD higher than 0.2 exists between any pair of lead SNP on the chromosome and boundaries of QTL i have been identified. The procedure is repeated for region i+1 until the end of the chromosome has been reached; implying that QTL region will potentially be >2Mb wide depending on LD and overlap. For each QTL peak, the SNP with the highest -Log10 P was identified as the lead SNP. The MS lead SNP per chromosome and MS QTL SNP for a QTL peak was tested for their association with CM and SCS with the same model described above for MS. The Bonferroni correction was applied by accounting for the number of tests on these traits, i.e., the number of SNP or the number of QTL significant for MS. Information on significant SNP was obtained from the NCBI database of genetic variations (NCBI dbSNP Build 150) [START_REF] Sherry | dbSNP: the NCBI database of genetic variation[END_REF], functional annotation of genes from BioMart at the Ensembl Genome Browser 90 [START_REF] Kinsella | Ensembl BioMarts: A hub for data retrieval across taxonomic space[END_REF], Animal QTLdb [START_REF] Hu | Developmental progress and current status of the Animal QTLdb[END_REF], and gene ontology (GO) mined through Cytoscape (Shannon et al., 2003). The position of each SNP was defined according to the Bos taurus genome assembly UMD3.1 (Zimin et al., 2009).

Heritability and Correlations

Heritability coefficients were estimated for the three traits from both SNP and pedigree information. SNP-based variances were calculated using GREML as implemented in the GCTA software whereas pedigree-based variances were estimated by fitting a polygenic model as implemented in the Bayz software [START_REF] Janss | BayZ manual version 2.2[END_REF]. In both instances, the model can be described as:

y = 1µ + a + e
where y is the (n x 1) vector of yield deviations and n=32,491, µ is a common mean, a is a (n x 1) vector of additive genetic effects of the individuals and e a vector of random residuals. Var(a) was assumed to be proportional to the pedigree-based or SNP-based genetic relationship matrix, according to the model assumed. Genetic correlations obtained with Bayz in a 3-trait model.

RESULTS

The SNP-based heritability estimate for three traits was ℎ Ø∞ 2 = 0. The most significant SNP per chromosome for clinical mastitis (CM) is presented in Table 2. The two most significant SNP were on BTA11 (rs109293663; P-value = 3.44 x 10 -12 ; KLHL29 gene) and BTA8 (rs109145510; P-value = 1.08 x 10 -7 ; NUDT2 gene). The most significant SNP for somatic cell score (SCS) are presented in Table 3. Twenty-eight lead SNP were significant and 14 of these mapped within genes. The three most significant SNP were on BTA15 (rs42396627; P-value = 1.03 x 10 -26 ; intergenic), BTA20 (rs29016097; P-value = 3.54 x 10 -20 ; HMGCS1 gene), and BTA16 (rs109540385; P-value = 3.30 x 10 -18 ; ACOT7 gene). None of the lead SNP were lead SNP for more than one of the three traits. When we compared proximity of lead SNP with each other between three traits (Table 4), we observed 5 chromosomes where the lead SNP were located within 3Mb of each other. These were: (1) MS/CM: BTA12 (1.02Mb), BTA16 (2.26Mb), BTA 25 (2.18Mb), and BTA 29 (1Mb), and, (2) MS/SCS: BTA25 (2.88Mb). The allele substitution effects were generally low for all three traits for BTA 12 (MS: b= 0.06; CM: b= -0.07), and, BTA29 (MS: b= -0.08; CM: b= -0.05; SCS: b= 0.05). The genes where these lead SNP for SCS mapped included the TNFSF11 gene on BTA12 (rs109845266, P-value = 2.05 x 10 -14 ) and the ME3 gene BTA29 (rs384263462, P-value = 7.71x10-7 ).

Eleven novel MS QTL mapped by 483 significant SNP were observed on BTA 7, 10, 11, 14, 18, 25, and 26 (Table 5). Ten QTL lead SNP mapped within genes, while one QTL lead SNP on BTA 25 was in an intergenic region >10 kb from nearest gene. Of the 10 lead SNP that mapped to a gene, rs110425867 on BTA14 was the most significant (P-value = 1.77 x 10 -117 , MAF = 0.07, effect size = 0.42(0.02), ZFAT gene); the second was rs41622861 on BTA7 (Pvalue = 1.07 x 10 -29 , effect size = 0. To check for pleiotropy between the MS QTL and significant SNP with SCS and CM, we compared significant GWAS SNP for MS for their effects on SCS and CM. First, we checked if the 971 genome-wide significant SNP associated with MS were also significant in CM and SCS. 198 showed association with SCS, and 86 with CM (Figure 3). Second, we calculated the ratio of standardized allele substitution effects (i.e. allele substitution effect of the SNP divided by the genetic standard deviation of the trait) for the MS QTL lead SNP to SCS and CM. We compared the direction of this ratio to the genetic correlation of the traits. Since MS/SCS has a stronger genetic correlation (rMS/SCS = 0.47), we focused on ratios for these two traits. Of the eleven MS QTL, four had ratios, not in line with genetic correlation. These include QTL on BTA7, BTA10, and BTA25 (Table 6). In general, considering all QTLs significant for MS, we observed limited pleiotropic effect of MS QTL SNP with CM or SCS (Figure 3). 

DISCUSSION

Milking speed is here characterized by farmers' subjective appraisal of time taken to milk a cow on a scale of 1 (=slow) to 5 (=fast). The trait is recorded and routinely evaluated under the French cattle genetic evaluation system for type traits. Relatively high genomic (0.37) and pedigree heritability (0.44) estimates show that a subjective score based on repeated milking is very accurate under French conditions, i.e., with medium sized herds. The genetic correlation between MS and clinical mastitis (CM) was low (0.16), whereas the genetic correlation between MS and somatic cell score (SCS) was moderate (0.47) and high between CM and SCS (0.75). This is similar to those reported by Govignon- . The MAF for some of the SNP mapping to genes were low, and allele substitution effects high. For instance, rs42843551 was a lead SNP in a QTL with 13 significant SNP within a 1 Mb region. Among its mapped genes include IL4I1 gene and CEACAM18 gene (Carcinoembryonic antigenrelated cell adhesion molecule). The CEACAM18 gene is of interest because it is a primordial member of the carcinoembryonic antigen (CEA) family and reported to serve as a pathogen receptor in cattle [START_REF] Kammerer | Identification of allelic variants of the bovine immune regulatory molecule CEACAM1 implies a pathogendriven evolution[END_REF], part of the immune system. The main immune system cell types are lymphocytes [START_REF] Janeway | Principles of innate and adaptive immunity[END_REF]. Several studies using model organisms and cattle data have shown that bovine peripheral blood lymphocytes (PBL) express only ITIM-containing CEACAM18 isoforms, and upregulate their expression upon stimulation, suggesting an inhibitory function in these cells [START_REF] Donda | Locally inducible CD66a (CEACAM1) as an amplifier of the human intestinal T cell response[END_REF][START_REF] Markel | CD66a Interactions Between Human Melanoma and NK Cells: A Novel Class I MHC-Independent Inhibitory Mechanism of Cytotoxicity[END_REF]. One such factor that plays a major role in regulating milk secretion in cattle [START_REF] Wilde | Programmed cell death in bovine mammary tissue during lactation and involution[END_REF] and goats [START_REF] Li | Identification of cell types in the developing goat mammary gland[END_REF]) is a feedback inhibitor of lactation (FIL) found in milk. FIL is thought to be produced by the mammary cells as they synthesize and secrete milk [START_REF] Wilde | Programmed cell death in bovine mammary tissue during lactation and involution[END_REF][START_REF] Janeway | Principles of innate and adaptive immunity[END_REF]. Accumulation of FIL in the milk-producing alveoli results in feedback inhibition of milk synthesis and secretion [START_REF] Wilde | Autocrine regulation of mammary cell differentiation[END_REF], thus increasing the time taken to milk a cow. IL4I1 gene (Interleukin 4 Induced 1) on BTA 18: 56,691,667-56,725,849 is a protein-coding gene whose related pathways include tyrosine metabolism. Tyrosine regulates mammary epithelial cell proliferation by activating the AKT Serine/Threonine Kinase 1 (AKT1) gene at the transcriptional level in mammary glands of dairy cows [START_REF] Crompton | An isotope dilution model for partitioning phenylalanine and tyrosine uptake by the mammary gland of lactating dairy cows[END_REF][START_REF] Hou | Spleen tyrosine kinase regulates mammary epithelial cell proliferation in mammary glands of dairy cows[END_REF]. The ATK1 gene is important for the mammary remodeling process in dry cows as well as for increasing persistency of lactation in lactating cows [START_REF] Hou | Spleen tyrosine kinase regulates mammary epithelial cell proliferation in mammary glands of dairy cows[END_REF].

General GWAS results as presented in Figure 1 and Table 1 show clear peaks on BTA5 (TIGAR gene), 8 (IPPK gene), 10 (MNS1 gene). Similarly, Jardim et al. ( 2017) reported QTL for milking speed on several chromosomes including BTA5, 8, and 10. These QTL overlapped with the significantly associated regions identified in our study. TIGAR (TP53 Induced Glycolysis Regulatory Phosphatase) is a p53-regulated gene. P53 is a stress-induced transcription factor that controls various cellular response mechanisms including cell cycle arrest and apoptosis [START_REF] Li | Structural and Biochemical Studies of TIGAR (TP53-induced Glycolysis and Apoptosis Regulator)[END_REF]. Its expression can influence the release of oxytocin response during pregnancy and lactation in model organisms [START_REF] Soloff | Oxytocin receptors in rat involuting mammary gland[END_REF]) and oxytocin is released in cows for the letdown of milk [START_REF] Watters | The effect of manual and mechanical stimulation on oxytocin release and milking characteristics in Holstein cows milked 3 times daily[END_REF]. The timing of oxytocin release relative to milk removal is an important factor affecting milk ejection and persistency during lactation [START_REF] Nostrand | Effects of daily exogenous oxytocin on lactation milk yield and composition[END_REF]. POLR2E and IPPK are protein-coding genes. They are associated with the Canonical Pathway "Glucocorticoid Receptor Signaling" (GRS). This is of interest because the GRS exerts anti-inflammatory effects on mammary cells during injury, as would be caused by a bacterial infection [START_REF] Smoak | Mechanisms of glucocorticoid receptor signaling during inflammation[END_REF]. Based on all these known functions, these genes can be considered as functional candidate genes.

Furthermore, lead SNP amongst MS, CM and SCS were different (Table 4). The allele substitution effects were similar for the two lead SNP: TNFSF11 gene on BTA12 (rs109845266) and ME3 gene on BTA29 (rs384263462). TNFSF11 is a protein-coding gene with main GO biological functions including calcium ion homeostasis, mammary gland alveolus development, bone resorption, calcium-mediated signaling and immune response [START_REF] Yates | Ensembl 2016[END_REF]. ME3 gene is a malic enzyme involved in pyruvate metabolism. Previous studies have shown that pyruvate accumulation caused by inhibition of lipid metabolism can cause hypoxia signaling in mastitis in cattle [START_REF] Genini | Strengthening insights into host responses to mastitis infection in ruminants by combining heterogeneous microarray data sources[END_REF]. TNFSF11 had positive substitution effects for SCS and MS, whereas, ME3 had positive substitution effect for SCS only.

CONCLUSION

There is an economic interest in increased milking speed in cows because milking is a major component of the workload of the farmer. But increased milking speed should be obtained without deteriorating mastitis resistance, or even better while improving mastitis resistance.

In the French Holstein, milking speed accounts for 5% of the total merit index while udder health (somatic cell score and clinical mastitis) accounts 18%. GWAS SNPs from whole genome sequence variants as incorporated in the EuroGenomics chip and 50k SNP data identified several variants that likely influence MS in French Holstein cattle. We identified several candidate genes for MS including HMHA1, POLR2E, GNB5, KLHL29, ZFAT, KCNB2, CEACAM18, CCL24, LHPP, PDGFRB, TIGAR, and, IL4I1. We also identified 11 MS QTL, of which four may allow for selecting for increased MS without increased incidence of clinical mastitis. Finding quantitative trait nucleotides is challenging, as there are many regions of linkage disequilibrium and small-effect QTL. The QTL reported on this study can be used to augment the dairy cattle QTL database for better prediction accuracy in routine genomic selection. Further study is needed to find an optimum milking speed to avoid any negative impact on mastitis incidence

A system-based analysis of the genetic determinism of udder conformation and health phenotypes across three French dairy cattle breeds

Andrew Marete 

INTRODUCTION

Genetic architecture of complex phenotypes in cattle includes many loci affecting a given trait [1]. Most of these loci have small effects, but few segregating loci have moderate-tolarge effects possibly due to epistatic effects, varying selection goals or recent selection for the favorable mutant allele. Moreover, markers collectively capture most but not all additive genetic variance for phenotypes. The incomplete variance capture may be due to causal mutations with low allele frequencies and therefore in incomplete linkage disequilibrium (LD) with markers [2]. To reduce this LD, we can either do a between breed analysis with a large sample of genotyped cows [3] or combine the results of a within breed GWAS in a multi-breed context. This is possible because the cost of genotyping is decreasing thus allowing many breeds, including those of medium population size, to be genotyped rapidly primarily for genomic selection purpose. These large populations of genotyped cows with own performances allows us to: (1) detect QTL for newly recorded traits or traits previously not studied;

(2) carry out large confirmation studies for conventional traits. Previous studies have demonstrated that polymorphic sites that segregate within and across bovine populations can be studied using imputed low-to-dense genotypes [4][5]. Such genotypes have been used in model organisms and dairy cattle leading to the identification of candidate causal variants or closely neighboring variants that control complex phenotypes [6][7]. These studies have been useful for identifying QTL regions and probable genes associated with a phenotype. So far, however, there have been few validation studies of the vast number of putative variants across and between breeds and amongst multiple phenotypes. This study uses 50k SNP data to validate such variants using the Association Weight Matrix (AWM) [8] approach as a post GWAS analysis tool. The AWM is a systems biology approach for the genetic dissection of complex traits based on applying gene network theory to the results from GWAS. Hence, if the AWM SNP matrix is used in combination with a Partial Correlation (PC) in an Information Theory (IT) framework, and for correlated phenotypes, then it is possible to generate gene networks with regulatory and functional significance for udder related phenotypes.

Despite the limitations of the chip density, previous studies have shown the usefulness of the AWM to identify candidate genes in cattle, e.g. [9][10] and corroborated across different species, e.g. [11][12] in independent studies using the 50k marker density.

In this study, we report results based on GWAS analysis for mammary conformation, milk production and health phenotypes for 78,440 dairy cows. A multi-step validation by combining the results of single SNP, single phenotype, in a multiple-breed context using the AWM-PCIT algorithm was performed. The aim was to identify the genes associated with mammary conformation and health phenotypes in Holstein, Montbeliarde, and Normande breeds, accounting for milk production as supportive traits. We further explored gene networks with the main gene ontology domains including biological processes, cellular component, and molecular functions.

MATERIAL AND METHODS

Phenotypes

The cow sample was comprised of 46,732 Holstein, 20,141 Montbeliarde, and 11,965 Normande all with known parents. Phenotypes were yield deviations as produced by French national evaluation system [13]. A yield deviation is a performance adjusted for all nongenetic effects of the model [14]. In case of repeated records, a yield deviation is adjusted for the permanent environmental effect and averaged per animal. 

Genotyping, quality control, and imputation

All cows were genotyped using Illumina BovineSNP50 BeadChip (50k) or Illumina BovineLD v.2 BeadChip. We used the UMD3.1 assembly of the bovine genome [16] for SNP chromosomal positions. We did not consider mitochondrial, X-chromosomal and Ychromosomal SNP, as well as unmapped SNP for further analyses. We examined 43,800 SNP currently used in French genomic evaluation procedure [13]. Selection criteria was: call rate higher than 99%, minor allele frequency (MAF) higher than 2% in at least one of the three breeds, lack of Hardy-Weinberg Equilibrium (P < 10 -4 ), technical quality assessed by their very low rate of Mendelian mismatch between parents and progeny and known position of genome assembly. We imputed cows genotyped from BovineLD v.2 BeadChip to 50k to obtain a genotype without missing information. This step was performed within breed in the conventional pipeline for genomic selection [13]. We imputed using FImpute software [17], and reference population included all 50k genotyped male and female animals per breed. Imputation error rate, measured in routine evaluation situation (and not in this study), varied from 0.2 to 2.5% depending on whether parents were genotyped. Across breeds, best imputation accuracies were observed in Montbeliarde which has the highest proportion of sires and dams genotyped with 50k, while accuracies were lower in Holstein, a breed with a smaller portion of genotyped dams, a lower percentage of 50k genotyped parents, and even a non-zero proportion of non-genotyped (usually foreign) sires.

Statistical framework

GWAS was done within breed with the Mixed Linear Model Association (MLMA) method as implemented in GCTA [18]. Because phenotypes were yield deviations already adjusted for non-genetic effects, we did not consider additional fixed effects. For each phenotype and SNP i, the model used in each breed was the following where y is a vector of yield deviations, µ is a mean; u is a vector of random additive polygenic effects and is ~N(0, π 0 ∫

2 ) where G is genomic relationship matrix based on all cows with phenotypes per breed and all autosomes. Z is incidence matrix relating phenotypes y to u, wi is a vector of genotypes for SNP i, si is the effect of SNP i, and e is a vector of random residual effects. We calculated the relationship between two individuals' j and k as J ef = ; ª ∑ (ö :j < 29 : )(ö :l <29 : ) 29 : (;< 9 : ) ª @Z;

, xij being the number of alleles for individual j and SNP i and pi is the observed allelic frequency, and, w was 43,800. We applied a genome-wide Bonferroni correction on all 43,800 tests to account for multiple testing.
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Candidate variant discovery

We used the Association Weight Matrix (AWM) procedure to identify candidate genes per breed [8]. The AWM is a multiple trait approach that considers the genetic contribution of correlated traits allowing selection of pleiotropic SNP associated with numerous traits rather than a single trait. We classified trait information as either key or supportive trait, and the key trait in this study was udder depth or development (UDD) which is the most important type trait with the strongest relationship with mammary health and longevity. In addition, UDD is an aggregate trait, combining size, attachments, balance and strength of support.

Populating the AWM starts with the selection of significant SNP from a GWAS [19]. The SNP additive effects are z-scored normalized by deviating the allele substitution effects from their mean and dividing by their standard deviation. We then created two matrices: (a) A zscored additive values matrix (b) The GWAS p-values matrix. In both cases, rows represent SNP and columns represent traits. We then processed these matrices using the AWM algorithm, which includes five steps: (1) Primary SNP Selection: We select SNP associated with key trait using a P-value threshold (P < 0.05). ( 2): Exploring the dependency among traits: For the SNP selected in step (1), and, for the same threshold (P < 0.05), we register the average number of non-key traits to which the SNP are associated. In this study, that number was five traits. ( 3): Secondary SNP Selection: We select SNP from step (1) associated with at least five other traits including at least two udder traits. This step depends on correlation amongst traits and allows capturing most SNP associated with remaining traits. ( 4): Exploiting the genome map: We annotated the SNP captured in step ( 1), and step (3) using the UMD3.1 Genome assembly [16]. We classified the SNP that (i) mapped a gene, (ii) <10-kb to known genes, and, (iii) >10-kb to any coding region. For genes represented by more than one SNP, we select the SNP associated with the highest number of traits and has the lowest P-value average across all traits as representative for that gene. ( 5): Populating the AWM: Each {i,t} cell value in the AWM matrix corresponds to the z-score normalized additive effect of the i th SNP on the t th trait. This allows exploration of trait correlations column-wise, and gene/SNP interactions row-wise. We then calculate the SNP-based correlations and compare the SNP-based and genetic correlations, the latter being calculated as pedigree-based restricted maximum likelihood (REML), established in the same cows' populations. We then use the AWM SNP matrix as the input for the PCIT algorithm [20] and for any trio of SNP; we estimate the first order partial correlation coefficients to identify meaningful gene-gene interactions. We annotated and clustered gene ontology (GO) annotations for significant PCIT gene-gene interactions using Cytoscape [21]. Finally, we compare the gene clusters amongst the three breeds and plot the most significant cluster.

RESULTS

GWAS for all traits

Collectively for 78,440 cows, imputation resulted in a genotype density of 43,800 SNP. Of these, 38,827, 38,109, and 40,810 SNP had a MAF greater than 0.1 in Montbeliarde, Normande, and Holstein. Distribution of allele frequencies (MAF) of imputed genotypes was almost uniformly distributed across the MAF classes (Fig 1).

We performed GWAS for real and imputed SNP and yield deviations (YD) for 12 traits: five udder conformation traits, five milk production phenotypes, somatic cell score and clinical mastitis (Table 2). 2). There was an overlap of significant SNP across the breeds. Some 483 SNP were common between Holstein and Montbeliarde, 356 SNP were common between Holstein and Normande, 233 SNP were common between Montbeliarde and Normande, and 206 SNP were common among three breeds (Fig 3). We observed overlap of significant SNP between udder and milk production traits. Irrespective of the breed, 15 SNP overlapped in udder related traits, and 205 SNP overlapped in milk production phenotypes. When considering 1SNP:1Gene, 3,651 significant SNP were close to genes (<10-Kb) across three breeds. Of these, 1,017 were highly associated with udder conformation traits, 2,502 with production traits and 132 with somatic cell score and clinical mastitis. The 2,673 additional SNP satisfying step 4 of the AWM algorithm (as described in M&M) was augmented with the 3,651 significant SNP from GWAS forming the AWM matrix with 6,324 SNP (S2 File). Of these, 1,309 SNP were common across three breeds, and they mapped 1013 genes for 12 traits.

Significant SNP associated with the key trait were evident for Holstein and Montbeliarde, and the most significant SNP that mapped a gene for the key trait is presented per chromosome in Table 3. In total, 17 SNP were most significant per chromosome SNP and mapped to a gene in Holstein and Montbeliarde. This included eight for Montbeliarde, nine for Holstein. Two lead SNP in Montbeliarde were rs41640614 (BTA16, SOAT1 gene, p=3.47x10 -15 , Effect size=-0.185(0.02), MAF=0.08) and rs108972236 (BTA19, ABCA5 gene, p=2.20x10 -11 , Effect size=-0.112(0.01), MAF=0.20). The two lead SNP in Holstein were rs41641987 (BTA19, PAFAH1B1 gene, p=1.51x10 -13 , Effect size=-0.128(0.02), MAF=0.04) and rs110651226 (BTA29, FOXRED1 gene, p=2.30x10 -12 , Effect size=0.059(0.01), MAF=0.45).

We observed SNP associated with FUA and FTP in all breeds. The most significant of these signals were in Holstein and Montbeliarde and they include: BTA17 (rs41609100, FGF2 gene, Effect size=-0.12(0.01), p=4.95x10 -12 , MAF=0.073, Holstein), BTA20 (rs109428015, PRLR gene, Effect size=-0.22(0.03), p=3.16x10 -16 , MAF=0.033, Holstein), and, BTA26 (rs42088948, BTRC gene, Effect size=-0.10(0.01), p=6.89x10 -4 , MAF=0.068, Montbeliarde). 

Genetic parameters and genomic AWM-based correlations

Heritability coefficients (diagonal), pedigree-based genetic correlations (upper diagonal), and SNP correlations (lower diagonal) are presented in Table 4. Heritability values are close to reported values for type traits [22], Fore udder attachment, (FUA) is 0.34, 0.26, 0.33 for Montbeliarde, Normande, and Holstein and higher for the other traits. For example, for Milk yield (MY), they reached 0.50, 0.61, and 0.54 in Montbeliarde, Normande and Holstein, respectively. These high values reflect the nature of the yield deviations (YD), which is a mean of records for repeated traits. A YD is adjusted for permanent environment effect and thereby has a reduced non-genetic variability. As an example, assuming additive genetic variance of milk yield is 0.3, permanent environment variance is 0.2, and residual variance is 0.5 (we divide the residual variance by 2.5 records on average for production), the heritability of the corresponding YD is 0.3 / (0.3 + 0.5/2.5) = 0.6. These high values are very favorable for GWAS detection power.

Mammary morphology genetic correlations to production traits ranged from positive for fore udder attachment (FUA) and milk yield (MY) in Montbeliarde (0.42) and Normande (0.28) to medium negative for udder depth or development (UDD) and protein yield (PROT) in Normande (-0.56) and front teat placement (FTP) and fat yield (FAT) in Holstein (-0.33). SNP correlations were numerically different compared to genetic correlations; however, the correlation was generally in the same direction. For instance, the genetic correlation between fore udder attachment (FUA) and udder balance (UB) was 0.40, 0.63 and 0.39, whereas, SNP correlations for these two traits was 0.59, 0.16 and 0.16 for Montbeliarde, Normande and Holstein breeds, respectively. There were moderate to zero genetic correlations between milk yield (MY) and FUA for Montbeliarde (0.42), Normande (0.28), and Holstein (0), and low SNP correlation (Montbeliarde (0.10), Normande (0.16) and Holstein (0.16)) between MY and udder depth or development (UDD). Holstein breed had a highly positive genetic (0.49) and SNP correlation (0.59) between front teat placement (FTP) and clinical mastitis (CM), a trend that was not evident in other two breeds. However, Montbeliarde breed showed a strong SNP correlation between FTP and CM (0.33) and between UDD and CM (0.18). Other trends evident from genetic correlations were between FUA and PROT for Montbeliarde (0.39) and Normande (0.26), FUA and CM for Montbeliarde (0.19) and a moderate genetic correlation between FTP and CM for Holstein (0.49). Genetic and SNP correlations were also comparable between FTP and PROT for all breeds, with genetic/SNP correlation being from medium in Montbeliarde (0.21 / 0.12) and Holstein (-0.34 / -0.1) to low in Normande (-0.12 / -0.1). However, the trend deviated between udder balance (UB) and fat percent (FAT %) with minimal genetic correlation in Normande (0.22) and no genetic correlation in Montbeliarde and Holstein but with moderate SNP correlations in Montbeliarde (-0.41), Normande (0.38) and Holstein (0.38). In general, genetic correlations are in the range of usual values, with high correlations between milk, fat and protein, a moderately negative correlation between production and type traits, moderately positive correlations between conformation traits, and low correlations otherwise. However, though there were deviations between genetic and SNP correlations in some of the traits, most traits correlations were in the same direction thus drawing plausibility of SNP correlated traits.

Gene Ontology (GO) for AWM selected genes

We considered main ontology domains including, biological processes, cellular component, and molecular functions. We observed 39 gene clusters (S3 File) and Table 5 presents the top five biological processes that are relevant for udder morphology and health traits. Top cluster had eight GO terms with the most significant GO term being "mammary gland epithelium development" (p=4.64x10 -16 ). Among the AWM-PCIT, genes ten were transcription factors (TF) directly associated with the terms "mammary gland development", "mammary gland duct morphogenesis", mammary gland alveolus development", "tissue development", and, "epithelial tube morphogenesis". These ten TF include GLI2 (BTA2:72.98Mb), IQGAP3 (BTA3:14.31Mb), PGR (BTA4:62.53Mb), ESR1 (BTA9:89.97Mb), FGF2 (BTA17:35.23Mb), PRLR (BTA20:39.13Mb), TGFBR2 (BTA22:5.14Mb), RREB1 (BTA23:47.90Mb), BTRC (BTA26:22.06Mb), and, FGFR2 (BTA26:41.82Mb). Figure 4 presents their GO term interactions with percentage association. Other GO terms in the top cluster included "gland development" (p=6.50x10 -12 ) and "system development" (p=5.38x10 -5 ). Top GO term for the second cluster was "mammary gland epithelium development" (p=5.16x10 -16 ) while "regulation of intracellular signal transduction" was the least significant term in this cluster (p=4x10 -4 ). There was an enrichment for "neuropathic pain-signaling in dorsal horn neurons pathway" (p=2.57x10 -8 ), "G-protein coupled receptor signaling" (p=1.07x10 -7 ) as well as the "CREB signaling in neurons" (p=7.24x10 -7 ). Other pathways detected were "cAMP-mediated signaling" (p=2.88x10 -5 ), "synaptic long-term depression (p=8.71x10 -7 ), "axonal guidance signaling" (p=1.15x10 -6 ), and "synaptic long-term potentiation" (p=1.58 x10 -5 ). Pathway enrichments detected (S4 File) included "Calcium: cation antiporter activity" and the "Calcium-activated Potassium channel activity" for molecular functions (p<10 -3 ), whereas, for biological processes, "dendrite development" and "putrescine biosynthetic" process were most represented (P<10 -3 ) while "postsynaptic density" and "presynaptic membrane" were top GO terms for cellular components. 

DISCUSSION

Previously, Fortes et al. [8] and Ramayo-Caldas et al. [23] suggested the Association Weight Matrix's (AWM) as an alternative tool to identify genes that would otherwise be missed by traditional single-trait GWAS. This study further supports that suggestion by focusing on GWAS for other kinds of traits, such as udder morphology and health traits common across three French dairy breeds. Though single-trait-single-SNP GWAS focus is on most significant SNP, they can, aid in identifying lead SNP for QTL associated with a given trait.

Our study identified three lead SNP associated with front teat placement (FTP) and fore udder attachment (FUA). These SNP mapped FGF2, PRLR, and BTRC genes. PRLR gene (prolactin receptor) was previously associated with milk production traits in Finnish Ayrshire dairy cows [24]. Wang et al. [25] reported the association of FGF2 gene (Fibroblast growth factor 2) to fat yield and percentage and somatic cell score in US Holstein. Coleman-Krnacik et al. [26] reported the expression of FGF2 gene in the bovine mammary gland and uterine endometrium (UE). In the mammary gland, the FGF2 gene may play a role in development and reorganization of the mammary gland, while in UE, FGF2 gene is mainly expressed throughout estrous cycle and early pregnancy. BTRC gene (Beta-Transducing Repeat Containing E3 Ubiquitin Protein Ligase) is an F-box protein involved in Wnt/β-Catenin signaling pathway and indirectly activates nuclear factor kappa-B (NF-kB) [27]. Raven et al. reported these pathways to be highly relevant during mammary development and pregnancy, and as such, could have a major functional role in lactation [27]. The AWM-PCIT algorithm identified interacting candidate genes for udder conformation traits by first establishing SNP based correlation and fixing udder depth or development (UDD) as the key trait when constructing the AWM SNP matrix. These genes were represented by several biological processes involved in positive regulation of cellular biosynthetic processes and cell development, suggesting an endogenous characterization linked to udder morphology [28]. Fortes et al. [10] reported more similar SNP and genetic correlations for traits with moderate to high heritability and less similar correlations between traits with low heritability (Table 4). In our study, most traits had a heritability >10% thus aiding both GWAS detection power and AWM SNP detection.

The AWM was assessed for gene ontology (GO). The top GO terms were Calcium cation antiporter and Calcium-activated Potassium channel activity. As reported by Paulsen et al. [29], the former is a member of the cation diffusion facilitator (CDF) superfamily which are integral membrane proteins that increase tolerance to divalent metal ions, whereas, the latter is involved in ionic signaling in cells, a critical function for hormonal control of cell proliferation and differentiation [30]. Control of calcium signaling is likely to have profound effects on mammary physiology and pathophysiology. Their high significance level can be explained by the fact that mammary glands extract large quantities of calcium from the plasma during lactation [31], to ensure sufficient calcium concentration in milk. Dendrite development and putrescine biosynthetic processes were top biological GO terms. Dendritic cells (DC) are accessory cells of the mammalian immune system whose work is availing antigen material to T cells of the immune system [32][33]. This ability to stimulate native T-cells makes this result significant because it can directly be applied to improve udder health. DC has also been reported to play a pivotal role in the initiation of an adaptive immune response [34]. Putrescine, as a member of polyamine pathway, is regulated by the periovulatory endocrine milieu [35]. The central pathways that showed enrichment were "Neuropathic pain-signaling in dorsal horn neurons pathway," and, "CREB signaling pathway." Neuropathic pain is the pain after nerve injury whereas the dorsal horn (tip of the spinal cord) pathways have been shown to offer substantial overlap with spinal projections from adjacent mammary glands in model organisms [36]. Reflex milk ejection may result from the strong integration of sensory input from mammary glands afferents that terminate in the dorsal horn. CREB (cyclic-AMP response element-binding) protein family of transcription factors (TF -a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence [37]) play a crucial role in supporting the survival of sensory neurons [38]. The intervention of sensory neurons stimulates cells to secrete nerve growth factor (NGF) via the sympathetic nervous system (SNS) that maintains homeostasis [39]. NGF mediate its functions through ligation of tyrosine kinase (Trk) receptors [40].

Regulation of Trk signaling is by a variety of intracellular signaling cascades, which include MAPK pathway, which promotes cell continuation and growth [41]. Previous studies indicate that Trk could be multifunctional growth factors that exert various effects through their receptors on non-neuronal cells such as mammary ducts [30]. Fontanesi et al. [8] reported that long-term transcriptomic adaptations of tissues depend on the action of external stimuli that induce action of cellular functions on transcription factors (TF) [42]. In this study, we identified 39 interacting gene clusters and the most significant cluster had ten TF directly involved with mammary gland development and mammary gland duct morphogenesis: BTRC, ESR1, FGF2, FGFR2, GLI2, IQGAP3, PGR, PRLR, RREB1, and, TGFBR2. These TF are homonymous with genes encoding them. This top cluster is directly involved in mammary gland development, regulation of response to a stimulus, gland development, epithelium development, tissue development, animal organ development, system development and multicellular organism development. This was partly in agreement to works reported by Yang et al. [43] on QTL associated with follicle stimulating hormone production in Chinese Holstein cattle.

CONCLUSION

Our study suggests the usefulness of system-based approaches to identify candidate genes from interacting gene networks in a multi-breed context. We achieved this by exploiting associations between correlated traits. The reluctant inclusion of intergenic SNP leaves the possibility that the AWM approach was not capturing significant SNP such as transactivators. Nonetheless, the AWM proved to be more efficient for integrating related complex traits and analyzing thousands of SNP and therefore appropriate for the analysis of these complex traits. When applied to our dataset, it predicted gene interactions that are consistent with the known biology of udder morphology and health captured known TF (e.g., ESR1, FGF2, GLI2, PGR and BTRC), and provided new candidate genes for udder morphology. This experiment may be replicated using whole genome sequence data and other independent datasets.

INTRODUCTION

In Quantitative Genetics, when one locus is under consideration, then the additive variance (breeding value) and the dominance deviation make up the genotypic value. When more than one locus makes up the genotype, the genotypic value may contain additional non-additive variance [START_REF] Mackay | Epistasis and quantitative traits: using model organisms to study genegene interactions[END_REF]. In dairy cattle, complex traits, such as milk production phenotypes, are regulated by many loci under a complex interplay between multiple genes, each with a small effect, and by environmental factors. These genes, theoretically, can interact with each other.

Therefore, the main variation that makes up a complex genotype is then partitioned into additive, dominance, epistatic variances, and a residual variance. (Falconer and Mackay, 1996). We can further define dominance as the deviation of the heterozygotes' genotypic value from the mean genotypic value of the two homozygotes, whereas, epistasis can be defined as the deviation between the aggregate genotype and sum of the additive effects of the interacting loci. For epistasis, we consider here only two-locus interactions.

In most dairy cattle prediction models, the additive model is used without accounting for dominance or epistatic effects. The reliance on the additive model may be because it is believed to account for most of the genetic variation, it is easiest to estimate, and additive effects and variance describe (future) progeny means and response to selection [START_REF] Hill | Data and theory point to mainly additive genetic variance for complex traits[END_REF][START_REF] Mäki-Tanila | Influence of gene interaction on complex trait variation with multilocus models[END_REF]. The downside of not accounting for dominance and epistasis is that these effects become part of the residuals and the residuals are no longer independent and identically distributed (IID). Such an incomplete model may generate some bias in genetic evaluation as the residuals contain non-additive variations that differ across genotypes. Consequently, results become less informative about how much genetic variation is explained by the non-additive effects in dairy cattle. It is still mostly unknown whether accounting for both additive effects and non-additive effects may improve the accuracy for genetic prediction. The main limiting factors for answering this question was lack of genotyped individuals with own performance records (i.e. cows, in the case of dairy traits), and lack of methods allowing genomic models to account for non-additive effects efficiently.

If the contribution of non-additive effects to the phenotypic variance is substantial, including non-additive effects in genetic evaluation models could improve breeding values estimation. Models estimating additive and non-additive variances can be based on additive breeding values, intra-loci and inter-loci deviations (i.e., classical / breeding model) or the additive, intra-loci and inter-loci effects of markers (i.e., the genotypic model) [START_REF] Vitezica | On the Additive and Dominant Variance and Covariance of Individuals within the Genomic Selection Scope[END_REF]. Variances explained by the genotypic model include the observations of nonadditive effects at the level of gene action at individual loci, exemplified by a table of genotypic values whereas the breeding model includes the observations of variance due to these components in the analysis of data from a population [START_REF] Hill | Data and theory point to mainly additive genetic variance for complex traits[END_REF]. Though these models have different characteristics as explained in [START_REF] Vitezica | On the Additive and Dominant Variance and Covariance of Individuals within the Genomic Selection Scope[END_REF], they are equivalent in explaining the trait of interest but have to be interpreted differently. In this study, we explore the variations due to additive effects, dominance effects and second-order epistatic interactions in four dairy cattle populations using cows' genotypes and phenotypes.

MATERIALS AND METHOD

Studied Population

Cows were genotyped with either Illumina BovineSNP50 Beadchip or the customized lowdensity EuroGenomics SNP chip, contents of which have been described earlier (Marete et al., 2018). We deleted SNP with MAF lower than 0.5%, with a call rate lower than 95%, or deviating from Hardy-Weinberg equilibrium (P<10 -4 ). We performed a within breed imputation to recover complete marker information for all individuals. We used FImpute software (Sargolzaei et al., 2014) 

d = [µ + ¬√ + ºƒ + ¡
where y is a vector of yield deviations, already adjusted for non-genetic effects, µ is a mean, X and Z are the (n x s) matrices of SNP genotypes, coded to estimate additive and dominance effects, n the number of cows per breed and s the number of SNP, a and d are vectors (length s) with additive and dominance effects at each SNP, and e (length n) is a vector of residual effects. In X, the genotypes were coded -1, 0, 1 for homozygote, heterozygote, and alternative homozygote genotype, and subsequently centered for each SNP by adding -2pi, where pi is the mean, while in Z the coding was 0, 1, 0, and subsequently centered for each SNP. The distributions of a, d, and e were assumed to be Normal, so that √~N(0, ≈0 ô 2 ), ƒ~N(0, ≈0 ∆ 2 ), ¡~N(0, ≈0 5 2 ), where σa 2 and σd 2 are the variances of additive and dominance effects per one locus, and σe 2 is the residual variance. We obtained the total explained additive and dominance variances as 0 «»» 

SNP-by-SNP interaction ("aa" model):

We studied second order epistasis (i.e., additive by additive) for SNP with a large effect on the phenotype in at least one breed. These SNP were identified by GWAS using GCTA software (Yang et al., 2011), accounting for polygenic effects of each cow. Corresponding additive genomic matrices were built with 48,967 SNP. After Bonferroni correction (P<0.05), we selected SNP with a genome-wide significance threshold of 10 -6 , keeping at most one marker in a 2-Mb window (Marete et al., 2018). Two hundred and thirty-seven unique GWAS peaks were chosen to form a matrix of genotype interactions.

The aa model was as follows:

d = [µ + ¬√ + --+ ¡
where y, µ, X, a and e are defined as above, c is the vector of epistatic effects and W is a matrix of 2x2 combinatorial events of genotypes with respect to epistatic effects. For individual i and combination of variants (j, k), the general term of W is the following

wij Locus k Locus j AA AB BB AA 1 0 -1 AB 0 0 0 BB -1 0 1
For this model, both a and c were assumed to follow a mixture of two Normal distributions as in the Bayesian Variable Selection model of George and [START_REF] Mcculloch | Variable Selection via Gibbs Sampling[END_REF] but also extended to estimate the hyperparameters relating to variance and proportions in the mixture distribution, as follows: where the upper term is the distribution of SNP with smallest effects, and the lower term is the distribution of SNP with largest effects. The prior distribution on ◊+ ´ and ◊€ ´ pushes the mixture proportions in the direction of having most small effects. We estimated the variances in the mixture distribution with a fixed ratio of 100 between the variance for small and large effects, and we used a Metropolis-Hastings (M-H) sampler to update these variances. All variance parameters had a-priori unbounded uniform distributions 0 ô2 , 0 ‹2 , 0 We run each model as a single chain with a length of 200,000, which was sampled every 500 iterations. We regarded the first 50,000 iterations of each run as burn-in period.

Model Fitness

We used the Monte-Carlo coefficient of variation (MCCV) to assess the quality of fit for both models (ad and aa) such that MCCV (%) = Time series SE Parameter mean x 100

The model was assumed to be converged when MCCV (%) < 1. For aa model, in addition, we considered the Metropolis-Hastings (M-H) sampling rate acceptable if it fell within the interval [0.2-0.8].

RESULTS AND DISCUSSION

We observed lowest MCCV (≤0.1 %) for additive variance estimates in both aa-and admodels. The low MCCV affirms that it is easier to estimate the additive genetic variance as the Monte-Carlo chain converges faster (de los Campos et al., 2015). In the aa-model, epistasis variance estimates had varying MCMC (4.8% -5.4%), depending on trait and breed size (Table 1). The varying MCCV is probably because of the limited number of SNP selected, lower value of the epistatic variance compared to additive variance, and lower iterations consequently leading to inadequate mixing of the chain. The minimum M-H acceptance rate observed for milk in Holstein was 0.35, and the maximum M-H acceptance rate observed for protein in Danish Jersey was 0.67. The M-H acceptance rate was within the acceptable range [START_REF] Bédard | Optimal acceptance rates for Metropolis algorithms: Moving beyond 0.234[END_REF]. In ad-model, non-additive effects MCCV were <1% for all traits and breeds and we assumed these chains had appropriately mixed (Trace, density, and residual mean plots are presented as Additional file 1-15). ) averaged over three traits was ≈20%. For most breeds and traits, dominance deviation reached 16% -25% of the additive variance. Lowest ratio of dominance deviation to additive variance was 11% observed for milk in Jersey. Highest ratio of dominance deviation to additive variance was 26% observed for protein in Montbeliarde. Ratios of dominance deviation to the additive variance in Normande breed for fat was 23%, 21% for milk, and 22% for protein. Holstein had the lowest ratio of dominance deviation to the additive variance for fat (16%), milk (17%), and protein (22%). This is probably because most of the variation was captured by the additive part of the model. Current dominance results are in the range of those for complex traits reported in previous studies [START_REF] Su | Estimating Additive and Non-Additive Genetic Variances and Predicting Genetic Merits Using Genome-Wide Dense Single Nucleotide Polymorphism Markers[END_REF]. In dairy cattle, the ratio of 0 »…Ø 2 to 0 «»» 2 was 17% for stature in US Holstein [START_REF] Misztal | Estimation of Variance Components with Large-Scale Dominance Models[END_REF]. In beef cattle, the ratio of 0 »…Ø 2 to 0 «»» 2 was larger than 50% for weaning weight in Hereford, Gelbvieh and Charolais beef cattle [START_REF] Gengler | Influence of Dominance Relationships on the Estimation of Dominance Variance with Sire-Dam Subclass Effects[END_REF][START_REF] Duangjinda | Estimation of additive and nonadditive genetic variances in Hereford, Gelbvieh, and Charolais by method ℜ[END_REF]. In other species, ratios of 0 »…Ø 2 to 0 «»» 2 ranged from 11% -31% for other traits such as reproductive and growth traits in Yorkshire pigs [START_REF] Culbertson | Estimation of Dominance Variance in Purebred Yorkshire Swine[END_REF]. These results indicate dominance variations are important for complex traits, although clearly much lower than additive components.

Narrow sense heritability (Table 3) matches with literature data, from 0.19 -0.41 according to breeds and traits (Marete et al., 2018). Values were highest for milk and lowest for protein.

Across breeds, we obtained highest values in Jersey and lowest in Montbéliarde. Results were similar in aa-and ad-models. Heritability attributed to dominance varied from 4.1% -6.7%, with lowest values in Montbéliarde and highest in Normande. Results varied more according to breeds than to traits.

Estimates of epistasis variance (0 fly ‡ 2 ) were lower than 0 »…Ø 2 and more variable, ranging from nearly 1 -19% of the additive component, with an average of 7%. Epistasis over additive variance varied between 15% -19% in Montbeliarde breed and 1% -2% in Jersey breed. Normande and Holstein had intermediate results with ratios ranging from 5% -8%. Heritable portion explained by 0 fly ‡ 2 varied from 0.3% -3.3% (Table 3). Within breed, the difference between traits were limited. This variability illustrates the difficulty to estimate epistasis despite reasonably large genotyped populations. The lower 0 fly ‡ 2 proportion can be attributed to few number of SNP selected as having a major effect due to the stringent GWAS threshold or by lack of informativity of some SNP, especially for Jersey. However, selecting SNP with major effect reduces the dimensionality of the analysis to about 28,000 SNP combinations and limits linkage disequilibrium between SNP. As noted by [START_REF] Duthie | Epistatic analysis of carcass characteristics in pigs reveals genomic interactions between quantitative trait loci attributable to additive and dominance genetic effects[END_REF] and Xu and Jia (2007), who carried out similar studies in porcine and barley respectively, the strategy of selecting SNP with a major effect is only an approximation focusing on markers with significant additive effects and probably at high heterozygosity levels and should capture a substantial part of epistatic effects. However, previous studies based on real data [START_REF] Huang | Epistasis dominates the genetic architecture of Drosophila quantitative traits[END_REF][START_REF] Brown | Genetic interactions affecting human gene expression identified by variance association mapping[END_REF][START_REF] Hemani | Detection and replication of epistasis influencing transcription in humans[END_REF] and theoretical predictions [START_REF] Hill | Data and theory point to mainly additive genetic variance for complex traits[END_REF]) generally found that the variation contributed by epistatic loci detected in segregating populations is small. The implication for practical selection in dairy cattle is that 0 fly ‡ 2 estimated with a limited number of SNP appears to be negligible as is shown in this study. [START_REF] Henderson | Best liniear unbiased prediction of non-additive genetic merits in non inbred populations[END_REF] showed that 0 fly ‡ 2 , however, would be valuable if the epistasis matrix was obtained from the Hadamard product of the additive genetic relationship matrix (X), such that ¬ √√ = ¬#¬, where # is the Hadamard product operation. However, use of this Hadarmard product assumes that all SNP-SNP combinations contribute an equal amount to epistatic variance. We used a mixture model here to model epistatic effects, because we think it is more plausible that most SNP-SNP combinations do not contribute to epistatic variance, while only a few combinations contribute a large amount to epistatic variance.

In conclusion, our results show that variation due to dominance is a substantial portion of the additive variance (20%), whereas, the variation due to SNP interactions was minimal (7%). Genomic models that include dominance have been shown to yield higher accuracies because such ad-models are more robust against chance deviations from HWE frequencies compared to additive models only (Duenk et al., 2018[START_REF] Lopes | Estimation of additive, dominance, and imprinting genetic variance using genomic data[END_REF]. These results are important for dominance and epistasis studies and potentially genomic prediction in dairy cattle.

Our results also open new perspectives for the inclusion of dominance and epistatic effects in prediction of phenotypes, especially regarding improvement of breeding values estimation in dairy cattle genetic evaluation models. 

Searching for a needle in a stack of needles

The success achieved in animal breeding in the last century has been highly attributed to phenotypic records, though, even with the best kept phenotypic records, quantitative geneticist are still unable to explain all genetic variation. This has led to accelerated interest in genomic datasets in an effort to better understand genetic variation. Genomic data, however, has become one of the most difficult conundrums for quantitative geneticist. Many results have been obtained for monogenic traits. For complex traits, the more successful use of genomic data has been identification of various mutations associated with production phenotypes mainly through genome-wide association studies (GWAS) (e.g. Grisart et al., 2004). But these results are limited to variants with strong effects, explaining at least several percent of the genetic variance. Variants with small effects are very difficult to detect and most GWAS studies, even the largest ones, have too little power to detect them. Indeed, in a large international study based upon more than 58,000 progeny tested bulls with genome imputed at the sequence level, Bowman et al. (2018) detected 163 highly significant variants involved in stature genetic variability, but these variants explained only 10 and 50% of the within and between-breed variability in 6 validation populations, respectively.

The continuous challenge of using genomic data in genomic prediction of breeding values is the lack of accounting for the genetic variation not explained by the phenotypes and environment. This partly stems from having incomplete and erroneous genotypes and assuming all genomic data points contribute equally to the model. Research has shown that all variants do not have equal variance (Monolio et al., 2009). To streamline genomic data, we have to generate relevant data from a sea of sequence variants, for instance, combining sequence data with existing biological knowledge to understand the biological mechanisms controlling a given trait. Improvement of sequencing techniques has allowed building of enough reference panels to allow genotyped individuals to be imputed to sequence level. Ideally, including the true causal mutations from sequence data would explain all variation, however, it is challenging to decipher the real causal mutation, especially if the variant explains a small variation. Untwining markers in imperfect Linkage Disequilibrium (LD) with those in perfect LD with the causal mutation would greatly improve the reliability of genomic prediction (de los Campos et al., 2013). The overall objective of this thesis was to use different methods to validate pre-selected sequence variants across multiple populations and for various traits and use the validated variant list to estimate non-additive variances contributing to the overall cows breeding value.

In this thesis, we had the opportunity to analyze large populations of genotyped cows with own records. These populations originated from five different breeds and therefore form independent data sets. These data were not used in the initial GWAS analyses and, for selected variants, they provided independent validation results. In addition, in contrast to bulls which are evaluated on the basis of progeny performances, i.e. mainly of additive effects, cows express their own potential, i.e. their additive effects as well as a number of interactions including the gene x gene interactions. Therefore, they were a resource of choice for this thesis.

Cows were genotyped with a variety of chips, including versions 1 to 4 of the Eurogenomics chip. Its custom part includes a number of candidate variants. Some of these variants are well confirmed by the literature. Some other were detected by GWAS in bull populations in Denmark or in France. For these two kinds of variants, this thesis provided confirmation results on independent data sets. Other variants were selected based on their annotation (variants with a "deleterious" annotation, structural variants affecting genes, regulatory variants). For these variants, the effect is more putative, and the traits potentially affected are unknown and this thesis provided the first GWAS results. But of course, this thesis used chip data, i.e. 50k markers and additional selected variants. It is not a sequence-based analysis and we were limited to the analysis of the variants present in at least on chip.

Various validation techniques that included initial within breed GWAS were used. First, to increase the power to detect QTN, we combined GWAS results in the form of a metaanalysis. Meta-analysis combines probability of significance and sign of the effect to provide a new probability for each variant. Because LD is not well conserved across breeds, metaanalysis has the potential to refine QTN mapping, by excluding far variants in LD with the QTL within but not across-breeds. With this method, we identified 120 QTL associated with milk production, stature and fertility traits.

Secondly, we carried out a confirmation study of the SNP selected from Nordic sequence based GWAS (i.e. discovery population) with independent French populations (i.e. validation population). In this study 96% of sequence variants selected in the discovery population were significant in the mapping populations.

Thirdly, to study pleiotropy, we mapped variants associated with milking speed (MS). Indeed, milking speed is attractive for the farmer as it contributes to decrease work load, but it is genetically antagonistic to somatic cell counts and, to a smaller extent, to clinical mastitis (CM). We identified 11 QTL for milking speed, four of which would improve mastitis resistance and increase MS.

Fourthly, using udder related phenotypes, we studied gene-by-gene interaction using a combination of the associated weight matrix (AWM) and partial correlation with information theory (PCIT) algorithm. We identified 10 causative genes associated with udder morphology.

Finally, we explored the non-additive variances explained using variants with a major effect. Even with a pre-selected variant sample a substantial percentage of the non-additive variance was explained.

Validating pre-selected sequence variants for genomic prediction

Due to the vast number of sequences in dairy cattle, genomic prediction relies on preselected sequence variants. Validation allows one to understand whether the right variants have been selected, since using the right variants would result in a higher prediction accuracy (van den Berg et al. 2014). A large part of this thesis focused on validation of pre-selected sequence variants and two approaches were tested: a meta-analysis approach (paper 1) and a confirmation study in independent populations (paper 2). Both approaches validated some sequence SNP and detected multiple QTL of the traits that were studied and resulted in a list of variants that could be used for subsequent genomic prediction. The meta-analysis approach is particularly important if validation includes numerically small populations. The cows have to be from similar populations. Furthermore, the statistical power gained from meta-analysis of summary statistics was as efficient as pooling individual-level data across studies, but much less cumbersome. The procedure proved to be fast and efficient in identifying 120 QTL associated with milk production traits, fertility, and stature. The confirmation study used a T-test for a particular SNP that can simply be defined as its allele substitution effect standardized using its standard error. For a good validation the T-test (and -log10P) in the validation population has to be larger than the T-test (and -log10P) in the discovery population. In our study, we validated 96% of the variants using this approach. However, the majority of them were not the peak SNP in their region. If causative, and assuming no specific noise, these variants should be the most significant. However, two sources of noise may explain these results. It is possible that the genotyping in the French populations is not as accurate as for the 50k markers (because of less experience in the clustering, more genotyping may have occurred). In addition, all candidate variants were imputed for cows with phenotypes, a process which is known to be accurate but generates some errors. Therefore, it was not possible to definitely conclude on the causative nature of most of these candidate variants.

Paper 3 demonstrated that QTL can also affect functional traits subjectively scored by farmers. The main idea was to use correlated traits (positive or negative) to search for QTL acting in a different way than predicted by genetic correlations. In the case of paper 3, milking speed and somatic cell score was moderately heritable, while clinical mastitis was not. Milking speed is attractive for the farmer as it contributes to decrease work load, but genetically, cows with high milk speed have more somatic cell counts and, to a smaller extent, are more susceptible to clinical mastitis. We were able to define 11 QTL for milking speed. The standardized allelic substitution effects identified 4 QTL that would improve milking speed and reduce incidence of mastitis simultaneously. These QTL could be used in selection for increasing milking speed without deteriorating resistance to mastitis.

However, in all three studies, we could still not identify the causal mutations as these statistical tests are insufficient for such analysis and likely because most causal variants, with a few exceptions, are not in the data. A selection of candidate variants from the sequence is necessary for these QTL and a more functional based study is needed. Since the beginning of this thesis, the content of the custom chip was enriched in variants derived from GWAS analysis and believed to be causal. In addition, many more animals have both genotypes and phenotypes, including some additional breeds. It would be worth to repeat all this confirmation studies with the present knowledge and tools.

Functional annotations, causal mutations, and non-additive effects

Genomic prediction using SNP data relies on LD between the prediction markers and QTL to estimate the cow's breeding value. Ideally, imputation of genotypes to sequence allows the prediction of estimated breeding values to be based on the causative mutations.

In practice, the causative mutation may not necessarily be included in the sequence data. This is mainly due to the quality control procedures subjected before any analysis takes place e.g. some variants (causative or non-causal) can be filtered out due to low MAF, low sequencing quality or imputation errors. Other variants (e.g. structural variants that include deletions, duplications, copy-number variants, insertions, inversions and translocations) are often not included in routine analysis. Other variants are simply rare (i.e. they alter the gene function and occur at low frequency in a population). In human genomics, rare variants contribute a significant proportion of the total genetic variance (Bomba et al., 2017), and it may be the case for genetic variance in dairy cattle (Zhang et al., 2017). It is therefore plausible to state that all sequence variants are important, but some are more important than others.

Because of the high LD phenomenon experienced in dairy cattle, the variants identified through GWAS are generally common SNP that mark an associated QTL rather than the variant that systematically contributes to the association. The initial LD generated by the mutation events, the history of the population (i.e., selection, crossing, genetic drift due to low effective size of the population), and the limited number of recombination events per generation all contribute to patterns of LD. The reasons above imply that few SNP can capture a large proportion of the variation. In dairy cattle, GWAS has successfully taken advantage of this LD structure by using common SNP variants rather than those most likely to be associated with the trait of interest or disease. SNP variants put on all chips are not representative of all variants but have much higher MAF in order to be more informative. LD structure is however a two-edged sword in that it limits identification of the true causal variants using statistical methods alone. Furthermore, many SNP within an LD block may be functional and contribute to the observed association. This implies that single SNP analysis may be an inefficient and misleading causal variant identification approach as many SNP within an LD block may affect the regulatory element or gene expression. Strategies that systematically and comprehensively evaluate the function of variants as a block are therefore necessary to discern candidate gene status.

For the case of the Eurogenomics custom chip (Marete et al., 2018), the number of functional variants selected is limited by the number of slots available on the chip, as more SNP-add-on increase the chip production cost. The main strategy currently being used is to continually test various versions of the custom chip and replace noninformative variants with newly selected variants, probably from a GWAS study. Functional annotation plays a critical role for this process. Functional annotation involves identifying the physical location of genes in a genome and determining the role of these ). In paper 5, we estimated dominance and epistasis variances using the genotypic model. Estimating dominance effect requires only two effects per SNP, the additive and the dominance one. Therefore, it can be computed from the same data as additive effects only. Dominance was found quite stable across breeds and production traits, representing about 20% of the genetic variance or 5-6% of the phenotypic variance.

Epistasis is much more complex because the number of combinations increases quadratically with the number of variants. Therefore, we made an assumption which is reasonable for a large proportion of cases. We assumed that epistasis might occur only between loci with additive effects. Indeed, epistasis without additive effect may exist but it requires a sign interaction where the effects for a given locus change in direction (and not only in magnitude) according to the situation at the second locus. We assumed that this situation is much less frequent than the scaling epistasis. Therefore, we selected SNP found to affect milk yield, assuming that the major part of epistasis was concentrated between these loci. We demonstrated that epistasis, though small, represented up to 6% of the phenotypic variance. We also showed existence of interactions within and across chromosomes (Fig 1).

Figure 1. Across chromosome interaction patterns for milk yield in Holstein breed. Interactions were estimated using pre-selected sequence variants with a major effect. Each line represents an interaction (Bayes Factor > 20) between two SNP mapping a gene. Each blue circle is a QTL reported for milk yield in Holstein and each red circle is a pre-selected SNP with a major effect. Due to potentially many gene names, only a subset are presented in the diagram. 2016) reported a reduction in bias and increase in reliability of prediction when non-additive effects were included in the prediction models as opposed to only using additive effects. In our study, the heritability attributed to dominance averaged 5.8%, and 1.8% for epistasis. The low estimates is a direct reflection of the limited number of SNP selected to estimate the non-additive variances. Over time, more validated variants can be included when creating the non-additive matrices. [START_REF] Vitezica | On the Additive and Dominant Variance and Covariance of Individuals within the Genomic Selection Scope[END_REF] showed how to incorporate non-additive effects in GBLUP with the main challenge being the calculation of the inverse of the dominance and epistasis matrices. This inversion constraint increases as the population size increases. In future such studies may provide information on the genetic and environmental backgrounds that influence an individual's future performance hence contributing towards development of more accurate prediction models.

Importance of non-additive effects on genomic selection

Mate allocation, as described by [START_REF] Lush | Animal Breeding Plans[END_REF], is the process of wisely selecting mates that would give rise to efficient progeny. [START_REF] Toro | A note on mate allocation for dominance handling in genomic selection[END_REF] demonstrated the importance of dominance during mate allocation in a population under genomic selection. Using models that include non-additive effects, the output of the genomic selection procedure can be used to define a set of mates that maximize performance in the next generations [START_REF] Varona | Non-additive Effects in Genomic Selection[END_REF]. Simulated mate selection studies have reported an average increase of 14% in response to selection with a model including dominance (Varona et 2013)). In dairy cattle breeding, mate selection programs may be particularly important, as the strong directional selection to improve productive traits has caused a reduction in effective population size and, therefore, an increase in inbreeding [START_REF] Aliloo | Including nonadditive genetic effects in mating programs to maximize dairy farm profitability[END_REF]. This leads to reduced population fitness (i.e., fertility and survival) by increasing the frequency of recessive deleterious alleles (Weigel 2001). In dairy cattle, mating programs have traditionally controlled rates of inbreeding by using pedigree information to avoid matings between animals with a common ancestor. Inbreeding coefficients calculated from pedigree data have been used to exclude matings that may give rise to conditions controlled by lethal mutations in addition to those that negatively affect phenotypic means and genetic variances and consequently limit genetic progress within populations. Properly selected and validated sequence variants could aid selection that reduces the occurrence of lethal mutations in the population. In practical dairy cattle breeding, however, implementation of mate selection would be limited because accuracy prediction of a potential mate would be low and relevant only in presence of high non-additive genetic variance for a given trait. Another limiting factor is the requirement that all individuals in the population, males and females, are genotyped, a condition which is not always possible for dairy production. However, with the decreasing genotyping costs, this may be possible in the not so distant future.

The response to selection in purebred populations is influenced by: (1) the size of the additive variance, and (2) the accuracy of the EBV for the selection parents [START_REF] Varona | Non-additive Effects in Genomic Selection[END_REF]. Traditionally, non-additive effects have not been modelled and one of the reason is because it's assumed that random mating resets the value to zero Studies by [START_REF] Toro | A new method aimed at using the dominance variance in closed breeding populations[END_REF][START_REF] Toro | Selection of grandparental combinations as a procedure designed to make use of dominance genetic effects[END_REF] using closed populations suggested a mating strategy that could implement nonadditive variance (e.g. dominance). These strategies include (1) mating individuals with a low relationship index, (2) mating individuals that are highly related, and (3) selection of a combination of grandparental lines. Scenario (1) produces commercially populations for testing and validation while and scenario (2) ensures perpetuation of the breeding population. These scenarios have been tested using simulation studies with known predetermined variance components hence opening the possibility of future verification using available large SNP data sets.

Sequence variants and dairy improvement

Previous studies based on simulations have demonstrated that adding causal mutations strongly improved the accuracy of genomic predictions (Perez-Enciso et al, 2016; van den Berg et al, 2016). This is especially true across breeds. Indeed, within breed, tag SNP are efficient to characterize large chromosomal segments and including the causal variants adds little in prediction accuracy. We can also anticipate that reference populations do not need to be as large if the number of variants is smaller, and that the persistence of predictions is higher because the effect of causal variants does not erode in contrast with linked markers. The same studies also showed that, when replacing the causal variants by markers, the prediction accuracy decreases quickly with the distance. To maintain a good across breed accuracy, markers should be within 1 kb to the causal variants, therefore, the selection of candidate variants must be very accurate if we want some significant gain over the present approach. Simulations have shown that few properly selected sequence variants are useful in prediction without necessarily including all the sequence data (VanRaden et al with the new custom arrays might be less expensive than additional sequencing to improve imputation accuracy. It's therefore paramount to carefully select the variants used in estimating the genetic parameters to avoid inclusion of unnecessary noise in the models. In thesis, we validated 96% of pre-selected sequence variants using GWAS. The above study could be replicated using the new validated candidate variant list. Over time, the variants in the Eurogenomics chip are expected to be continually updated, and therefore, it's likely that new relevant variants have been included in the current version of the chip.

Conclusions and future prospects

Since all sequence variants cannot be imputed during normal genomic prediction, variant selection and validation becomes an important tool. Often, more than one variant influences a trait, and Bioinformatic tools can be used to select the causal regions. Data sharing is key to increase the reference population to aid in identifying individual QTL which usually have small effects. Precision phenotyping should be prioritized to increase the phenotypic bank necessary for evaluating multiple QTL not only for milk production traits, but also for correlated functional, morphological and fertility traits. In the long-run, multi-trait and multi-breed analysis are more relevant than GWAS for selecting variants. Once selected, these sequence variants can be used to increase prediction reliability. Mapping epistatic interactions is statistically and experimentally challenging. Epistasis, however, can cause unexplained variation for quantitative traits under HWE. In the near future, genomic data must be used to study different levels of epistasis including second order and quadratic epistasis interactions. I believe this interaction could contribute to the missing heritability.

Only then can we decipher the role of non-additive effects in the genetic architecture of complex traits.

Genotype imputation, which can be defined as prediction of genotypes that are not genotyped, was done using FImpute software (Sargolzaei et al., 2014). The developers of FImpute software envisioned a scenario of recovering genotypes from a vast number of animals (more than millions) genotyped using different panels. This makes this software ideal for our dataset. As with many other imputation software, similarities in overlaying haplotypes between study and reference population are used to infer the missing genotypes as the algorithm searches along the haplotype window. FImpute assumes all individuals are related by varying degree with half-sibs and full-sibs sharing longer haplotypes and those with a lower relationship index sharing shorter haplotypes. Initially, the FImpute algorithm defines a chromosome as a window capturing the similarity between individuals with a higher relationship index. After each consequent sweep, the algorithm shrinks the window by a predefined factor of 0.08. This implies that as more sweeps are applied, individuals with lower relationship index can be imputed. FImpute does not require a pedigree, but nonetheless, we included one for more accurate imputation.

In chapter 2 we investigated significant SNP from WGS GWAS in Nordic dairy cattle populations that also segregate in three French dairy cattle populations and explored the proportion of significant SNP shared among Holstein, Montbeliarde, and Normande breeds. This was achieved by first running a within breed GWAS, then comparing the test statistic of the WGS SNP with that of the 50k. A WGS SNP was considered confirmed if its test statistic was lower than all neighboring 50k SNP, and a 50k SNP was considered a good candidate if its test statistic was lower than all neighboring SNP. The phenotypes used were yield deviations for milk production phenotypes (milk protein and fat yield), udder health phenotypes (clinical mastitis and somatic cell score) and fertility at insemination of cows. This included data for 46,732 Holstein cows, 20,096 Montbeliarde cows, and 11,944 Normande cows'. The genotype was imputed 50k + WGS SNP, including 435 SNP selected from the Nordic population. We observed 391 WGS SNP segregating in French dairy populations. This represents 96% of SNP that were being validated. The 391 WGS SNP were most associated with milk production traits. Forty lead SNP peaks were most significant and 22 of these were unique. Some of these include: Montbeliarde and Holstein, fat and milk: BTA5:92163377 (RERGL), BTA5:93948357 (MGST1), and BTA14:1802265 (DGAT1); Montbeliarde and Normande, protein: BTA7:41114885 (CLK4), BTA14:1724688 (SLC39A4); Holstein, SCS: BTA6:89059253 (NPFF2); Holstein FIH: BTA6:88723742 (GC), and BTA18:46747796 (NPHS1). Some WGS SNP performed better to all nearby 50k SNP.

As an example: WGS SNP associated with milk in Montbeliarde (BTA6:88723742, p=4.95x10 -09 ) and Holstein (BTA5:93944937, P=1.15x10 -08 ) showed stronger association compared to nearby 50k SNP. BTA6:87296809 (Montbeliarde, P=1.70x10 -12 ), BTA6:87296809 (Holstein, P=7.55x10 -25 ), and BTA14:2025096 (Holstein, P=6.96x10 -75 ) were associated with protein and out-performed 50k SNP. BTA6:87296809 associated with protein in both Montbeliarde (P=1.78x10 -52 ) and Normande (P=4.18x10 -36 ) outperformed its closest 50k SNP. BTA5:93948357, BTA7:41372989, BTA14:1802265 (DGAT1 K232A mutation), and BTA26:20697894 associated with fat showed stronger association in Holstein. Some 50k SNP outperformed all nearby WGS SNP, e.g. BTA14:1463676 (Montbeliarde, milk, P=1.84x10 -15 ), BTA14:1763380 (Normande, milk, p=3.61x10 -20 ), BTA20:31246204 (Holstein, milk, p=1.85x10 -40 ), BTA26:21144708 (Montbeliarde, fat, p=4.02x10 -28 ), and BTA20:36561330 (Holstein, SCS, p=1.55x10 -17 ). Apart from being more significant than the closest WGS SNP, the 50k SNP also had a greater MAF. These can be considered as good candidate SNP for the French breeds. However, other 50k SNP that flanked WGS QTL lead SNP were more significant but with a lower MAF, e.g. BTA8:65107050 (Holstein, milk), BTA9:6367757 (Montbeliarde, protein), BTA6:87199843 (Holstein, protein), and, BTA18:48150900 (Holstein, success rate of insemination). The WGS SNP flanking these SNP should be eliminated from the candidate SNP list, as they were likely selected due to LD and probably not causal. In this study, we used a combination of P-value and T-test. A P-value is the probability that the GWAS result occurred by chance, with low P-values indicating the result did not occur by chance. The T-test compares the Tvalue of two SNP and indicate if they're different from each other. For GWAS, the T-value is simply the ratio of the allele substitution effect deviated from zero expressed in units of standard error. The greater the magnitude of T (it can be either positive or negative), the greater the evidence against the null hypothesis that there is no significant difference between the WGS SNP and 50k SNP. In other words, the closer T-value is to 0, the more likely there isn't a significant difference. For WGS SNP, this meant the lower the P-value and the greater the magnitude of the T-value, the more likely the SNP was causal.

In chapter 3 we focused on milking speed (MS) for Holstein breed. MS measured as the time taken to milk a cow potentially impacts the labor cost per cow. Objective MS measurements such as average and maximum milk flow rate, and total milking time can be done with sophisticated equipment e.g. LactoCorder, whereas MS can also be subjectively scored by the farmer. Subjective MS scoring is quite reliable in small to medium size herds in France because of the repeated daily milking work. MS is correlated with phenotypes affecting udder health i.e. clinical mastitis (CM) and somatic cell score (SCS). The genetic correlation between MS and CM is 0.18 and between CM and SCS 0.70. This indicates the existence of an unfavorable relationship between MS and mastitis and it's plausible because both traits are affected by the anatomy of the teat canal. Heritability of MS was 0.42 for yield deviations and 0.17 for 305-d farmer scores in French Holstein. This high heritability indicates good GWAS detection power. However, since MS has an unfavorable relationship with mastitis, and mastitis has negative financial impacts to the farmer and biological effects on the cow, it would be beneficial to identify MS QTL with effects not in direction with the correlation.

In this study, we report on a GWAS for MS, test the SNP associated with MS for associations with CM and SCS, and, explore novel MS QTL and candidate genes associated with MS in French Holstein cattle. GWAS identified SNP on 22 chromosomes significantly associated with MS. We further tested whether the most significant SNP on these 22 chromosomes associated with MS were also associated with CM and SCS. Eleven novel MS QTL were observed on chromosomes 7, 10, 11, 14, 18, 25, and 26. Twelve candidate SNP for MS mapped directly within genes. Of the 11 MS QTL, four had ratios, not in line with genetic epistatic interactions was exploited through their connections as the AWM-PCIT gene network was generated.

In chapter 5, we look at the potential role of non-additive effects on genetic evaluation (GE). GE focuses mostly on the additive effects which are transmitted from parent to offspring. This is because the additive variation is usually easier to model and more than the nonadditive variation. However, in populations with many closely related individuals (e.g. fullsibs), or for lowly heritable traits, the non-additive component could be substantially greater. These reasons indicate that not model the non-additive component would lead to a less accurate estimation of the additive genetic variation. Non-additive effects can be intra-locus (dominance) or inter-loci (epistasis). Even though it's not the scope of this study, it should be noted that other interactions do exist, such as interactions of more than two alleles in different loci (n th order epistasis, where n>2) resulting in various epistatic interactions such as additive by additive by additive, dominance by dominance, additive by dominance and so forth. The downside of not accounting for dominance and epistasis in the additive model is that they become part of the residuals thus the residuals are no longer independent and identically distributed (IID). This might lead to untrue estimation of the allele substitution effects and limited amount of understanding on the contribution of dominance and epistasis variations in dairy cattle. Furthermore, it is still largely unknown whether accounting for both additive effects and non-additive effects improves the accuracy of prediction. The main limiting factors for answering this question was lack of genotyped individuals with own performance records, and lack of methods allowing genomic models to efficiently account for non-additive effects. If dominance and epistasis variations substantially contribute to modelling the trait, then including them in the prediction equations would contribute towards better breeding value estimations. In this study, we explore the variations due to additive effects, dominance deviation and second order epistasis interactions for milk, protein and fat yield in four dairy cattle populations.

From the posterior means of variance components, the additive model variances were greater compared to the epistasis model and the results were variable according to breed. Estimated dominance variance in proportion to additive genetic variance averaged over three traits was ≈20%. For most breeds and traits, dominance deviation reached 16% -25% of the additive variance. Lowest ratio of dominance deviation to additive variance was 11% observed for milk in Jersey. Highest ratio of dominance deviation to additive variance was 26% observed for protein in Montbeliarde. Normande breed had the highest ratio of dominance deviation to additive variance for fat (23%), milk (21%), and protein (22%). Holstein had the lowest ratio of dominance deviation to additive variance for fat (16%), milk (17%), and protein (22%). This is probably because most of the variation was being captured by the additive part of the model.

Estimates of epistasis variance were lower than dominance variance and more variable, ranging from nearly 1 -19% of additive component, with an average of 7%. Epistasis over additive variance varied between 15% -19% in Montbeliarde breed and 1% -2% in Jersey
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 1 Figure 1. SNP variants as expressed in MAF in three French dairy breeds. The minor allele frequency of SNP variants in three French dairy breeds Minor allele frequency of SNP variants in three French dairy breeds
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 3 Figure 3. Summary of GWAS significant SNP and breed overlap for 12 traits in three French dairy breeds
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Within breed GWAS and multi-breed meta-analysis Production traits Milk yield: We

  

	=7.2x10 -13 , intergenic), and on BTA14 at 1.6-1.9 Mb with the most significant lead SNP
	being BTA14:1802265 (P=2.6x10 -322 , DGAT1 gene).
	Fertility: For the success rate at insemination of lactating cows, we observed QTL on 9
	chromosomes where Holstein had 13 QTL, Montbeliarde had 2 QTL, Normande had 1 QTL.
	As presented in Table 5, the lead SNP for new QTL from meta-analysis that exceeded the observed both known and novel QTL in all three cattle breeds. The most genome wide threshold (P<1.03x10-6) included rs109483390 (BTA9:76868290, P=5.2x10 -10 , significant QTL lead SNP from meta-analysis are presented in Table 1. We observed QTL 0.1 Mb upstream of TNFAIP3 gene and 0.07 Mb downstream of PERP gene), rs42412333
	on 16 chromosomes where Holstein had 23 QTL, Montbeliarde had 10 QTL, Normande had (BTA10:39278374, P-1.2x10 -8 , 38-40 Mb, 0.45 Mb downstream of RPL10L gene), and
	rs110425867 (BTA14:8264685, P=1.6x10 -11 , ZFAT gene 8.1-8.3 Mb). Lead SNP and QTL 15 QTL. The most significant lead SNP was located at Bos taurus autosome (BTA) intervals for QTL observed only in Holstein were: rs41589904 (BTA8:76582220, P=7.5x10 -14:1801116 (rs109421300, P=9.7x10 -283 ), an intronic variant near the causal variants in the 9 , UBE2R2 gene, 74-77 Mb), rs41593363 (BTA9:53806121, P=1.3x10 -8 , 49-55 Mb, and 6.5kb
	DGAT1 gene. Other significant QTL were observed at BTA5:50804085 (P=1.3x10 -22 , upstream of GPR63 gene), rs110543856 (BTA18:48150900, P=1.1x10 -18 , SIPA1L3 gene, 43-
	intergenic), rs109205829 (BTA8:30088133, P=2.3x10 -21 , NFIB gene), and BTA20:32670639 48 Mb), rs110588160 (BTA21:47117318, P=2.6x10 -14 , intergenic, 43-48 Mb), rs29023151
	(BTA22:23303686, P=1.6x10 -11 , IL5RA gene, 22-24 Mb), rs109629413 (BTA24:33624891, (P=4.0x10 -41 , intergenic flanking 5' end of OXCTI gene). P=7.1x10 -15 , TMEM241 gene, 28-33 Mb), and two, QTL on BTA26: rs43158237
	(BTA26:6741237, P=2x10 -11 , intergenic, 6.7-6.9 Mb) and rs42096924 (BTA26:33443386, A QTL on BTA8 at 29-30 Mb with the same lead SNP at BTA8:30088133 (rs109205829) P=2.8x10 -11 , intergenic, 24-33 Mb). Lead SNP and QTL intervals for QTL observed only in was observed in both Holstein and Montbeliarde. This lead SNP is an intronic variant within Montbeliarde were: rs41657531 (BTA9:39816061, 1.1x10 -8 , RPF2 gene, 38-44 Mb), and
	NFIB gene, and the meta-analysis had a lower P-value (P=2.3x10 -22 ) than either of the single rs42417896 (BTA11:34068419, 4.6x10 -6 , intergenic, 31-39 Mb). Lead SNP and QTL intervals
	for QTL observed only in Normande but did not meet genome wide threshold was breed GWAS (P=8.4x10 -14 ). Another QTL on BTA22 at 23-26 Mb with a lead SNP at BTA22:24219999 (rs41592357) was observed all three breeds. RS41592357 is an intergenic rs41570140 (BTA11:30065164, 1.6x10 -4 , FBX011 gene, 27-30 Mb).
	variant 1.38 Mb upstream of the CNTN6 gene and 0.65 Mb downstream of the CNTN4
	gene. Some QTL overlapped between Holstein and Montbeliarde, some with same lead SNP Stature: We identified 16 QTL on 11 chromosomes associated with stature in the three
	but others with different lead SNP e.g. BTA15 at 57-61 Mb and BTA25 at 10-11 Mb. The breeds (Table 6). The most significant variant was observed in the Montbeliarde breed and
	lead SNP for the QTL on BTA15 were rs110049689 (BTA15:57333896, P=1.5 x10 -7 , was BTA14:25006125 (P=8.6x10 -140 PLAG1 gene). Seven novel QTL for stature displayed
	heterogeneity across the three breeds, e.g., rs43121344 (BTA7:68281468, intergenic and 0.14 MYO7A gene) in Montbeliarde, and rs41690133 (BTA15:56842162, P=2.4 x10 -12 , intergenic) Mb towards the 3′-flanking region of MRPL22 gene) was lead SNP in all three breeds with
	in Holstein. On BTA25, the lead SNP was rs42062121 (BTA25:11015593, SNX29 gene) in PNOR=3.0x10 -4 , PMON=4.5x10 -8 , PHOL=1.1x10 -9 , and PMETA=7.6x10 -19 . Lead SNP for breed
	both Holstein (P=1.1 x10 -7 ) and Montbeliarde (P=2.5 x10 -6 ). specific QTL in Montbeliarde include: rs41645172 (BTA2:109778246, P=3.9x10 -17 , DOCK10
	gene), rs109860141 (BTA10:51558941, P=2.4x10 -20 FAM63B gene), BTA14:25006125
	(P=8.6x10 -140 , PLAG1 gene), and BTA20:39917111 (P=5.0x10 -22 , ADAMTS12 gene). Lead
	SNP for QTL observed in Normande include rs41644660 (BTA26:19460476, P=3.5x10 -8 , 73
	Fat yield and percentage: We observed QTL on 19 chromosomes where Holstein had 26 kb downstream of HPS1 gene). Two QTL lead SNP observed in Holstein include
	QTL, Montbeliarde had 12 QTL, Normande had 5 QTL. Meta-analysis confirmed rs110652403 (BTA7:90460692, P=4.8x10 -12 , 0.16 Mb upstream of MEF2C gene, and 0.3 Mb
	downstream of TMEM161B gene), and rs43430263 (BTA12:53241975, P=3.3x10 -14 , SLAIN1 BTA14:1802265 (P=1.5x10 -760 , DGAT1 gene). Other QTL lead SNP whose meta-analysis P-values exceeded the GWAS significance threshold include: rs110824611 (BTA3:11040167, gene).

Table 1 . Top variants at 36 QTL for milk yield QTL

 1 

	Effect direction MON NOR HOL	CHR BP Allele Nearby gene Pmeta (and evidence of heterogeneity) b(se) p b(se) p b(se) p	across three populations 1	1 2 9810493 a/g -4.2e-09 ---(4.7e-02) -49.52(11.91) 3.2e-05 -1.91(13.46) 8.9e-01 -47.76(9.88) 1.4e-06	2 2 45026036 t/c -4.5e-17 +++(1.5e-02) -23.33(13.31) 7.9e-02 -47.80(11.70) 4.4e-05 -50.94(6.62) 1.5e-14	3 2 70680985 t/g -1.8e-12 ---(7.7e-05) 1.26(9.47) 8.9e-01 25.81(12.58) 4.0e-02 54.29(6.77) 1.0e-15	4 3 20031136 a/c CTSS 3.0e-15 ---(3.7e-06) 41.84(28.21) 1.4e-01 2.16(23.05) 9.3e-01 63.30(6.86) 2.9e-20	5 3 50804085 a/g SLC44A3 1.3e-22 +++(5.9e-04) -37.17(8.57) 1.4e-05 -6.29(10.69) 5.6e-01 -72.86(7.62) 1.1e-21	6 3 113907407 t/c UGT1A1 1.3e-11 +++(6.5e-03) -21.99(9.70) 2.3e-02 -3.71(10.06) 7.1e-01 -49.75(7.00) 1.2e-12	7 7 19676040 t/c RANBP3 4.8e-08 +++(8.2e-02) -18.69(10.88) 8.6e-02 -23.29(32.57) 4.7e-01 -52.12(9.31) 2.2e-08	8 7 46109256 a/g AFF4 3.9e-10 +++(2.2e-02) 287.35(326.21 3.8e-01 25.24(10.79) 1.9e-02 42.47(6.67) 2.0e-10	)	9 7 59590759 t/c -8.6e-12 ---(4.8e-01) -64.57(21.74) 3.0e-03 -18.78(10.27) 6.7e-02 -46.45(7.75) 2.1e-09	10 8 30088133 c/g NFIB 2.3e-21 +++(5.4e-01) 36.55(9.17) 6.8e-05 46.35(10.43) 8.8e-06 51.51(6.90) 8.4e-14	11 8 65107050 a/g -2.8e-15 +++(9.5e-05) -6.83(12.47) 5.8e-01 -39.07(15.38) 1.1e-02 -83.55(9.70) 7.3e-18	12 8 102635397 a/t ZNF483 6.3e-13 ---(4.3e-03) -21.66(16.11) 1.8e-01 -9.8e-02 -82.17(10.78) 2.5e-14	149.15(90.16)	13 9 51985736 t/c -9.1e-19 +++(2.3e-01) 46.39(10.67) 1.4e-05 27.06(13.88) 5.1e-02 68.45(8.95) 2.1e-14	14 10 13737253 t/c SNAPC5 5.5e-12 +-+(4.5e-05) -25.23(13.52) 6.2e-02 6.12(11.88) 6.1e-01 -74.79(9.36) 1.4e-15	15 10 50918709 a/g FAM81A 2.1e-15 +++(1.1e-03) -72.30(37.69) 5.5e-02 -15.77(13.71) 2.5e-01 -61.91(7.32) 2.7e-17	16 10 91086389 a/g NRXN3 1.3e-15 ---(9.6e-05) 15.26(9.43) 1.1e-01 17.52(20.81) 4.0e-01 68.24(7.67) 5.9e-19	17 11 101301047 t/c LAMC3 2.9e-15 +++(5.8e-01) -79.37(25.50) 1.9e-03 -46.84(15.26) 2.1e-03 -48.71(7.31) 2.7e-11	18 13 40837170 a/g KIZ 9.3e-18 ---(7.1e-01) 59.02(14.04) 2.6e-05 106.10(40.14) 8.2e-03 75.29(10.68) 1.8e-12	19 14 1801116 t/c DGAT1 9.7e-283 +++(7.7e-43) -5.1e-16 -1.0e-22 -314.84(8.66) 1.1e-289	370.01(45.63) 177.48(18.09)	20 14 5952697 a/g TRAPPC9 1.2e-29 ---(9.5e-17) 3.83(8.75) 6.6e-01 4.44(10.91) 6.8e-01 94.83(6.68) 1.1e-45	21 14 40812291 a/c JPH1 1.2e-16 +++(9.3e-04) 32.77(9.21) 3.8e-04 1.97(15.99) 9.0e-01 56.58(6.76) 6.0e-17	22 15 60250434 a/g HIPK3 5.4e-19 +++(9.1e-02) -34.78(13.33) 9.1e-03 -46.33(11.38) 4.7e-05 -52.00(6.68) 6.7e-15	23 16 1819787 a/g PLEKHA6 9.7e-14 +++(6.1e-01) 35.49(9.14) 1.0e-04 71.05(35.70) 4.7e-02 63.95(10.46) 9.7e-10	24 16 28319407 t/c -1.9e-13 -+-(2.8e-10) -1.05(9.10) 9.1e-01 14.91(18.88) 4.3e-01 -95.03(9.62) 5.4e-23	25 16 42843345 t/c DRAXIN 1.6e-15 ---(2.5e-03) 16.19(8.75) 6.4e-02 16.98(10.90) 1.2e-01 90.82(10.89) 7.3e-17	26 16 63549240 t/c KIAA1614 9.8e-14 ---(8.8e-03) 13.02(8.67) 1.3e-01 20.36(9.93) 4.0e-02 62.02(8.11) 2.1e-14	27 17 24539327 a/g -1.9e-15 ---(1.9e-03) 20.08(9.63) 3.7e-02 13.88(11.93) 2.4e-01 68.53(8.19) 5.9e-17	28 17 60612635 a/c NOS1 1.6e-13 ---(5.5e-02) 22.80(8.98) 1.1e-02 14.72(10.33) 1.5e-01 60.09(8.35) 6.3e-13	29 19 45164235 a/g GJC1 2.2e-18 +++(2.2e-07) 10.21(8.54) 2.3e-01 6.55(10.77) 5.4e-01 85.13(8.29) 1.0e-24	30 19 54920324 t/c TNRC6C 8.1e-17 +++(4.0e-06) 3.32(10.98) 7.6e-01 24.51(10.19) 1.6e-02 64.95(6.91) 5.4e-21	31 20 32670639 a/g FBXO4 4.0e-41 ??-(1.0e+00) 9.33(290.50) 9.7e-01 -11.46(18.43) 5.3e-01 136.43(10.16) 4.0e-41	32 23 30279220 a/g ZNF192 3.2e-15 ?++(4.1e-02) -31.62(12.52) 1.2e-02 28.75(16.57) 8.3e-02 117.97(14.83) 1.8e-15	33 23 34231434 c/g MBOAT1 1.7e-12 +++(3.0e-01) 32.56(10.20) 1.4e-03 30.38(20.02) 1.3e-01 46.43(7.37) 3.0e-10	34 26 21800887 a/g CPEB3 2.4e-11 ---(4.9e-02) -76.45(27.83) 6.0e-03 -48.60(10.00) 1.2e-06 -55.84(12.64) 1.0e-05	35 26 30146092 a/g -5.2e-15 +++(8.9e-02) -18.91(8.83) 3.2e-02 -45.01(15.33) 3.3e-03 -3.7e-13	109.33(15.04)	36 26 44892777 t/c CTBP2 2.3e-14 ---(8.0e-04) 11.22(8.97) 2.1e-01 93.05(16.37) 1.3e-08 44.52(7.16) 5.1e-10	1 Populations in order are MON, NOR, and HOL; '+' and '-'denote positive and negative substitution effects of the alternate allele. '?' indicates that the variant did not segregate in the	respective population. The P value of Cochran's Q test for heterogeneity of the effect sizes across breeds is given in parentheses, and is significant if P < 0.05

Table 2 . Top variants at 48 QTL for fat yield and percentage in milk QTL

 2 

	Effect direction (and MON NOR HOL	CHR BP Allele Nearby gene Pmeta evidence of heterogeneity) across b(se) p b(se) p b(se) p	three populations 1	1 2 14950298 t/c NEUROD1 7.50e-14 +++(1.4e-01) -0.15(0.03) 7.40e-08 -0.14(0.04) 1.90e-03 -0.13(0.03) 4.00e-06	2 2 26212397 t/c MYO3B 2.40e-13 ---(4.7e-01) -0.07(0.03) 5.60e-03 -0.09(0.04) 1.00e-02 -0.14(0.02) 1.60e-10	3 2 44947955 a/g NMI 2.10e-17 +++(3.4e-01) -1.50(0.39) 1.50e-04 -1.09(0.49) 2.50e-02 -2.05(0.28) 1.30e-13	4 2 109873484 a/g ARID1A 1.10e-16 +-+(3.9e-06) 1.42(0.48) 2.90e-03 -0.38(0.52) 4.70e-01 4.23(0.46) 4.40e-20	5 3 7416886 a/c NOS1AP 4.20e-14 +++(2.6e-03) -0.92(0.37) 1.30e-02 -0.25(0.47) 5.90e-01 -2.17(0.27) 2.60e-15	6 3 11040167 t/c OR6K6 2.30e-29 +++(2.6e-01) -0.16(0.03) 4.60e-09 -0.14(0.05) 4.10e-03 -0.25(0.03) 1.20e-20	7 3 63136013 t/c ELTD1 1.10e-22 ??+(1.0e+00) -1.18(0.59) 4.40e-02 1.63(0.43) 1.60e-04 3.00(0.31) 1.10e-22	8 3 113845303 a/g USP40 1.80e-12 +-+(1.6e-05) -1.63(0.41) 6.50e-05 1.08(0.70) 1.20e-01 -2.17(0.30) 2.60e-13	9 5 88807577 a/c ABCC9 5.60e-16 ---(1.5e-01) -2.55(0.46) 3.30e-08 -2.39(0.65) 2.20e-04 -1.99(0.40) 5.10e-07	10 5 94570828 a/g MGST1 3.50e-31 ---(4.3e-07) 0.19(0.07) 4.00e-03 0.32(0.20) 1.10e-01 0.81(0.07) 3.20e-35	11 7 20325702 a/c KDM4B 3.70e-16 ---(4.6e-01) 0.09(0.03) 4.70e-04 0.10(0.04) 1.50e-02 0.14(0.02) 1.70e-12	12 7 45135080 t/c GRIN3B 6.10e-15 ---(1.9e-01) -0.93(0.40) 1.80e-02 -1.72(0.50) 5.70e-04 -1.97(0.29) 8.00e-12	13 7 59590759 t/c KCTD16 2.80e-17 ---(4.6e-01) -2.97(0.93) 1.40e-03 -1.69(0.48) 4.10e-04 -2.24(0.32) 1.20e-12	14 7 102889266 t/c LIX1 7.20e-10 -?-(1.5e-02) -0.05(0.04) 1.80e-01 0.00(0.04) 9.20e-01 -0.15(0.02) 8.70e-11	15 8 31586227 c/g LURAP1L 5.60e-15 +++(2.0e-01) 0.15(0.03) 2.40e-07 0.29(0.08) 2.00e-04 0.12(0.02) 1.10e-06	16 8 76473229 a/c ZNF484 1.50e-13 ---(2.4e-02) -0.68(0.40) 8.90e-02 -1.74(0.80) 2.90e-02 -3.49(0.47) 1.60e-13	17 8 93896073 a/g U6 1.10e-31 +++(2.4e-02) 0.10(0.03) 1.60e-04 0.17(0.04) 4.00e-05 0.25(0.02) 1.80e-26	18 9 45303296 t/g PREP 4.30e-18 ---(1.4e-03) -0.04(0.03) 1.80e-01 -0.12(0.03) 5.90e-04 -0.18(0.02) 5.30e-18	19 9 51985736 t/c KLHL32 5.10e-21 +++(1.4e-02) 1.36(0.46) 2.90e-03 1.48(0.65) 2.20e-02 3.32(0.36) 8.50e-20	20 9 79191994 c/g ARFGEF3 3.80e-15 +++(3.8e-02) -0.06(0.02) 1.60e-02 -0.13(0.07) 6.10e-02 -0.16(0.02) 1.50e-14	21 10 46388294 a/t HERC1 2.40e-29 -++(8.8e-14) -0.23(0.44) 6.00e-01 0.69(0.08) 7.00e-18 0.31(0.03) 3.30e-26	22 11 30220330 t/c LHCGR 1.40e-19 ---(1.8e-01) -0.14(0.02) 7.50e-10 -0.10(0.03) 4.70e-03 -0.14(0.02) 3.30e-10	23 11 63467507 t/c RAB1A 7.50e-48 +++(1.6e-03) 0.11(0.03) 2.10e-05 0.24(0.04) 1.70e-11 0.30(0.02) 8.20e-37	24 11 103289035 a/g LGB 4.10e-47 +-+(1.7e-55) 0.24(0.02) 2.00e-24 -0.31(0.03) 2.20e-19 0.34(0.02) 9.70e-62	25 12 69106382 t/c GPC6 1.60e-28 +-+(3.5e-06) 0.17(0.03) 7.80e-10 -0.01(0.04) 7.90e-01 0.21(0.02) 1.00e-25	26 13 46433697 t/c ADARB2 5.50e-14 +-+(6.7e-06) -0.15(0.02) 1.50e-10 0.04(0.04) 2.40e-01 -0.13(0.02) 7.30e-10	27 14 1801116 t/c DGAT1 2.20e-284 ---(6.1e-42) 15.24(1.95) 5.80e-15 9.12(0.84) 3.20e-27 12.77(0.35) 5.30e-287	28 14 1802265 a/g DGAT1 2.6e-322 +++(6.3e-53) 4.13(0.13) 6.30e-234 2.57(0.06) 0.00e+00 2.82(0.03) 0.00e+00	29 14 21129363 a/g PRKDC 1.30e-25 +++(2.6e-08) 0.04(0.02) 7.60e-02 0.04(0.03) 2.40e-01 0.26(0.02) 2.80e-32	30 14 67443766 t/c STK3 1.90e-75 +++(1.2e-10) -0.16(0.02) 2.20e-11 -0.09(0.04) 1.50e-02 -0.46(0.03) 2.40e-74	31 15 53166998 t/c FCHSD2 1.90e-44 ---(3.2e-09) -0.34(0.06) 1.30e-07 -0.02(0.03) 5.20e-01 -0.47(0.03) 8.30e-47	32 15 62236286 t/c DCDC1 4.10e-19 ---(1.7e-01) -1.61(0.54) 2.80e-03 -1.56(0.47) 8.70e-04 -2.46(0.31) 1.70e-15	33 16 24591986 t/c RAB3GAP2 3.90e-14 -+-(1.3e-04) -2.47(0.37) 2.10e-11 0.07(0.55) 9.00e-01 -1.53(0.28) 4.00e-08	34 17 60612635 a/c NOS1 3.80e-16 -+-(6.5e-05) 1.09(0.38) 4.40e-03 -0.09(0.48) 8.50e-01 3.00(0.34) 1.40e-18	1 Populations in order are MON, NOR, and HOL; '+' and '-'denote positive and negative substitution effects of the alternate allele. '?' indicates that the variant did not segregate in the respective	population. The P value of Cochran's Q test for heterogeneity of the effect sizes across breeds is given in parentheses, and is significant if P < 0.05

Continued: Table 2. Top variants at 48 QTL for fat yield and percentage in milk

  

	QTL CHR BP Allele Nearby gene Pmeta evidence of heterogeneity) across MON Effect direction (and NOR HOL b(se) three populations 1 p b(se) p b(se) p	35 18 38471116 a/g ZFHX3 4.90e-11 -+-(7.9e-07) -0.10(0.45) 8.30e-01 0.04(0.47) 9.20e-01 -2.35(0.28) 3.10e-17	36 18 58067310 a/g CEACAM18 9.00e-28 +++(7.0e-03) 0.20(0.04) 1.50e-07 0.06(0.04) 1.30e-01 0.24(0.02) 2.20e-23	37 19 42976859 a/g STAT5B 1.60e-37 -+-(2.5e-18) 0.08(0.03) 4.80e-03 -0.04(0.04) 2.50e-01 0.34(0.02) 3.50e-53	38 19 51326750 a/g CCDC57 6.80e-25 ---(1.2e-03) 5.26(0.87) 1.40e-09 0.58(0.91) 5.30e-01 2.69(0.30) 1.00e-19	39 20 31128620 t/c GHR 6.60e-166 ??+(1.0e+00) -0.64(0.55) 2.40e-01 -0.01(0.04) 8.80e-01 -0.84(0.03) 6.60e-166	40 20 35249040 t/c FYB 3.50e-16 ---(1.3e-04) -0.36(0.48) 4.50e-01 -1.50(0.58) 9.50e-03 -2.56(0.29) 1.60e-18	41 23 27450989 a/g LY6G5B 4.20e-20 ?+?(1.0e+00) 0.38(0.05) 7.60e-15 0.59(0.06) 4.20e-20 0.14(0.24) 5.60e-01	42 24 37652964 a/g MYOM1 6.40e-19 +++(8.0e-04) 0.10(0.02) 3.80e-05 0.01(0.03) 8.40e-01 0.18(0.02) 2.60e-18	43 26 14814944 t/c MYOF 1.30e-17 +++(4.3e-01) -1.36(0.40) 6.30e-04 -1.99(0.47) 2.10e-05 -2.05(0.31) 2.10e-11	44 26 20290497 t/c GOT1 3.00e-19 +++(2.0e-01) 0.08(0.03) 1.90e-03 0.24(0.05) 6.60e-06 0.15(0.02) 2.40e-13	45 26 32442734 t/g ACSL5 5.10e-13 ---(1.7e-01) -4.00(1.01) 7.50e-05 -5.09(4.75) 2.80e-01 -2.54(0.41) 4.40e-10	46 27 26628005 t/g TEX15 1.90e-35 +++(4.7e-04) -0.10(0.03) 9.30e-05 -0.13(0.04) 3.00e-03 -0.25(0.02) 1.50e-33	47 27 36117365 a/g GOLGA7 2.00e-72 ---(1.7e-03) 0.21(0.03) 9.30e-16 0.39(0.04) 8.70e-25 0.29(0.02) 4.50e-38	48 29 29254185 a/g PKNOX2 3.70e-13 ---(3.9e-02) -0.62(0.41) 1.30e-01 -1.80(0.46) 1.10e-04 -1.95(0.30) 9.10e-11	1 Populations in order are MON, NOR, and HOL; '+' and '-'denote positive and negative substitution effects of the alternate allele. '?' indicates that the variant did not segregate in the respective	population. The P value of Cochran's Q test for heterogeneity of the effect sizes across breeds is given in parentheses, and is significant if P < 0.05

Table 3 . Top variants at 29 QTL for protein yield and percentage in milk QTL

 3 

		p	4.8e-15	3.0e-19	3.3e-11	1.2e-13	3.6e-16	1.2e-16	1.0e-14	7.4e-10	6.7e-14	3.0e-11	1.1e-19	1.8e-23	1.5e-12	2.5e-18	8.6e-10	4.1e-18	3.1e-78	2.4e-10	1.5e-09	1.7e-13	9.7e-13	4.7e-17	2.6e-07	0.00	1.5e-09	9.0e-24	1.2e-12	2.2e-13	1.4e-65
	HOL	b(se)	-1.61(0.21)	1.84(0.20)	1.38(0.21)	2.02(0.27)	-1.73(0.21)	-2.67(0.32)	1.57(0.20)	1.29(0.21)	-2.20(0.29)	-1.79(0.27)	2.46(0.27)	-2.12(0.21)	-1.70(0.24)	2.23(0.26)	1.30(0.21)	2.64(0.30)	-4.91(0.26)	1.71(0.27)	-1.29(0.21)	-1.49(0.20)	-1.93(0.27)	2.12(0.25)	-1.06(0.21)	-0.59(0.01)	-1.24(0.20)	2.81(0.28)	1.46(0.21)	-1.91(0.26)	-2.3(0.01)
		p	3.6e-04	4.5e-04	1.5e-01	-	8.9e-01	2.2e-13	8.6e-05	2.7e-06	3.4e-02	5.6e-01	1.3e-02	5.3e-01	3.7e-04	-	1.1e-02	4.7e-02	1.5e-05	6.2e-02	3.8e-03	1.1e-03	8.4e-01	4.7e-01	1.6e-04	-	1.8e-05	-	7.9e-01	2.4e-01	3.0e-02
	NOR	b(se)	-1.28(0.36)	1.52(0.43)	0.52(0.35)	-	0.05(0.35)	-3.71(0.51)	1.52(0.39)	1.69(0.36)	-1.13(0.53)	0.20(0.35)	1.19(0.48)	-0.23(0.38)	-1.25(0.35)	-	1.19(0.47)	7.27(3.66)	-2.70(0.62)	0.74(0.40)	-1.25(0.43)	-1.28(0.39)	0.12(0.63)	0.26(0.36)	-1.34(0.36)	-	-1.50(0.35)	-	0.14(0.51)	-0.47(0.40)	-0.06(0.03)
		p	1.0e-02	2.8e-01	1.0e-01	-	1.4e-01	5.9e-06	7.3e-01	1.2e-04	5.5e-01	2.0e-05	3.8e-04	4.9e-01	2.7e-01	-	1.7e-01	5.1e-04	3.7e-07	4.0e-02	1.5e-02	1.7e-01	4.6e-04	2.7e-03	2.3e-01	-	4.6e-04	7.9e-01	2.6e-02	3.9e-02	3.3e-02
	MON	b(se)	-0.82(0.32)	0.36(0.33)	0.49(0.30)	-	-0.49(0.34)	-1.92(0.42)	0.11(0.32)	1.22(0.32)	-0.26(0.43)	-5.37(1.26)	1.32(0.37)	-0.32(0.46)	-0.36(0.32)	-	1.14(0.83)	1.59(0.46)	-8.08(1.59)	0.63(0.31)	-0.81(0.33)	-0.63(0.46)	-2.24(0.64)	0.94(0.31)	-0.36(0.31)	-	-1.22(0.35)	0.08(0.31)	0.87(0.39)	-0.64(0.31)	-0.03(0.02)
	Effect direction (and	evidence of heterogeneity) across	three populations 1	+++(9.6e-02)	---(3.2e-04)	---(3.8e-02)	??+(1.0e+00)	+-+(4.3e-05)	---(6.4e-03)	+++(2.4e-04)	+++(3.2e-01)	+++(1.2e-03)	-+-(1.5e-03)	+++(4.8e-02)	---(1.1e-07)	+++(9.7e-03)	??+(1.0e+00)	+++(8.7e-02)	+++(4.0e-02)	+++(8.2e-11)	+++(1.6e-01)	+++(4.4e-01)	+++(1.4e-02)	+-+(3.1e-03)	---(2.8e-03)	---(5.7e-02)	??+(1.0e+00)	---(4.3e-01)	+?+(1.2e-07)	+++(5.0e-03)	+++(1.6e-02)	+++(1.1e-16)
		Pmeta		2.94e-18	1.15e-18	8.05e-11	1.17e-13	3.31e-12	9.84e-31	1.89e-14	1.79e-17	5.25e-12	1.85e-12	1.64e-22	1.22e-16	1.47e-13	2.51e-18	1.48e-10	3.29e-20	8.03e-78	3.11e-11	2.25e-12	2.21e-14	6.60e-13	1.48e-16	1.59e-09	3.66e-304	5.63e-16	1.20e-17	2.09e-11	8.56e-13	1.38e-51
		Nearby gene		NMI	STEAP3	POLR3C	SLC44A3	UGT1A1	CSN2	GLRA1	NFIB	COL15A1	HSDL2	FAXC	ITGA11	TLN2	TSHR	PRKCQ	KIZ	DGAT1	KCNB2	RIMS2	HIPK3	CKAP5	NOS1	PDE6G	PLCXD3	-	ZNF192	PLCE1	TACC2	SLC22A6
		BP Allele		44947955 a/g	70680985 t/g	21640254 t/c	48855688 a/g	113907407 t/c	87181619 t/g	65358446 t/c	30088133 c/g	65107050 a/g	103526477 t/c	51985736 t/c	15333419 a/g	47689396 t/c	94083525 t/c	17104043 t/c	40815971 c/g	1801116 t/c	37670101 t/c	60893281 a/g	60250434 a/g	77590401 g/c,t	60612635 a/c	51767413 a/g	32670639 a/g	24219999 t/c	29349996 a/g	15383866 a/g	42403875 a/g	41989397 t/c
		CHR		2	2	3	3	3	6	7	8	8	8	9	10	10	10	13	13	14	14	14	15	15	17	19	20	22	23	26	26	29
				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29

1

Populations in order are MON, NOR, and HOL; '+' and '-'denote positive and negative substitution effects of the alternate allele. '?' indicates that the variant did not segregate in the respective population. The P value of Cochran's Q test for heterogeneity of the effect sizes across breeds is given in parentheses, and is significant if P < 0.05

Table 4 . Top variants at 13 QTL for success rate of insemination of lactating cows QTL

 4 

Table 5 . Top variants at 16 QTL for stature QTL

 5 

Table 1 .

 1 Nordic phenotype index traits used in selecting SNP from whole genome

	sequence data		
	Category-I	Category-II	Category-III
	Mastitis	Longevity	Nordic Total Merit (NTM)
	Fertility	Other-diseases	Growth
	Leg	Birth	Udder
	Milk	Calving	Body-conformation
	Fat		Milking speed
	Protein		Yield
			Temperament

Table 2

 2 compares the test statistic of most sequence SNP for QTL regions selected in Nordic populations and validated in French populations. In general, the sequence SNP had lower P-values and higher T-values in French Holstein compared to Nordic Holstein. Twelve QTL in 7 chromosomes had a sequence variant lead SNP with greater Tvalue compared to Nordic populations. As an example, presented in Table2, the QTL region in BTA6:87181542-87994783 mapping the Kappa-Casein cluster, had a P=3.05x10 -26 and T=10.66 in Nordic Holstein and P=1.43x10 -27 and T=10.88 in French Holstein. This trend was more pronounced in milk production traits and less in somatic cell score (SCS), success rate at insemination of lactating cows (FILC) and clinical mastitis (CM). Other QTL mapping well-known mutations e.g. BTA14:1802265 mapping the DGAT1-k232A mutation were confirmed in French Holstein (P=4.37x10 -293 and T=-108), Normande (P=3.20x10 -293 and T=-41), and Montbeliarde (P=6.34x10 -234 and T=-34) as opposed to that observed in Nordic Holstein (P=3.44x10 -231 and T=-36). New QTL onBTA 6, 7, 10, 13, 16, 18, 20, and 26 are also presented in

. All these new QTL had better test statistics in the French population compared to the Nordic populations. Some QTL regions were associated more with FILC in French Holstein e.g. BTA16:47853991 had a higher association in French Holstein (P=7.06x10

-23 

and T=-10), as opposed in Nordic Holstein (P=2.09x10 -10 and T=-6).

Table 3

 3 The most prominent was between fat and protein in both Holstein and Montbeliarde. In Holstein, the QTL interval was at 1.78-1.82 Mb mapping the DGAT1 region and the most significant SNP was BTA14:1802265. In Montbeliarde, the QTL interval was wider from 1.6-2.0 Mb. Another QTL overlapped in milk, protein and success rate at insemination of lactating cows in Holstein on BTA6 from 88.6-93.2 Mb.

	The most significant

presents QTL lead sequence SNP per breed, trait, and chromosome. Twenty-two lead SNP mapping 40 QTL were identified. Some of these include: Montbeliarde and Holstein, fat and milk: BTA5:92163377 (RERGL), BTA5:93948357 (MGST1), and BTA14:1802265 (DGAT1); Montbeliarde and Normande, protein: BTA7:41114885 (CLK4), BTA14:1724688 (SLC39A4); Holstein, SCS: BTA6:89059253 (NPFF2); Holstein FILC: BTA6:88723742 (GC), and BTA18:46747796 (NPHS1). QTL overlapped between traits and between breeds. Normande was at 1.5-1.8 Mb with the lead SNP being BTA14:1724688 (P=2.5x10 -143 ).

Table 2 :

 2 Most significant sequence SNP confirmed in French population for various dairy cattle traits 1 BTA 2

		T 7	-1.95	-1.30	4.22	-3.07	4.78	-3.56	-1.75	-5.31	2.46	1.90	1.69	-3.66	-2.54	41.0	2.79	-2.51	2.67	5.12	2.62	-2.52	-2.68	-1.95	3.31	-1.92	-1.92	-1.92	-4.17	3.19	
	Normande	P 6	5.07x10 -02	1.92x10 -02	2.48x10 -05	2.17x10 -13	7.46x10 -05	3.72x10 -04	8.07x10 -02	1.91x10 -05	1.37x10 -06	5.75x10 -03	9.18x10 -02	2.48x10 -04	1.10x10 -02	3.20x10 -293	5.32x10 -03	1.19x10 -02	9.44x10 -08	2.99x10 -07	8.68x10 -13	1.17x10 -03	7.45x10 -06	5.07x10 -03	9.39x10 -09	5.45x10 -02	5.45x10 -02	5.45x10 -02	3.05x10 -15	1.41x10 -03	
		Maf 8	0.02	0.06	0.14	0.43	0.12	0.45	0.47	0.01	0.34	0.03	0.08	0.33	0.11	0.08	0.04	0.36	0.26	0.47	0.08	0.08	0.33	0.02	0.09	0.30	0.30	0.30	0.15	0.30	
		T 7	5.87	-3.09	-3.33	9.14	7.99	7.89	-5.45	8.23	4.93	3.29	1.83	-2.23	2.07	-33.6	8.23	-2.42	-5.84	7.57	-3.98	0.83	5.37	-4.85	5.38	3.68	3.68	-1.78	2.84	-3.19	
	Montbeliarde	P 6	6.16x10 -12	3.65x10 -08	8.71x10 -14	3.22x10 -18	4.70x10 -12	3.13x10 -15	4.96x10 -08	1.22x10 -13	3.43x10 -09	1.02x10 -06	6.78x10 -07	2.56x10 -02	3.84x10 -02	6.34x10 -234	1.86x10 -16	1.55x10 -02	6.61x10 -12	1.03x10 -07	7.01x10 -15	4.06x10 -05	7.45x10 -09	1.25x10 -16	1.74x10 -12	2.36x10 -04	2.36x10 -04	7.46x10 -02	4.45x10 -06	1.44x10 -03	
		Maf 8	0.19	0.27	0.05	0.48	0.48	0.33	0.45	0.19	0.01	0.41	0.35	0.34	0.28	0.01	0.04	0.38	0.44	0.21	0.19	0.09	0.25	0.24	0.03	0.06	0.06	0.04	0.09	0.17	
		T 7	-7.73	6.70	16.06	13.91	-8.13	10.88	6.25	-8.61	7.65	-6.59	8.55	3.25	7.04	-108	-35.78	-5.13	-9.85	-9.35	-4.61	7.18	-7.25	13.63	10.76	-4.71	-7.31	-4.15	12.89	-3.58	
	French Holstein	P 6	1.01x10 -28	2.65x10 -16	5.32x10 -69	9.11x10 -23	3.67x10 -15	1.43x10 -27	4.09x10 -10	7.29x10 -18	2.00x10 -14	4.27x10 -11	1.28x10 -17	1.15x10 -03	1.91x10 -12	4.37x10 -293	2.08x10 -280	2.88x10 -07	7.06x10 -23	8.80x10 -21	4.05x10 -06	1.76x10 -16	1.49x10 -17	2.62x10 -42	5.42x10 -27	2.45x10 -06	2.45x10 -16	3.27x10 -07	5.77x10 -32	3.48x10 -04	3.61x10 -12
		Maf 8	0.35	0.24	0.29	0.21	0.29	0.15	0.48	0.37	0.47	0.30	0.26	0.23	0.36	0.19	0.19	0.38	0.47	0.18	0.05	0.26	0.18	0.12	0.13	0.15	0.15	0.22	0.35	0.19	0.35
	Nordic Holstein	P 6 T 7	2.64x10 -10 -6.33	7.38x10 -09 -5.79	1.60x10 -52 15.43	4.13x10 -17 8.44	1.05x10 -09 -6.10	3.05x10 -26 10.66	7.96x10 -17 -8.36	2.92x10 -16 -8.20	1.49x10 -10 -6.42	1.36x10 -09 -6.07	7.87x10 -11 -6.52	1.61x10 -11 -6.75	3.02x10 -11 6.66	3.44x10 -231 -35.68	4.31x10 -09 5.88	4.23x10 -09 -5.88	2.09x10 -10 -6.35	6.10x10 -09 5.81	3.96x10 -22 9.72	3.67x10 -10 6.28	1.20x10 -10 -6.44	1.31x10 -19 -9.10	5.64x10 -14 -7.54	1.09x10 -11 6.79	4.34x10 -10 -6.24	1.76x10 -09 6.03	1.85x10 -23 -10.03	7.77x10 -14 -7.50	6.62x10 -13 -7.21
	Genes 5		PIGV, SLC9A1, FAM46B, NUDC, ZNF683	CFAP43, ADAM15, CLK2, KCNN3,	MGST1, LMO3, SLC15A5	LOH12CR1, YBX3, PLBD1, SMCO3, NTF3	TIGAR, GALNT8, PARP11	CSN1S1, CSM2, HSTN, ODAM, CSN3, CABS1, AMTN	GLRIA1, MYOZ3, SMIM3, ANXA6, SLC36A1	OR11L1, ZNF962, MGAT1	ARHGAP26, FGF1NR3C1	KCTD16	DIO2	CTNNA2	TUBB1, CTSZ, PMEPA1	DGAT1, HSF1, SCX, LRRC14, GPT	LRP12, DCSTAMP, DPYS	SORL1	ACOT7, HES2, ESPN	SMYD3, SDE2, TMEM63A, COQ8A, PSEN2	POLD1, KLK4, CEACAM18, IGLON5	APLP1, LRFN3, CLIP3	ZNF385C, DNAJC7, CNP	CCL28, NIM1K, TMEM267	GDNF, EGAFLAM	CTNND2	CDH9	CDH2	CUTC, COX15, ENTPD7, SLC25A28	CFAP43, CNNM2, NT5C9, TAF5	CWF19L1, BLOC1S2, FGF8, POLL, SUFU
	Allele		T/C	C/G	T/C	C/T	T/C	C/T	A/G	C/A	A/G	T/C	T/C	AT/A	G/A	C/A	C/A	A/T	C/T	C/T	G/A	G/C	T/C	C/T	T/C	C/A	T/A	G/A	G/A	C/G	A/T
	QTL Region 4		2:126534101-127286488	3:15051913-16088066	5:93804549-94125460	5:95502568-105861030	5:104239594-107523203	6:87181542-87994783	7:63841672-67017615	7:41114885-44096722	7:54463339-57296926	7:57308480-58871731	10:92622883-92940073	11:54817185-55796522	13:57515040-59295309	14:1569660-2027310	14:62199698-62450982	15:33236700-33238486	16:47851773-47854916	16:28441946-32194435	18:56692290-58069376	18:46734229-46805063	19:42764210-42839134	20:28913257-33578727	20:34249675-38282375	20:61918236-62648114	20:44396844-49004720	24:29060011-30074336	26:20209793-20889192	26:21021025-26401869	26:20619935-24986246
	Pos 3		126981576	15545091	93948357	97885175	105933019	87941159	66994289	41376905	56131045	61801696	92929840	55680052	57519708	1802265	22056082	33237637	47853991	32168712	57017616	46758918	42838996	31394136	36635855	62503502	48493804	29575699	20547445	24986246	21021025
			2	3	5	5	5	6	7	7	7	7	10	11	13	14	14	15	16	16	18	18	19	20	20	20	20	24	26	26	26

Table 3 .

 3 Comparison of sequence QTL lead SNP and closest 50k SNP in French population Breed

	(50K) 1
	(WGS) P 5
	(50k) P 5
	(WGS) MAF 4
	MAF 4
	Pos 3
	(WGS)
	Pos 3
	BTA 2
	Trait 1

  †*1 , Goutam Sahana * , Sébastien Fritz ‡ , Rachel Lefebvre † , Anne Barbat † , Mogens Sandø Lund * , Bernt Guldbrandtsen * , Didier Boichard †INTRODUCTIONMilking speed (MS) measured as the time taken to milk a cow potentially impacts the labor cost per cow. Different devices integrated into milking machines (e.g., LactoCorder (Hoefelmayr and Faerber WMB AG, Balgach (Switzerland), 2007), Bou-Matic (Bou-Matic, Madison, WI, USA) or in Voluntary Milking Systems (VMS)[START_REF] Davis | Premilking teat preparation for Australian pasture-based cows milked by an automated milking system[END_REF]) provide objective measures of MS, such as average and maximum milk flow rate, and total milking time. Alternatively, MS can be subjectively scored by the farmer. This system is quite reliable in small to medium size herds because of the repeated daily milking work. In France, MS is measured subjectively(Rupp and Boichard, 1999) for genetic evaluation purpose.The relationship between MS with clinical mastitis (CM) and somatic cell score (SCS) is complex. A previous study in French Holstein reported a positive genetic correlation between MS/CM (0.18) and CM/SCS (0.70) (Govignon-Gion et al., 2016). Similarly, a positive genetic correlation between MS and somatic cell counts (SCC) has been reported by several authors, e.g., (0.44(Rupp and Boichard, 1999); 0.60[START_REF] Gäde | Genetic parameters for serial, automatically recorded milkability and its relationship to udder health in dairy cattle[END_REF]; 0.46[START_REF] Samoré | Genetic Parameters for Functional Longevity, Type Traits, Somatic Cell Scores, Milk Flow and Production in the Italian Brown Swiss[END_REF]), indicating the existence of an unfavorable relationship between MS and mastitis. This genetic correlation was similar over two lactations, with an average correlation of 0.62[START_REF] Boettcher | Development of an udder health index for sire selection based on somatic cell score, udder conformation, and milking speed[END_REF]. These results support an association between MS and susceptibility to mammary infection. This relationship is plausible because both traits are affected by the anatomy of the teat canal. Animals with a wider teat canal and sphincter on average show a higher milk flow, but the main disadvantage is that teat canals with a greater diameter simultaneously facilitate access to pathogens[START_REF] Gäde | Genetic parameters for serial, automatically recorded milkability and its relationship to udder health in dairy cattle[END_REF][START_REF] Sewalem | Genetic parameters of milking temperament and milking speed in Canadian Holsteins[END_REF]. Another mechanism explaining this positive correlation is that fast milking extracts more alveolar milk rich in somatic cells (Ferneborg and Svennersten-Sjaunja, 2015). But fast milking cows have a complete flush of milk along with bacteria, which may contribute to preventing CM. Slow-milking cows could lead to increased mastitis incidence due to incomplete milk-out, or irritated teat ends because of extended milking time[START_REF] Dodd | Machine milking rate and mastitis[END_REF]. MS, therefore, should not be too fast or too slow, as both instances would probably lead to increased incidence of CM, rather, MS should be at an intermediate optimum[START_REF] Wiggans | Short communication: Genetic evaluation of milking speed for Brown Swiss dairy cattle in the United States[END_REF] Heritability of MS is moderate: h 2 =0.17 for 305-d farmer scores in French Holstein (Rupp and Boichard, 1999); 0.14 in Canadian Holstein[START_REF] Sewalem | Genetic parameters of milking temperament and milking speed in Canadian Holsteins[END_REF]. It is higher for measured milking time (e.g., 0.38 in German Holstein,[START_REF] Gäde | Genetic parameters for serial, automatically recorded milkability and its relationship to udder health in dairy cattle[END_REF]). These values are moderate and high enough for genetic selection to be effective. Nevertheless, little selection has been made on MS due to potential detrimental consequences on mastitis. Mastitis has negative financial impacts to the farmer and biological effects on the cow. Financial impacts include milk price penalty for high cell counts, treatment cost, loss of milk sales (due to CM and treatment), loss of production over the rest of the lactation, and increased risk of culling. Biological effects on the cow include udder injury and incomplete udder draining which contribute negatively to cow's welfare. In the breeding objective, it would be desirable to improve MS without increasing mastitis. QTL with effects not in line with the genetic correlation, i.e., improving MS without affecting mastitis, would be especially useful to reach this objective. In this study, we report on a GWAS for MS, test the SNP associated with MS for associations with CM and SCS, and, explore novel MS QTL and candidate genes associated with MS in French Holstein cattle.

  strongly deleterious effect on the function of the encoded protein as predicted by Variant Effect Predictor (VEP)[START_REF] Mclaren | Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor[END_REF], (iv) breakpoints of structural variants affecting genes as described in[START_REF] Boussaha | Genome-wide study of structural variants in bovine Holstein, Montbeliarde and Normande dairy breeds[END_REF], and (v) variants corresponding to peaks in GWAS analysis of several economic traits in cattle. All SNP with MAF lower than 0.5%, with a call rate lower than 95%, or deviating from Hardy-Weinberg proportions (P < 10 -4 ) were deleted. Four versions of this LD-chip were used, with partial overlap between custom parts. A total of 6,035 variants in LD-chip passed quality checks. Imputation was carried out using FImpute(Sargolzaei et al., 2014), for 187,025 genotyped Holstein animals (males and females, with or without performance records). Imputation errors may affect the 50k SNP not present on the LD-chip, and the candidate variants not present on the 50k. However, this consequence was likely small as the imputation error rate as expressed by allelic correlation was < 0.01. After imputation, 49,835 SNP distributed over 29 Bos taurus autosomes (BTA) remained.

	1) ~8,000 generic (and supposedly
	neutral) SNP mainly from BovineLD Genotyping BeadChip (Boichard et al., 2012a) and the
	50k chip;

and (2) a custom part selected from whole genome sequence variants based on different functional arguments: (i) known genetic variants described in literature, (ii) potential regulatory variants located in the promoter regions of genes, (iii) non-synonymous variants with

Table 1 .

 1 Lead SNP from significantly associated genomic regions for milking speed in French Holstein cattle BTA1 

	QTL interval 2

Table 2 .

 2 Lead SNP from significantly associated genomic regions for clinical mastitis in French Holstein cattle BTA1 

	RsnpID 7 Gene Sequence Variant	rs109564354 -intergenic variant	rs110681542 KIAA2012 intron variant	rs109359663 -intergenic variant	rs109145510 NUDT2 downstream gene variant	rs110974178 RPS6KA2 splice region variant & synonymous variant	rs109293663 KLHL29 intron variant	
	p-value 6	3.21x10 -03	2.14x10 -05	4.12x10 -05	1.08x10 -07	1.99x10 -03	3.44x10 -12	
	SE Effect size 5	0.01	0.01	0.01	0.01	0.01	0.01	
	Effect Allele Effect size 4	G -0.06	C -0.08	A -0.06	G 0.07	T -0.07	C -0.07	
	Pos 2 (bp) MAF 3	37209389 0.27	91061862 0.13	63935103 0.29	77078725 0.20	102930778 0.12	75586338 0.33	33306946 0.17
		1	2	7	8	9	11	12

Table 3 .

 3 Lead SNP from significantly associated genomic regions for somatic cell score in French Holstein cattle BTA1 

	P-value 6
	SE Effect size 5
	Effect Allele Effect size 4
	(bp) MAF 3
	Pos 2

Table 4 .

 4 Proximity of milking speed lead SNP position compared to clinical mastitis and somatic cell score in French

			SCS 8	1.00x10 -11	5.45x10 -09	6.58x10 -05	2.59x10 -06	5.00x10 -09	1.10x10 -07	1.99x10 -14	1.16x10 -09	2.05x10 -14	1.38x10 -12	2.78x10 -16	3.30x10 -18	6.79x10 -11	5.97x10 -07	2.34x10 -10	3.54x10 -20	3.41x10 -10	5.53x10 -07	2.95x10 -07	1.13x10 -05	1.34x10 -03	7.71x10 -07	
		p-value 5	CM 7	3.21x10 -03	-	-	2.14x10 -05	4.12x10 -05	1.08x10 -07	-	3.44x10 -12	5.47x10 -05	7.86x10 -04	2.86x10 -05	5.50x10 -03	-	5.40x10 -04	-	7.56x10 -05	-	5.83x10 -05	5.82x10 -04	6.76x10 -03	-	6.80x10 -03	
		Effect size 4	MS 6 CM 7 SCS 8 MS 6	-0.1 -0.08 0.06 6.55x10 -12	0.13 -0.05 1.44x10 -16	-0.15 --0.09 7.25x10 -18	0.11 -0.06 -0.04 1.07x10 -29	0.14 0.07 0.06 8.86x10 -23	-0.16 -0.07 -0.05 6.11x10 -08	0.16 -0.08 1.56x10 -27	-0.08 -0.07 -0.05 5.09x10 -14	0.06 -0.07 0.07 5.66x10 -07	0.08 -0.05 0.08 3.29x10 -09	0.42 -0.07 0.07 1.77x10 -117	-0.09 -0.04 -0.06 6.77x10 -11	-0.07 --0.05 9.74x10 -11	0.27 -0.05 0.06 2.19x10 -26	-0.12 --0.05 3.13x10 -16	0.23 0.05 -0.08 2.15x10 -09	0.08 --0.05 7.67x10 -09	0.11 0.05 -0.05 3.97x10 -07	0.08 0.06 0.05 6.01x10 -13	-0.08 -0.05 -0.06 9.03x10 -13	-0.08 0.04 2.90x10 -13	-0.08 -0.05 0.05 1.52x10 -09	
			SCS 8	71779928	90495998	20900211	18707985	18086724	59692848	90484606	45893893	12750252	25681327	16481804	47851773	63541690	60854919	7561633	31468943	49533074	14782972	36472030	16536774	16124333	9060499	
		(bp)																								
	Holstein	BTA 1 Lead SNP 2 Pos 3	MS 6 CM 7	2 84362275 91061862	3 119122176 -	5 105223457 -	7 44196738 63935103	8 84645138 77078725	9 87469911 102930778	10 52949424 -	11 80666608 75586338	12 34324036 33306946	13 59729640 10663054	14 7264685 23421933	16 1876485 4138735	17 73598498 -	18 57534701 22728849	19 50581082 -	20 46410881 51449833	21 1690162 -	22 58712580 41109447	25 33596606 31473299	26 43539739 38169833	28 23678582 -	29 48779067 49779067	1 BTA = Bos taurus autosome

Table 5 .

 5 11 Novel QTL in chromosome 7, 10, 11, 14, 18, 25 and 26 for milking speed in French Holstein BTA 1

	start (bp) end (bp) Gene 9	
	SNP in	region
	SE P -value 7	
	effectSize 6	
	Effect	size 5
	(bp) Effect Allele MAF 4	
	Pos 3	

Table 6 . Comparison of direction of effect size of Milking Speed QTL lead SNP against Somatic Cell Score and Clinical Mastitis

 6 

	Genetic correlations	MS/CM MS/SCS	0.16 0.47	0.16 0.47	0.16 0.47	0.16 0.47	0.16 0.47	0.16 0.47	0.16 0.47	0.16 0.47	0.16 0.47	0.16 0.47	
	Ratios of Effect size 5	MS/CM MS/SCS	14.5 5.56	-0.98 -104	2.12 -677	0.78 -7.56	0.59 5.44	-4.98 12.1	-1.25 14.6	-0.57 7.20	-1.65 -7.28	1.40 2.95	
	Standardized Effect size 4	MS SCS CM	2.70 x10 -01 4.86 x10 -02 1.86 x10 -02	3.18 x10 -01 -3.05 x10 -03 -3.25 x10 -01	3.15 x10 -01 -4.65 x10 -04 1.49 x10 -01	5.00 x10 -01 -6.61 x10 -02 6.42 x10 -01	-2.20 x10 -01 -4.04 x10 -02 -3.75 x10 -01	1.19 x10 -00 9.84 x10 -02 -2.39 x10 -01	-2.82 x10 -01 -1.93 x10 -02 2.25 x10 -01	8.02 x10 -01 1.11 x10 -01 -1.41 x10 -00	-2.27 x10 -01 3.12 x10 -02 1.37 x10 -01	2.24 x10 -01 7.61 x10 -02 1.60 x10 -01	-2.28 x10 -01 1.60 x10 -01
		SCS	2.43 x10 -02	-1.53 x10 -03	-2.32 x10 -04	-3.31 x10 -02	-2.02 x10 -02	4.92 x10 -02	-9.64 x10 -03	5.57 x10 -02	1.56 x10 -02	3.80 x10 -02	-2.96 x10 -03
	Effect size 3	CM	1.12 x10 -03	-1.95 x10 -02	8.91 x10 -03	3.85 x10 -02	-2.25 x10 -02	-1.44 x10 -02	1.35 x10 -02	-8.45 x10 -02	8.24 x10 -03	9.59 x10 -03	9.60 x10 -03
	BTA 1 Pos 2 (bp)	MS	7 19220954 9.46 x10 -02	7 45196738 1.11 x10 -01	7 63533331 1.10 x10 -01	10 58318595 1.75 x10 -01	11 75329413 -7.69 x10 -02	14 8264685 4.17 x10 -01	14 38248644 -9.87 x10 -02	18 57534701 2.81 x10 -01	25 6292680 -7.95 x10 -02	25 34596606 7.85 x10 -02	26 44539739 -7.98 x10 -02

  Gion et al. (2009) andRupp and Boichard (1999) in the same population. Correlation between either MS and CM or MS and SCS is unfavorable as both instances increase the incidence of udder infection. Finding MS QTL whose SNP exhibit limited pleiotropic effects with CM and SCS could be beneficial to selecting for faster milking cows. An objective QTL selection logic is therefore paramount. In contrast to a study by[START_REF] Lipkin | The use of Kosher phenotyping for mapping QTL affecting susceptibility to bovine respiratory disease[END_REF] that considered P-values only, our QTL selection logic accounted for both P-values and the long-range LD (r 2 ) usually observed in dairy cattle. In our study, we report 11 MS QTL, of which 4 QTL are in limited pleiotropy with CM and SCS, suggesting that faster milking cows can be selected for, at least with QTL reported here, with only minimal risk of increases in SCS or CM.

	gated ion
	channel that mediates transmembrane potassium transport in excitable membranes of
	smooth muscle (Vasan et al., 2007). Other QTL SNP mapped within several genes. These
	included: QTL on BTA7: PLOR2E2 (MAF=0.4, allele substitution effect (b) =0.11(0.01)),
	PDGFRB (MAF=0.29, b=0.11(0.01)), QTL on BTA14: LRRC6 (MAF=0.08, b=0.29(0.02)),
	and, QTL on BTA18: CEACAM18 (MAF=0.03, b=0.28(0.02))

Gene ontology

(Shannon et al., 2003) 

on QTL SNP mapped several genes. Two interesting QTL were on BTA14 and mapped ZFAT gene, and KCNB2 gene: (1) ZFAT (Zinc Finger And AT-Hook Domain Containing) is a protein that functions as an immune-related transcriptional regulator

[START_REF] Doi | ZFAT is a critical molecule for cell survival in mouse embryonic fibroblasts[END_REF]

. It has been reported to promote fibroblast survival in model organisms

[START_REF] Koyanagi | ZFAT expression in B and T lymphocytes and identification of ZFAT-regulated genes[END_REF][START_REF] Fujimoto | ZFAT is an antiapoptotic molecule and critical for cell survival in MOLT-4 cells[END_REF]

. Fibroblasts are predominant components of mammary stroma

[START_REF] Darcy | Mammary fibroblasts stimulate growth, alveolar morphogenesis, and functional differentiation of normal rat mammary epithelial cells[END_REF][START_REF] Chen | Stromal fibroblasts derived from mammary gland of bovine with mastitis display inflammation-specific changes[END_REF] 

and play crucial roles in the development and involution of the bovine mammary gland

[START_REF] Sladek | Apoptosis of resident and inflammatory macrophages before and during the inflammatory response of the virgin bovine mammary gland[END_REF]

. (

2

) KCNB2 (Potassium Voltage-Gated Channel Subfamily B Member 2) is a protein-coding gene. The protein is a member of a complex class of voltage-

Characteristics of udder conformation, production and health traits in three French dairy breeds

  

					The 12 traits were: fore
	udder attachment (FUA), udder depth or development (UDD), udder cleft (UC), udder
	balance (UB), front teat placement (FTP), milk (MY), fat (FAT and FAT%), protein (PROT
	Trait	Cows with traits	Standard Deviation
		MON 1	NOR 2	HOL 3	MON 1	NOR 2	HOL 3
	Fore Udder Attachment (FUA)	17,330	7,671	32,491	1.18	1.26	1.19
	Udder Depth or Development (UDD)	17,330	7,671	32,491	0.98	0.81	0.84
	Udder Cleft (UC)	17,330	7,671	32,491	1.26	1.28	0.85
	Udder Balance (UB)	17,330	7,671	32,491	0.79	0.82	1.39
	Front Teat Placement (FTP)	17,330	7,671	32,491	1.11	1.14	0.96
	Milk Yield (MY)	20,096	11,944	46,732	786	742	991
	Fat Yield (FAT)	20,096	11,944	46,732	33.7	34.7	40.2
	Protein Yield (PROT)	20,096	11,944	46,732	27.5	25.7	30.1
	Fat Percent (FAT %)	20,096	11,944	46,732	1.26	1.28	0.85
	Protein Percent (PROT %)	20,096	11,944	46,732	1.28	1.28	0.85
	Clinical Mastitis (CM)	13,879	9,013	32,491	0.24	0.26	0.36
	Somatic Cell Score (CS)	20,141	11,965	46,732	0.93	0.90	0.96
	1 Montbeliarde						
	2 Normande						
	3 Holstein						

and PROT%) clinical mastitis (CM) and somatic cell score (SC). UDD can be either udder depth (Holstein and Normande) or udder development (Montbeliarde), but treated as the same trait because they have similar definitions . Depending on the trait, the number of animals with phenotypes ranged from 7,671 to 11,965 in Normande, 13,879 to 20,141 in Montbeliarde, and 32,491 to 46,732 in Holstein (Table

1

). We estimated variance components by fitting a multiple trait REML animal model as implemented in the DMU software

[15]

. This study is based on already existing data hence we did not require ethical approval.

Table1.

Table 2 . Summary of GWAS for udder related traits in three French dairy breed

 2 

	Trait 2	Significant SNP 1		Significant SNP close 3 to gene
	MON 4 NOR 5 HOL 6	MON 4	NOR 5	HOL 6
	Fore Udder Attachment	45	29	558	32	20	235
	Udder Depth or Development	204	38	57	84	13	47
	Udder Cleft	37	24	402	29	22	237
	Udder Balance	100	17	199	58	16	98
	Front Teat Placement	125	37	45	64	29	33
	Milk Yield	70	53	684	30	42	182
	Fat Yield	68	47	515	31	41	112
	Protein Yield	5	10	362	2	6	137
	Fat Percent	481	390 1,498	136	105	480
	Protein Percent	613	382 2,362	214	168	816
	Clinical Mastitis	14	12	336	5	6	113
	Somatic Cell Score			11			8
	1 Significant SNP = A SNP that has satisfied the Bonferroni threshold for a trait		
	2 Trait = A yield deviation: phenotype corrected for environmental variances		
	3 Significant SNP within 10-kb of gene						
	4 Montbeliarde						
	5 Normande						
	6 Holstein						

Table 3 . Most significant SNP per chromosome associated with udder depth/development and mapping a gene

 3 

	Breed	SNP 1	BTA 2 Pos 3 (bp) Effect allele MAF 4 Effect size SE Effect size	p 5	Gene 5
	MON rs43293677	2	20760409	G	0.451	0.084	0.01	2.60X10 -08	HOXD1
	MON rs29019267	3	34184021	A	0.367	-0.092	0.01	3.67X10 -11	SORT1
	MON rs43704946	12	69648659	G	0.226	-0.095	0.01	1.97X10 -08	GPR180
	MON rs109080985	13	40031719	A	0.46	0.075	0.01	2.63X10 -07	CFAP61
	MON rs110761656	15	82317986	A	0.364	0.066	0.01	3.15X10 -04	CTNND1
	MON rs41640614	16	62100110	A	0.08	-0.185	0.02	3.47X10 -15	SOAT1
	MON rs108972236	19	61919633	C	0.201	0.112	0.01	2.20X10 -11	ABCA5
	MON rs41256881	22	21326038	G	0.315	0.078	0.01	1.49X10 -06	ARL8B
	MON rs42049077	24	31765644	T	0.105	0.127	0.02	1.00X10 -07	ZNF521
	HOL rs109049511	13	67557015	T	0.272	-0.051	0.01	1.07X10 -06	TTI1
	HOL	rs41808096	16	51621826	C	0.199	0.059	0.01	1.39X10 -06	PLCH2
	HOL rs110859130	17	45680965	T	0.035	-0.128	0.02	5.57X10 -07	FBRSL1
	HOL	rs41641987	19	24136906	A	0.13	-0.088	0.01	1.51X10 -13 PAFAH1B1
	HOL	rs42067431	25	28003780	C	0.413	-0.055	0.01	2.08X10 -10	PHKG1
	HOL	rs41565991	27	27804403	A	0.194	-0.059	0.01	2.66X10 -06	GGFBPP5
	HOL	rs42147106	28	42881677	T	0.438	-0.047	0.01	1.94X10 -06	PTPN20
	HOL rs110651226	29	30003729	A	0.45	0.059	0.01	2.30X10 -12 FOXRED1
	1 SNP = Reference								

Table 5 . Top five clusters of transcription factors/genes and associated GO terms associated with udder morphology in three French dairy breeds
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	Top Associated Genes 3	Enrichment Score 4 : 9.17	[BTRC, ESR1, FGF2, FGFR2, GLI2, IQGAP3, PGR, PRLR, RREB1, TGFBR2]	[BMP7, GCH1]	[ROR2, RORA, SYCP2, TCF7L2]	[FGFR2, HHIP, RDH10, RSPO2, TNC]	[AKT3, CTNNA2, CTNNA3, GNAI3, INADL, MAGI3, PARD3, PPP2R2B, PRKCB, PRKCE,	PRKCH, PTEN, RAB3B]	[ADGRB1, ADGRB3, ANGPT1, BMPER, CALCRL, COL8A1, CSPG4,	EPAS1, FGF2, FGFR2, FN1, GJA5, HDAC9, HSPG2, LOXL2, MAP2K5,	MTDH, NOV, NRP2, NRXN3, PDCL3, PRKCB, PTEN, PTK2, ROCK2,	RORA, SH2D2A, SHB, SPI1, STAB1, TGFBR2, THSD7A, TIE1, VAV3]	[HMGCLL1, HMGCS2, OXCT1]	[GALNT13, GALNT14, GALNT18, GALNTL6, GCNT3]	Enrichment Score 4 : 8.92	[ESR1, PRLR]	[ABCA1, SYCP2]	[ANXA4, CD58]	Enrichment Score 4 : 8.41	[CHRNB2, GPAM, IL7, PELI1, SPTA1, STAT5B, VAV3, VTCN1]	[ARPC2, AXIN2, BAIAP2, CDH4, CUX1, CUX2, EPB41L5, EPHA4, FBXW8, FN1, FYCO1, LPAR3,	LRP8, LRRC16A, MAP2K2, NTRK2, PTPRD, RREB1, RUFY3, SEMA4D, TCF7L2, TGFB3, TGFBR2]	[PIWIL2, PLCB1]	[DAB1, FYCO1, PTEN, PTK2, RTN4, RUFY3, SEMA3B, SEMA4D, SYNGAP1]	Enrichment Score 4 : 8.26	[CD44, EYA1, FAT4, FGF2]	[ADORA1, ARRB1, CACNA1A, CACNA1B, GABBR2, GABRA1, GNAI3,	GNB5, GNG7, GNGT2, PDE11A, PDE1A, PDE2A, PRKACB, PRKCB]	[FGFR2, HHIP, RDH10, RSPO2, TNC]	[AARS2, ALKBH8, CDK5RAP1, CDKAL1, NDC1, NUP210, NUP93, SARS, TSEN54]	[CHRNB2, KCNA2]	Enrichment Score 4 : 7.99	[LBP, NDUFA2]	[ABCC9, AKAP6, CACNA1D, CASQ2, HCN1, KCNA2, KCNAB2, KCNB2, KCNC1, KCND3, KCNH1,	KCNK2, KCNMA1, KCNMB1, KCNN2, KCNN3, KCNT1, KCNT2, KCNV2, STK39, YWHAE]	[ASS1, SMYD3, SRD5A1, TRIM63]	[MCM3, POLD1, POLE3, PRIM2, SMARCAL1]
		cluster1													cluster2				cluster3						cluster4							cluster5					
	p		4.64 x10 -16	7.14 x10 -6	6.50 x10 -12	6.64 x10 -9	2.10 x10 -7		2.66 x10 -7				5.38 x10 -5	2.00 x10 -4		5.16 x10 -16	6.97 x10 -5	4 x10 -4		2.77 x10 -9	2.62 x10 -9		1.46 x10 -7	8.50 x10 -6		5.32 x10 -9	1.29 x10 -8		1.65 x10 -7	2.28 x10 -7	2.63 x10 -5		2.89 x10 -9	1.28 x10 -7		2.47 x10 -7	6.51 x10 -5
	Gene	count	134	3653	429	1057	1714		3022				4309	4855		68	2681	1632		2863	2899		3563	4579		146	178		305	341	905		2352	2845		2981	4373
	Transcription factor 1 /genes GO 2 Term		mammary gland epithelium development	regulation of response to stimulus	gland development	epithelium development	tissue development		animal organ development				system development	multicellular organism development		mammary gland alveolus development	intracellular signal transduction	regulation of intracellular signal transduction		positive regulation of macromolecule metabolic process	positive regulation of cellular metabolic process		positive regulation of metabolic process	negative regulation of biological process		branching morphogenesis of an epithelial tube	morphogenesis of a branching epithelium		epithelial tube morphogenesis	tube morphogenesis and development	organ morphogenesis		cellular response to organic substance	cellular response to chemical stimulus		response to organic substance	response to chemical

  and considered all available genotyped animals in our databases (males and females, with or without performances). After imputation, 48,976 SNP distributed over 29 Bos taurus autosomes remained. Phenotypic records were yield deviations for milk, fat and protein yields obtained from French and Nordic evaluation systems. The number of genotyped animals with phenotypes was19,788, 11,978, 10,538, and 12,558 in Montbeliarde, Normande, Danish-Jersey, and Danish Holstein, respectively, summing up to 54,862 cows. The model used for estimating dominance was presented and validated by simulation in[START_REF] Lopes | Estimation of additive, dominance, and imprinting genetic variance using genomic data[END_REF]. In brief it is as follows:

	Statistical Models
	Dominance ("ad" model):

Table 1 . Monte-Carlo coefficient of variations (x100) for the 1 AA and 2 AD model

 1 

	Trait	Additive variance			Additive x additive variance	
		3 MON	3 NOR	3 JER	3 HOL	3 MON	3 NOR	3 JER	3 HOL
	Fat	0.21	0.32	0.28	0.20	0.97	1.83	3.56	2.36
	Milk	0.26	0.24	0.19	0.18	1.12	2.44	3.44	2.16
	Protein	0.29	0.24	0.22	0.25	1.21	2.04	4.83	2.81
			Additive variance			Dominance variance	
	Fat	0.19	0.22	0.25	0.22	0.80	0.77	0.89	1.15
	Milk	0.18	0.23	0.17	0.13	0.77	0.79	0.99	0.76
	Protein	0.20	0.25	0.27	0.17	0.73	0.76	0.90	0.78
	1 AA model = Bayesian model fitting both additive and epistatic effects			
	2 AD model = Bayesian model fitting both additive and dominance effects			
	3 Breeds: MON = Montbeliarde, NOR=Normande, JER=Danish Jersey, HOL= Nordic Holstein	

Table 2

 2 shows posterior means of variance components for both ad-and aa-models. The admodel had a higher additive variance component compared to aa-model. Results were variable according to breed. Estimated dominance variance (σ ÊÁË

	2	) in proportion to additive

Table 2 . Posterior means of residual variances

 2 

	(Î _ Ï ), additive genetic variance (Î Ì== Ï	), dominance deviation

Table 3 . Heritability (%) estimates with standard errors for three production traits

 3 Bayesian model fitting both additive and dominance effects2 AA model = Bayesian model fitting both additive and epistatic effects

	Trait	Parameter		Breed		
			Montbeliarde	Normande	Jersey	Holstein
			1 AD Model		
	Fat	2 ℎ ô ℎ ∆ 2	21.8 (0.7) 4.1 (0.6)	28.6 (1.0) 6.7 (0.9)	26.6 (1.0) 5.5 (0.8)	29.5 (0.8) 4.7 (0.9)
	Milk	2 ℎ ô ℎ ∆ 2	22.5 (0.6) 4.2 (0.6)	31.8 (1.0) 6.6 (0.9)	41.0 (0.9) 4.3 (0.7)	34.5 (1.0) 5.6 (0.8)
	Protein	2 ℎ ô ℎ ∆ 2	18.6 (0.7) 4.7 (0.6)	28.9 (1.1) 6.3 (1.0)	28.5 (0.9) 5.5 (0.9)	28.0 (0.8) 6.1 (0.8)
			2 AA Model		
	Fat	ℎ ô 2 ℎ ôô 2	19.9 (0.8) 3.3 (0.6)	28.7 (1.2) 2.5 (0.7)	28.0 (0.9) 0.3 (0.3)	29.2 (1.0) 1.8 (0.7)
	Milk	ℎ ô 2 ℎ ôô 2	20.4 (0.8) 3.0 (0.6)	32.7 (1.2) 1.7 (0.7)	41.6 (0.9) 0.3 (0.3)	34.5 (1.0) 1.7 (0.7)
	Protein	2 ℎ ô ℎ ôô 2	16.9 (0.8) 3.2 (0.6)	29.2 (1.2) 1.8 (0.7)	29.8 (1.0) 0.4 (0.4)	28.5 (1.1) 1.5 (0.7)
	1 AD model =				

  genes, and by extension, determining the variants encoded by these genes.(Stein, 2001). The biological function of these genes may include biochemical function, involved in regulation and interactions, and gene expression. In practice, the variants within this coding regions or at a given genomic distance to the coding region (e.g. <1 Kb) should be in high LD with the casual mutation. Functional annotations can be used to define genes for gene-set analysis. A gene-set is any group of genes that share a unique property, and the aim is to determine whether that property has a function in the studied phenotype (de Leeuw et al. 2016). Even with limited computation resources, the gene-set analysis is simple and can help open the "black box" of the genetic architecture in complex traits and to simultaneously offer novel insights into biological mechanisms. SNP should be selected within open reading frames of these gene-sets. Studies have reported SNP distances within 5-20kb downstream from a gene region(Fang et al., 2017). In paper 4, we aimed to go beyond single-trait-single-SNP GWAS that focus only on the most significant results, in terms of P values. For five udder morphology traits, we selected SNP within 10kb of a given gene and were able to define 39 interacting gene clusters. The most enriched cluster had 10 candidate genes directly involved in udder morphology(Marete et al., 2018 (b)). This result is important because our approach of combining breeds and traits predicted transcription factor target associations (and by extension genes) that are important to dairy cow reproduction and have been experimentally validated by other authors' e.g.[START_REF] Oikonomou | Effect of polymorphisms at the STAT5A and FGF2 gene loci on reproduction, milk yield and lameness of Holstein cows[END_REF]. These genes are important because they're associated with mammary gland development. Of course, such an analysis would have been more relevant with variants selected from GWAS at the sequence level. Nevertheless, the approach was successful in establishing gene pathways involved in udder morphology. additive and non-additive variances e.g.[START_REF] Su | Estimating Additive and Non-Additive Genetic Variances and Predicting Genetic Merits Using Genome-Wide Dense Single Nucleotide Polymorphism Markers[END_REF] and[START_REF] Hill | Data and theory point to mainly additive genetic variance for complex traits[END_REF]. In classical quantitative genetics, the biological effects and statistical effects are treated as separate entities (e.g.,Crow and Kimura 1970; Falconer and Mackay 1996). In both instances however, the most estimated variance is the "statistical" additive variance because of the additive transmission of gene effects to progeny or "marker substitution" effects even in presence of non-additive gene action[START_REF] Vitezica | On the Additive and Dominant Variance and Covariance of Individuals within the Genomic Selection Scope[END_REF]).[START_REF] Vitezica | On the Additive and Dominant Variance and Covariance of Individuals within the Genomic Selection Scope[END_REF] showed that the correlation between total estimated genetic values between the two models is 1, hence the two models equivalently explain variation in a trait of interest. However, interpretation of the two models should be different because (a) the correlation between individual additive variance in the classical model and corresponding additive variance in the genotypic model is <1 (the same trend for non-additive variances); (b) they have a different covariance structure; (c) the classical model is useful in the prediction of selection response whereas the genotypic model is useful in prediction of SNP effects (additive or otherwise). Non-additive genetic effects, however, have are usually not estimated during genetic evaluation in livestock because: (1) the calculations involved are more complex; (2) incomplete pedigree structures; (3) the fact that biological dominance or epistasis effects are captured in statistical additive variance[START_REF] Hill | Understanding and using quantitative genetic variation[END_REF];

	Recent progress in genomic evaluation strategies has also led to an increased interest in
	the prediction of non-additive genetic effects (e.g., Su et al. 2012; Wellmann and
	Bennewitz 2012, Vitezica et al., 2013). However, there is no consensus on the proper
	method to use when estimating non-additive effects. Currently, two models have been

tested to estimate variances: (1)

Falconer and Mackay (1996) 

described the classical model which traditionally estimates the "statistical" breeding values and non-additive values (e.g. dominance deviations), and, (2) The genotypic model which estimates the "biological" 123 values of and, (4) the challenge of using non-additive values in practice (e.g. mate allocation).Availability of dominance and epistasis genetic variances estimates thus become less frequent in livestock populations

[START_REF] Misztal | Studies on the value of incorporating the effect of dominance in genetic evaluations of dairy cattle, beef cattle and swine[END_REF][START_REF] Nguyen | Dominance effects in domestic populations[END_REF]

Predictive performance and reducing bias of prediction

  is a key characteristic of Quantitative Genetics. When properly applied, prediction models can calculate an individual's current and future performance based on a continuous or categorical trait of interest. Accounting for non-additive effects in the prediction equations, thus, become important as the main goal is to use the individual's genotype to estimate the performance, irrespective of the additive, dominant or epistatic gene action.Wellmann and Bennewitz, (2012) and Da et al., (2014) reported increase in accuracy by a factor of 0.2 when predictions are based on a combination of both additive and dominance effects. Merging genomic selection with other disciplines (e.g. precision farming (Banhazi et al., 2012), microbiomics (Yang et al., 2017), and metabolomics (Fontanesi, 2016)) could aid in the prediction of future performances. Guo et al. (

  al. 2010). These improvements have been confirmed in dairy cattle data (Aliloo et al. (2017), Ertl et al. (2014), and Sun et al. (

  ., 2017;Brøndum et al., 2015;[START_REF] Saatchi | Improving accuracies of genomic predictions by enriching 50K genotypes with markers from 770K genotypes at QTL regions[END_REF]. In real populations, results were less convincing, probably because it is difficult to select enough causal variants (or markers very close to them) to explain a large proportion of the genetic variance.Brøndum et al. (2015) added sequence variants selected by GWAS from several Danish breeds to a virtual custom chip and reported gains in reliability that averaged about 2%.[START_REF] Ortega | Use of single nucleotide polymorphisms in candidate genes associated with daughter pregnancy rate for prediction of genetic merit for reproduction in Holstein cows[END_REF] reported a smaller reliability (0.2%) from adding SNP mapping genes associated with fertility. Several studies have shown that using pre-selected sequence variants and giving more value to QTL or candidate mutations can improve predictions across breeds (e.g.Van den Berg et al., 2016; Iheshialor et al., 2016). Nevertheless, even if the gains are small, they can have important economic impacts. As an example, studies in US populations have shown that increasing the reliability of selection by 2.7% would increase national genetic progress by about $3 million annually (VanRaden et al., 2017). Data sharing within the "1000 Bull Genomes Project" (Daetwyler et al., 2014) means the annual gains are permanent and will accumulate. Offspring would be genotyped for the custom variants and thus could have improved reliability gains as opposed to tests that use predicted genotypes. Nonetheless, due to having large datasets, most we still have to impute genotypes for most reference individuals. if necessary, re-genotyping old animals
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Rsnp ID = reference SNP ID. The most significant SNP per chromosome
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INTERPRETIVE SUMMARY

Genome-wide association study for milking speed in French Holstein cows. By Marete et al. We report a genome-wide association study for milking speed in French Holstein cattle with 49,835 SNP variants. We identified 22 chromosomes and 11 novel QTL with markers significantly associated with milking speed. The strongest association signals were observed on chromosomes 7, 8, 10, 14, and 18. We tested milking speed associated SNP for association with clinical mastitis and somatic cell score. Limited pleiotropy was observed, and 12 candidate SNP for milking speed

ABSTRACT

Using a combination of data from the BovineSNP50 BeadChip SNP array and a Eurogenomics custom SNP chip with SNP pre-selected from whole genome sequence data, we carried out an association study of milking speed in 32,491 French Holstein dairy cows. Milking speed was measured by a score given by the farmer. Phenotypes were yield deviations as obtained from the French evaluation system. They were analyzed with a linear mixed model for association studies. We identified SNP on 22 chromosomes significantly associated with milking speed. As clinical mastitis and somatic cell score have an unfavorable genetic correlation with milking speed, we tested whether the most significant SNP on these 22 chromosomes associated with milking speed were also associated with clinical mastitis or somatic cell score. 971 genome-wide significant SNP were associated with milking speed. Of these, 86 were associated with clinical mastitis and 198 with somatic cell score. The most significant association signals (P-value ≤ 10 -20 ) for milking speed were observed on chromosomes 7, 8, 10, 14, and 18. The most significant signal was located on chromosome 14 (ZFAT gene) with a P-value = 1.77 x 10 -1 17 . Eleven novel milking speed QTL were observed on chromosomes 7, 10, 11, 14, 18, 25, and 26. Twelve candidate SNP for milking speed mapped directly within genes. Of these 10 were QTL lead SNP which mapped within the genes HMHA1, POLR2E, GNB5, KLHL29, ZFAT, KCNB2, CEACAM18, CCL24, and LHPP. Limited pleiotropy was observed between milking speed QTL and clinical mastitis.

Keywords: milking speed, mastitis, bovine, genome-wide association study, pleiotropy
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ABSTRACT

Using GWAS to identify candidate genes associated with cattle morphology traits at a functional level is challenging. The main difficulty of identifying candidate genes and gene interactions associated with such complex traits is the long-range linkage disequilibrium (LD) phenomenon reported widely in dairy cattle. Systems biology approaches, such as combining the Association Weight Matrix (AWM) with a Partial Correlation in an Information Theory (PCIT) algorithm, can assist in overcoming this LD. Used in a multibreed and multi-phenotype context, the AWM-PCIT could aid in identifying udder traits candidate genes and gene networks with regulatory and functional significance. This study aims to use the AWM-PCIT algorithm as a post-GWAS analysis tool with the goal of identifying candidate genes underlying udder morphology. We used data from 78,440 dairy cows from three breeds and with own phenotypes for five udder morphology traits, five production traits, somatic cell score and clinical mastitis. Cows were genotyped with medium (50k) or low-density (7 to 10k) chips and imputed to 50k. We performed a within breed and trait GWAS. The GWAS showed 9,830 significant SNP across the genome (p < 0.05). Five thousand and ten SNP did not map a gene, and 4,820 SNP were within 10-kb of a gene.

After accounting for 1SNP:1gene, 3,651 SNP were within 10-kb of a gene (set1), and 2,673 significant SNP were further than 10-kb of a gene (set2). The two SNP sets formed 6,324 SNP matrix, which was fitted in an AWM-PCIT considering udder depth/ development as the key trait resulting in 1,013 genes associated with udder morphology, mastitis and production phenotypes. The AWM-PCIT detected ten potential candidate genes for udder related traits: ESR1, FGF2, FGFR2, GLI2, IQGAP3, PGR, PRLR, RREB1, BTRC, and TGFBR2.
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Conceived and coordinated the study: YRC, DB, ML. Performed association studies: AM. Designed the associated Weight matrix: AM, YRC. Wrote the article: AM. All authors read and approved the manuscript. One of the main inputs for successful genomic prediction in dairy cattle is the inclusion of causal variants or markers in close proximity to the causal mutation. This thesis has addressed several issues pertinent to selection of these variants. First, we validated sequence variants selected from GWAS of several European breeds. These variants can directly be used in across breed prediction. Second, we identified candidate genes for milking speed in French Holstein that can be selected for to increase milking speed without increase in mastitis. This would be beneficial to the farmer by lowering the financial burden (i.e. reduction in milking time, cost of treating mastitis, and penalty cost due to tainted milk) and favorable to the cow's welfare due to reduced time being milked and reduced incidence of mastitis. Third and fourth outcomes were directed towards SNP interactions using both additive and non-additive effects. Using SNP additive effect interactions, we mapped udder morphology gene networks and identified candidate genes affecting udder morphology. Using SNP with a big effect on milk production phenotypes, we estimated non-additive interaction effects and showed that they represent a substantial proportion of the additive variance.

Non-additive variance explained using a combination of pre-selected sequence variants and 50K SNP data in four French and Danish dairy cattle breeds

The last twenty years have seen an increase in development of genotyping technologies and a decrease in genotyping costs. For the dairy cattle industry, this translated to more animals being genotyped at a lower cost allowing for lots of data to be available albeit for smaller populations. However, for the purposes of genomic selection, efficiency of genomic prediction depends on, among others, population size. Since most populations are numerically small, the main approaches being utilized to improve predictions include: (1) Reduction of LD by developing across breed predictions; (2) Genotype vast number of cows with phenotypes to enlarge the reference population.

This project took advantage of the two approaches by using cows from five breeds and genotyped with Illumina Infinium 50k Beadchip and the EuroGenomics custom chip. The EuroGenomics custom chip is composed of two parts: (1) ~8,000 generic (and supposedly neutral) SNP mainly from BovineLD genotyping Beadchip and the 50k chip; and (2) a custom part selected from whole genome sequence variants based on five functional arguments: (i) known genetic variants described in literature, (ii) potential regulatory variants located in the promoter regions of genes, (iii) non-synonymous variants with strongly deleterious effect on the function of the encoded protein as predicted by Variant Effect Predictor (VEP), (iv) breakpoints of structural variants affecting genes, and (v) variants corresponding to peaks in GWAS analysis of several economic traits in cattle. This resulted in many cows genotyped using different panels. To obtain a complete genotype, an imputation process was necessary including all cows (with and without phenotypes) and all bulls (young and old).

135 correlation between MS/CM and MS/SCS. These include QTL on BTA7, BTA10, and BTA25. Ten QTL lead SNP mapped within the genes HMHA1, POLR2E, GNB5, KLHL29, ZFAT, KCNB2, CEACAM18, CCL24, and LHPP. There is an economic interest in increased MS in cows because milking is a major component of the workload of the farmer. But increased MS should be obtained without deteriorating mastitis resistance, or even better while improving mastitis resistance. In the French Holstein, MS accounts for 5% of the total merit index while udder health (somatic cell score and clinical mastitis) accounts 18%.

In contrast with Daughter Yield Deviations which primarily reflect the additive value of the bulls, a cow's performance is the result of additive and non-additive effects. This is explored more in chapter 4 and chapter 5. In chapter 4 we studied additive effects by combining GWAS summary data using two Systems Biology approaches: The Associated Weight Matrix (AWM) and the Partial Correlation (PC) in an Information Theory (IT) algorithm. The aim was to generate gene networks related to udder morphology. Apart from the obvious post GWAS analysis application, the AWM exploits a set of correlated phenotypes with the primary focus of increasing the accuracy of statistical inference. In principle, the matrix is composed of as many rows as there are genes and as many columns as there are phenotypes.

One of the pertinent issues on designing the AWM is deciding on a key phenotype. Usually, the key phenotype is the main trait being studied. This allows for SNP that are highly associated with the phenotype to be selected at a low threshold level of raw GWAS results (usually P<0.05). The assumption is that for correlated phenotypes, most of the SNP associated with the key phenotype will be selected again in subsequent steps of populating the AWM. A detailed description of constructing the AWM can be found in the materials and method part of chapter 4. The matrices produced from AWM become inputs for the PCIT algorithm (from R package PCIT). The PCIT algorithm falls in category of an unsupervised gene network algorithm. Some characteristics of unsupervised methods include gene networks being inferred exclusively from the data, they're algorithmically diverse and they tend to be computationally faster than "supervised methods" which usually require an additional regulatory interaction matrix is used as a training set. All these advantages make PCIT appealing. PCIT compares interaction between a set of genes relative to the interaction with any other gene in the matrix. The output of PCIT is a network that can be graphed using Cytoscape and gene clusters with known functional role become more visible. In this study, the key phenotype was udder depth (in Holstein and Normande breeds) and udder development (in Montbeliarde breed). These two traits are measured similarly so they can be considered as same trait. Our result identified thirty-five clusters, and the most associated cluster had ten potential candidate genes for udder related traits: ESR1, FGF2, FGFR2, GLI2, IQGAP3, PGR, PRLR, RREB1, BTRC, and TGFBR2. These genes are directly involved in mammary gland development and mammary gland morphogenesis. In this case, the AWM-PCIT approach shed biological knowledge on udder development across three breeds. Furthermore, the PCIT output identified 1,013 gene interactions. The apparent 137 breed. Normande and Holstein had intermediate results with ratios ranging from 5% -8%. Heritable portion explained by epistasis variance varied from 0.3% -3.3%. Results varied mainly according to breed, with highest values observed in Montbeliarde and lowest in Jersey. Within breed, difference between traits were limited. This variability illustrates the difficulty to estimate epistasis despite reasonably large genotyped populations. The lower epistasis variance proportion can be attributed to few number of SNP selected as having a major effect due to the stringent GWAS threshold or by lack of informativity of some SNP, especially for Jersey. However, selecting SNP with major effect reduces dimensionality of analysis to about 28,000 SNP combinations and limits linkage disequilibrium between SNP. However, for practical selection in dairy cattle, epistasis variance estimated with a limited number of SNP appears to be negligible. Nonetheless, this study provides original research on use of sequence data to study epistasis in dairy cattle. 

Appendix 2: Full publication list