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I cannot see what flowers are at my feet,
Nor what soft incense hangs upon the boughs,

But, in embalmed darkness, guess each sweet
Wherewith the seasonable month endows

The grass, the thicket, and the fruit-tree wild;
White hawthorn, and the pastoral eglantine;

Fast fading violets cover’d up in leaves;
And mid-May’s eldest child,

The coming musk-rose, full of dewy wine,
The murmurous haunt of flies on summer eves.

– John Keats, Ode to a Nightingale
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Abstract

Protection of tropical forests is key to achieving global climate and biodiversity conservation
goals. They play an essential role in carbon sequestration, water cycling, and nutrient exchanges,
thereby regulating atmospheric composition and global climate patterns. However, they are
under interlinked threats from deforestation and climate change, exacerbating biodiversity
loss and potentially pushing these systems toward ecological tipping points. Computer vision
techniques based on deep learning have emerged as potent tools for monitoring, conservation,
and prediction efforts within these expansive and intricate ecosystems. This thesis uses these
emerging technologies to understand forest dynamics at scales ranging from the phenology
of individual tree crowns to large-scale deforestation. Chapter 1 introduces tropical forests,
explores their ecological and societal value, and discusses the technological challenges and
opportunities of studying them, with a focus on deep learning as applied to remote sensing
data. Chapter 2 develops a tool to predict deforestation patterns based on convolutional neural
networks (CNNs), working with freely accessible data to successfully forecast spatiotemporal
patterns in the Southern Peruvian Amazon. Predicting the location of deforestation is difficult
as it results from complex interactions within human-ecological systems but doing so may
enable effective, adaptable prevention measures and conservation planning. The models,
through their ability to discern deforestation drivers such as new access routes from remote
sensing data, highlight the potentially transformational role of deep learning in conservation.
In Chapter 3, I develop a new approach named detectree2, building on the Mask R-CNN
architecture, which is capable of accurately detecting and delineating individual tree crowns
from airborne RGB imagery taken over dense tropical forests. The foundation for any remote-
sensing study of individual tree dynamics is accurate tree delineation. Trialled in diverse
geographies, including Malaysian Borneo and French Guiana, I show this tool holds promise
for large-scale forest studies. The performance of the detection and delineation, especially for
tall trees, enables tracking of tree growth and mortality for the study of carbon dynamics from
cheap, widely accessible photographic data. Chapter 4 develops a pipeline for identifying and
mapping tropical tree species, building on the detectree2 approach. This pipeline combines
aerial photographic images taken every three weeks using a UAV with hyperspectral survey.
Training and testing on a carefully crafted ground truth dataset, the two-step approach applies



x

detectree2 to multitemporal UAV-RGB data in order to automatically segment trees and then
applies Linear Discriminant Analysis (LDA) to hyperspectral data to assign species. This new
approach identified over sixty tree species with high confidence, achieving accurate species
level mapping over 70% of the total crown area of the landscape. Key to the improved mapping
was the temporal stacking of imagery to delineate tree crowns accurately and a large, rigorously
validated dataset of labelled tree crowns to train on. In Chapter 5, I use the data and techniques
developed in the previous two Chapters to address ecological questions related to the phenology
of tropical forests. Seasonal variation in canopy greenness has been observed from space,
but the extent to which all species in diverse forests follow a similar pattern of leaf pigment
changes, leaf flushing and loss remains unknown. I begin to address that knowledge gap by
tracking phenology through drone-mounted sensors, providing a dataset that tracked individual
trees in French Guiana at 3-weekly intervals over 34 months. 3,000 tree crowns were mapped
and tracked using UAV LiDAR, revealing significant spatiotemporal variability in Plant Area
Density (PAD) and distinct species-specific phenological patterns. By juxtaposing PAD with
spectral metrics, I start to decipher variation in “leaf amount” and “leaf quality”, offering
some insights into how individual tree changes might impact forest productivity. Concluding
Chapter 6 discusses ways in which integration of deep learning technologies and remote
sensing into ecology research is helping to broaden understanding and conservation capabilities
for tropical forests, by providing precise, scalable solutions spanning deforestation prediction,
tree level monitoring, species identification, and phenological studies.
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Chapter 1

General Introduction

1.1 Tropical forests: stability and change

Today’s angiosperm-dominated tropical forests emerged from complex evolutionary processes
over the last 100 million years, in the highly energetic yet relatively stable conditions proximate
to the equator (Morley, 2011; Morley et al., 2000). These processes gave rise to more biodi-
versity (Dirzo and Raven, 2003; Plotkin et al., 2000) and terrestrial biomass (Pan et al., 2011;
Saatchi et al., 2011) than is attributable to any other biome on the planet. Through the Holocene
(the 11,700 years since the last glacial epoch), these ecosystems contributed to the rise of
human agricultural societies by exerting an integral stabilising influence on global climate
through their interactions with solar radiation, hydrology and biogeochemical cycles (Artaxo
et al., 2022a,b), including their capacity to sequester (∼2.4 Pg C year-1; Pan et al., 2011)
and store (200-300 Pg; Avitabile et al., 2016; Baccini et al., 2017; Pan et al., 2011; Saatchi
et al., 2011) vast quantities of atmospheric carbon. However, since colonial and industrial
periods, acceleration of human encroachment and extractive activities (Lewis et al., 2015;
Williams, 2003), increased temperatures, altered precipitation patterns and increased frequency
of extreme weather events have imposed novel pressures on tropical forests (IPCC, 2022),
potentially switching them from a net sink to a net source of carbon (Baccini et al., 2017;
Brienen et al., 2015; Gatti et al., 2021; Hubau et al., 2020; Mitchard, 2018). The resilience and
response of tropical forests to these compounding changes (Doughty et al., 2023; França et al.,
2020) and positive climatic feedbacks remains highly uncertain, calling for the need for an
improved mechanistic understanding of tropical forest function that scales from individual trees
to ecosystem (Chave, 2014; Cox et al., 2000; IPCC, 2022). In this thesis, I will explore how
emerging technologies can be used to better understand the dynamics of current deforestation,
tree growth and mortality, and the leaf cycling of tropical forest trees.
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Fig. 1.1 Tropical ecozones (as defined by FAO, 2012) with the location of the sites discussed in this
thesis. Note that Paracou has been the site of all primary research.

1.1.1 Biodiversity

Tropical forests are among the most biodiverse systems on the planet, both in terms of absolute
numbers and density (i.e. per unit area) of species (Dirzo and Raven, 2003; Gatti et al., 2022;
Plotkin et al., 2000). Approximately half of all terrestrial biodiversity is found in tropical
forests (Jenkins et al., 2013; Kier et al., 2009) and species richness declines as one moves from
the equator to the poles (Hillebrand, 2004). In the case of trees, 67-88% of species are tropical
(Beech et al., 2017; Ter Steege et al., 2016), which equates to at least 40,000, and possibly
more than 53,000 species (Slik et al., 2015). Part of the challenge in giving precise estimates
is the difficulty of quantifying the number of species that have to be described (Gatti et al.,
2021; Gatti et al., 2022; Ter Steege et al., 2020). Some regions of the tropics support several
hundred species of tree per hectare (Valencia et al., 1994), but their abundance is highly skewed
(following an approximately log-normal distribution) with a few common species dominating
and most species existing in comparative rarity (Fauset et al., 2015; ter Steege et al., 2013),
making them inherently hard to discover. For example, in the Amazon, approximately 1.4-2.3%
of species account for half of all trees (Cooper et al., 2024; ter Steege et al., 2013) while 36%
of species are estimated to have population size of fewer than 1000 individuals (ter Steege
et al., 2013). Climate and its seasonality are thought to play a key role in shaping diversity
patterns, with wetter and aseasonal regions of the tropics harbouring greater tree diversity
than drier and more seasonal regions (Givnish, 1999; Leigh et al., 2004; Ter Steege et al.,
2003). High productivity and metabolic rates in the wetter regions may give rise to enhanced
rates of speciation from faster mutagenesis (Rohde, 1992) and relatively stable environmental
conditions may support low rates of extinction (Jablonski et al., 2006). Within a particular
region, edaphic, topographic and climatic heterogeneity creates niches that select for plants
that are adapted to fill them and enables stable co-existence with different species exploiting
different resource pools (Zuppinger-Dingley et al., 2014), but this alone cannot account for the
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magnitude of diversity observed (Grubb, 1977; Wright, 2002). It has long been recognised
that negative density dependence (i.e. the fitness of a species decreases as it becomes more
abundant) is critical for the coexistence of tropical diversity, and that pests and disease pressure
generate the negative density dependence (Givnish, 1999; Leigh et al., 2004; Ter Steege et al.,
2003). More recently, it was realised that stochasticity in the colonisation, extinction and
disturbance processes that determine forest dynamics is effective at slowing down extinction
rates (Hubbell, 2001; Maire et al., 2012; Rand et al., 2006), and promotes stable coexistence if
combined with negative density dependence (Purves and Turnbull, 2010).

Species diversity in tropical forests is thought to be an important determinant of ecosystem
functioning (van der Plas, 2019) and ecosystem services (Gamfeldt et al., 2013; Thompson et al.,
2014), particularly through its influence on stability (Jactel et al., 2017) and resilience (Schmitt
et al., 2022), although the theoretical and empirical underpinnings are debated (Brockerhoff
et al., 2017; McCann, 2000; Naeem et al., 2009). Various mechanisms have been suggested to
explain the links including niche complementarity, and complementarity of functional effect
traits and functional response traits (Isbell et al., 2011). For instance, some plant species
facilitate the growth of other plants through co-existence (e.g. nitrogen fixers in nitrogen
limited sites), improving the growth of certain tree combinations (Forrester and Bauhus, 2016;
Thompson et al., 2014). On the other hand, the “selection effect” posits that having a wider
array of species raises the chance of having a particular species with superior growth rates in
the prevailing conditions or necessary resistance to disturbance, thus enhancing ecosystem
function and service relative to less diverse communities (Lefcheck et al., 2015; Loreau and
Hector, 2001; Wardle, 2001). Diversity can increase resistance to disturbances by diluting
resources that pests would otherwise exploit and through multi-trophic interactions including
increased activity of predators (Jactel et al., 2017). Furthermore, when a community has several
species performing the same ecological function (functional redundancy) it is likely to be more
resilient to disturbance as the loss of any one species has limited overall impact (Biggs et al.,
2020). Broad genetic diversity provides a pool from which traits can be selected (or evolve in
the longer term) to adapt to changing conditions such as climate change (Hoban et al., 2021).
Ensuring the maintenance of tropical forest biodiversity and the contingent ecosystem services
is critical to the wellbeing and livelihoods of 800 million people who live in to next to tropical
forests (Keenan et al., 2013), the development of new pharmaceuticals (Calderon et al., 2009),
global food security, and meeting global climate goals (IPCC, 2022).

Deforestation is a major threat to tropical forest biodiversity, with many taxa at risk of
extinction (Alroy, 2017; Ceballos et al., 2017; Giam, 2017). Climate change is forecast
to accelerate this decline (Esquivel-Muelbert et al., 2019) but the anticipated rate of loss
is very uncertain, particularly because we are unsure whether sudden, non-linear shifts in
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population sizes may occur (Chave, 2014; Laurance, 2007; Wright and Muller-Landau, 2006).
Understanding the scale and rate of the shifts requires systems that can monitor compositional
changes over large forest extents. Forest plot networks have laid the foundation but they are
limited in scale. Further refining our understanding of the role of biodiversity in ecosystem
function will allow more efficient allocation of resources and development of policy to mitigate
and adapt to these impacts.

1.1.2 Carbon cycle

Gross primary productivity (GPP) of trees is the rate at which they fix CO2 by photosynthesis.
Some of the organic molecules produced by photosynthesis are energy sources used to power a
multitude of processes within cells through mitochondrial respiration, releasing CO2 back to
the atmosphere, while other organic molecules become the building blocks for biomass growth.
Net primary productivity (NPP) is the rate of accumulation of carbon that has not been respired
to fuel metabolic processes. This carbon can stay with the tree briefly (e.g. leaves) or stay
locked up in the woody material until a tree dies. From dead matter, carbon may be released
back into the atmosphere via (respiratory) decomposition, or stored for a further period in the
soil (Malhi, 2012). The balance of these fluxes at the macro-level plays an important role in
the global carbon cycle. In particular, the carbon uptake by the world’s forests (and oceans)
ensured that less than 45% of total anthropogenic emissions from 1960-2015 remained in the
atmosphere although the contribution of forests remains poorly quantified (Friedlingstein et al.,
2022; Mitchard, 2018).

Accounting for all carbon sources and sinks associated with tropical forests is challenging;
the different methods used to calculate them often give diverging estimates which need to
be carefully triangulated (Mitchard, 2018; Mitchard et al., 2014). There is thought to be
200-300 Pg C stored in living tropical trees (Baccini et al., 2017; Brienen et al., 2015; Gatti
et al., 2021; Hubau et al., 2020; Mitchard, 2018) which capture around 72 Pg C yr-1 through
photosynthesis (Beer et al., 2010), with slightly less released via respiration across all tropical
trophic levels (plants, animals, fungi etc.) and burning (Gaubert et al., 2019; Sitch et al., 2015).
For illustration, we can compare deforestation, forest regrowth and intact forests. Deforestation
is a clear source of carbon but the magnitude of emissions associated with degradation is less
easy to assess; estimates of these emissions are 0.5 - 3.5 Pg C yr-1 (Achard et al., 2014; Baccini
et al., 2017; Harris et al., 2012; Houghton et al., 2012; Keenan, 2015; Tyukavina et al., 2015;
Zarin et al., 2016). In contrast, recovering and regrowing forests are are carbon sinks, but there
is limited available data on the magnitude of this sink and a broad range of estimates. The
average recovery rate over the first 20 years of regrowth has been estimated to be 3 Mg C ha-1

yr-1 (for context, the carbon density of an old growth forest was 70-125 Mg C ha-1, Poorter
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Fig. 1.2 Seasonality of simulated and observed leaf area index (LAI) and Gross Primary Productivity
(GPP) at the Amazonian BR-Sa1 site (Tapajós National Forest, Brazil) using 16 land surface models.
Simulated LAI shows little seasonal variability throughout the year or drops in the dry season which is
in contrast to the camera-based observations of Wu et al. (2016). There is little consistency between
simulated and observed GPP values. Source: Chen et al. (2020).

et al., 2016) but it is difficult to determine the pan-tropical extents of disturbed and regrowing
forests. Undisturbed tropical forest is more finely balanced. It is likely that they have been an
average net sink of ∼1 Pg C yr-1 (with a high degree of inter-annual variability; Friedlingstein
et al., 2022) since at least the late 1970s, supported by enhanced growth rates from atmospheric
CO2 fertilisation (Pan et al., 2011; Phillips et al., 1998; Sitch et al., 2015). However, there
is evidence from forest plots that this sink is saturating (most obviously in the Amazon) due
to increasing tree mortality (Brienen et al., 2015; Hubau et al., 2020; Qie et al., 2017), and
risks flipping to a net source in the near future (Mitchard, 2018). However, these fluxes are all
estimated with high uncertainty.

Attempts to better understand and predict the fluxes associated with forests have been
made by representing their dynamics mechanistically in Dynamic Global Vegetation Models
(DGVMs). DGVMs simulate how vegetation grows, competes, and responds to environmental
factors including climate and disturbance, and can be included as components of Earth System
Models (ESMs) which additionally represent interactions between atmosphere, oceans and
land surface. Such models have suggested that, as a result of increased vapour pressure deficit
due to climate change, the Amazon could reach a tipping point beyond which it would begin
an irreversible transition to a drier, savanna-like ecosystem (the Amazon dieback scenario),
with a substantial further injection of carbon into the atmosphere (Huntingford et al., 2008;
Malhi et al., 2009). However, it has since been shown that DGVMs are unable to replicate
observed seasonality of carbon fluxes in the Amazon (Restrepo-Coupe et al., 2017) and
patterns of leaf area index across tropical rainforests (Zou et al., 2023), failing to reproduce
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experimentally measured climate-vegetation feedbacks (Piao et al., 2013), and overestimating
historical tree mortality, most overtly in tropical regions (Yu et al., 2022a). These are clearly
major shortcomings, calling into question their suitability to make predictions on the future
state of tropical forests. One explanation is that current DGVMs suffer from insufficient
realism, built on assumptions and frameworks that may not fully capture the diversity and
complexity of tropical ecosystems (Yang et al., 2016). In particular, their aggregations of
diverse vegetation types into plant functional types (Scheiter et al., 2013) and simplified (or
absent) representation of leaf phenology (Chen et al., 2020; Zou et al., 2023) has been blamed
for their highly inconsistent predictions. To illustrate this, Fig. 1.2 compares simulated leaf
area index (LAI) and GPP from 16 widely used land surface models to observations for a site
in the Brazilian Amazon. LAI is the total one-sided area of leaf tissue per unit ground area.
This metric quantifies the amount of leaf surface available for photosynthesis, a key control
on GPP. The simulated LAIs either showed little seasonal variation throughout the year or a
drop in the dry season which was in contradiction the camera-based observations. Similarly the
simulated GPP of the majority of models showed a decrease during the dry season contrary to
what was observed with the in situ eddy covariance flux estimates.

To address these uncertainties and gain a more mechanistic understanding of how tropical
forests will contribute to global carbon dynamics under climate change, it is necessary to track
the growth, mortality and foliar dynamics of trees at a larger scale than has been possible from
the existing forest plot network. By comparing the patterns of tropical forests around the world
it will be clearer which systems can continue to buffer against anthopogenic emissions, which
are likely to exacerbate increasing atmospheric CO2 concentrations and which regions should
become the focus for restoration efforts to withdraw atmospheric CO2 (IPCC, 2022).

1.1.3 Leaf phenology

Leaves modulate the flows of energy, carbon and water between the biosphere and atmosphere.
Water escapes from the stomatal pores as the CO2 required for photosynthesis enters. Leaf area
determines the amount of light that can be intercepted by the canopy and leaf photosynthetic
capacity (carboxylation potential) determines the rate at which leaves are able to fix carbon,
and thus the proportion of incident light that can be usefully harnessed (Hall and Rao, 1999).
Photosynthetic capacity peaks when leaves are young, around the time of full expansion, and
declines as leaves age (Kitajima et al., 1997). Leaf phenology - the timing of leaf flushing,
senescence and abscission - therefore plays an important role in structuring ecosystem pro-
cesses (Lieth, 1974). The timing of leaf production and loss determines the temporal dynamics
of the leaf area index (LAI, total leaf area per unit ground area), which is in turn a key driver of
primary productivity (Chen et al., 2012; Manoli et al., 2018) and transpiration rates (Teuling
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Fig. 1.3 A non-exhaustive illustration of the range of phenological habits present in tropical forests.
Adapted from Bohlman (2019).

et al., 2010). Transpiration subsequently influences the availability of soil water resources,
local hydrology and regional water cycles (Teuling et al., 2010). Leaf phenology also de-
termines the age distribution of leaves within a canopy, influencing overall photosynthetic
rates (Wu et al., 2016, 2017a,b). Additionally, leaf phenology affects multi-trophic species
interactions. For instance, leaf emergence impacts herbivore populations which rely on the
availability of young leaves (van Schaik et al., 1993), which can have cascading effects on
predator populations (Visser and Both, 2005).

Forests in the wetter parts of the tropics are often thought of as aseasonal, but this description
masks the dynamic and eclectic nature of tropical leaf phenology (Newstrom et al., 1994).
Patterns of whole-canopy leaf phenology vary tremendously across the tropics, from strongly
deciduous in the dry tropics to weakly seasonal evergreen in persistently wet tropics (Reich,
1995). Optimised strategies need to balance variation in water availability and insolation. In
regions with a long dry period, tropical deciduous forests are common, where it is typical that
leaves are shed relatively synchronously during the dry season to protect against water stress
and drought (Bullock and Solis-Magallanes, 1990; Lieberman and Lieberman, 1984; Reich and
Borchert, 1982, 1984), and fresh leaves put out in anticipation of the wet season (de Camargo
et al., 2018; Murali and Sukumar, 1993; Ryan et al., 2017; van Schaik et al., 1993). Wetter
forests have a less obvious or clearly defined structure but overall patterns tend to structure
canopy leaf production in a way that maximises insolation with fresh leaves put out towards
the start of the dry (less overcast) season (Anderson et al., 2011; Doughty et al., 2019; Guan
et al., 2015; Lopes et al., 2016; Saleska et al., 2016; Taffo et al., 2019; Wagner et al., 2017).
However, within a single wet site there can be a huge amount of variability in terms of leaf
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Fig. 1.4 Tropical forest loss 2002-2022. Non-fire related loss can occur from mechanical clearing for
agriculture and logging, as well as natural causes such as wind damage and river meandering. The
three-year moving average may represent a more accurate picture of the data trends due to uncertainty in
year-to-year comparisons. All figures calculated with a 30 percent minimum tree cover canopy density.
Source: Weisse et al. (2023).

habit (deciduous-evergreen), and timing and synchronisation of flushing / shedding between
species (see Fig. 1.3). Evergreen species, which retain foliage throughout the year, can remain
relatively stable or have strong seasonal variation in the rate of leaf turnover (Coley, 1983;
Frankie et al., 1974; Kumar et al., 2023). Leaflessness can be part of a predictable annual
cycle (obligately deciduous) or only in response to specific conditions or stress (facultatively
deciduous) (Harenčár et al., 2022; Stevens et al., 2016). Deciduous trees, can be leafless for just
a few days or several months (Loubry, 1994; Williams et al., 2008). Species may synchronise
their flushing and shedding while others show completely asynchronous cycles (Borchert,
1980; Morel et al., 2015; Reich and Borchert, 1984, 1988; Wright and Cornejo, 1990). A
lack of comprehensive data on the full range of leaf phenology patterns has hindered realistic
parameterisation of vegetation models that can be used to simulate the response of tropical
forests to a changing climate (Chen et al., 2020; Zou et al., 2023). By better characterising
leaf cycling dynamics it will allow for more and improved understanding of the resilience of
tropical forests to climate change (see Section 1.1.2).
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1.1.4 Deforestation

Humans have cleared forest to create space for agriculture and to extract resources since
the Neolithic period; the rate of clearance has tracked population size and technological
development (Lewis et al., 2015). The first evidence of agriculture in the tropics dates back
some 6,000 years, but the extent of clearance remained relatively small until the arrival of
European colonial powers (Ellis et al., 2013; Lewis and Maslin, 2015). Under colonial rule,
large areas of lowland forest were harvested for timber and plantations of sugar, tobacco,
cotton and oil palm which seeded frontiers of deforestation in the tropical lowlands (Hecht and
Cockburn, 2010). Industrialisation accelerated the changes as mechanised processes allowed
for more efficient conversion of land. Over the 20th century, industrialisation spread and
globalised networks of trade in commodities further accelerated deforestation in productive
tropical regions (Lewis et al., 2015; Williams, 2003).

Based on the FAO’s Global Ecological Zone dataset, the pre-conversion area of tropical
forests has been estimated at 1.46 billion ha (FAO, 2012), of which around 34% has been
converted, 30% is in various forms of degradation, and 36% remains intact (Krogh, 2020).
Approximately, 380 million ha of tropical tropical forest was lost between 1990 and 2020 alone
(FAO, 2020) with the rate of CO2 emissions from this form of land use change accelerating
over that period (0.97 Pg C yr-1 in 2001–2005 compared to 1.99 Pg C yr-1 in 2015–2019, Feng
et al., 2022). In 2021 at COP26, 145 countries vowed in the Glasgow Leaders’ Declaration
on Forests and Land Use to “halt and reverse forest loss”1. The pledge failed to make an
immediate impact, as worldwide deforestation (primarily in the tropics) increased by 4%
in 2022 (missing the target by 33%; Climate Focus, 2023), and there was a worrying 10%
uptick in primary tropical forest loss over the same period (see Fig. 1.4; Weisse et al., 2023).
Effective nature-based climate solutions (Griscom et al., 2017) hinge on integrating local and
indigenous knowledge (Ajani et al., 2013; Cottrell, 2022; Tengö et al., 2017), and alignment
with socioeconomic development to ensure sustainable, equitable, long lasting environmental
stewardship (Kanowski et al., 2011; Newton et al., 2016; Nkem et al., 2013). Innovative
technical solutions will also be required to target the financial support that has been made
available through the UNFCCC framework in a way that can make targets attainable (Climate
Focus, 2023; IPCC, 2022; Seymour and Harris, 2019).

Deforestation emerges as a result of complex interactions between human and ecological
systems, and its spread is therefore inherently difficult to predict (Geist and Lambin, 2002;
Seymour and Harris, 2019). Causes may be separated into those that are proximate, such as
clearing land for agriculture and infrastructure, and those that are underlying, which can include
the high level-demographic (i.e. population growth), economic, political, institutional and

1see https://ukcop26.org/glasgow-leaders-declaration-on-forests-and-land-use/

https://ukcop26.org/glasgow-leaders-declaration-on-forests-and-land-use/
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cultural forces driving the need to convert land. Agriculture accounts for 70-80% of tropical
deforestation (Geist and Lambin, 2002; Gibbs et al., 2010; Hosonuma et al., 2012) and as
much as 96% of cumulative deforestation since 1840 (Geist and Lambin, 2002). Through
classification of remote sensing data, Curtis et al. (2018) identify that 27% of global forest
loss is attributable to permanent land use change for commodity production whereas 24%
is from shifting agriculture. Timber extraction is the most prevalent driver of degradation
in Latin America and Asia whereas fuel consumption is the most important driver in Africa
(Hosonuma et al., 2012). While less substantial in terms of overall scale, mining (legal and
illegal) and oil extraction present a unique threat by seeding new frontiers of forest loss in
otherwise intact forest (Finer et al., 2015, 2008). Roads and settlements are established to
reach newly discovered resources around which agriculture and timber extraction may then
establish and expand (Giljum et al., 2022). Deforestation drivers can be highly dynamic (Curtis
et al., 2018; Seymour and Harris, 2019) and many developing countries struggle to keep pace
(e.g through effective monitoring), citing weak forest sector governance and institutions, and
illegal activity as key underlying drivers of forest loss in their jurisdictions (Ken et al., 2020;
Kissinger, 2020). Readily available information on the emergence and spread of threats can
support more effective enforcement practices and targeted interventions.

1.2 Remote sensing of tropical forests

The advent of remote sensing technology has made it possible to view and track changes
across tropical forests in near real time (Fassnacht et al., 2023; Hansen et al., 2013). These
technologies have become the backbone of worldwide efforts to assess trends in tropical
deforestation (Hansen et al., 2013), and map carbon stocks and fluxes (Baccini et al., 2017;
Harris et al., 2021; Saatchi et al., 2011). Satellite data have facilitated this global approach,
but assessments are necessarily inferences from the aggregated response of the organisms
involved. When there is a subtle signal there can be ambiguity and confusion in evaluating
the ecological implications. This was highlighted by the debate over whether the evergreen
Amazon underwent a “green-up” during the dry season. While it appeared that Amazonian
vegetation became more photosynthetically active during the dry season (Huete et al., 2006;
Myneni et al., 2007; Saleska et al., 2016; Wang et al., 2020), some argued that the signal
was artifactual, a result of imperfect directional and atmospheric corrections, rather than a
meaningful biological response from the trees (Morton et al., 2014; Samanta et al., 2010).
Consensus has begun to form around the likelihood that tropical vegetation, when not water
limited, will time leaf production to maximise insolation (i.e. for during drier, less overcast
periods; Wagner et al., 2017) but without up-close confirmation of the range of leaf patterns
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this explanation remains incomplete. Plane mounted sensors have been available for decades
but remain prohibitively expensive for most, especially if repeat observation is necessary.
UAVs and miniaturised sensors have heralded a new era of forest monitoring with repeatable
scanning that can discriminate between individual trees now available for budgets of hundreds
of dollars (Sun et al., 2021).

When discussing remote sensing it is important to consider spatial, temporal and spectral
resolution (and range), and their associated tradeoffs and costs (Jones et al., 2010). Spatial
resolution is typically given as a ground or surface length across an individual pixel of the
retrieved data (e.g. 30 m resolution would be a pixel that represents a 30 m x 30 m of the Earth’s
surface). Temporal resolution refers to the frequency at which a given area is scanned by a
sensor. Spectral resolution refers to the number of distinct, separable wavelength bands a scene
is observed in. Sensors can be mounted on satellites, aeroplanes and unmanned aerial vehicles
(UAVs). Satellite mounted sensors typically have global coverage, a revisit time between
days and weeks (not considering geostationary orbits), and can be supported by public and
commercial funding due to their broad appeal, but they tend to have a lower spatial resolution
than aircraft mounted sensors due to their distance from the Earth, and analysis of the data
retrieved may be complicated by cloud cover and the need for atmospheric corrections. On
the other extreme, UAVs have a limited range (greater than a traditional forest plot but not
generally more than a typical research site), but they are able to fly close to the top of the
canopy, reducing atmospheric interference and capturing sub-crown details down to the branch,
leaf or even flower level (Araujo et al., 2021). Furthermore, they can be acquired at a modest
cost (around £250 for an entry-level RGB ready drone) allowing a very dense time series to be
collected at given area. With the exception of Chapter 2, in this thesis I use sensors mounted
on aircaft (aeroplane, helicopter, UAV) with the aim of observing and studying individual
trees. Here I provide an overview of the remote sensing approaches employed in the research
described in this thesis.

1.2.1 Optical and Multispectral

The simplest form of vegetation remote sensing is standard (visible) digital photography which
is based on red, green and blue (RGB) bands that approximately correspond to how the human
eye perceives colour. Fatefully, the human eye evolved to be centered on and most sensitive
to green light in part due to its association with vegetation (Yokoyama et al., 2014), which
means RGB imagery can be usefully employed to assess some aspects of vegetation state. As
it is based on the most widespread technology it tends to have the greatest spatial resolution
for the least cost of all sensors. This allows for clear visual separation between trees and
easy transfer of computer vision methods developed for the same modality. Optical remote
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sensing may additionally include near-infrared (NIR), and shortwave infrared (SWIR), thermal
infrared (TIR) portions of the electromagnetic spectrum, parts that can particularly useful for
assessing vegetation health and chlorophyll content (Jones et al., 2010). Multispectral remote
sensing is a flexible term that includes RGB and optical domains but may further increase the
spectral resolution by including additional bands of longer (NIR, SWIR, micro, radio) or, less
commonly, shorter (ultraviolet) wavelengths. It typically consists of no more than 20 spectral
bands. In general, cost and payload increase and spatial resolution decreases with the number
of spectral bands.

1.2.2 Hyperspectral data and tree species identification

Hyperspectral remote sensing, or imaging spectroscopy, typically extends the number of bands
by an order of magnitude (100+) and is usually more costly with a heavier payload as the
wavebands are more numerous and sensitive within narrower wavelength ranges, requiring more
semi-conductor materials (Kalacska and Sánchez-Azofeifa, 2008). This has limited its uptake
in UAV systems although a new generation of miniturised sensors may be about to change that
(see e.g. HySpex2). In remote sensing of vegetation, it is typical for these sensors to cover
wavelengths in the range 400-2500 nm but some spectral regions may be removed from analysis
due to atmospheric moisture absorption which strips the regions of any useful signal (Laybros
et al., 2020). The narrow waveband sensitivity (typically less than 10 nm wide) allows direct
detection of absorption and reflectance markers of specific chemical (including pigmentation)
and morphological properties of the target (Kalacska and Sánchez-Azofeifa, 2008) which
might be missed by the broader bands of multispectral sensors (typically tens to hundreds of
nm). Broadly, the visible region (400-700 nm) is informative of chlorophyll absorption; the
red-edge region (700-780 nm) is informative of vegetation health and chlorophyll content; the
near-infrared region (NIR, 780-1300 nm) gives information on leaf structure; the shortwave
infrared region (SWIR, 1300-2500 nm) provides information on moisture content (Jones and
Vaughan, 2010; see Fig. 4.5).

Hyperspectral remote sensing has previously been used for mapping tree species in forests
harnessing spectral differences between species (Fassnacht et al., 2016; Ghiyamat and Shafri,
2010). The spectral properties of plants are based on their biochemical and structural character-
istics which can vary in subtle or obvious way, and present a spectral “signature” with which to
identify a species (Meireles et al., 2020; Ustin et al., 2004). Species, especially those closely
related, often exhibit shared chemical, physiological, and morphological traits, influencing
their spectral properties (Agrawal, 2007; Cavender-Bares et al., 2016; Meireles et al., 2020).

2https://www.hyspex.com/hyspex-turnkey-solutions/uav/

https://www.hyspex.com/hyspex-turnkey-solutions/uav/
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For example, variations in leaf structure and chemical composition, such as chlorophyll and
cellulose levels, can impact these spectral characteristics between tree families (Serbin et al.,
2016). Despite these family-level similarities, considerable crown-level spectral variability
exists within the same family due to genus and species differences, environmental factors (like
soil type, water availability, and light exposure), canopy structural variation, and plant health
or phenological stage (Ollinger, 2011). Therefore, while plant families may share spectral
similarities, these are not definitive for species classification.

Identifying species in diverse tropical forests is challenging due to the number of species
and their skewed abundance distributions. Clark et al. (2005) used AVIRIS data to differentiate
seven species in a Costa Rican tropical rainforest demonstrating that differentiation between
tropical tree species was possible. Féret and Asner (2013)’s work distinguishing 17 species
in Hawaii’s humid tropical forest, and Laybros et al. (2020, 2019)’s demonstration of an 80%
classification rate for 20 species in an Amazonian forest further highlighted the potential to
classify more species but still a small fraction of the species diversity that can be present.
Notably, discrimination between more species has been achieved in leaf-level hyperspectral
species identification, such as 46 species in a Jamaican tropical wetland (Prospere et al., 2014).
This success suggests aerial hyperspectral data can extend beyond the limit of around 20
species. However, leaf traits are reflected in spectra in complex ways with spectral regions
often encompassing multiple traits (Féret and Asner, 2011; Jacquemoud and Baret, 1990).
This complexity increases when spectra are measured remotely as atmospheric effects, canopy
structure and morphological characteristic become significant. Indeed, radiative transfer models
have shown that signals from canopy structure can dominate over the leaf optical properties
and biochemical properties of the vegetation (Béland and Kobayashi, 2024; Knyazikhin et al.,
2013). Deciphering these spectral signals to understand evolved traits and species relationships
remains a significant challenge in achieving robust, transferable remote identification of species
in diverse tropical forests (Schweiger et al., 2021).

1.2.3 Lidar: 3D structure

Lidar differs from the previously discussed approaches in that it is active, sending out pulses
of light and measuring the reflections to generate a three dimensional point cloud of its target
rather than passively receiving reflected solar photons. It has the capacity to penetrate forest
canopies and provide three-dimensional data on forest structure (Mazlan et al., 2022). Airborne
LiDAR is especially useful for estimating aboveground biomass in tropical forests (Coomes
et al., 2017). LiDAR remote sensing has been shown to be capable of quantifying substantial
disturbance tropical forest canopies but it has proven more challenging to detect small changes
in old-growth biomass at a fine scale including LAI variation (Dubayah et al., 2010). This is



14 General Introduction

partly due to the difficulty of accounting for extinction through the canopy and difficulty in
comparing outputs from different sensors (Cao et al., 2023; Vincent et al., 2023). Tools have
been developed for converting lidar pointclouds into PAI estimates based on the interaction of
the laser pulses as they travel through the canopy (Vincent et al., 2017, 2021). It is yet to be
seen whether these can help tracking changes in leaf quantity through time.

1.2.4 Limitations and the need for high quality ground truth data

Remote sensing allows us to view vast tracts of the Earth’s surface, but without ground based
reference points it is difficult to make sense of what we are looking at. Data collected from
a remote sensor does not translate directly into biological properties, processes and mecha-
nisms (Cavender-Bares et al., 2022). Ground truth data is necessary for calibrating, validating
and correcting remote sensing measurements so that can be used to infer the characteristics
of the tropical forest, such as vegetation type, canopy height, and land cover. Additionally,
as we become more reliant on machine learning as a means to process and interpret remote
sensing scenes, the need for open, large, high quality datasets can allow for better accuracy
and transferability of models. For instance, without an expanded base of robust, carefully
designed field measurements of forest biomass it will not be possible to improve remote sensing
based estimates of carbon stocks and fluxes across the tropics (Chave et al., 2019; Mitchard
et al., 2014). Spectral features of data cannot be used naively to infer biodiversity but must
be calibrated against local surveys (Badourdine et al., 2023; Cavender-Bares et al., 2022). If
models are trained on data that represents limited environmental space they will not transfer
well to make predictions at other places or times.

Deep learning has the potential to locate and identify species trees from remote sensing
data but it is yet to be scaled effectively in the tropics (Beloiu et al., 2023; Ma et al., 2024;
Mäyrä et al., 2021). While there is much plot inventory / census data available, most of it is
of limited use for training machine learning models based on remote sensing data as it does
not necessarily translate directly into what is observed from above the canopy. Tropical forests
often have dense, complex canopies and the crowns that are visible from above need to be
carefully matched to the inventoried trunks in the field. By building maps of tree crowns that
can be overlaid on lidar, multispectral and hyperspectral datasets, it may be possible to teach
AI systems how to perform the time consuming tasks of delineating tree crowns and assigning
a species identity them. This could considerably expand the number of trees under observation
in the tropics beyond what is currently possible with forest plot networks. The few open source
benchmark datasets that are available to help produce such methods are restricted to temperate
regions (Ahlswede et al., 2023; Weinstein et al., 2020).
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1.3 Application of AI to remote sensing of tropical forest
ecology

Through a confluence of theoretical, software and hardware advances, deep learning enabled
computer vision emerged in earnest in the 2010s. An initial breakthrough came in 2012 when a
deep convolutional neural network (CNN) called AlexNet won the ImageNet Large Scale Visual
Recognition Challenge by a considerable margin, showcasing the power of the technology
and spurring increased interest and investment in the field (Krizhevsky et al., 2017). Key to
its success was the use of graphics processing units (GPUs) for training. GPUs were initially
designed for gaming but their potential for parallel processing made them ideal for training
deep neural networks. Nvidia and other companies started optimizing GPUs for AI tasks in the
early 2010s, significantly speeding up AI research and application. Alongside this, the rise of
“big data” from social media, cheap sensors, and the broader adoption of the internet provided
the vast datasets necessary to make use of the flexibility provided by the depth of the new
networks. The trend towards open-source software for machine learning, like Theano (in 2007)
(Bergstra et al., 2010), TensorFlow (in 2015)3, and PyTorch (in 2016)4, allowed for widespread
collaboration and sharing of AI advancements. The maturation of cloud computing platforms
such as Amazon Web Services, Microsoft Azure, and Google Cloud Platform provided the
infrastructure for scalable AI by offering high computational power on demand. A natural
application of this technology was on remote sensing data (Hoeser and Kuenzer, 2020; Ma
et al., 2019; Zhu et al., 2017). The volume of available data was growing faster than it could be
usefully analysed and the field was calling for approaches that could automate feature extraction
and other processing steps. More recently, interest in CNNs for extracting information on
vegetation characteristics and dynamics for agriculture, forestry and conservation has been
growing (Kattenborn et al., 2021).

1.3.1 Convolutional neural networks

Deep convolutional neural networks (CNNs) preserve spatial structures and can automatically
extract features of images making them extremely useful for computer vision applications
(Voulodimos et al., 2018). There are several reasons why CNNs have proven so effective in the
analysis of images (Goodfellow et al., 2016):

• Feature Learning: Image recognition systems prior to deep learning required manual
feature extraction. Experts needed to identify features that were key to differentiating

3https://www.tensorflow.org/
4https://pytorch.org/

https://www.tensorflow.org/
https://pytorch.org/
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between types of images and then program these features into the system. CNNs, however,
learn to recognize these features automatically through the training process. This shift
from handcrafted feature design to learned features is a core part of what made CNNs
revolutionary.

• Layered Architecture: CNNs employ a hierarchical, multi-layer architecture that allows
the network to process data at various levels of abstraction. For instance, the first layers
might detect edges or colors, intermediate layers might identify textures or patterns, and
deeper layers might represent more complex features that allow networks to recognize
complex objects (this layering is given for illustration but in many real applications the
true representations are less intuitive). This hierarchical processing mimics some aspects
of the human visual system and allows CNNs to build up an understanding of images in
a way that is both efficient and effective.

• Shared Weights and Locality: The convolution operation used in CNNs involves a filter
or kernel that passes over the input image. The same filter is used across the entire image,
which means that the network has fewer parameters to learn (shared weights). This
makes CNNs particularly suited for image data, as they can detect features regardless of
their position in the input space. Moreover, the use of local receptive fields focuses on
local areas, preserving the spatial relationships within the data.

• Pooling: CNNs often include pooling layers that reduce the spatial size of the repre-
sentation, reducing the number of parameters and computation in the network. This
down-sampling helps make the detection of features somewhat invariant to scale and
translation, increasing the robustness of the model.

• End-to-End Learning: With CNNs, an end-to-end learning process is established,
where raw data can be inputted into the network, and feature extraction and classification
can be handled in one pipeline. This simplifies the process of developing and training
models for complex computer vision tasks.

• Transfer Learning: CNNs trained on large datasets can be used as starting points
for other vision tasks. The features learned by the networks on one task can often
be transferred to another task with limited additional training, making CNNs highly
adaptable and efficient for a wide range of applications.

CNNs have generated novel insights for ecologists working with Earth observation data
(Brodrick et al., 2019) including work on detecting logging trails (Abdi et al., 2022), human
settlements (Corbane et al., 2021), deforestation (Torres et al., 2021), forest disturbance (Kislov
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Fig. 1.5 Types of images prediction tasked performed by CNNs. Instance segmenatation designates
a class to each pixel of an image. Classification determines what object present in and image and
localisation determines where within the image that object is present. Object detection can locate various
objects within an image. Instance segmentation not only finds the relevant images but provides exact
delineations for each of them. Source: Agarwal (2019).

et al., 2021), quantifying the properties of vegetation (Kattenborn et al., 2021) and mapping the
carbon stocks in trees (Mugabowindekwe et al., 2022). However, they may not be as effective
as simpler methods when data is limited. Their flexibility comes in part from the fact they can
be trained to perform a variety of tasks (see Fig. 1.5). Often it is necessary to classify each
pixel in a scene based on its class (semantic segmentation) such as in land use classification but
in other cases it might be preferable to locate individual objects such as trees. With respect to
individual tree mapping, object detection and localisation is an established method (Weinstein
et al., 2019) but the output bounding box can include portions of other trees as well as the
target tree which risks mixing of signals. Instance segmentation in which each tree crown in
an image is located and exactly delineated is an active area of research (Braga et al., 2020).
The Mask R-CNN (He et al., 2017) algorithm has shown promise in tree crown identification
and delineation in plantations (Hao et al., 2021; Yu et al., 2022b), pine forests (Hu et al.,
2022; Ocer et al., 2020), urban woodlands (Ocer et al., 2020) and simulated tropical forest
fragments (Braga et al., 2020). Given the right training data, it seems likely that it could help to
scale up tree crown mapping in intact tropical forest landscapes.

1.3.2 Performance evaluation

In evaluating deep learning and classification models, selecting appropriate performance
metrics is essential, as each offers distinct insights into a model’s strengths and weaknesses.
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Accuracy is straightforward, quantifying the overall proportion of correct predictions, though
it may be misleading in imbalanced datasets. Precision and Recall address specific types of
prediction errors; precision is key when false positives carry high costs, while recall is crucial
where missing actual positives (false negatives) is costly (see Fig. 1.6). The F1 Score helps
balance these aspects by combining precision and recall into a single metric, useful when
both types of errors are equally important. The AUC-ROC curve, which measures a model’s
ability to distinguish between classes, is particularly valuable in binary classification scenarios,
especially with imbalanced data. However, its effectiveness might be overstated in severely
skewed datasets. A more granular approach is provided by the Confusion Matrix, which
details the numbers of true positives, false positives, true negatives, and false negatives across
classes, offering a comprehensive view of model performance. For evaluating thresholds in
predictions, the Precision-Recall Curve is advantageous, especially in contexts where positive
class prevalence is low. In regression tasks, Mean Absolute Error (MAE) and Mean Squared
Error (MSE) provide error magnitude metrics, with MAE being more robust to outliers and MSE
emphasizing larger errors more heavily. Log Loss (or Cross-Entropy Loss) evaluates classifiers
by penalizing false certainties, being particularly useful for models outputting probabilistic
interpretations. Ultimately, the choice of metric depends on the specific requirements of the
task, the nature of the data, and the implications of different error types, often necessitating a
combination of these metrics for a well-rounded evaluation.

A range of metrics are employed in this thesis, selected based on the task and the criteria by
which we are judging an acceptable performance. To judge performance, a model might be
compared to a baseline or benchmark, which can be a simple random guess classifier but more
often is a commonly used or state-of-the-art algorithm (see Chapter 2 and Gan et al., 2023). It is
crucial to understand the limits of transferability of a model. For example, can a model trained
in one location or during a specific period of time be transferred elsewhere in space or time
without losing its ability to make accurate predictions. It is rare to achieve a model with perfect
accuracy when working with ecological data, but it is important to understand the types of error
that are generated so that the weaknesses of a model can be understood. For example, does an
algorithm that classifies species based on remote sensing data more often confuse more closely
related species than more distantly related species (see Chapter 4)? Understanding errors in
this way can be done with a Confusion Matrix. On the other hand, if one is trying to count trees
with a deep learning model that detects trees in aerial imagery, an effective model would be one
that is not biased towards over-segmenting (splitting a true crown into several predicted crowns
therefore counting more trees than there actually are) or under-segmenting (combining several
true crowns into a single predicted crown therefore counting less trees than there actually are)
(see 3). Exploring this potential bias can be done by systematically comparing errors in the
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Fig. 1.6 Illustration of precision and recall in terms of false/true negatives/positives for a binary classifi-
cation problem. Precision is the fraction of relevant instances among the retrieved instances. Recall is
the fraction of relevant instances that were retrieved. Achieving a balance between the two is typical for
machine learning classification problems. Source: Wikipedia contributors (2024).
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predictions to the ground truth data. Crucially, when assessing a model one needs to relate
performance back to practical considerations and the domain-specific requirements. A given
level of accuracy may be acceptable for one application but wholly insufficient in another. In
conservation, for example, there are often costs associated with intervening to protect a given
area of land from deforestation (e.g. by sending out patrols). An effective model in this case
may be one that can target conservation in such a way so that a minimum threshold of forested
area can be protected within a given budget. On a practical note, deep learning models can
require extensive resources to train (e.g. powerful GPUs) so an effective model may be one
that is not prohibitively expensive to train for a typical conservation practitioner.

1.4 Thesis aims

The overall aim of this thesis was to explore the capabilities and limitations of deep learning
methods as applied to remote sensing data to extract information and make predictions on
tropical forest dynamics. The term dynamics is used in a broad sense to apply to forest loss,
tree growth and mortality, and leaf phenology. More specifically, I ask these questions:

1. Can CNNs automatically extract features of satellite and geospatial data that can be
useful in making predictions on the spatial location of future deforestation?

2. Can CNNs be used to map individual trees in dense forest landscapes from UAV data?

3. To what extent can tree species be mapped from hyperspectral data across these diverse
forest landscapes?

4. Can automatic tree crown maps be used to track growth, mortality and leaf phenology of
individual trees across tropical forest landscapes?

5. What patterns of leaf phenology are observed at a wet tropical site?

Each Chapter poses more specific research questions and the explores the topics in detail.



Chapter 2

Using Deep Convolutional Neural
Networks to Forecast Spatial Patterns of
Amazonian Deforestation





Abstract

Tropical forests are subject to diverse deforestation pressures while their conservation is
essential to achieve global climate goals. Predicting the location of deforestation is challenging
due to the complexity of the natural and human systems involved but accurate and timely
forecasts could enable effective planning and on-the-ground enforcement practices to curb
deforestation rates. New computer vision technologies based on deep learning can be applied to
the increasing volume of Earth observation data to generate novel insights and make predictions
with unprecedented accuracy. Here, we demonstrate the ability of deep convolutional neural
networks (CNNs) to learn spatiotemporal patterns of deforestation from a limited set of freely
available global data layers, including multispectral satellite imagery, the Hansen maps of
annual forest change (2001-2020) and the ALOS PALSAR digital surface model, to forecast
deforestation (2021). We designed four model architectures, based on 2D CNNs, 3D CNNs, and
Convolutional Long Short-Term Memory (ConvLSTM) Recurrent Neural Networks (RNNs),
to produce spatial maps that indicate the risk to each forested pixel (∼30 m) in the landscape
of becoming deforested within the next year. They were trained and tested on data from two
∼80,000 km2 tropical forest regions in the Southern Peruvian Amazon. The networks could
predict the location of future forest loss with F1-score = 0.58-0.71. Our best performing model
(3D CNN) had the highest pixel-wise accuracy (F1-score = 0.71) when validated on 2020
forest loss (2014-2019 training). Visual interpretation of the mapped forecasts indicated that
the network could automatically discern the drivers of forest loss from the input data. For
example, pixels around new access routes (e.g. roads) were assigned high risk whereas this was
not the case for recent, concentrated natural loss events (e.g. remote landslides). CNNs can
harness limited time-series data to predict near-future deforestation patterns, an important step
in harnessing the growing volume of satellite remote sensing data to curb global deforestation.
The modelling framework can be readily applied to any tropical forest location and used by
governments and conservation organisations to prevent deforestation and plan protected areas.
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2.1 Introduction

To achieve the pledge made by world leaders at COP26 to end deforestation by 2030, innovative
approaches to forest protection are urgently required. Previous efforts to curb tropical primary
forest loss have failed to have a net positive impact (Potapov et al., 2017) despite countries
and companies making substantial commitments (e.g. the New York Declaration of Forests in
2014). In regions of the Amazon deforestation is surging (Beuchle et al., 2021) which risks
inducing the biome to undergo a critical transition with profound consequences for climate
and biodiversity (Lovejoy and Nobre, 2019). While the ultimate causes of deforestation need
to be addressed – notably global demand for agricultural and wood products – interventions
to tackle proximate causes, such as illegal logging and mining, are also necessary (Asner
and Tupayachi, 2017; Finer et al., 2014). One measure identified as effective in reducing
deforestation is “targeting protected areas to regions where forests face higher threat” (Busch
and Ferretti-Gallon, 2017). However, knowing how to optimally allocate limited resources to
tackle diverse threats across vast, difficult to access tropical forest landscapes is challenging.
To enable effective, on-the-ground prevention measures, up-to-date information on the location,
relative severity and likely evolution of threats is required.

Governmental and NGO commitments to make timely interventions have led to products
that give near real time alerts on the location of deforestation events (Hansen et al., 2016;
Reiche et al., 2021) , but access to these alerts has had little material benefit in terms of curbing
deforestation (Moffette et al., 2021). One issue has been that responses based on near-real-time
mapping can only ever be reactionary. As a result, there have been calls to develop early
warning systems that inform decision makers of the location of near-term deforestation risk (e.g.
WWF, 2020). By developing innovative solutions that harness the growing volume of remote
sensing (RS) data, interventions stand a greater chance of preventing deforestation. In the
longer term, cost effective conservation plans should not only consider the spatial distribution
of conservation features (e.g. species, carbon stocks) and the financial costs, but also account
for how threats are likely to evolve (Boyd et al., 2015; Wilson et al., 2007).

Deforestation is difficult to predict as it results from complex interactions within human-
ecological systems but characteristic drivers, such as agricultural expansion and ease of access,
have been identified (Geist and Lambin, 2002; Lim et al., 2017; Miyamoto et al., 2014; Ritchie
and Roser, 2024). Drivers can be mapped to spatially resolved geographical, economic, social
and biological variables (e.g. agricultural land value, distance to roads). Within a statistical or
machine learning (ML) framework, drivers can be correlated to the likelihood of deforestation
at a given location, typically by linking the spatial predictor layers to changes in forest extent
over a single time step of several years (see Cushman et al., 2017; Mayfield et al., 2017; Saha
et al., 2020 for intercomparisons of different ML frameworks). However, Rosa et al. (2014)’s
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review of such approaches concluded that they had a limited or poorly defined ability to forecast
locations of deforestation, a key reason being that spatially explicit datasets on the drivers of
deforestation are often incomplete, out-of-date or unreliable in tropical forest regions. For
example, proximity of roads is widely accepted to be a strong predictor of future deforestation
(Barber et al., 2014) but roads in tropical forest landscapes are often unofficial, illegal or not
comprehensively mapped (Perz et al., 2007), and can be highly dynamic; roads appear, expand
and change course to access new resources (Ahmed et al., 2014). Most studies that have
included roads as predictors used static road maps which is inappropriate in fast changing
contexts, while others have used unvalidated or speculative methods (such as least cost path
finding) to predict the development of roads in tropical forest landscapes (Ahmed et al., 2014;
Mena et al., 2017). With many of the decisions that lead to tropical deforestation likely to
remain hidden from public view, a fundamentally new approach to making predictions of the
spread of deforestation is required. Analogous issues exist for other landscape features that
help predict deforestation including the location/spread of human settlements and agricultural
land.

The ML frameworks used to date have been limited in how they represent local context.
Without the ability to retain the spatial structures of the data, pixels are represented in isolation
or local context is represented as averaged neighbourhood metrics. Contrasting approaches
that identify threatened regions based on dynamic data (i.e. resolved over numerous time steps)
have tended to focus simply on spatial and temporal trends in intensity of deforestation (e.g.
the emerging hot spot approach of Harris et al., 2017). While these approaches are easy to
implement and update, they are naïve to the drivers of the observed forest loss and therefore
unable to reliably predict whether a deforestation front is likely to spread. This risks inefficient
targeting of conservation resources. A forecasting approach that could automatically learn
and detect the contextual features of the landscape that signal deforestation risk from satellite
imagery, and update its predictions accordingly, would bypass the limitations of both exiting
ML and simple trend based approaches.

Through implementing modern computer vision approaches, it may be possible for an
artificial neural network to automatically learn what features of a landscape are indicative of
future deforestation from historic events and thereby avoid the need to rely on problematic data
layers. Deforestation often exhibits striking spatiotemporal patterns when viewed from space
(e.g. fishbone pattern; de Filho and Metzger, 2006). The emergence of these patterns suggests
a degree of predictability while their characteristic spatial and spectral structures can give clues
as to the drivers. Over recent years, the quantity of freely available, high-resolution imagery has
been increasing at a rate that has exceeded our ability to harness it to support decision making.
However, deep convolutional neural networks (CNNs), that can retain spatial structure and be
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trained to automatically extract features of images, have revolutionised the field of computer
vision (Voulodimos et al., 2018). They have led to radical advances in our ability to make
predictions in countless fields and have recently been taken up by RS researchers (Zhu et al.,
2017) and ecologists working with Earth observation data (Brodrick et al., 2019) to generate
novel insights. This includes work on detecting logging trails (Abdi et al., 2022), human
settlements (Corbane et al., 2021), deforestation (Torres et al., 2021), forest disturbance (Kislov
et al., 2021) and quantifying the properties of terrestrial vegetation (Kattenborn et al., 2021).
Importantly, however, these studies have focused on assessing the current state of systems
rather than predicting future states.

Forecasting deforestation is a temporal extension of the landcover classification task. 2D
CNNs (designed for working with image data; Kussul et al., 2017) and networks that incorporate
an additional dimension (e.g. time) implicitly in their characterisation of data, including 3D
CNNs (Li et al., 2017) and recurrent convolutional neural networks (ConvRNNs; Interdonato
et al., 2019), have been shown to have state-of-the-art accuracy in detecting and classifying
landcover change. Similarly, Convolutional Long Short Term Memory (ConvLSTM) based
RNNs have been shown to improve on the performance of ConvRNN for RS classification
tasks (Rußwurm and Körner, 2018a). These promising developments suggest that 2D CNNs,
3D CNNs and ConvRNNs architecture types, if trained on large volumes of spatially resolved
historic deforestation data, could characterise and learn the features of the imagery associated
with changing forest cover and be used to predict the future location of deforestation (something
that has not previously been attempted). Critically, they preserve and work with the spatial (and
temporal) structures of the input datasets and therefore make predictions based on the local
context of the scenes they are presented with.

This paper describes a range of deep CNN model architectures that we designed to predict
the risk of forest loss at a given pixel (30 m) when presented with a multi-layered scene (of
data from freely available, global datasets) centred on that pixel, with the aim of automatically
identifying areas threatened by deforestation. To test these networks, we trained and evaluated
their performance on two regions in the Peruvian Amazon, one of the most biodiverse regions
on the planet and exceptionally rich in endemic amphibians, birds, fishes, bats, and trees (Bass
et al., 2010; Jenkins et al., 2013) but facing a range of threats including deforestation driven by
copper and gold mining, logging, agriculture, cattle ranching and crude oil extraction (Finer
et al., 2008; Piotrowski, 2019). We trained and tested the models with cloud free satellite data
for 2014-2020 and spatially resolved annual deforestation data for 2001-2020 (Hansen et al.,
2013). The best performing model was used to forecast deforestation in across regions in 2021,
predicting the risk of deforestation for every forested pixel in the landscape.
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Fig. 2.1 Southern Peruvian study regions. Base image: Landsat composite (bands 5,4,3) 2019
(Hansen/UMD/Google/USGS/NASA).

2.2 Materials and methods

2.2.1 Study regions

This study focused on two regions in the south of Peru (Fig. 2.1). The size of the study
regions were chosen to provide as many training points as possible while allowing processing
to remain within the computing resources available to us. The data for larger regions could not
be successfully loaded on the 4×Tesla P100-PCIE-16GB GPUs and 12×5980 MB CPUs that
were available to us.

A preliminary broad intercomparison of a broad set of models focused on the Madre de Dios
(MdD) department of Peru. MdD has approximately 97.4% primary forest cover and primary
forest loss has steadily increased since 2000 (Hansen et al., 2013; Turubanova et al., 2018). It is
almost entirely intact Southwest Amazon moist forest (Olson et al., 2001; Potapov et al., 2017).
The Interoceanic Highway, a 2,575km road from the coast of Peru to Brazil, was completed
in 2011, enabling access to portions of MdD previously protected from human activity. This
increased access supported immigration, which has increased pressure on the forest. Legal
and illegal gold mining is prevalent, seeding remote deforestation frontiers in otherwise intact
forest (Nicolau et al., 2019). The region exports a range of agricultural products including
cotton, coffee, sugarcane, cocoa beans, Brazil nuts and palm oil. Large logging concessions
and illegal selective logging (particularly for mahogany) place additional pressure on the forest
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there (Chirinos and Ruiz, 2003). The dynamic and diverse pressures made it a compelling trial
region.

The most promising models were further developed and additionally applied to a second
region. It centred on the Junín department, included surrounding departments and was cropped
by the limit of the Amazon Ecoregion. It has approximately 88% forest cover, primarily split
between Southwest Amazon moist forest and Peruvian Yungas (subtropical cloud forest) with
some Ucayali moist forest (lowland to premontane moist forest) (Olson et al., 2001). While
most of its forest is considered primary, there are some highly fragmented regions (Potapov
et al., 2017; Turubanova et al., 2018). Drivers of deforestation are similar to those in MdD
but with less mining and more hydrocarbon exploration (Finer et al., 2015, 2014). This region
provided an opportunity to trial the networks on a similarly sized area but one with greater
environmental heterogeneity.

2.2.2 Datasets

We limited ourselves to global, freely available datasets so the approach could be replicated
and scaled to any forest location. The forest state labels used in this study were taken from the
Global Forest Change dataset (Hansen et al., 2013). It tracks the location of forest loss globally
and is collated on an annual basis (latest version: 2001-2020) at ∼30m resolution. Loss events
are based on a pixel’s forest cover (here >30% to 0%) and are neutral to the cause of transition.
Management activities, unauthorised resource extraction and loss due to other biotic or abiotic
factors are not differentiated, thus observed patterns of loss relate to all possible causes.

The dataset includes a data mask describing areas of land or permanent water which we
used to filter valid pixels. It also includes percentage tree cover observed in 2000 which we
included as a predictor layer (for information on the forest density) and to filter out pixels
with low cover (<30%). From the same source, cloud-free composite Landsat imagery of four
spectral bands was available for 2014 to 2020. Near infrared (NIR) and short-wave infrared
(SWIR) bands are informative for the remote sensing of vegetation. These were included to
allow the computer vision networks to learn features from the spectral signals. We included
the Japan Aerospace Exploration Agency’s (JAXA) 30 m resolution ALOS Global DSM as
a layer to give another dimension for the networks to learn from and exploit the features of
the topology. It is an L-band SAR derived product which has better canopy penetration than
C-band products and so gives a clearer signal of topology. Historic forest change labels were
processed into four one-hot encoded layers which assigned pixels to classes based on how
recently (from current time, t) they lost forest cover: (i) 0-1 years from t, (ii) 2-4, years from t,
(iii) 5-8 years from t or (iv) more than 8 years from t. A pixel that does not register in these
layers was free from loss since 2000. These layers encode the proximity, in time and space, of
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Table 2.1 Predictor layers. The first three layers are static and the rest change year-on-year (t). All are
30 m resolution. Abbreviations: top-of-atmosphere (TOA), near infrared (NIR) and shortwave infrared
(SWIR).

Variable Description Value

datamask Land surface (0) or permanent water body (1) 0, 1
treecover2000 Percentage tree cover observed in 2000 0 - 100
elevation* Height above sea level in meters 0 - max(h)
recent_loss1(t) If forest to non-forest in years [t, t - 2) 0, 1
recent_loss2(t) If forest to non-forest in years [t - 2, t - 5) 0, 1
recent_loss3(t) If forest to non-forests [t - 5, t - 8) 0, 1
recent_loss4(t) If forest to non-forests [t -8, 2000) 0, 1
last_b30(t)† Normalised TOA reflectance Landsat 7 band 3 (red) 0-255
last_b40(t)† Normalised TAO reflectance Landsat 7 band 4 (NIR) 0-255
last_b50(t)† Normalised TAO reflectance Landsat 7 band 5 (SWIR) 0-255
last_b70(t)† Normalised TAO reflectance Landsat 7 band 7 (SWIR) 0-255

*Tested as an additional data layer but not included in final models as it did not improve
performance
†Latest available cloud-free observation at pixel

recent forest loss and thereby assist the models in representing contagion effects. All layers (see
Table 2.1) were normalised to take values between 0 and 1 before being fed into the models.

Although additional layers (e.g. distance to roads, settlements) could have been included
and may have improved overall accuracy, we wanted to test the ability of the deep CNNs to
automatically extract useful features from a set of regularly updated, scalable RS data layers.
This tests their utility in poorly mapped or highly dynamic regions. Additional details of the
datasets are given in Appendix A.

2.2.3 Modelling process

The aim was to train a classifier that, when presented with a scene centred on a single forested
pixel, could predict whether the target central pixel would remain forested (0) or transition to a
non-forest state (1) in the year ahead. The model training and testing used 2014 to 2020 data, and
forecasts were produced for 2021 (a year for which data were not yet unavailable). This section
overviews the model training and testing process. Additional details are given in Section A.4
and corresponding scripts are available at https://github.com/PatBall1/DeepForestcast.

At a time t (years since 2000), the set of valid pixels (Jt) were those that had forest cover.
When a pixel transitioned from a forest state to a non-forest state, this change was taken to
be permanent. Specifically, a datapoint with a specific spatial location (central pixel), j, and

https://github.com/PatBall1/DeepForestcast
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Fig. 2.2 Schematic of the deep learning prediction process. For a given forested pixel at the Centre of a
scene, the convolutional neural networks learned to predict the state of the pixel (forest/non-forest) in
the year ahead based on multispectral satellite imagery, historic loss patterns and the terrain.

point in time, t, consisted of data from a square (2r+1)× (2r+1) pixel scene, where r is the
number of pixels the scene has in vertical and horizonal directions from the target central pixel,
of the layers given in Table 2.1 (stacked bands). This allowed the network to observe what was
happening in the neighbourhood of the pixel being considered (i.e. make decisions based on the
field of view), which contrasts with typical ML approaches that use information on the pixel in
isolation or with averaged neighbourhood metrics that lose the spatial structure information of
the data. Each datapoint was associated with a non-forest (0) or forest (1) label from the year
ahead (t +1; see Fig. 2.2).

For each datapoint, two types of 3D tensors were inputted into the models. The first, S j,
contained the stacked static layers (see Table 1) and was of the shape S j ∈ Rs×(2r+1)×(2r+1),
where s is the number of static layers (here 2 or 3 depending on whether the DSM layer was
included). The second type, X j

t , contained the stacked dynamic layers (see Table 2.1) and was
of the shape X j

t ∈Rd×(2r+1)×(2r+1) where d is the number of dynamic layers (here 8). The label
associated with the data point was defined as Y j

(t+1) ∈ {0,1}, and took a value of 1 only if the
central target pixel was labelled as non-forest in year t +1. By allowing the models to learn the
features (and interactions) of the data layers in tensors that are associated with the year-ahead
forest/non-forest labels, the models would be able to make predictions of the year-ahead label
(Ŷ j

t+1) when presented with new input tensors. Output Ŷ j
(t+1) could vary continuously between
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0 (no chance of forest loss) and 1 (certain transition) with a threshold applied to determine the
binary classification (what we refer to here as deforestation ‘risk’).

The input data for each year, with associated year-ahead (t + 1) labels, was partitioned with
stratified random sampling, into training (80%) and test (20%) sets. The training set was further
split with stratified random sampling into five even splits so that 5-fold cross validation could
be performed while tracking model accuracy during the training process. Stratification was
based on the proportion of class labels. Less than 0.5 % of each study area transitioned from
forest to non-forest in any given year which meant the number of pixels that remained as forest
the next year (0) vastly outweighed the number that transitioned to non-forest (1). This extreme
class imbalance, if not addressed, would likely have led to very low predictive accuracy for
the infrequent class. As suggested by Buda et al. (2018), we modified our training data by
under-sampling the over-represented class so that there was at least one positive case (1) to four
negative cases (0). Fortunately, there remained several million valid data points available in
each study region each year.

A preliminary intercomparison of all model classes was first carried out on the MdD study
region using 2014-2018 training and testing data, withholding the latest 2019 labels for the
final testing. Using a grid search of hyperparameters, a set of models (differing in architectures
and hyperparameters) was trained (with 5-fold cross validation) on 2014-2017 input data based
on labels up to 2018. The accuracy of these models was tested on a (within training period)
withheld test set (2014-2017 input data, 2018 labels). Model selection was based on AUC (see
below). This process was used to evaluate the most effective network depths for each model
type.

Training deep convolutional neural networks is resource intensive so, from the initial
intercomparison, the most promising model architectures, in terms of model accuracy and
training efficiency, were selected to be taken forward to be further refined and tested on the
Junín region and well as MdD. Using Bayesian hyperparameter tuning (Snoek et al., 2012;
implemented on wandb.ai) and retraining on the 2014-2018 inputs (2019 labels), optimised
models were produced. The trials and performances achieved during the hyperparameter sweep
is available to inspect at https://wandb.ai/patball/forecasting/sweeps/df5v36lz.

The models were tested on the withheld 2014–2018 inputs (2019 labels) test set before
being tested on the year beyond the training period test set (2015–19 inputs; 2020 labels). It
was important to test the models’ abilities to predict the labels for a year outside of its training
period to understand whether the models are transferable through time and therefore able to
produce reliable forecasts. The optimised models (with hyperparameters and weights retained)
were then updated by continued training on 2015–2019 input data and 2020 labels. The final
models were then used to produce deforestation forecasts across the entirety of each study area

https://wandb.ai/patball/forecasting/sweeps/df5v36lz
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for 2021 (available for inspection as a GeoTiff at https://doi.org/10.5061/dryad.hdr7sqvjz).
Fig. A.13 summarises the arrangement of modelling processes.

Fresh models, with the same architecture and parameterization as the optimised models,
were trained only on the MdD data. To test spatial transferability, the accuracy of this model
was evaluated first on MdD and then the Junín region. This model was then used to forecast
2021 deforestation for MdD (available for inspection as a GeoTiff at https://doi.org/10.5061/dr
yad.hdr7sqvjz). Additional models, with the same parameterization as the optimised models
but sequentially trained on data on MdD data then Junín region data were assessed to help
understand the effect of expanding the geographic diversity of training cases.

The metrics we used to evaluate the models were area under receiver operating characteristic
curve (AUC), precision, recall and F1 score. AUC integrates model performance over all
classification thresholds. As the threshold could be adjusted to suit the user’s relative preference
towards a higher true-positive rate (recall or sensitivity) or false-positive rate, AUC was
insightful to assess overall model performance. F1 score (harmonic mean of the precision and
recall) can communicate accuracy while accounting for variable class imbalance, so it was
selected as a metric for model intercomparison over simple prediction accuracy (which can be
misleading in cases of class imbalance).

We used the Adam optimizer with weighted cross entropy loss to train the models through
stochastic gradient descent (Kingma and Ba, 2014). Weighted cross-entropy loss was used
to help address the class imbalance between loss events and pixels remaining forested. The
penalty for missing a loss event was set to be double that of incorrectly identifying a loss event
at a pixel that remained forested as we felt it preferable for the network to be tuned to avoid
missing the relatively rare loss events. To avoid over-fitting, regularisation was implemented
through a dropout layer (Srivastava et al., 2014) and early stopping criteria. Dropout randomly
sets a fraction of the neurons in the network to zero during forward pass of training, i.e., during
each training iteration, a certain number of nodes are“dropped-out” or ignored. This means
that their contribution to the activation of downstream neurons is temporarily removed and no
weight updates are applied to them during back propagation. Since neurons cannot rely on the
presence of particular other neurons, they tend to learn more robust features that are useful in
conjunction with multiple different random subsets of other neurons. This can lead to each
neuron learning to detect features that are generally useful, rather than features that are specific
to the idiosyncrasies of the training data. The models were trained with repeated exposure to
the full sampled training set (i.e. multiple epochs).

We used the PyTorch ML framework to develop the models (code available at https:
//github.com/PatBall1/DeepForestcast). We used GPUs (4 × Tesla P100-PCIE-16GB) and
CPUs (12 × 5980 MB) with a 12-hour time limit on a high-performance computing cluster

https://doi.org/10.5061/dryad.hdr7sqvjz
https://doi.org/10.5061/dryad.hdr7sqvjz
https://doi.org/10.5061/dryad.hdr7sqvjz
https://github.com/PatBall1/DeepForestcast
https://github.com/PatBall1/DeepForestcast
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to train and test the models and make forecasts. Details on the computational resources used,
including hardware and software, are given in S5. The trials conducted as part of the training
process, including hyperparameters used, accuracies attainted, and computing resources used
are available at https://wandb.ai/patball/forecasting/.

2.2.4 Model architectures

A variety of MAs were designed and implemented, and described in brief below. Technical
details and developed rationales behind the choices of the network architectures can be found
in Appendix A. A deep neural network has a set of weights which define the strength of
connections between the nodes and the predictions it makes from input data; these are adjusted
as the network learns from exposure to training data. A single MA has a corresponding set
of variable hyperparameters. Hyperparameters define aspects of how a model handles data,
builds interactions, and how it adjusts its weights to learn from the data. A unique set of
hyperparameters as well as the architecture defines what we refer to as a model. By varying
the hyperparameters and comparing the resultant model accuracies, the most effective set
of hyperparameters can be identified (hyperparameter tuning; see Section 2.2.3). A spatial
pyramid pooling layer in each network allowed the spatial input window size to be varied and
optimised as a hyperparameter (He et al., 2014). We used Batch Normalization which is a layer
that normalises each filter to have a zero mean and unit variance (Ioffe and Szegedy, 2015).
Ioffe and Szegedy (2015) showed that employing such layers can be beneficial in several ways:
the networks train faster as it enables the gradient descent algorithm to take higher learning
rates; the convergence of the loss function is significantly less sensitive to how the weights are
initialized; it offers some level of regularization by adding a small amount of noise to the data.
The output of the network is a single value between 0 and 1 on which a threshold is applied to
classify a pixel as becoming deforested or remaining forested (e.g. if a 0.5 threshold is selected,
any value below this will be predicted as still forested and any value above will be considered
deforested). This meant all pixels could be ranked based on their likelihood of deforestation.
The threshold value was set to give a balance between precision and recall but, were there other
requirements, it could be adjusted to account for anticipated changes in deforestation rate or to
prioritise different amounts of area for protection. More details are given in Appendix A.

Model architecture 1: 2D convolutional neural network

The first and simplest MA we employed (MA1) was a type of 2D convolutional neural network
(2D CNN). In a 2D CNN, filters slide (‘convolve’) in two spatial dimensions across a 3D input
tensor (with a spatial extent and a depth that corresponds to the number of bands) to extract

https://wandb.ai/patball/forecasting/
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spatial features that can be used by the network to make predictions. Inputs were simply the
dynamic tensor static tensor stacked at a point in space. Potential temporal features of the
data were not implicitly characterised by this type of network. Temporal change was simply
captured by pairing the input data for 1 year (at time t) with the forest/non-forest labels from a
year ahead (at t +1). See Fig. A.10 for a visual representation of the MA.

Model architecture 2: 3D convolutional neural network

The second MA (MA2) was a type of 3D convolutional neural network (3D CNN). Li et al.
(2017) demonstrated that 3D CNNs applied to hyperspectral data could achieve state-of-the-art
land use classification accuracy. We thought that, by substituting the spectral dimension with
the temporal dimension, it would be possible to draw out the spatiotemporal features of forest
change. This type of network slides (‘convolves’) filters in three dimensions (two spatial and
one temporal). This meant, for a given central target pixel, the series of dynamic tensors (see
Section 2.2.3) could be stacked temporally along the channel axis to form a 4D input tensor
and 3D convolutions used to characterise the spatio-temporal features of the input data. The
static tensor was passed to a separate 2D convolutional branch. See Fig. A.11 for a visual
representation of this MA.

Model architectures 3 and 4: Convolutional long short-term memory recurrent neural
network

MAs 3 and 4 were also designed to implicitly handle the temporal characteristics of the input
data. Instead of using 3D convolutions, they use a Convolutional Long Short Term Memory
(ConvLSTM)-based Recurrent Neural Network (RNN) type architecture. Rußwurm and Körner
(2018a) demonstrated the state-of-the-art performance of this network type for crop cover
classification from multispectral satellite data. At a given time step, RNNs can remember and
make use of information from previous time steps; they are designed to characterise and predict
sequential data. LSTM is a specialised RNN design that allows for long time dependencies
to be learnt. By integrating spatial convolutional elements within the LSTM component, a
ConvLSTM can characterise and predict the sequential evolution of spatial patterns. MA3 had
a single ConvLSTM cell, whereas MA4 was ‘deeper’ as it had a stack of ConvLSTM cells (see
Section A.3.5 for details). We compared these two architectures as stacking ConvLSTM cells
can improve prediction accuracy in some situations (e.g. Kim et al., 2017). These MAs take the
same 4D input tensors as the 3D CNN and pass the static tensor to a 2D convolutional branch.
These MAs, while able to achieve comparable accuracies to the first two, were dropped after
a broad intercomparison as their training could not be parallelised and so it took far longer
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to achieve these accuracies. However, their model classes are available for experimentation
from https://github.com/PatBall1/DeepForestcast as their implementation may become more
effective as the amount of historic data and computing resources increases.

Baseline: Random forest

To assess the relative benefit of using deep CNN-type methods, we trained, tuned and tested
random forest classifiers to perform the same task. The initial data structure was equivalent to
that of the 2D CNN, that is, a spatial window around a focal pixel was still used as an input and
forest state labels were offset by 1 year. However, the 3D tensors were necessarily flattened
into a 1D feature vector so that they could be given to the Random Forest. This meant that the
spatial structure was not preserved (as in the case of the CNN type models) but the model was
still free to learn which pixels (closer or farther from the central pixel) of which layers were
of greatest importance for making predictions. Fivefold cross-validation with a randomised
search over the hyperparameters (number of trees, tree depth, number of features) and window
size was performed to tune the model.

2.3 Results

2.3.1 Model Performances

Broad intercomparison

The best models from each model class (i.e. selected after hyperparameter tuning) predicted
2018 MdD test set deforestation with similar accuracies (AUC = 0.935–0.944). Precision
and recall were approximately equal across MA classes. The best performing MA after
hyperparameter tuning was the 3D CNN (MA3; AUC = 0.944). This was followed by the deep
ConvLSTM (MA4; AUC = 0.938), the ConvLSTM (MA3; AUC = 0.937) and the 2D CNN
architecture (MA1; AUC = 0.935). This suggested that models that could implicitly handle
and characterise the temporal with the spatial structure of the input data may be better suited to
predicting future deforestation. In other words, those models that could retain and work with the
spatiotemporal patterns of the data (how the spatial patterns evolved), rather than just use spatial
patterns, tended to perform better. MA4 and MA3, while achieving comparable accuracies,
were uncompetitive with respect to training time due to their constraints on parallisation (a
well-known problem with RNNs). Therefore, MA1 and MA2 were selected to be taken forward
for further development and testing.

https://github.com/PatBall1/DeepForestcast
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The spatial dimensions of the input tensors determined the size of the scene that models
were able to view and had an influence on model performance. Model AUC plateaued around
an input frame of ∼35 × 35 pixels (∼1 km × 1 km) and began to decrease for input frames
larger than 50 × 50 pixels (∼ 1.5 km × 1.5 km). Between these sizes seemed to be the
sweet spot where the networks could learn from local context while also remaining focused on
the pixel of interest. Full details of the model performances, including hyperparameters and
receiver operating characteristic (ROC) curves, are given in S7.

Model development

Further tuning and extended training improved within-year accuracy of the 2D CNN and 3D
CNN model classes which performed better than the baseline models. The precision of the
baseline model was higher than that of the CNN models but, based on a broad interpretation
of the accuracy metrics, this was more a feature of how the decision threshold was set rather
than an indication of superior forecasting ability. Across the board, the models predicted less
accurately on the Junín region than MdD. It suggests that the Junín region is inherently more
difficult to predict on (it has more cloud cover, diversity of forest types and fragmentation).
Models that included the topological layer as an input predictor layer were no more accurate
than those without, suggesting it was uninformative to the model. To reduce redundancy, this
layer was dropped.

There was a drop in model prediction accuracy from the within training period test set
and the year ahead test set (see Table 2.2). This was to be expected but it could also indicate
some change in the patterns of deforestation or a change in the nature of the input data (it is
difficult to produce satellite data that is exactly consistent across dates due to e.g. atmospheric
conditions). The greater the complexity of the model, the greater the drop off in accuracy from
nowcast to forecast predictions indicating a degree of overfitting. The model that was trained
on both regions sequentially was only marginally better at predicting year ahead deforestation
than the model that was trained on just the region to be predicted (for 3D CNN). The highest
year ahead AUC from the 3D CNN for the Junín region was returned by the model trained
exclusively on MdD data. This suggests that data quality is at least as important as volume and
spatial range of training data. It also suggests that the spatio-temporal patterns of forest loss
between the two regions are somewhat similar and that the models are spatially transferable.
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While the 3D CNN forecasted most accurately on the MdD region, the 2D CNN gave the
best forecast accuracy for the Junín region. The 3D CNN has the advantage of being able to
convolve over spatial and temporal dimensions together (and so learn spatiotemporal features)
but the 2D CNN has more datapoints available to learn from as the inputs are for a single
year input data (with an offset label) and not stacked across time like with the other model
types. More details of the model performances over different hyperparameters is available at
https://wandb.ai/patball/forecasting2d/ and https://wandb.ai/patball/forecasting/ for the 2D
CNN and 3D CNN, respectively.

2.3.2 Forecasts

The near-future forecasts exhibited some interesting spatial features. To illustrate the 3D CNN’s
assessment of deforestation risk, we have focused on four recent forest loss events in the two
study regions. The 2021 risk forecast was overlaid over Planet/NICFI biannual composite
satellite imagery for 2020 (see Fig. 2.3). Fig. 2.3a shows a rapidly growing commercial
agricultural area well serviced by a river and roads in Junín. The network signals a very
high risk that agricultural clearance will continue to expand into the remaining forest areas.
Fig. 2.3b shows a new, remote, unauthorised gold mine in MdD. The network anticipates an
immediate expansion of the mining operations into surrounding areas. Fig. 2.3c shows a newly
laid access route connecting newly established agricultural settlements to a large river. The
network highlights a risk of clustered conversion along parts of its route. Fig. 2.3d shows a
large recent forest loss event caused by a landslide. Despite the scale of the event, the network
deems its surroundings as relatively low risk from further change of state compared with the
anthropogenic causes of loss. A remote landslide is unlikely to result in a progressive loss of
forest. The contrasting predictions (in combination with the high reported accuracy) suggest
a level of discrimination (or intelligence) in the model’s evaluation of transition likelihood.
Forecasts are available for inspection in GeoTiff format at https://doi.org/10.5061/dryad.hdr7sq
vjz.

2.4 Discussion

2.4.1 Improving spatial forecasts

For the first time, deep CNNs were used to forecast the spatial development of forest loss. From
a set of freely available, global predictor layers, we predicted year-ahead forest loss at 30 m
resolution F1 score = 0.62–0.71 relative to the baseline models that achieved F1 = 0.52–0.60

https://wandb.ai/patball/forecasting2d/
https://wandb.ai/patball/forecasting/
https://doi.org/10.5061/dryad.hdr7sqvjz
https://doi.org/10.5061/dryad.hdr7sqvjz
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Fig. 2.3 Examples from the 2021 deforestation risk forecasts overlaid on satellite imagery. Yellow
indicates the areas most likely to transition to non-forest states fading to red as areas are less likely to
transition: (a) expanding commercial agriculture; (b) a newly established, unauthorised gold mine; (c) a
new access route connecting undeveloped forest to a river and (d) a recent remote landslide. Source of
satellite imagery: Planet/NICFI.
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for two ∼80,000 km2 regions in the Southern Peruvian Amazon while also demonstrating a
degree of spatial and temporal transferability of the models.

The apparent ability of the networks to automatically extract landscape features relating to
different drivers of forest loss and infer whether loss was likely to continue from a source was
encouraging. It highlights the potential for deep learning computer vision methods to process
large volumes of RS data to manage risks and make predictions in complex human-natural
systems. Previous attempts at forecasting deforestation have often had limited predictive
capacity due to a lack of reliable input data on dynamic landscape features. From satellite data
and other complementary spatial datasets, our model appeared able to discriminate between
one-off loss events (e.g. landslide) from frontiers that are likely to progress over time (e.g. from
a newly built road, an unauthorised gold mine). A more rigorous exploration of the decisions
of the network would help to determine the degree to which this is true (see below).

The dimensionality of convolutions in the networks - spatial in the 2D CNN case and
spatiotemporal in the 3D CNN case - involved a trade-off. The ability of the 3D CNN to
exploit spatiotemporal features allowed it to perform most accurately in the case of MdD,
the region with less topological variation and ecosystem variety. Indeed, the ability of 3D
CNNs to view a pixels spatial and temporal context together has been shown to improve
classification accuracy from RS data (Ji et al., 2018; Xu et al., 2018). This implicit handling
of the temporal dimension with the spatial dimensions would seem especially important in
the case of forecasting. However, stacking the inputs across the time axis reduced the number
of individual datapoints available to the network to learn from. The 2D CNN, with a greater
volume and temporal variety of data available for it to learn from, performed better on the
Junín region. The Junín region has persistent cloud cover and so stacking the data over
time may propagate noise and degrade training data. The individual year inputs of the 2D
CNN are more resistant to this as potential noise or gaps in the data would not contaminate
informative datapoints. The greater volume of data may have helped the network deal with the
environmental variability.

Deep learning models have many hyperparameters that need tuning. We demonstrated a
degree of spatial transferability of our models, but users should be aware that additional tuning
and retraining may be necessary to achieve optimal performance in a new region. The optimal
window width to view the scene was 1–1.5 km. For larger windows, the marginal benefit from
the additional information provided less benefit than the cost of handling this information. In
other words, there was a point at which adding further away pixels to a scene began to distract
the network from the area of focus.

We stress that, while the reported accuracy is encouraging, there are reasons to receive
these metrics cautiously. The GFC (Hansen et al., 2013) dataset provided all data labels and so
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the reported accuracies specifically relate to how well the networks predict future outputs of
this classifier and not necessarily the ground truth. The GFC dataset was generated by a bagged
decision tree that classifies filtered Landsat data. Our models were likely to have approximated
and incorporated behaviours of this classifier and accuracy may be inflated (relative to on-the-
ground change) from learned correlations. Biases leading to false positives and false negatives
in the initial model have likely been transferred to the forecasting models (Kinnebrew et al.,
2022).

Any ML approach is necessarily limited by the fact it is based on historic data and the
assumption that observed trends will continue, and therefore does not implicitly account for
regime changes in the system. This is relevant here, as political changes have substantial
impacts on Amazonian deforestation (Pereira et al., 2020). A changing climate, volatile
international economic conditions and advances in technology further challenge the assumption
of stationarity. However, as the forecasting system can be dynamically updated it is able to
learn emerging patterns which is an improvement on previous approaches. Additionally, the
models output a continuous measure of risk across all pixels and, by varying the threshold at
which the binary classification is made, it is possible to adjust the overall allocation of forest
loss in predictions. It would be possible to couple the spatial evaluation of risk from the CNN
system (accounting for landscape scale changes) to a model of overall forest loss based on
external drivers to generate forecasts that reflect global trends. The pixelwise risks can be
integrated to assess relative risk across a region.

2.4.2 Data sources

We limited our set of data layers to test the networks’ ability to automatically extract dynamic
landscape features. However, including additional RS data layers as predictors could help
to inform the networks and improve accuracy. Of particular interest is night lights, which
provide a dynamic signal for human presence and economic activity. At current, the resolutions
of available night light products are too coarse to integrate into our system, but this is likely
to change in the near future (Levin et al., 2020). The ∼30 m resolution of Landsat derived
products is likely to fail to pick up on selective logging. Higher resolution imagery (e.g. Planet
NICFI, Sentinel-2) may make that feasible but there is not currently a matching dataset for
forest cover labels. The GFC dataset only provides annual information on forest loss and not
forest gain which means the forecasts presented here cannot account for reforestation. The
Copernicus Global Land Cover collection (Buchhorn et al., 2020) could provide labels for more
types of landcover transitions but is only available for 2015–2019 and at 100 m resolution. As
this data source develops more intricate predictions that support forest regeneration analyses
may be possible. Furthermore, rather than simply predicting transitions between forest and
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non-forest states it may also be valuable to make predictions on gradual declines in relation to
disturbance events and forest resilience. In this context, it would be possible to train networks
similar to those presented here to predict the evolution of greenness metrics such as NDVI
(Boulton et al., 2022). The ALOS JAXA elevation layer was found to not improve model
performance, a somewhat surprising find in Junín, which has inaccessible mountainous areas.
It may be that processing the elevation into a relative slope layer would allow the networks to
better comprehend the features of the local topology.

2.4.3 Probing the black box

Deep neural networks are ‘black box’ models (i.e. the inner logic of the model is not readily
interpretable) so it is difficult to say how the networks were making decisions and to what degree
they were recognising different potential drivers of loss. There has been work on interpreting
deep CNNs to explore their internal reasoning (Li et al., 2021b). By applying interpretation
algorithms, it may be possible to identify which parts of a scene are triggering the networks’
decision. It may even be possible to generate groups of scenes (e.g. by driver) that typically
signal forest loss (see e.g. the Activation Atlas of Carter et al., 2019). Automatic classification
of drivers has been demonstrated at coarse resolutions (10 km) with simple decision tree models
applied to derived RS products (Curtis et al., 2018). Given the relative sophistication of the
CNN technology available, it is conceivable that a network could be trained to classify and
map drivers directly from satellite imagery at high resolution, particularly as the amount of
high-resolution imagery is rapidly increasing (e.g. Planet NICFI, Sentinel-2). However, a
comprehensive training set of labelled deforestation drivers at this resolution does not exist and
would require a considerable investment to produce.

Fieldwork to potential transition regions may be another way to better understand the
networks’ predictions. Of particular interest would be to investigate the cases where the models
are failing to make accurate predictions. Identifying specific drivers that lead to misclassification
would allow for more focused model training. Active learning algorithms (Settles, 2009) could
guide expeditions by identifying regions that would be particularly informative to gather extra
data on.

2.4.4 Technological advances

The MAs were inspired by models that have performed well on land cover classification
and adapted to fit the specific forecasting task. However, recent architectural innovations
could further help to improve performance. Transformer networks (originally from natural
language processing) have proven themselves to be the state-of-the-art in handling sequential
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data (Vaswani et al., 2017) and recently in some computer vision tasks (Dai et al., 2021). Using
self-attention, they avoid the difficulties in parallelising RNNs, and so can be trained more
efficiently. Integrating transformer components into the networks may prove to be an effective
way of handling the spatiotemporal features of the data (especially as the available time series
grows). This could help to extend the networks forecasting horizon. Further improvements
could also be gained by refining the training process to focus it on contentious datapoints.
The under sampling of the non-change class was random and many training points would be
uninformative as they are in very remote locations. A method that directs the training to cases
that sit close the decision threshold between the classification states would address this. We
have provided open-source code and benchmark results, and hope further improvements can be
integrated through collaborations.

2.4.5 Applications

The forecasting approach presented here was designed to be flexible, useful to a range of
potential users and scalable to forests globally. All pixels in a landscape can be ranked
according to the likelihood of loss allowing for spatial prioritisation. An organisation may
have resources to police a certain proportion of a region and the forecasts would allow them to
monitor the most threatened areas. The forecasts could also direct interventions to emerging
frontiers of loss in otherwise isolated and intact landscapes. On the other hand, when planning
a permanent protected area, it may be preferable to avoid areas that are most imminently
threatened but address areas that may undergo transition if left unprotected. In either case, it is
beneficial to understand how threats are likely to evolve. Governmental and non-governmental
organisations can use the tools presented here to understand how the landscapes in which they
operate will change into the future and refine their protocols for managing and responding to
deforestation risk. The effectiveness of deep CNNs in the current context suggests that they
should also be applied to other ecological forecasting tasks based on RS data such as forest fire
forecasting (see e.g. Santopaolo et al., 2021).





Chapter 3

Accurate delineation of individual tree
crowns in tropical forests from aerial
RGB imagery using Mask R-CNN





Abstract

Tropical forests are a major component of the global carbon cycle and home to two-thirds of
terrestrial species. Upper-canopy trees store the majority of forest carbon and can be vulnerable
to drought events and storms. Monitoring their growth and mortality is essential to understand-
ing forest resilience to climate change, but in the context of forest carbon storage, large trees
are underrepresented in traditional field surveys, so estimates are poorly constrained. Aerial
photographs provide spectral and textural information to discriminate between tree crowns in
diverse, complex tropical canopies, potentially opening the door to landscape monitoring of
large trees. Here we describe a new deep convolutional neural network method, Detectree2,
which builds on the Mask R-CNN computer vision framework to recognise the irregular edges
of individual tree crowns from airborne RGB imagery. We trained and evaluated this model
with 3,797 manually delineated tree crowns at three sites in Malaysian Borneo and one site
in French Guiana. As an example application, we combined the delineations with repeat
lidar surveys (taken between 3 and 6 years apart) of the four sites to estimate the growth and
mortality of upper-canopy trees. Detectree2 delineated 65,000 upper-canopy trees across 14
km2 of aerial images. The automatic method in delineating unseen test trees was attained an
F1 score of 0.64 and for the tallest category of trees (from the height of the tallest tree at a
site to a height exactly divisible by 5 m such that the category contains at least 10 trees) an F1

score of 0.74. As predicted from previous field studies, we found that growth rate declined with
tree height and tall trees had higher mortality rates than intermediate-size trees. Our approach
demonstrates that deep learning methods can automatically segment trees in widely accessible
RGB imagery. This tool (provided as an open-source Python package) has many potential
applications in forest ecology and conservation, from estimating carbon stocks to monitoring
forest phenology and restoration.
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3.1 Introduction

Intact tropical forests are an important component of the global carbon cycle: they are major
carbon stores and significant carbon sinks (Pan et al., 2011). However, the strength of the
carbon sink is diminishing as a result of global warming (Brienen et al., 2015; Hubau et al.,
2020) and there are concerns that forests are reaching a tipping point beyond which they could
switch irreversibly to open savanna systems (Chai et al., 2021). Forecasting the future of
tropical forests is challenging, because little is known about the ways different species will
respond to changing climate, or the resilience provided by that diversity (Fisher et al., 2018;
Gallup et al., 2021; Koven et al., 2020; Restrepo-Coupe et al., 2021). To understand the likely
responses of forests to further climate change, ecosystem models need to represent growth and
mortality processes of individual trees more accurately than is currently the case (Kellner et al.,
2019; Piponiot et al., 2022; Zuidema and van der Sleen, 2022).

Remote sensing of individual upper-canopy trees can improve estimates of forest carbon
(Dalponte and Coomes, 2016) and provide a means of tracking growth and mortality over
large spatial scales. Traditional monitoring approaches rely on measuring stem dimensions in
permanent inventory plots, and periodically revisiting those plots to assess recruitment, growth
and mortality (Chave et al., 2019). However, such plots cover a small fraction of the overall
tropical forest extent (~0.0002% of tropical forests are sampled by the main plot networks) and
their locations are often dictated by ease of access rather than by robust statistical sampling
designs (Davies et al., 2021; ForestPlots.net et al., 2021; Marvin et al., 2014). Furthermore,
upper-canopy trees store the majority of biomass carbon in tropical forests, but relatively few
of them are sampled in inventory plots due to their relative rarity (Coomes et al., 2017; Lutz
et al., 2018; Meakem et al., 2018). This under-sampling is particularly problematic when
assessing impacts of climate change, because upper-canopy trees are most vulnerable to periods
of water shortage (Gora and Esquivel-Muelbert, 2021; Stovall et al., 2019) which are increasing
in frequency (IPCC, 2021). Remote sensing has the potential to overcome these sampling
challenges by providing wall-to-wall maps that can be used to monitor millions of upper-canopy
trees.

Remote sensing of individual trees has mostly focused on airborne lidar data, which is
used by, among others, the forestry industry to map trees at landscape scales (Zhen et al.,
2016). Delineating individual trees from airborne lidar datasets is most successful for conifers,
because their apical dominance results in clear local height maxima that make tree crowns easily
distinguishable (Dalponte and Coomes, 2016; Hastings et al., 2020), but complex tropical
canopies have presented a far greater challenge for lidar delineation (Aubry-Kientz et al.,
2019). Tropical forest canopies are often densely packed with partially interwoven crowns
which point-cloud clustering algorithms can struggle to distinguish (Aubry-Kientz et al., 2021).
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Furthermore, lidar surveys require expensive aircraft (airplanes, helicopters or high-end drones)
and sensors (that together require tens of thousands to hundreds of thousands of pounds to
purchase or rent) whereas standard RGB imagery can be collected cheaply with drones (roughly
£250 to purchase entry-level equipment to several thousand pounds for high-end options).

Automatic delineation of trees in RGB photographs can harness colour and texture infor-
mation to distinguish trees, even if they are structurally similar (Almeida et al., 2021; Iglhaut
et al., 2019). Most current methods of individual tree identification from RGB imagery use
bounding boxes (Fig. B.3) (Santos et al., 2019; Weinstein et al., 2019, 2021), but more exact
delineation of the edges of tree crowns would provide information on crown area and lateral
growth, and avoid mixing signals from neighbouring vegetation. Recent advances in neural
network approaches to computer vision provide opportunities to recognise individual trees from
standard digital photographs taken from drones. A class of machine learning algorithms called
deep convolutional neural networks (CNNs) is revolutionising vegetation science through its
ability to exploit spatial structures and automatically extract high-level features from image
data (e.g. analyses of satellite imagery) (Kattenborn et al., 2021; Mugabowindekwe et al., 2022;
Zhu et al., 2017). In the field of computer vision, exactly segmenting individual objects of
interest from an image is known as instance segmentation. The Mask R-CNN algorithm has
shown promise in tree crown identification and delineation in plantations (Hao et al., 2021; Yu
et al., 2022b), pine forests (Hu et al., 2022; Ocer et al., 2020), urban woodlands (Ocer et al.,
2020) and forest fragments (Braga et al., 2020). Mask R-CNN has features that could allow it to
overcome the challenges of delineating crowns in complex tropical canopies by discriminating
based on the spectral and textural signals which are rich due to the phylogenetic diversity.

Here, we describe detectree2, a system that automatically detects tree crowns from aerial
RGB imagery. We adapted Facebook AI’s Mask R-CNN algorithm, (the Detectron2 release),
which has models that have been pre-trained on a wealth of available image data that can
be transferred to new tasks (He et al., 2017; Wu et al., 2019b). We trained and evaluated
detectree2 on four tropical forest sites. In total, 3797 manually delineated tree crowns were
used of which 1530 spatially separated crowns were reserved to evaluate the model. The size
of this dataset meant we had to consider ways of boosting the efficiency of model training such
as data augmentation. We evaluated the performance with F1 Scores, which quantify the skill
of the method in delineating individual tree crowns accurately. We expected a model trained
at one site to drop in performance when transferred to making predictions of crowns at the
other sites and that supplying a greater variety of training data would boost performance. As an
example ecological application, we deployed the trained model across 14 km2 of airborne RGB
imagery, automatically delineating 65,786 tree crowns. For context, this area is approximately
40% the total area of forest inventory plots in the main plot networks across the tropics (Davies
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et al., 2021; ForestPlots.net et al., 2021). We then combined these crowns with repeat airborne
lidar data to investigate the growth and mortality rates of upper-canopy trees in relation to their
height. Regional and global syntheses of forest inventory data suggest that growth slows down
and mortality rates increase with tree size (Coomes et al., 2003; Hurst et al., 2011; Iida et al.,
2014; Muller-Landau et al., 2006; Richardson et al., 2009). We therefore expected to find the
tallest trees we sampled to have lower growth rates and higher mortality rates than shorter trees.
The detectree2 Python package is available to install and apply on new regions1.

3.2 Materials and Methods

3.2.1 Study sites

The analyses were conducted at four locations across three tropical field sites:

1. Sepilok Forest Reserve (East and West), Sabah, Malaysia (5°50'N, 177°56'W)

2. Danum Valley Conservation Area, Sabah, Malaysia (4°57'N, 177°41'W)

3. Paracou Field Station, French Guiana (5°16'N, 52 °55'W)

Danum Valley hosts lowland tropical rain forests dominated by dipterocarp species that are
among the tallest forests on the planet (Shenkin et al., 2019). The available data from Sepilok
included ecologically distinctive areas to the East and West. Sepilok West consists mostly of
tall forest (similar to Danum), while Sepilok East is a heath forest growing on shallow soils
overlying sandstone, containing smaller, more densely packed trees (Coomes et al., 2017). All
three sites in Malaysia experience a similar climate with approximately 2300 mm rainfall per
year with the wettest months between November and February (Nilus et al., 2011).

Paracou

As the primary research described throughout this thesis was conducted in forests at Paracou
Field Station, French Guiana (5°16'N 52 °55'W) (see Fig. 3.1), here I give a more comprehensive
description of the site. The lowland tropical moist forests grow mostly on shallow ferralitic soils
underlain by a variably transformed loamy saprolite (Gourlet-Fleury et al., 2004). The mean
annual rainfall is approximately 3200 mm with a three month dry season from mid-August
to mid-November. September, the driest month, will typically have 50 mm of rainfall (Bonal
et al., 2008; Wagner et al., 2011) which makes the climate just within tropical monsoon regime

1https://github.com/PatBall1/Detectree2

https://github.com/PatBall1/Detectree2
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Fig. 3.1 The location of the study site with the flux tower footprint in pink and manual tree crown
polygons. We observed the phenology of the tree crowns in this region with a view to eventually link
the phenological patterns to productivity calculated from the measurements on the flux tower (see
Chapter 5).

of the Köppen climate classification system (tropical rainforests have a minimum monthly
precipitation of 60 mm; Köppen, 1884).

The field station has 27 permanent plots ranging in size from 0.5 ha to 25 ha which contain
approximately 76,000 trees of DBH ≥ 10 cm consisting of over 800 different species (Gourlet-
Fleury et al., 2004). In these plots, inventories are taken every 1-5 years with the species,
precise geographic location and DBH of each trunk recorded. We generated a set of manually
delineated crowns which were validated with subsequent fieldwork. By comparing in situ
observations with the remote sensing data, we either matched the identified crowns to individual
trees present in the site inventory (Gourlet-Fleury et al., 2004), or in cases where crowns were
located outside of the known plots, we engaged botanists to assign the appropriate species. We
updated the crown outlines and confidence scores based on the field observations and noted
where there were liana infestations in the crowns. The fieldwork was focused on approximately
100 hectares of forest lying within the footprint of a flux tower used to measure gas exchange
between the ecosystem and atmosphere. The footprint is defined as the region of forest around
the tower which influences the CO2 and water fluxes recorded by its sensors, and depends on
wind speed and direction (see Section D.1 for details on how the footprint was defined).

3.2.2 Remote sensing data

Airborne RGB surveys were conducted at all four sites using crewed aircraft (Table 3.1). Repeat
lidar surveys were also conducted at all four locations (see Table 3.1, noting different sensors
and altitudes between flights in Sabah). We analysed RGB imagery from 3.85 km2 of Malaysian
forest, with a ground resolution of 10 cm. In Paracou, we sampled 10.2 km2 of imagery, with
an 8 cm ground resolution. The raw imagery was orthorectified, georeferenced and collated
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Fig. 3.2 Site map of Paracou, French Guiana, with crowns and hyperspectral imagery. The manually
delineated, labelled crowns are in white. The colourful background scan that covers the entire site is a
representation of the hyperspectral data (selected projected PCA bands). The repeat survey UAV-RGB
region is shown in the northwest around the site’s flux tower. Within this region the segmentation
test areas are delineated in blue - the crowns within these areas were excluded from all training of the
segmentation delineation. The black boxes show the plots in which inventories are conducted.
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Fig. 3.3 The distribution of dry season length (as the number of months per year with < 100 mm
precipitation) in tropical South America taken from Xiao et al. (2006). Added to the map is Paracou
Field Station which receives an average of 3200 mm annual rainfall but experiences a moderate dry
season from mid-August to November which may constrain and structure the leaf phenology seen at the
site.

Fig. 3.4 Location of Paracou (yellow circle) within the Holdridge life zone classification scheme. Based
on meteorological observations at the site from 2000-2022, Paracou can be classified as a tropical moist
forest with a brief dry period.
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Table 3.1 Remote sensing data sources used in the study. The exact location of the sites is described in
Section 3.2.1. Resolution is given as ground resolution for the RGB imagery and as the processed CHM
resolution for the lidar scans. Beam divergence is given at the 1/e2 points. Sepilok West and Sepilok
East were separated for analysis due to the different characteristics of the Sepilok forest in these two
areas.

Scan dates Region Modality Resolution Pulse density Beam divergence Scanning angle Altitude Sensor

23-Oct-2014 Danum RGB 10 cm - - - 796 m Leica RCD105
01-Nov-2014 Danum Lidar 1 m 5 pls m-2 < 0.22 mrad ± 14° 2000 m Leica ALS50-II
19-Feb-2020 Danum Lidar 1 m 35 pls m-2 < 0.5 mrad ± 30° 200 m RIEGL LMS-Q560

10-Oct-2014 Sepilok RGB 10 cm - - - 796 m Leica RCD105
05-Nov-2014 Sepilok Lidar 1 m 16 pls m-2 < 0.22 mrad ± 14° 2000 m Leica ALS50-II
15-Feb-2020 Sepilok Lidar 1 m 42 pls m-2 < 0.5 mrad ± 30° 200 m RIEGL LMS-Q560

19-Sep-2016 Paracou RGB 8 cm - - - 800 m IXA180 Phase One
19-Sep-2016 Paracou Lidar 1 m 35 pls m-2 < 0.25 mrad ± 30 ° 800 m RIEGL LMS-Q780
15-Nov-2019 Paracou Lidar 1 m 35 pls m-2 < 0.25 mrad ± 30 ° 800 m RIEGL LMS-Q780

into homogeneous mosaics using structure from motion in AgiSoft Metashape (AgiSoft, 2021;
Westoby et al., 2012) in Sabah. In Paracou, the imagery was orthorectifed using TerraPhoto to
the Canopy surface model derived from simultaneously acquired lidar data.

3.2.3 Manual tree crown data

To train and evaluate our automatic delineation approach, we created a manually labelled
dataset of trees at all four sites. We generated our delineations using both RGB and lidar data
and, in the case of Paracou, supplementary hyperspectral layers. We used several techniques to
improve the accuracy of crown delineation, including manipulating the contrast and saturation
of the RGB image to exaggerate differences between the crowns, and using a mask of the lidar
data to remove irrelevant parts of the RGB imagery. These techniques meant that the majority
of tree crowns were separable by eye, however it should be noted that in rare cases, tree crowns
were difficult to delineate with certainty and the labeller’s best estimate was used.

The Paracou tree crown dataset was constructed and validated over four field missions. As
it is used extensively in the rest of the thesis, I elaborate on this process here. The data was
collected in blocks typically corresponding to the inventoried field plots (Gourlet-Fleury et al.,
2004), and was developed initially at a computer remotely and then validated and edited on
a tablet in the field. Initially, at a computer, the co-registered remote sensing data (including
RGB, multispectral, lidar CHM and hyperspectral layers), the inventory data (with geolocated,
species labelled trunks represented as points scaled by DBH) and site boundaries (including
plot perimeters) are loaded into QGIS. By comparing between the remote sensing data layers, I
would make a provisional set of polygons representing the boundaries of the individual tree
crowns. Based on the size of the crowns relative to the trunks, I would provisionally assign
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Fig. 3.5 The automatic tree crown delineation workflow. Manually delineated crowns are randomly
split into training and test sets (though the figure suggests that the sets were determined geographically,
this is purely for visual clarity). The Mask R-CNN framework combines the training set with the RGB
imagery to learn how to delineate automatically from RGB images. A set of automatic predictions are
produced across the entire RGB image and compared to the test set to evaluate the performance of the
automatic delineations. Intersection over union (IoU) is used to determine when an automatic crown has
been successfully matched with a manual crown.
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a unique tree identification number from the inventory to each crown. The unique identifier
would allow each crown to be assigned a species as recorded in the inventory. I also assigned
two confidence scores to each polygon each ranging from 1-4 where 1 represented absolute
certainty and 4 represented nearly complete uncertainty. The first score, Crown Integrity,
represented the certainty with which the crown boundary was correctly delineated (i.e. a single
whole crown rather than multiple crowns or a partial crown). The second score, Trunk Match,
represented the confidence with which the crown had been correctly assigned to an individual
in the inventory. After as much of the area of interest as possible had been labelled, the remote
sensing, tree inventory and crown polygon datasets were transferred to a portable tablet (using
the QField software package) for editing and validation in the field. Two to five people would
go to the plot of interest, one inspecting and editing the dataset on the tablet and directing the
activity, and the rest inspecting the canopy. When labelling trees that fell outside of the forest
plots it was necessary to have a local botanist present to identify the species of the trees. By
relaying information between the individual on the tablet and those inspecting the canopy, the
polygon boundaries and tags could be edited based on observations to achieve a precise, ground
validated tree crown dataset. The complex, multilayered canopy and propensity for trees to
grow off vertical meant that having several people inspecting crowns from different positions
while another who could inspect the bird’s-eye view from remote sensing data was valuable for
achieving a reliable, comprehensive dataset to train and test our methods on. For this reason,
the Paracou tree crown dataset was considered our “gold standard”.

We trained and tested our model with a total of 3797 manually delineated tree crowns
across Paracou (1267), Danum (521), Sepilok West (1038) and Sepilok East (971). The crowns
from Paracou were validated in the field with an expert local botanist, whereas the crowns in
Malaysia were drawn by inspection of the remote sensing products. Four individuals performed
the manual delineations which provided the network with variability in the inputs.

3.2.4 Data preparation

The orthomosaics and corresponding crown polygons were tiled into squares of approximately
100 m x 100 m to be ingested into the network (40 m core area, 30 m overlapping buffers).
These dimensions reduced the chance of a crown being only partially represented in the dataset
while also being small enough to hold in memory during training. To be included in the training
and test sets, a minimum crown polygon area coverage of a tile was set at 40%. Including
overly sparse tiles was likely to lead to poor algorithm sensitivity while being too strict with
coverage would have limited the amount of training and testing data available.

If training and test crowns are close to one another, spatial autocorrelative effects are likely
to inflate the reported performance (Kattenborn et al., 2022). In other words, if training crowns
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are geographically close to test crowns it is likely that prediction accuracy will be misleadingly
high as there is more similarity in remote sensing acquisition parameters and environmental
conditions between the train and test data than would be expected by random chance. To avoid
this, individual tiles (rather than individual crowns) were assigned to training and test sets
ensuring spatial separation. Approximately 10% of the tiles from each site were reserved at
random for testing. To avoid contamination of the test set, tiles with any overlap with the test
tiles (including with the buffer) were excluded from the training set. The training tiles were
further randomly partitioned into 5-folds for cross validation. This allowed for the tuning of
parameters and the implementation of early stopping (see Section 3.2.6) without exposing the
test set. Details of the data processing are described in Section B.3.

3.2.5 Model architecture and parameterisation

Instance segmentation combines object detection with object segmentation. Once an object
has been detected in a scene, a region of interest (as a bounding box) is established around
the object. A “segmentation” is then carried out to identify which pixels within the region of
interest make up the object of interest (and which lie outside; see Fig. B.2 for an example).

We adapted Facebook AI’s Mask R-CNN architecture as it was the best in class algorithm
upon release for instance segmentation when tested on the Microsoft COCO (Common Objects
in Context) benchmark (He et al., 2017; Lin et al., 2014) and has since been updated (as
Detectron2) with improved training efficiency, documentation and transferability for integration
into bespoke tools (Wu et al., 2019b). We adapted the Detectron2 computer vision library
to handle geospatial inputs/outputs and perform the delineation of individual tree crowns.
The library performs instance segmentation by generating object “masks” which exactly
circumscribe the objects in the image (see Fig. B.2 for an example prediction). It also has
a “model zoo”2 from which specific model architectures with weights from a variety of pre-
training regimes can be loaded. Taking a pre-trained model (weights) and retraining it to
perform a novel task (e.g. delineating trees from aerial imagery) is an example of transfer
learning which can drastically reduce the amount of training data required to achieve acceptable
performance on the new task (Weiss et al., 2016). We selected the R101-FPN configuration3 as
it has “the best speed/accuracy tradeoff” of the architectures available (Wu et al., 2019b). Each
object predicted by Detectron2 is associated with a confidence score which relates to how sure
the network is in its prediction. A suitable threshold can be selected to optimise accuracy or
balance precision and recall. Additional details are given in Section B.4 and for full technical

2https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md
3https://github.com/facebookresearch/detectron2/blob/main/configs/COCO-Detection/faster_rcnn_R_101_F

PN_3x.yaml

https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md
https://github.com/facebookresearch/detectron2/blob/main/configs/COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml
https://github.com/facebookresearch/detectron2/blob/main/configs/COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml
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specifications, one should refer to the original papers and the Detectron2 repository (He et al.,
2017).

3.2.6 Training and model selection

Training, tuning and model selection were performed with the five folds of training data tiles
(see Section 3.2.4). To test the effect of volume and diversity of training data on performance
we employed three training regimes: (1) Training on data of a single site, (2) Training on all
sites (“combined”), (3) Training on all sites and then trained with a fixed training period on
the single site. The idea behind (3) was to train on the full available data and then ‘hone’ the
delineator based on the local context.

Typically, a deep CNN would require several thousand training examples to learn a new
task. This is a challenge in the case of tree crown delineation as manual delineation is time
consuming. The burden was reduced by transferring a model trained on a different instance
segmentation task (Lin et al., 2014). Additionally, the training data were augmented by applying
several randomly applied transformations to the training cases including vertical and horizontal
flips, rotation, and varying the saturation and contrast of the image.

The model hyperparameters (see Table B.1) were tuned with a Bayesian hyperparameter
sweep implemented on wandb.ai4. This is an automated process that allows an automated agent
to iteratively adjust hyperparameters to optimise accuracy. The best performing models and
optimal confidence threshold for a given model (see Section 3.2.5) were selected based on the
F1 score (see Section 3.2.7) on the validation fold. See Section B.4 for more details on model
architecture, training and validation. The Colab (Jupyter) notebooks in the GitHub repository5

illustrate the best practices for training and selecting models.

3.2.7 Performance evaluation

After tuning and training, the best performing models were taken forward to be evaluated
against the test tiles. Matches between predictions and manual crowns (i.e. true positives) were
identified by assessing the degree of spatial overlap between possible pairs. A minimum area
threshold for valid crowns was set to 16 m2. This removed fewer than 2% of manual crowns
and introduced a level of consistency between sites and between the effort given by the manual
delineators. The threshold was small enough to remove most inconsistencies between the lower
area thresholds for inclusion of the human delineators while still including a representative

4https://wandb.ai/detectree/tune/sweeps/
5https://github.com/PatBall1/Detectree2

https://wandb.ai/detectree/tune/sweeps/
https://github.com/PatBall1/Detectree2
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distribution of crown sizes for the analysis of the variation in performance by tree height.
Crown overlap was calculated as the area intersection over union (see Fig. 3.5):

IoU(A,B) =
A∩B
A∪B

(3.1)

where A is the automatically delineated crown area and B is the manually delineated crown
area. An IoU of an overlapping pair of more than 0.5 was considered a match. This is a
commonly used threshold in similar studies (e.g. Aubry-Kientz et al., 2019; Hao et al., 2021)
that allows for small discrepancies in alignment and outline. While not rigorously tested here, it
tends to give a match that feels intuitively acceptable by human interpreters (see Fig. 3.5). These
true positives, the unmatched predictions (false positives) and the unmatched manual crowns
(false negatives) were used to calculate the precision, recall and F1 score of the automatic
predictions.

Despite the best efforts of the manual delineators and selecting for tiles with high manual
crown coverage, the manual crowns were inevitably an incomplete representation, so recall
(fraction of relevant instances retrieved) was an insightful metric. However, to ensure balance
with precision we used the balanced F1 score metric to assess and compare the accuracy of
the models. This approach is not biased by tree crown area and is widely used in tree crown
segmentation studies (Braga et al., 2020; Hao et al., 2021). See Section B.5 for more details on
the evaluation metrics.

To evaluate the performance of detectree2 across tree heights, we assigned a height to each
test crown (based on the median pixel value of the initial CHM within the crown) and arranged
them into 5 m height bins. The shortest bin (0-5 m) at each site was iteratively merged with the
next shortest bins until more than 10 individuals were represented (e.g. at Paracou 17 trees with
a median height of 22.97 m fell into the lowest bin of 0-25 m). An equivalent process was used
to define the highest bin at each site. The median tree height was calculated within each bin.

3.2.8 Transferability across sites

To determine whether models were able to generalise across different tropical forest areas, we
evaluated the performance of the models when trained on one site and transferred to others.
We compared these performances against the effect of using the “combined” training regimes
described in Section 3.2.6.
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3.2.9 Application to monitoring growth and mortality

We applied our best models for each site to their entire tiled orthomosaics (excluding the very
edges where distortion is prominent) to generate site wide crown maps. We combined these
crown delineations with repeat lidar surveys to determine the height changes in individual trees
in our four sites. We determined the relationship between tree height and tree growth by fitting
a robust least squares regression (Audibert and Catoni, 2011) to the data. Robust least squares
was chosen to minimise the effects of outliers and mortality events on the regression. We note
that here we are measuring the vertical growth of trees, instead of the growth in diameter at
breast height (DBH) which is traditionally measured in forest inventory data. The link between
our measured changes and those of the inventory measurements is not explicitly tested and an
allometric relationship is assumed.

To estimate mortality rates, we needed a suitable metric to identify mortality events. We
took a statistical approach defining a mortality event as a negative change in height of more
than three standard deviations below the robust least squares fit. This allowed for the possibility
that a mortality event may uncover another layer of vegetation rather than the forest floor.
This choice was ratified by manual inspection of trees meeting this threshold, and confirming
that they constituted mortality events. Annual rates were determined by dividing by the time
between lidar scans.

Differences in lidar scanning parameters (pulse density, scanning angle, flight height etc.)
can bias height estimates (Roussel et al., 2017). For this reason, we resisted reporting a direct
comparison of reported growth and mortality rates between sites. As our focus here was
on demonstrating the use of detectree2 for locating crowns, we considered that a detailed
exploration of the potential biases from the lidar data beyond the scope of the current paper.

3.2.10 Computation

Training deep CNN models can be computationally expensive and benefits from the availability
of GPUs. Model training and evaluation was performed on the Google Colab (Pro) platform
which employed Intel(R) Xeon(R) CPU at 2.30GHz with 12.8 GB RAM and Tesla P100-PCIE-
16GB GPUs. On this platform, model training always completed within 2 hours.
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Fig. 3.6 An area of predicted crowns (transparent) overlaid on ground truth crowns (shaded with black
outlines) at Danum. Colors and shading are used to indicate whether individual crowns have been
successfully delineated. Some examples of under-segmentation (where a single prediction encompasses
multiple ground truth crowns) and over-segmentation (where multiple predictions false try to split a
single ground truth crown) are visible.
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Table 3.2 Precision, recall and F1 score of detectree2 tree crown delineations by site as measured against
the manual crowns of the test set tiles. The unweighted means of the metrics across individual sites are
given as a summary overall performance.

# test trees Precision Recall F1 score

Paracou 381 0.595 0.543 0.568
Danum 278 0.713 0.662 0.687
Sepilok East 167 0.612 0.653 0.632
Sepilok West 704 0.640 0.656 0.648

Average (sum) (1530) 0.640 0.629 0.634

3.3 Results

3.3.1 Performance by site and tree height

Detectree2 located and delineated trees with F1 score > 0.56 across all sites (see Table 3.2).
It performed better in the tall dipterocarp dominated forests of Danum and Sepilok West and
worse in the more compact forests of Sepilok East and Paracou. Indeed, Danum, the site with
the best performance, had the greatest proportion of the tallest class of trees of any of the sites
(see Table B.2 for full results). There was no apparent relationship between the amount of
training data available at a site and the performance of the automatic delineator suggesting
forest structure was the key determinant of accuracy. Where predictions were not accurate,
it was slightly more likely to be from under-segmention (0.23-0.45) than over-segmentation
(0.13-0.23) across all sites (see Table B.3; Clinton et al., 2010).

Across all sites, accuracy improved with tree height (see Fig. 3.7). This is likely due to
the increased crown visibility of tall trees in the RGB images. Paracou has the least well
differentiated canopy of all sites (it is relatively flat with crowns frequently interweaving) which
may explain relatively poor performance there.

3.3.2 Performance between forest types

Danum and Sepilok West have tall dipterocarp dominated forests whereas Paracou and Sepilok
East have a more compact forest structure. As we expected, performance degrades when testing
a model on a different forest type to the one it was trained on (see Fig. 3.8a). For example, the
performance at the forests of Sepilok West is significantly degraded when a model trained on
Sepilok East or Paracou is used. In contrast, there is no drop in performance for predictions at
Danum when the Sepilok West model is used and there is even a slight increase in performance
for Sepilok East predictions when the Paracou model is used. In general, the model that was
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Fig. 3.7 F1 scores of the tree crown delineations at the four different sites across tree heights. Bins of 5
m width were used to calculate F1 score and corresponding median tree height. Point area is scaled by
the number of test trees in the bin. Quadratic best fit lines (dashed) have been added to highlight the
trends.

trained on all sites at once (“combined”) outperformed the models that were trained on just a
single site with the exception of Paracou (see Fig. 3.8b). Across the board, the best performing
models were those that were exposed to data from all sites before being trained for a fixed
number of iterations at the site to be predicted on. This suggests that providing a broad range
of input data helps the networks to learn the key visual features but further tuning for local
context helps maximise performance.

Application: Growth and mortality

One application of detectree2 is to study tall tree growth and mortality rates. To do this, we
overlaid detectree2’s tree crown predictions at the start date for each site on repeat lidar data (as
canopy height models described in Section B.1) to retrieve the tree height dynamics over time.

We were able to estimate the relationships between tree height and tree growth for each
site by fitting robust least squares linear relationships between the two variables for Danum,
Paracou, Sepilok East and Sepilok West Fig. 3.9. The regression coefficients and intercepts are
given in Table B.5. The growth rate decreased with tree height in all sites.

We assumed trees had died when their height decreased substantially. To evaluate this
quantitatively, we fitted a robust least squares to the height change, against the original height
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Fig. 3.8 Sensitivity of detectree2 delineation accuracy to the variety of training data used. In (A), “Same”
indicates that training and testing took place at the same site. Sepilok West and Danum are “similar”
forest types in that they are tall dipterocarp dominated forests in contrast to Sepilok East and Paracou
that are shorter forests with a larger number of trees per hectare. As each site has two “different” sites
and an average was calculated for the F1 score. (B) shows the change in performance that occurs through
employing different combinations of the training data. That can be just a single site, all sites at once
(“combined”) or all sites at once followed by a limited number of iterations on the site to be tested on.
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of the tree, taking trees that were 3 standard deviations below the mean of the regression fit
to be mortality events. The robust least squares regression differs from ordinary least squares
as outliers contribute less to the regression fit. Therefore the robust least squares weights
the fit towards those trees which did not suffer large height loss, and by taking the threshold
to be 3 standard deviations we aim to identify only those trees that are outside the assumed
normal distribution of typical tree growth and measurement error. Furthermore, as the robust
least squares still incorporates outliers when fitting the data, three standard deviations was
considered sufficient to identify mortality events. Fig. 3.9 illustrates how certain trees were
identified as mortality events and some visual examples of mortality events from Paracou are
given alongside (see Fig. B.12 for the other sites).

The mortality rates increased with tree height Fig. 3.10. The given uncertainty estimates
were determined by bootstrapping. Table B.6 gives details of the growth and mortality rates.

3.4 Discussion

3.4.1 Improved tropical crown delineation

Accurately delineating trees in remote sensing data is a long-standing problem in ecology and
conservation, and would enable us to efficiently monitor large areas of forests. Detectree2
addresses this problem, delineating individual trees in aerial RGB imagery with a precision of
0.64 and recall of 0.63. We used detectree2 to automatically delineate 65,786 trees across three
tropical forests. We found that the accuracy of detectree2 increased with tree height, meaning
that the tall trees which store the most carbon are also the most reliably delineated. However,
its relatively poor performance on shorter trees and inability to detect below canopy trees
means that the sample of trees it detects is not representative of the full tree height distributions
present.

Detectree2 performed well across a range of challenging, dense, closed canopy forests. It is
able to exactly delineate highly irregular crowns within the jigsaw of the canopy rather than
simply identifying a bounding box. This opens up new opportunities for tracking dynamic
processes including growth and demographics (as demonstrated here) as well as phenology
(where bounding boxes would risk mixing signals). Furthermore, detectree2 is relatively
accessible since it requires a low number of manually delineated trees as training data compared
to other methods (Braga et al., 2020; Weinstein et al., 2019). These advantages are partly
due to detectree2 being built on a state-of-the-art pre-trained model. While direct comparison
is impossible due to the different test data and the differing tasks (instance detection vs.
segmentation), our method performs comparably to the results of Weinstein et al. (2019), which
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Fig. 3.9 Estimated tree growth and morality at Paracou with an visual example from the remote sensing
data. (A) shows the robust least squares fit for change in height and tree height for Paracou. The dashed
lines indicate three standard deviations either side of the best fit and red points below the lower bound
indicate likely mortality events. (B) illustrates how predictions were overlaid on lidar data, and shows
mortality events clearly visible in the lidar and the RGB imagery. The 2016 imagery is shown on the
left, 2019 on the right. Crown delineations are based on the earlier imagery.
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Fig. 3.10 Inferred mortality and growth relative to tree height across the sites. (A) shows the distribution
of tree heights per site. (B) shows the mortality rates of trees of different heights in each site, and (C)
gives the growth rate of trees split by height bin. Due to biases in tree height measurements that can arise
from differences in lidar scan parameters we advise against a direct comparison of growth and mortality
rates between sites. Uncertainty estimates of mortality and growth were determined by bootstrapping
with 1000 resamples using the boot package in R. Quadratic best fit lines (dashed) have been added to
highlight trends.



68 Tropical crown delineation RGB and Mask R-CNN

reported a tree crown recall of 0.69, a precision of 0.61 and an F1 score of 0.65. Our results did
not match the Mask R-CNN performance reported in Braga et al. (2020) but this study is based
on semi-synthetic images (i.e. constructed by stitching together existing images) of forests and
so is not directly comparable.

3.4.2 Generalisability across sites

There was no obvious relationship between the amount of training data available at a site and
the accuracy attained there. Rather, forest type and tree height distribution seemed to be the key
factors for determining accuracy. The well differentiated forest at Sepilok West and Danum
were the easiest to delineate while the lowest accuracy was in Paracou which has little variation
in the height of the visible canopy. Furthermore, at Paracou it is common to observe crowns
mixing and growing into each other which makes visually separating the crowns challenging.
This in turn is down to soil type and other biogeographic factors.

We found that the accuracy dropped when transferring a model trained on one forest type
to predict on another. However, we found that detectree2 can be quickly trained to perform
well on new areas of forest using around 10 images (each ~1 ha in scale) with all visible tree
crowns manually delineated. This manual delineation represents approximately 4 hours work.
The best performing models were those that were exposed to training data from all the sites
and then “honed” with a limited number of training iterations on the site to be predicted on.
This suggests that our trained models (provided freely with the Python package6) could be
transferred to a new site with very little manual data or training iterations.

We note that the manual delineations were done by different people focusing on different
parts of the sites. There was no clear effect of different delineators on the results but this would
be somewhat confounded with site differences.

3.4.3 Application: Growth and mortality rates

Tall trees store the majority of forest carbon and dominate many important forest nutrient cycles.
However, they are rare and therefore poorly represented in traditional field inventories (Hurst
et al., 2011) which makes estimating their growth and mortality rates particularly challenging
(Coomes et al., 2003; Iida et al., 2014; Muller-Landau et al., 2006; Richardson et al., 2009).
Tall trees are also particularly sensitive to the effects of climate change, such as increased wind
speeds and drought (Gora and Esquivel-Muelbert, 2021), and as such, tracking their dynamics
over time is increasingly important. Recent remote sensing studies are bringing new insights
into disturbance patterns by mapping the gaps left in the forest canopy after a tree (or multiple

6See https://github.com/PatBall1/Detectree2

https://github.com/PatBall1/Detectree2
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trees or branches) have fallen (Araujo et al., 2021; Cushman et al., 2022; Huertas et al., 2022).
Tracking individual trees over time instead of gaps will make it easier to interpret our results
in an ecological context and also to compare the results more directly to the available field
inventory data.

Across all sites taller trees had higher mortality rates and lower growth rates. This aligns
with large scale analyses of field-based studies (Iida et al., 2014). The apparent higher growth
and mortality rates in French Guiana as compared to the sites in Malaysia was potentially a
result of biases introduced to the variation in scan parameters (flight height, pulse density,
time of year etc.) and so the values should not be directly compared across sites. Inventory
data shows that mean DBH growth for trees at Paracou was 1.2 mm/yr (Wagner et al., 2010)
compared to 0.9 mm/yr in Sepilok East, 1.1 mm/yr in Sepilok West and 0.5 mm/yr in Danum
(Ordway et al., 2022; Piponiot et al., 2022). We note that these inventory measured DBH
growth rates may not directly correlate to the height growth measured in this study. Another
caveat is that we defined mortality as a drop in height of more than a statistically determined
threshold. We do not verify directly that the tree has died, although it is likely that it has
snapped or uprooted. Further analysis would help to understand the discrepancy in observed
height change at Paracou in comparison to the other sites but is not the focus of the current
study. Nevertheless, we believe this example application demonstrates the utility of detectree2
in expanding the sample of trees under observation.

3.4.4 Future methodological developments and applications

Detectree2 performs impressively when delineating tall trees but it fails to delineate a signif-
icant proportion of trees (31%-46% of visible crowns and no sub-canopy crowns). There is
considerable scope to increase the quantity and variety of training data by labelling more trees
by hand. An approach to compensate for shadowed regions may also support the detection of
trees otherwise obscured by their neighbours.

The fact that detectree2 can be quickly trained to perform well on a new type of forest
and imagery demonstrates that it is a useful tool for forest management. Many conservation
or restoration projects have access to low-cost imagery from drones or satellites. Detectree2
would allow them to quickly quantify and track the number and size distribution of trees
across an entire landscape. In combination with other remote sensing data sources, this could
allow for improved carbon stock and dynamics estimation. Estimating carbon stocks in forests
has traditionally been done using area-based methods which discard considerable granular
information at the individual tree level (Coomes et al., 2017).

We focused on aerial RGB imagery which is the cheapest and most widely available imaging
source for tropical forests. We also benefited from the variety of pre-trained models that come
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with this data type. However, different data sources may provide additional information that
would help to discern differences between crowns. In particular, multi-spectral imagery that
typically includes additional bands in the near-infrared is commonly used to study differences
between trees due to the optical properties of vegetation (Knipling, 1970). Alternatively, the
canopy surface (a raster expressing the height of the canopy) is commonly used in traditional
segmentation techniques (e.g. watershed algorithms) and is produced with photogrammetry
as a step in generating an orthomosaic. Including this as a layer would add an additional
dimension of information that could help to distinguish fine differences in structure. It would
be straightforward to include additional (or different) bands to the detectree2 framework but it
would forego the utility of the pre-trained models. Therefore, it is likely that significantly more
training data and computational resources would be required to train a model (from scratch) to
the desired performance.

Ideally, we could apply this approach to satellite imagery to perform global analyses.
Preliminary tests suggest that detectree2 can accurately delineate trees in RGB imagery at 2 m
resolution (see Section B.8) which is equivalent to modern high-resolution satellite imagery. If
this proves possible it will help answer many long-standing questions in forest ecology as well
as provide an important tool for forest management. A “random resizing” augmentation step
would further help improve generalisability across resolutions and incorporating “small object”
detection features (Tong and Wu, 2022) would improve the sensitivity to shorter trees.

While we studied the delineation of a single class (tree), detectree2 can be trained and
make predictions on multiple classes. A next step will be to test the ability of the network
to identify and map species, and to assess liana infestation occurrence in crowns. Previously,
hyperspectral data has been employed to address this problem but with limited success due
to the phylogenetic and spectral diversity of lianas and relatively low spatial resolution of
hyperspectral imagery (Grabska et al., 2020; Wessel et al., 2018). The availablility of detectree2
as an open-source Python package means other research groups can test its efficacy on their
own research questions.
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Harnessing temporal and spectral
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Abstract

To understand how tropical rainforests will adapt to climate change and the extent to which
their diversity imparts resilience, precise, taxonomically-informed monitoring of individual
trees is required. However, the density, diversity and complexity of tropical rainforests present
considerable challenges to remote mapping and traditional field-based approaches are limited
in scale. This study introduces a new approach for mapping tree species using a convolutional
neural network method (detectree2) to segment tree-crowns from aerial photographs and Linear
Discriminant Analysis (LDA) to identify species from hyperspectral data (416 - 2500 nm). We
build upon previous work in two ways. Firstly, we aimed to improve the accuracy of crown
delineations by surveying the same patch of forest with UAV-RGB ten times over six months
and fusing multi-date information on the location and shape of individual trees. Secondly, we
extended the scope of species identification to include more species than has been previously
attempted. We trained and tested our algorithms on subsets of a database of 3600 ground
truth, labelled tree crown polygons representing 250 species in French Guiana that we had
delineated by hand and field verified. We assessed how well our segmentation approach could
locate and delineate individual tree crowns and how well our classification approach predicted
the species of those crowns. We extracted information on waveband importance for species
separation from our classification model. Based on an existing phylogeny of the trees in our
dataset, we tested for phylogenetic signal across the hyperspectral bands and probed how
species were being classified by comparing the phylogenetic signal to the importance of bands
for separating species. The accuracy of delineations increased gradually as additional dates
of tree crown maps were stacked and combined. Stacking increased the F1-score from 0.69
to 0.78. The overall (microaverage) F1-score for species classification was 0.76. A total of
64 species were predicted from the hyperspectral data with F1-score > 0.7. The performance
for classifying a species increased with the number of crowns in the database available for
that species: just 10 training crowns were needed to achieve an expected F1-score = 0.7 for
crown level classification. With this new approach, we assessed that 70% of tree crown area
at landscape scale was accurately mapped. The most important wavebands for discriminating
species were dominant and narrowly clumped on the NIR side of the red edge region (748 -
775 nm). While most wavebands showed some phylogenetic signal, waveband importance



74 Temporal and spectral dimensionality to map and identify species of individual trees

for species classification was negatively correlated with phylogenetic signal. Our integrated
approach makes a significant contribution to the ongoing development of efficient and accurate
methodologies for mapping canopy tree species in tropical forests, providing a framework for
mapping trees in diverse tropical forests that is far more comprehensive than its predecessors.

4.1 Introduction

Moist tropical forests are renowned for their species richness. The ability to map tree species us-
ing remote sensing data is of value to ecologists and in other disciplines (Fassnacht et al., 2016).
It enables real-time assessment and monitoring of biodiversity and species compositions (Shang
and Chisholm, 2014) and can provide insights into habitats (Jansson and Angelstam, 1999;
Kennedy and Southwood, 1984; Pausas et al., 1997), tree community dynamics and ecosystem
function (Chambers et al., 2013; van Ewijk et al., 2014). Such data can support conservation
efforts, by locating species of interest (Baldeck et al., 2015), improving estimates of stored
carbon (Bredin et al., 2020), tracking invasive species (Chance et al., 2016; Sabat-Tomala et al.,
2020), helping to manage water stress (Asner et al., 2004; Watt et al., 2021) and the spread
of pests and disease (Chan et al., 2021; Liu et al., 2021), and improving our understanding
of migration patterns (McGrath et al., 2009). Maps of canopy trees are also valuable for as-
sessing the extent to which the extraordinary diversity of tropical forests influences ecosystem
processes (Reichstein et al., 2013), including resilience to climate change (Corlett, 2011; Malhi
et al., 2008) through the presence of species with varied climatic tolerances (Lewis et al., 2009).
However, although it is now firmly established that diversity can promote ecosystem stabil-
ity (Loreau and de Mazancourt, 2013), it remains unclear whether such diversity is necessary,
because of functional redundancy among species (Biggs et al., 2020). Hence, an integrative
understanding of the distribution of tree species diversity is vital in understanding the impacts of
anthropogenic change and crafting effective strategies for the sustainable management of these
globally significant ecosystems (Goetz et al., 2009). From a commercial standpoint, remote
sensing of tree species can improve the speed, scope and precision of forestry inventories (Lay-
bros et al., 2020; van Aardt and Wynne, 2007) which aid in calculating available resources
and planning for sustainable harvests (Vauhkonen et al., 2014). Together, these insights can
support evidence based policy for sustainable forest management, balancing human activity
and ecological preservation (FAO, 2020).

Mapping individual tree crowns and identifying their species at large scale in diverse and
dense tropical forests presents a significant challenge (Asner and Martin, 2011), requiring
accurate delineation of tree crowns and classification of pixels within those crowns. The first
step of locating and delineating individual tree crowns in densely packed tropical forests from
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above is difficult as crowns can interweave in complex ways. Remote sensing of individual
trees has mostly focused on airborne lidar data, but this is most successful for temperate and
boreal forests (Dalponte and Coomes, 2016; Hastings et al., 2020) while complex tropical
canopies have presented a greater challenge (Aubry-Kientz et al., 2019). RGB photographs
offer colour and texture information to distinguish trees, even if they are structurally similar,
but agreement on tree location and crown shape between human analysts can be variable
(see Section C.1). Mask R-CNN (He et al., 2017) based approaches have shown promise
in their ability to harness the colour and texture information of RGB images to precisely
separate irregular edges of neighbouring tree crowns (Ball et al., 2023; Gan et al., 2023).
However, differences in illumination (resulting in variably shadowed trees), the sway of trees
and branches, phenological discrepancies and irregularities in the orthomosaicking process
often reveal inconsistent arrangement/delineation of crowns for aerial imagery across dates.
Methods that can draw on consensus between datasets and are tested against a robust ground
truth are required.

Assigning species labels to the tree crowns is also challenging due to high species diversity,
the rarity of the majority of species and the prevalence of common photosynthetic pigments.
Tropical forests have approximately log-normal species abundance distributions: a few species
are common, while most are represented by only a few individuals per hectare. Indeed, a
pan-Amazonian study based on 640,000 trees (DBH ≥ 10 cm) measured in 1100 ha of forest
plots, 36 % of species were modelled to have a population size of fewer than 1000 individuals
across the whole of the Amazon, while 1.4 % of species were estimated to account for half of
all trees (ter Steege et al., 2013). This skewed distribution presents challenges for biodiversity
conservation efforts, as it means that many species are always at risk of extinction due to their
small populations. It also complicates efforts to identify and study individual tree species
using remote sensing techniques, as the large number of rare species can be difficult to reliably
detect and classify. While there is vast species diversity, the presence of chlorophyll and
other photosynthetic pigments is ubiquitous across trees. This further complicates remote
species identification, as distinguishing between individual species based on their pigmentation
alone is not feasible. Closely related species often share certain chemical, physiological and
morphological characteristics that can influence their spectral properties (Cavender-Bares et al.,
2016; Meireles et al., 2020). For instance, the leaf structure and chemical properties (e.g.
concentrations of chlorophyll and cellulose) can vary between families which in turn can affect
their spectral properties (Serbin et al., 2016). However, there can still be considerable variability
in the spectral properties of plants within the same family due to differences at the genus and
species-level, as well as due to environmental factors (like soil type, water availability, and
light exposure) and plant health status or phenological stage (Ollinger, 2011). So, while it is
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possible that members of the same plant family might exhibit some similarities in their spectral
properties, these are not definitive, and a comprehensive classification of plant species based
on spectral data would likely need to take into account more specific characteristics and use
sophisticated machine learning algorithms to capture these complex patterns (Fassnacht et al.,
2016).

Hyperspectral remote sensing (imaging spectroscopy) is often applied to mapping tree
species in forests (Fassnacht et al., 2016; Ghiyamat and Shafri, 2010). The spectral properties
of plants are influenced by numerous factors, including their evolved biochemical and structural
characteristics (Meireles et al., 2020; Ollinger, 2011; Ustin, 2013; Ustin et al., 2004). Many
studies have shown that subtle differences in spectral reflectance arising from these biophysical
differences can be detected in hyperspectral data, allowing species to be mapped and their
health monitored in low diversity (often temperate) systems (Fassnacht et al., 2016). However,
distinguishing species in diverse tropical forests has proven more challenging; Clark et al.
(2005) used hyperspectral data from the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) to differentiate seven species in a tropical rainforest in Costa Rica, paving the way
for further research in this domain. Féret and Asner (2013) were able to distinguish 17 species
in the lowland humid tropical forest of Hawaii. Laybros et al. (2020, 2019) showed that a
classification rate of around 80% was achievable when classifying within a pool of 20 well
represented species in an Amazonian forest in French Guiana. Greater scope has been shown
with proximate, leaf level hyperspectral species identification (e.g. 46 species at a tropical
wetland in Jamaica (Prospere et al., 2014)) highlighting the potential for a broader scope with
aerial hyperspectral data at the crown level. However, leaf traits are incorporated into spectra
in complex ways (Féret and Asner, 2011; Jacquemoud and Baret, 1990; Ollinger, 2011) and
multiple traits can overlap in a given spectral region (Curran, 1989). This is further complicated
when spectra are measured from a distance as signals of relevant traits are confounded with
structural characteristics. Radiative transfer models have shown that signals from canopy
structure can dominate over the leaf optical properties and biochemical properties of the
vegetation (Béland and Kobayashi, 2024; Knyazikhin et al., 2013). However, elsewhere they
have been used to show that incorporating the fraction of non-photosynthetic vegetation as leaf
brown pigments rather than as woody material gives the better match between simulated and
observed canopy spectra (Ebengo et al., 2021). The degree to which these uncertainties place
limits on the predictability of tree species from hyperspectral data is as yet unclear. Structural
properties such as leaf density, clumping and angle distribution, as well as leaf biochemistry,
may, to some extent, be considered functions of species. Rather than attempt to reconstruct
a physical representation of the canopy, we test the separability of species through a data
driven analysis of the spectra at a single site and point in time. Unpicking the spectral signals
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in relation to the evolved traits and how species relate to each other is a key challenge in
progressing towards robust, transferable remote identification of species in diverse tropical
forests (Schweiger et al., 2021).

Applying computer vision approaches in a way that combines information across time may
lead to improved detection and segmentation of canopy trees (Martin et al., 2018; Shamaoma
et al., 2023). While RGB data lack the spectral resolution of hyperspectral data, its spatial
resolution is typically superior, especially when acquired from a drone that can fly close
above the forest canopy. This means that textural information can be observed and outlines of
individual tree crowns can be distinguished precisely. The relatively low cost of the sensors and
UAV systems also means that regular surveys of the same area become feasible. Differences
in the canopy (including phenological states), atmosphere, and illumination can mean that
predicted crown maps vary considerably across dates. To address this temporal variability,
we implemented a consensus-fusion approach to combine tree crown polygons detected on
different dates. The tree crown polygons from individual dates were spatially matched and
the vertices of their parameters averaged, generating output crowns maps that represented the
inter-date consensus on the location and shape of tree crowns. Our hope is that this approach
would help to mitigate the effects of temporal fluctuations, enhancing the consistency and
accuracy of crown delineation.

In this study, we propose a novel approach to rainforest tree mapping that (1) generates
precise delineation of individual tree crowns and (2) classifies the species of each tree. The
automatic delineation of individual tree crowns was performed with detectree2, a tool based on
the Mask R-CNN architecture (Ball et al., 2023; He et al., 2017). For the first time, we combine
delineated tree maps generated from repeated airborne surveys and analyse whether identifying
consensus across stacked tree-crown maps improves segmentation accuracy. Our species
identification model was trained and tested using a database of 4,000 manually delineated tree
crowns, each verified through several field missions. This dataset, in combination with our
novel approach, sets the stage for a more accurate and inclusive tree mapping and species
classification system. This two-step approach leverages the strengths of both technologies -
the spatial resolution of UAV RGB imagery and the spectral resolution of hyperspectral data -
achieving a high level of accuracy in tropical forest mapping.

We address the following research questions:

1. Can the accuracy of tree crown maps from aerial imagery be improved by combining
information from segmentations at different dates to build a consensus-based map?

2. Which type of machine learning classifier can most accurately predict the species of tree
crowns from hyperspectral data?
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3. How many mapped individuals of a given species are needed to achieve a ‘good’ classifi-
cation accuracy?

4. Which wavebands are the most important for determining species?

5. Do spectra observed within tree crowns exhibit phylogenetic signal?

6. Are the most important wavebands for species classification those that have the strongest
phylogenetic signal?

7. Are closely related species more often confused in their classification than distantly
related species?

Through a novel integration of ground validated manual tree crown generation and machine
learning algorithms, we developed a robust and accurate methodology to delineate tree crowns
and predict their species. Our methodology combines traditional fieldwork, advanced machine
learning techniques, and high-resolution remote sensing data, offering an innovative approach
to species-level forest mapping.

4.2 Materials and Methods

4.2.1 Study site and overview of methods

The research was conducted in forests at Paracou Field Station, French Guiana (5°16'N 52
°55'W) (see Fig. 3.2). The lowland tropical rainforests grow mostly on shallow ferralitic soils
underlain by a variably transformed loamy saprolite (Gourlet-Fleury et al., 2004). The mean
annual rainfall is approximately 3200 mm with a three month dry season from mid-August
to mid-November where rainfall is typically less than 50 mm per month (Bonal et al., 2008;
Wagner et al., 2011). The field station has 27 permanent plots ranging in size from 0.5 ha to 25
ha (see Fig. 3.2) which contain approximately 76,000 trees of DBH ≥ 10 cm consisting of over
800 different species (Gourlet-Fleury et al., 2004). In these plots, inventories are taken every
1-5 years with the species, precise geographic location and DBH of each trunk recorded. The
ten most common species account for just over 30% of the inventory’s individuals. 90% of the
species present have been placed within a time calibrated phylogeny by Baraloto et al. (2012).
Full details of the site are given in Section 3.2.1.

Our study uses a combination of remote sensing data from a UAV-mounted camera and a
plane-mounted imaging spectrometer (Table 4.1). These data were co-registered to a LiDAR-
derived Canopy Height Model (CHM) with affine transformations based on matched manual
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control points, ensuring precise alignment. A CNN approach to UAV-RGB data recorded
with 10 surveys over 6 months was used to locate and delineate the individual tree crowns
present in the landscape. Hyperspectral imagery was used to classify the species of the crowns.
The imaging spectrometer measures reflected light in a broad range of wavelengths across
the electromagnetic spectrum, often with hundreds of bands, each corresponding to a narrow
wavelength range (Ustin et al., 2004). In this study, the measured wavelengths were in the range
400-2500 nm and there were 400 spectral bands. Each tree species absorbs and reflects light in
a specific way across these wavelengths, generating a spectral ‘signature’ that can be used to
distinguish between species (see Fig. 4.5). In the context of tropical forests, the application of
hyperspectral data is particularly advantageous due to the high species diversity and variability
in physical (including crown structure) and chemical characteristics among trees.

The predictions were evaluated against strict, unseen test sets of manual tree crowns that
were not exposed to the algorithms during training, providing a robust assessment of model
accuracies.

4.2.2 Remote sensing data acquisition and co-registration

Table 4.1 Remote sensing data sources used in the study. The exact location of the sites is described in
Section 4.2.1. Resolution is given as ground resolution for the RGB orthomosaic and as the processed
CHM resolution for the lidar scans. Altitude is given as height above canopy.

Scan date(s) Modality Resolution Altitude Spectral range Sensor

23-Oct-2020—06-Apr-2021 RGB 5 cm 70 m 421-617 nm (3 bands) 1" CMOS (Phantom4 Pro)
19-Sep-2016 Hyperspectral 1 m 900 m 416-992 nm (160 channels) Hyspex VNIR-1600
19-Sep-2016 Hyperspectral 2 m 900 m 930-2500 nm (288 channels) Hyspex SWIR-384
15-Nov-2019 LiDAR 0.5 m (CHM) 800 m 1550 nm (active) RIEGL LMS-Q780

UAVs (DJI Phantom 4 Advanced and DJI P4 Multispectral) were employed to collect high-
resolution RGB imagery, with a scan approximately every three weeks over a 6-month period
(10 surveys in total) of the region shown in Fig. 3.2. We used an earlier airborne LiDAR dataset
to assist in the positioning and alignment of data, providing a baseline layer for integrating and
interpreting other remote sensing data.

The RGB orthomosaics were compiled from the raw geotagged UAV photographs using
structure from motion (SfM) photogrammetry in AgiSoft Metashape. The software aligns
overlapping images to produce a sparse point cloud, refines it into a dense point cloud, and sub-
sequently constructs a 3D mesh. This mesh, integrated with original photo textures, facilitates
the creation of a Digital Elevation Model (DEM). The DEM, combined with the aligned images,
allows for the generation of an orthomosaic, a georeferenced image free from perspective
distortions. Supplying images across several dates in single blocks to the first steps of the SfM
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Fig. 4.1 Simplified schematic of the crown mapping approach showing input data and the intermediate
steps to producing a labelled tree crown map. In the centre is an illustration of the process of temporal
polygon fusion. The top image shows the overlapping tree crown polygons predicted over multiple
dates. Where polygons have a high degree of overlap, each will still have a slightly different shape due
to differences in the RGB orthomosaics through time. The bottom image depicts the polygons after the
fusion process, effectively averaging the positions of the vertices of the original polygons and discarding
those without good consensus through time. The averaging is weighted by the confidence score of the
input polygons.
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processing improves spatio-temporal coherency (Feurer and Vinatier, 2018b). Following this
approach, instead of processing each date separately, five date blocks were supplied for the
alignment and initial sparse point cloud formation establishing a common geometry between
dates. The dates were then separated for the dense matching steps and final orthomosaic
generation.

Hyperspectral pre-processing is described in detail by Laybros et al. (2020, 2019) and
summarised here. Two sensors mounted to an aircraft side-by-side were used to cover the full
416-2500 nm wavelength (see Table 4.1). To merge the data from the two hyperspectral sensors
without degrading the spatial resolution of the VNIR imagery, we resampled the SWIR imagery
to 1 m using nearest-neighbour interpolation. Images were orthorectified and georeferenced
at 1 m spatial resolution with the PARGE software using the canopy Digital Surface Model
produced from the LiDAR point cloud. Bands in the SWIR with a low signal to noise ratio
due to water absorption were removed leaving 378 of the 448 total bands (see Fig. 4.5).
Per pixel illumination was calculated using the shadow detection method of Schläpfer et al.
(2018). Spectral information used to train and make predictions with the species classifiers was
extracted from the overlapping flight lines rather than from a mosaic. This allows for valuable
information to be retained as multiple views of individual crowns within the overlapping flight
lines which has been shown to improve the classification performance (Laybros et al., 2019).
Reflectance spectrum normalization was applied to each pixel. The normalization consisted
of dividing the reflectance value of each band by the spectrum of a pixel, by the sum of all
reflectance values, which has been shown to improve tree species classification (Dalponte et al.,
2014). Some machine learning classifiers are sensitive to the scale in which each feature (band
in this case) is supplied with features that have a higher absolute variability tending to dominate.
To address this we applied the ‘standard’ scaling approach which standardises features by
removing the mean (centering on zero) and scaling to unit variance (see Fig. 4.5).

Accurate co-registration of data from RGB and hyperspectral imagery was important to
ensure spatial alignment. We used the LiDAR-derived Canopy Height Model (CHM) as the
baseline layer, with all other data being registered to it. This choice was due to the CHM’s
stability and precision in representing the physical landscape, providing a solid reference for
co-registration. Eight control points were manually assigned across the different datasets,
using identifiable features within the LiDAR CHM, such as the flux tower, roads and dominant
trees, as primary reference points and an affine transform was applied based on these. This
co-registration process ensured that the crowns represented across the datasets corresponded
to the same geographical location, serving as the foundation for subsequent analysis steps,
including tree crown delineation and species classification.
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4.2.3 Field-derived tree crown database

To train and validate our models we generated a set of hand delineated, ‘ground truth’ crowns
with species labels; this database was built and curated between 2015 and 2023 and validated
over eight field missions in this period. An initial delineation of tree crowns was performed in
QGIS using a combination of RGB, multispectral, hyperspectral, and LiDAR remote sensing
data (see Table 4.1). The LiDAR CHM was used as the foundational base layer on which the
crowns were drawn as it provides the greatest stability and spatial precision for the outlines.
We overlaid the RGB, multispectral and hyperspectral data layers and examined and compared
between them to use as much of the spectral, textural and shape information available to us
as possible. Where the crowns fell within the inventory plots, an initial guess as to which
individual the crown belonged to, based on the location and size of the trunk, was assigned
to the polygon. Two provisional confidence scores were assigned the polygons: (1) a ‘crown
integrity’ score describing the certainty with which the outline defines the complete crown of
a single individual, (2) a ‘trunk match’ score describing how confident we were that a crown
had been correctly assigned to an individual in the inventory. Where there were changes to
the crowns through mortality or branch fall events, the date of change was encoded so that
the crowns could be filtered to match the remote sensing data source that they are paired with.
Subsequent fieldwork further refined and updated the tree crown delineations. By comparing
in situ observations with the remote sensing data, we either matched the identified crowns to
individual trees present in the site inventory (Gourlet-Fleury et al., 2004), or in cases where
crowns were located outside of the known plots, we engaged botanists to assign the appropriate
species. We updated the crown outlines and confidence scores based on the field observations
and noted where there were liana infestations in the crowns. Additional details can be found in
Section 3.2.3.

4.2.4 Automated delineation and fusion of results from repeat surveys

The field-delineated tree crowns were partitioned into a training set and a testing set based
on their geographic location (see Fig. 3.2). The regional partitioning ensured clear spatial
separation between training and testing datasets, thus negating the inflation of reported accuracy
induced by spatial autocorrelative effects providing more reliable and independent assessment
of model performance (see Kattenborn et al., 2022).

We used detectree2, a tool based on the Mask R-CNN deep learning architecture for
automated tree crown delineation (see Chapter 3), which has been shown to outperform another
leading method for tree crown detection (Gan et al., 2023). Detectree2 was trained on the
manual crown delineations and corresponding RGB images from the training dataset (see
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Fig. 3.2). Researchers seeking to map trees in their landscape of interest may have some ground
truth crowns and RGB surveys to train a model on or they may not have training data available.
To reflect this, we tested models trained under different regimes:

1. The first was a ‘base’ model. This was not trained on the UAV RGB imagery and was
just exposed to the plane mounted data and crowns from the range of sites described
in Chapter 3. This meant it had been exposed to the Paracou forest but with a different
sensor, different resolution imagery and four years separation. This pre-existing model is
openly available for anyone to use1.

2. The ‘1 date’ model took the ‘base’ model and further trained the model on just the first
date of the UAV RGB imagery and manual crowns.

3. The ‘5 date’ model took the ‘base’ model and further trained the model on the first five
dates of the UAV RGB imagery and manual crowns.

Comparing the performance of these models provides an idea of what level of accuracy
might be expected for researchers aiming to map their landscape with different amounts of
training data.

Does the fusing of crown maps across dates improve segmentation accuracy? The
trained models were then used to detect and delineate the tree crowns across the entire region
of the UAV RGB scans for all 10 images in the range 23-Oct-2020 to 06-Apr-2021. The RGB
images were first tiled, predicted on and recombined to generate a set of polygons representing
tree crowns from each date (see Chapter 3 for details). Each predicted crown polygon was
associated with a confidence score (0-1) indicating the reliability of each tree crown prediction.
Where spatial overlap between predictions existed (IoU ≥ 0.2), the most confident prediction
was retained and the less confident predictions removed. The predictions at the individual dates
were then combined into ‘fused’ delineations. This aimed to find an inter-date “consensus” on
crown location and shape across dates. The fused sets of crowns went from combining just two
dates up to combining the full ten dates. This was done to determine the marginal benefit of
adding additional dates of data, each of which comes with an associated cost of the survey.

To combine the polygon sets across dates, the individual date polygon sets were first
concatenated into a single set. Each polygon was then compared to every other polygon in the
combined predictions set to identify ‘significant’ matches. A significant match was defined as
another polygon with which the intersection area with the current polygon was at least 75% of
its union area with the current polygon (i.e. IoU ≥ 0.75). Accordingly, in the largest combined
predictions set (10 dates), a single polygon could have a maximum of nine matches (assuming a

1https://github.com/PatBall1/detectree2
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strong agreement across dates) and a minimum of zero matches (where there is no confirmation
of the polygon across any of the other dates).

Where polygons had been assigned to a matched, inter-date group, the group of polygons
was then ‘averaged’ to produce a single, representative polygon. This averaging was performed
by first normalising each matched polygon to have the same number of points on its boundary
(300) and then computing the average location of each corresponding point across polygons.
The confidence scores of the initial predictions were used as weights in the averaging process
so that the most confident predictions had the strongest influence on the resulting shape. If
just one significant match was found, the original polygon was kept as was. An outputted
polygon would be assigned a ‘summed confidence’ (i.e. the sum of each individual polygon
confidence score) to provide an estimate of the reliability of each prediction, taking into account
both the confidence of the original predictions and the degree of agreement between them.
It was also assigned a ‘combination count’ to track how many polygons had been fused to
generate it (and on how many dates the tree crown had been delineated). The resulting set of
averaged polygons provided a spatial-temporal integration of the tree crown predictions, with
each polygon representing the average location and outline of a tree crown across multiple
time points. The full algorithm is available to inspect on GitHub2. The algorithm parameters,
including confidence thresholds, IoU threshold for matching, and number of vertices on a
normalised polygon, were tuned on the training crowns prior to testing on the unseen test
regions - the optimised values are given above.

To evaluate the performance of the segmentation algorithm, we measured the overlap
between predictions and reference crowns. An IoU of an overlapping pair of more than 0.5
was considered a match. This is a standard threshold used in the comparison of tree crown
segmentation algorithms (Aubry-Kientz et al., 2021) that allows for small discrepancies in
alignment and outline. These “true positives” as well as the unmatched predictions (false
positives) and unmatched manual crowns (false negatives) were used to calculate the precision,
recall and F1 score of the predictions.

To determine whether combining tree crown segmentation predictions across dates improves
the segmentation accuracy through consensus building, we assessed the F1-score of each
combination of dates, from each single date prediction to the combination of all ten dates. By
bootstrapping different date combinations we estimated a mean and standard deviation for the
F1-score for each level of inter-date combination (single date through to ten dates).

2https://github.com/PatBall1/detectree2/blob/f996564bfcbaed1ff0ef13a63ea3e62f47252731/detectree2/mo
dels/outputs.py#L439C10-L439C10

https://github.com/PatBall1/detectree2/blob/f996564bfcbaed1ff0ef13a63ea3e62f47252731/detectree2/models/outputs.py#L439C10-L439C10
https://github.com/PatBall1/detectree2/blob/f996564bfcbaed1ff0ef13a63ea3e62f47252731/detectree2/models/outputs.py#L439C10-L439C10
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4.2.5 Tree species classification

Once we had mapped tree crowns as objects in the landscape it was necessary to assign them
a species label. The aim was to train a classifier that could, based on the spectral bands
of the hyperspectral data, classify tree crowns by species. Within the 3600 label crowns in
the database, 178 species had at least two crowns which meant these species could have at
least one crown for training and one crown reserved for independent testing. The remaining
crowns were not selected for training of the models but their proportional representation in the
population was accounted for in the final evaluation of the performance metrics. That allowed
for a representative estimate of the landscape level classification accuracy (as compared to
performance metrics evaluated within a subset of species in the landscape).

Due to the scarcity of data, particularly for the less well represented species, it was necessary
to take a pixel based approach for training and prediction that would then be aggregated for
crown level predictions. Taking a pixel level approach was also likely to improve the spatial
transferability across a landscape which may have different atmospheric and illumination
perturbations. Each pixel was labelled with a class (species) and contained a reflectance value
for each hyperspectral band. Pixels with an illumination of less than 60% were discarded. The
problem was approached as a supervised learning problem so pixels without a class label were
not included in model training.

Whereas the crown delineation required a regional partitioning of crowns between train
and test sets to give a robust estimate of performance, for tree species identification, a species-
stratified crown level partitioning was more suitable. Due to the diversity and mixing of the
forest the average distance between crowns of the same species was large enough to not require
additional spatial constraints that would control for spatial auto-correlation.

Which machine learning classifier has the greatest predictive power? Classifier models
were trained using the hyperspectral data extracted from the delineated tree crowns. In line
with commonly practised methodologies, we evaluated several algorithms such as Multi-Layer
Perceptrons (MLPs), Linear Discriminant Analysis (LDA), Random Forest (RF), Linear SVM,
k-Nearest Neighbours and Logistic Regression due to their widespread implementations and
adaptability. The hyperspectral pixel-data proved challenging to train on, having 378 spectral
bands and spanning 178 species, 101 genera, and 41 families. The dataset exhibits significant
imbalance; for instance, the most populous tree species boasts 55,448 pixels while the least
populated possesses a mere 223. Fig. C.3 offers a histogram of the pixel count by species,
highlighting the problem. While classifiers were ultimately evaluated at crown level accuracy
via pixel-wise majority voting, the scarcity of crown labels required training at the pixel level.
Such an approach, however, encounters pitfalls: adjacent pixels may exhibit local effects that
risk leakaging between training and validation sets when naive cross validation is applied. An
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uninformed stratified split at the pixel level yields classifiers with high pixel-level accuracy
but low crown-level accuracy on unseen data. To counter this, a stratified group k-fold (k=5)
cross-validation strategy was adopted. Here, pixels were grouped by crown and stratified by
training target, ensuring that any singular crown only appeared in either the test or training set,
avoiding the aforementioned issue.

Further complicating matters, the data exhibits significant inter-crown and intra-species
noise. Fig. C.4 depicts the spectral value distribution for the two most expansive tree crowns of
species Pradosia cochlearia, illustrating noteworthy variance. Meanwhile, Fig. C.5 shows the
standard deviation across each spectral band of the top ten species (by pixel frequency) in the
training dataset, alongside the standard deviation spanning all pixels from those species. Note
that these spectra underwent standardized scaling, ensuring unit variance across all pixels.

Models were trained using a group k-fold (k=5) cross validation on training pixels, main-
taining the invariant that pixels from the same crown could appear in either the training or
test fold but not both. Models were also trained on a simple k-fold (k=5) cross-validation, to
test performance of models trained using a naive pixel-wise approach (i.e. would fitting to
local features impact the transferability between crowns). After cross-validation, models were
trained on the full training set and used to predict a species class across the entire landscape.
Crown-level classifications were determined by majority vote of pixels comprising the crown3.
Evaluations were conducted using a held-out test set with crown labels, utilizing the (micro-
average) F1-score for model performance comparisons. The test set contained a random sample
of 20% of crowns for each species except where a species had just four individuals or less, in
which case a single test crown was randomly selected. Additionally, precision, recall, and the
macro-average F1-score were recorded, the latter assisting in gauging performance for less
prevalent classes.

How does classification accuracy depend on number of training crowns? To under-
stand how many individual training crowns from a species were required to achieve a good
classification accuracy we modelled the relationship between F1-score and training crown
number with a beta regression. As scores could take 0 or 1 values, this was done as a Bayesian
zero-and-one-inflated beta regression with the zoib R package (Liu and Kong, 2015; Liu and Li,
2016). We assigned a threshold of F1-score ≥ 0.7 for a ‘good’ performance. At this value we
could be confident that we correctly identify the majority of the individuals of a species present
without assigning trees of a different species a label of that species. This would allow us to
expand our sample in a way that could strengthen the phenological signal without masking

3A more sophisticated approach averaging pixel wise class predictions was tested but this gave almost identical
results to the simpler majority-vote approach
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it with noise (discussed in Chapter 5). The expected minimum number of training crowns
required to achieve this performance was recorded.

Which wavebands are the most important for determining species? To determine
which wavebands were most important for distinguishing species, we selected the best predictive
model (based on test set F1-score) and extracted feature importance in a method suitable for that
model type. In the case of LDA, this was done by extracting the coefficients for each waveband
across all classes. Each coefficient gives the importance of that feature (in this case, wavebands)
for discriminating between classes. A larger absolute value of the coefficient means that the
feature is more significant in differentiating between classes. A coefficient near zero suggests
that the feature does not contribute much to the separation of the classes. The average absolute
coefficient value at each band across classes gave an overall importance value for classification,
aggregating how important each feature is for separating all classes in the dataset.

Do spectra observed within tree crowns exhibit phylogenetic signal? To test for phy-
logenetic signal in the hyperspectral data, we calculated the mean and standard error of the
standardised reflectance for the pixels belonging to each species, and using the time calibrated
phylogeny of Baraloto et al. (2012) and the phytools R package (Revell, 2012), calculated
Pagel’s λ (Pagel, 1999), and Blomberg’s K and significance test (Blomberg et al., 2003) on
each of the bands of the hyperspectral data included in the species classification. Pagel’s λ

and Blomberg’s K are statistical measures that quantify the degree of phylogenetic signal in
continuous trait data. Pagel’s λ measures the extent to which trait evolution follows a Brownian
motion model, scaling from no phylogenetic signal (0) to complete Brownian motion (1).
Blomberg’s K quantifies how the observed trait variance among species deviates from what
would be expected under a Brownian motion model. A K value greater than 1 suggests that
closely related species are more similar than would be expected under a Brownian motion
model of trait evolution, a K value less than 1 suggests less similarity among related species
than expected under a Brownian motion model of trait evolution.

Are the most important wavebands for species classification those that have the strongest
phylogenetic signal? We tested the correlation (Spearman’s rank ρ) between the strength of
the phylogenetic signal (λ and K) of each spectral band to the feature importance values of
each band. This was to test whether those bands that were helpful in discriminating species
also contained a stronger phylogenetic signal.

Are closely related species more often confused in their classification than distantly
related species? To test whether more closely related species were more likely to be confused
with one another than distantly related species we tested the correlation between pairwise
phylogenetic distance (as Myr of independent evolution between pairs of plant taxa as provided
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in the time calibrated phylogeny of Baraloto et al., 2012) and pairwise mis-classification rate.
This was done with the rank coefficient as the distributions were highly non-normal.

4.3 Results

4.3.1 Diversity of Paracou’s canopy

We labelled crowns of 3,539 individuals to species-level. The dataset comprised 250 unique
species, 131 genera and 45 families. We removed 72 of these species from subsequent analyses
because they were only encountered once in our survey, so could not be included in the
classifier training and testing (see Fig. 4.2). The 72 species represented just 2% of the crowns
we recorded. The filtering process left 178 species for further analysis.

4.3.2 Tree crown segmentation

Does the fusing of crown maps improve segmentation accuracy? The accuracy of the tree
crown segmentation was improved by combining multiple dates of tree crown segmentation
predictions and retaining crowns that had good confidence and agreement between dates (see
Fig. 4.3). We compared the accuracy of segmentation from using a single time step and
multiple time steps with an unseen test set of 169 test crowns across two spatially separate
test zones. The accuracy of delineations increased as more dates were combined. The best
performing model overall was the one trained on five date’s worth of imagery. The accuracy of
its delineation was boosted significantly by combining information from different time steps
from mean F1-score of 0.68 for a single date prediction, to a peak at the combination of nine
time steps with a mean F1-score of 0.78. In terms of total crown area, approximately 86%
of the test region had well located and delineated crowns (see Fig. 4.4). Accuracy tended to
increase with tree crown area.

The ‘base’ model and the model trained on additional single date of UAV data had a
comparable performance at a single date prediction and combinations of less than seven dates
(see Fig. 4.3). However, after combining seven dates, the combined delineations of the ‘base’
model became substantially better, surpassing the single time step prediction accuracy of
the model trained on five dates. The model trained on a single time step failed to improve
in accuracy by combining dates to the same degree as the other two models, suggesting it
became overfitted to the limited available data. The ‘base’ model was trained on a range of
non-UAV RGB imagery (see Chapter 3) without the additional focused training on UAV data;
this seemingly led to better temporal transferability than was achieved with the additional
focused training on just a single date.
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Fig. 4.2 Abundance of species recorded in the field mapped onto the phylogeny of Baraloto et al. (2012).
Bars represent the total number of individuals sampled in the field. The legend is arranged in the order
families appear on the tree (anti-clockwise from 3 o’clock).
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Fig. 4.3 The performance of the tree crown delineations with the number of individual date crown maps
that were combined to form the output ‘consensus’ map. Researchers may or may not have training
crowns available and a varying number of RGB surveys. To reflect this we tested three models trained
under different data regimes: (1) the ‘base’ which was freely available online (trained on different
crowns and imagery) (2) the ‘1 date model’ - the base model then trained on manual crowns with a
single date of RGB imagery; (3) the ‘5 date model’ - the base model then trained on manual crowns
with five UAV-RGB surveys of the same location. The mean and standard deviation of the F1-score was
calculated with bootstrapping. Note that the 10 date combination could not be bootstrapped as there was
only a single combination of dates possible.
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Fig. 4.4 Predictions and ground truth crowns in the unseen test regions. The reference set of crowns
are shown with black border and their fill colour depends on whether a crown was matched (green) or
unmatched (light grey) with a prediction crown. The predictions that match with a reference crown have
a green border and those that did not match a reference crown have a blue border. A match was granted
in the case that a reference crown and a prediction crown had IoU ≥ 0.5.

4.3.3 Species classification

Which type of machine learning classifier can most accurately predict the species of tree
crowns from hyperspectral data? The LDA classifier performed best at classifying the
species of test set of tree crowns from their hyperspectral signal (micro average F1- score =
0.76; see Table 4.2). Of the 178 species included, 64 of the species (36%) were classified
with an F1-score of over 0.7. The more flexible MLP and SVM classifier failed to match the
performance of the LDA classifier, highlighting that the LDA’s approach to separating the
classes led to more robust transferability between crowns. Furthermore, the LDA classifier
took 20 seconds to train whereas the MLP and SVM took several hours.

As a percentage of total crown area of the test set, about 81% was assigned with the
correct species. By combining the percentage of the total crown area that was well located
and delineated (86%) and the percentage of the total crown area that was assigned the correct
species (81%), we estimate conservatively (given that incorrect areas of each step are more
likely to coincide than not) that 70% of the landscape’s crown area was mapped correctly. For
reference, the crowns of the top 20 most abundant species make up less than 60% of the total
crown area of the reference dataset.

How many mapped individuals of a given species are needed to achieve a ‘good’ clas-
sification accuracy? We distinguished 64 species with an F1-score of at least 0.7, which is
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Fig. 4.5 The observed spectrum of five common species which together comprise 31% of the total
crowns in this study. The median line of pixels values is plotted and the IQR is shaded to show spread. (a)
Shows the reflectance spectrum where pixels have been normalised by dividing the reflectance intensity
by the summed reflectance over all bands. (b) The mean value is subtracted from the standardised
reflectance, and the resulting value is divided by the standard deviation for each band across valid tree
crown pixels, so that all bands are shown on the same scale. The plots illustrate how species might
be identified from spectral information (spectral signatures). Shadowed pixels were removed prior
to standardisation. The two gaps in the SWIR region are the result of removing bands influenced by
air humidity. A grey band at 748 nm to 775 nm shows the spectral region in which bands were most
important for classification.
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Table 4.2 The accuracy statistics for the classification models based on the unseen test set of crowns
(across 178 species).

Classifier Precision Recall F1-score (micro) F1-score (macro)

LDA 0.74 0.75 0.75 0.52
Logistic 0.72 0.74 0.73 0.41
LinearSVM 0.67 0.70 0.70 0.35
MLP 0.64 0.70 0.70 0.34
QDA 0.55 0.58 0.58 0.26
RandomForest 0.44 0.42 0.42 0.13
kNN 0.33 0.37 0.37 0.08

a more species than previous studies that do not cover more than 20 species (Laybros et al.,
2020, 2019). The accuracy of classification increased with the number of training crowns in the
class (see Fig. 4.6) in agreement with similar patterns observed by Baldeck and Asner (2014)
and Féret and Asner (2013). There was a sharp increase between 1 and 10 training crowns,
after which the performance improved more gradually. Species with at least 10 training crowns
could reasonably be expected to be classified with an F1-score of 0.7.

Which wavebands are important for determining species? Eight bands between 748
and 775 nm, right on the edge of the “red edge” transition between the red and near-infrared
ranges, dominated in terms of relative feature importance for separating species (see Fig. 4.8).
The next most important region was 640-660 nm which fell in the red part of the visible
spectrum. The 560-575 nm (green), 1630-1680 nm (SWIR) and 1000-1100 nm (NIR) regions
were also relatively important for discriminating between the species.

Do spectra observed within tree crowns exhibit phylogenetic signal? Most standardised
and normalised bands showed a statistically significant phylogenetic signal (p ≤ 0.05; see
Fig. 4.8). Out of a total of 378, Pagel’s λ test gave 310 significant bands while Blomberg’s K
test gave 239 (whereas one would expect 19 significant bands by random chance).

Are the most important wavebands for species classification those that have the strongest
phylogenetic signal? From inspecting Fig. 4.8, there was no obvious relationship between fea-
ture importance and phylogenetic signal of the bands. However, both λ (ρ =−0.14, p = 0.005)
and K (ρ =−0.16, p = 0.001) had a statistically significant negative correlation with feature
importance suggesting that the more phylogenetic signal in a band the less helpful it is to
discriminating between species.

Are closely related species more often confused in their classification than distantly
related species? By comparing phylogenetic distances between pairs of species with their
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Fig. 4.6 Classifier performance for individual classes in relation to the number of training crowns in the
class. Each dot represents the F1-score for the classification of an individual species. A zero-and-one
inflated beta regression was performed to find the expected F1-score by number of classes (the black
dashed line). Dots are slightly transparent so where they appear darker there are several overlapping
species with that score. This is common with low numbers of training crowns as there are fewer discrete
scores that can be attained. The dotted line at x=10 shows the minimum number of training crowns
required before an expected classification performance of F1-score = 0.7 is acquired for a species.
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Fig. 4.7 A portion of the finalised crown map overlaid on three selected bands of the PCA projection of
the HSI. The PCA projection of the HSI is purely a means to visualise the hyperspectral data and was
not used at any stage of the analysis. Crowns identified are outlined in black and labelled with predicted
species. The black squares are forest plots.
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Fig. 4.8 The relative feature importance (bars) and phylogenetic signal (points) of each band used in
the classifications. The blue circles indicate that the phylogenetic signal is statistically significant (at
p ≤ 0.05 ) while orange circles show values that are not statistically significant.
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pair-wise mis-classification rates, we determined that the more closely related the species the
more likely they were to be confused with one another in the classification (ρ = −0.0437,
p = 0.0008). The confusion matrix of the species is given in Fig. 4.9. Note where confusion
between species occurs within genera.

4.4 Discussion

Mapping tropical rainforest canopy species is essential for gaining a granular understanding
of large-scale ecological processes. We have extended the scope and reliability of species
identification from aerial hyperspectral data in diverse tropical forests, surpassing prior levels
of identification accuracy for a far greater variety of species. Previous studies have managed
to map around 20 species with accuracy (Féret and Asner, 2013; Garzon-Lopez and Lasso,
2020; Laybros et al., 2019) with greater scope in diverse tropical forest species classification
only coming from direct leaf spectroscopy (Harrison et al., 2018; Prospere et al., 2014). Since
tropical forests typically contain several hundred species per hectare (Duque et al., 2017; Lee
et al., 2002), of which around 30%-60% make it to the canopy (Bohlman, 2015), many of the
crowns have been left unidentified. By extending this number to aim to map comprehensively
(178 species with 64 species F1 > 0.7) we get much closer to complete landscape mapping of
upper canopy trees. In our study, the top 20 species covered less than 60% of the total crown
area. Assuming perfect segmentation and classification accuracy, this would be the upper limit
of accuracy (by area) that could be achieved at a landscape scale if only those 20 species were
included in the mapping process. In comparison, by expanding the pool of species, we were
able to accurately map over 70% of the total crown area of the landscape. This more complete
coverage is not the result of more sophisticated species classification algorithms, as we found
that the well-established LDA approach transferred better between crowns than more flexible
methods (SVM, MLP; in agreement with Féret and Asner, 2013). Instead, improvements
were achieved by (1) creating a large reference database of labelled geo-located crowns; (2)
improving training/testing datasets by careful mapping and identification of trees in the field; (3)
high-quality hyperspectral imagery that accurately co-aligned with tree crown maps, allowing
species to be distinguished from upper red edge bands; (4) improved methods for segmenting
tree crowns, which is vital for mapping across landscapes. We discuss these improvements,
the fundamental basis for species identification based on knowledge of the evolution of plant
physiology and morphology, then consider the obstacles to achieving affordable, easy-to-use
and transferable approaches to tree species identification.

Abundant high quality field data. The field dataset was developed, curated and ground
validated over a number of years. The careful mapping of what was observed from above
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Fig. 4.9 Normalised confusion matrix for predictions on the test set crowns. The families are ordered
by the number of species included in the study that they contain. Deeper blue values show higher
proportions (closer to 1) and the faint colours show proportions closer to 0.
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to the reality on the ground was labour intensive but the resulting database of 3600 crowns
provided a robust basis upon which this study could be built. Without substantial, high quality
ground datasets, remote sensing is limited in the inferences is it able to make (Chave et al.,
2019; Davies et al., 2021). Despite this, there are few studies that provide benchmark data upon
which tropical tree species mapping approaches can be tested (Laliberté et al., 2020).

The importance of high-quality hyperspectral imagery. Aerial hyperspectral data cap-
tures spectral intensities across hundreds of contiguous, narrow wavelengths, allowing signals
of biochemical and morphological properties in foliage, such as chlorophyll, water content
and leaf structure to be observed (Clark and Roberts, 2012). This depth of information is
indispensable for the remote identification of species, particularly in diverse tropical forests
where conventional, broader band multispectral imagery falls short (Zhang et al., 2006). The
hyperspectral images used in this study were collected close to nadir, ensuring minimal dis-
tortion and noise. Additionally, these images were co-aligned with ground-truthed tree crown
maps, thereby significantly enhancing the reliability and precision of species identification.
Through this approach we identified the narrow upper red edge band range of 748 to 775 nm as
by far the most important region for discriminating species ( Fig. 4.8).

Improved segmentation of tree crowns. The emergence of CNN methods has allowed for
considerable progress in automatic processing of images across a range of fields. By integrating
geospatial features with the sophisticated Mask R-CNN architecture (He et al., 2017), the
detectree2 Python package (Ball et al., 2023) can harness subtle spectral and textural clues to
delineate trees precisely achieving state-of-the-art performance on tree detection in aerial RGB
data (Gan et al., 2023). Even humans struggle to agree where trees are located when looking at
the same data layers (Section C.1). By allowing a machine to learn on a carefully validated
manual (field verified) dataset, it has synthesised past human attempts to produce quicker
and more consistent predictions. Accuracy of segmentation can be significantly increased by
combining maps of segmented tree crowns over time. However, forest canopies can appear very
different across dates due to atmospheric perturbations, differences in illumination (resulting
in variably shadowed trees), the sway of trees and branches, phenological changes, death of
individual trees and branches and irregularities in the orthomosaicking process. UAV RGB
sensors are cheap and provide a source of repeated, high resolution scans over the course of a
few months (during which there are few mortality events and little growth). We found that, by
combining predictions across dates, a model that had never been exposed to the specification of
imagery that it was predicting on (in this case UAV RGB) in training could reach a comparable
accuracy to a model trained on a high volume of the specific imagery (Fig. 4.3). There is no
substitute for gathering high quality training data but, if this is not available, repeat predictions
with a pre-trained, freely available model can give excellent tree crown delineations on a new
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site. This can support the establishment of new studies to track tree growth, mortality and
phenology over large areas. This was the first time that information across dates has been
combined to improve the accuracy of tree crown delineations.

Towards a fundamental understanding of species differentiation. We found upper red
edge bands in the 748 to 775 nm range were by far the most important bands for discriminating
species (Fig. 4.5), a finding at odds to Laybros et al. (2019) but aligned with Badourdine
et al. (2023)’s assessment of band importance for assessing canopy taxonomic diversity at
the same site. This pattern has not been picked up explicitly in other previously published
studies but is not precluded by them as importance has generally been assessed over broader
regions of the spectrum (with red edge to NIR generally being considered important) (Clark
et al., 2005; Dalponte et al., 2012; Fassnacht et al., 2016; Hennessy et al., 2020; Marconi
et al., 2022). Leaf traits are incorporated into spectra in complex ways (Féret and Asner,
2011; Jacquemoud and Baret, 1990) and multiple traits can superimpose in a given spectral
region (Curran, 1989). The “red edge”, defined loosely as the 700-750 nm region, is widely
recognised as an important region for classifying vegetation and is linked to chlorophyll content,
leaf area, water content and overall plant health (Boochs et al., 1990; Filella and Penuelas,
1994; Gitelson et al., 2003; Hennessy et al., 2020; Horler et al., 1983; Thomas and Gausman,
1977). However, the red edge is usually defined as the 700-750 nm range. Here we found
that the region immediately beyond the red edge (748-775 nm) was particularly sensitive
to differences among species in a tropical forest. The “upper red edge” is at the transition
zone between chlorophyll absorption (in the red) and cellular structure scattering (in the NIR),
potentially capturing information from both the biochemical and structural (leaf and canopy)
aspects of the vegetation. The wavelengths adjacent to this range are not showing strong feature
importance, which means the unique reflectance in the 748-775 nm range could be capturing
some species-specific anatomical features, possibly related to internal leaf structure affecting
scattering of near-infrared light (Ustin et al., 2009).

Other wavelengths were also of secondary importance. In the visible range, red wavelengths
of 640-660 nm were relatively important: Chlorophyll a and b have peak absorbance at
different wavelengths of red light (660-680 nm vs 640-660 nm respectively), suggesting
that variation in Chlorophyll-b may be important for discriminating species (Gitelson et
al., 2003). Bands within the green region of 560-575 nm showed some importance which
could be due to chlorophyll reflectance differences (Gitelson et al., 2003) but could equally
be due to leaf structure, carotenoids and anthocyanins (Sims and Gamon, 2002), or even
stress (Carter and Knapp, 2001). Water has strong absorption features in the SWIR region. The
relative importance of bands in the 1630-1700 nm region suggests detection of variation in
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leaf water content (Ceccato et al., 2001; Gao, 1996) and/or differences in cellulose and lignin
composition (Kokaly et al., 2009; Serrano et al., 2002).

We found “crown reflectance spectra” (i.e. spectra influenced by leaf reflectance spectra
plus influences of absorption, reflectance and transmission by leaves in a multi-layered tree
crown) showed phylogenetic structure. Madritch et al. (2014) showed the capacity for aerial
hyperspectral imagery to characterise genotypic identity while Schweiger et al. (2021) showed a
correlation between leaf level spectral dissimilarity with phylogenetic distance (Schweiger et al.,
2021). Other studies have shown phylogenetic structure of foliar spectral traits (Cavender-Bares
et al., 2016; Meireles et al., 2020) including for leaves in tropical forest canopies (McManus
et al., 2016). For the first time, we have linked crown reflectance spectra to the phylogenetic
signal to help explain species classification from aerial hyperspectral data.

Most bands exhibited some phylogenetic signal but the importance for classification was
negatively correlated to the signal. This could be for a number of reasons including spectral
overlap between closely related species, the importance of ecological, environmental and
stress factors, and convergent adaptive traits that occur broadly across the phylogeny. Looking
within lineages instead of across the whole phylogeny may be a way to probe this relationship
further (Meireles et al., 2020).

Traits may vary in their degree of phylogenetic conservation depending on a variety of
factors including environmental pressures, mutation rates, and the particular evolutionary
history of the species in question. Of those traits discussed above, some might be expected to
be more conserved than others. Polymers including lignin and cellulose are critical for plant
structure, and their relative concentrations are generally highly conserved within lineages (Weng
and Chapple, 2010). Additionally, leaf structure, including traits such as leaf thickness or
specific leaf area, is conserved to some extent within phylogenetic lineages (Ackerly and
Donoghue, 1998). Other traits may be more labile and lack phylogenetic conservatism. For
instance, while the ability to retain water might be conserved within specific lineages adapted to
particular environments, there can be significant variability in this trait both within and between
species based on immediate environmental conditions (Donovan et al., 2011). Other traits
are highly plastic and have weak phylogenetic signals. Although chlorophyll is essential for
photosynthesis in all plants, the specific amount and ratio between Chla and Chlb concentration
can vary greatly even within a single species based on a variety of factors, including age, health,
and immediate environmental conditions like light and nutrient availability (Gitelson et al.,
2003). Stress responses are highly variable traits that can differ significantly even within a
species based on environmental pressures and are likely to be among the least conserved traits
phylogenetically. Furthermore, the classifier may be getting clues from soil and other external
factors that the plant interacts with, rather than intrinsic traits of the plant. With this is mind,
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it may be that the classifier is basing its decisions more on how species are responding to
environmental conditions rather than on their intrinsic biophysical properties. Analyses of
functional traits variation (e.g. Asner, 2014; Asner et al., 2014; Schmitt et al., 2022) may hold
the key to understanding the extent to which hyperspectral sensing is detecting interspecific vs
intraspecific variation in biophysical traits (e.g. see Nunes et al., 2017).

Our species-focused approach differs from biodiversity metric approach adopted by many
studies, which focuses on mapping taxonomic diversity using spatial variance in the hyper-
spectral signal (Jucker et al., 2018; Kamoske et al., 2022; Laliberté et al., 2020; Vaglio Laurin
et al., 2014). Mapping diversity in this way is challenging because of uneven spectral distances
among species (e.g. because related species have more similar spectra), and the large variance
in spectral properties of single species when compared across landscapes (Badourdine et al.,
2023).

Future work

Improvements in classification. Accurate classification of species from hyperspectral data
required learning the spectral features exhibited across crowns of the same species. To close the
gap between realised and intrinsic predictability of species classification we need to understand
the sources of error. Simple mis-classifications due to the misalignment of data sources or
mistakes in the field labelling, are trivial to address. External sources of signal variation
(e.g. atmospheric disturbance, sun-sensor geometry) may be addressed with improved data
processing based on physical models. Variation of crown spectra within species driven by
biological factors such as water stress, or phenology may be addressed with more informed
feature selection/engineering and more sophisticated classification approaches.

The more flexible models, including MLP and SVM were better able to fit the local features
of the pixels within crowns but this failed to transfer to performance across crowns where the
simpler LDA did best. This highlights the challenge in applying cutting-edge machine learning
methods to this task. More work needs to be done on understanding how best to constrain the
more advanced methods so they can learn to encode the key crown-level features from limited
training data.

Addressing transferability. The ultimate aim is to train classifiers that can accurately
predict the species of tree crowns when transferred in time (e.g. different seasons) and space
(e.g. new forest locations). While we were able to identify a wide range of species at a single
date and location from hyperspectral data we have not demonstrated that it is possible to transfer
this to other locales. It is known that classification degrades with time between training and
prediction scans (Laybros et al., 2019) and if applied to new regions.
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Trees exhibit temporal variability in their spectral signatures due to seasonal phenological
changes (Chen et al., 2022b; Hesketh and Sánchez-Azofeifa, 2012) and external stressors like
pests or drought, complicating year-to-year or season-to-season species identification. Even at
a fixed point in time, individuals of the same species can be at different phenological stages (see
Chapter 5). Spatially, even trees of the same species can have different spectral signatures based
on geographical factors like soil type, local climate and topographic position (see e.g. Fig. C.4).
Atmospheric conditions, from clouds, gases constitution, to airborne particulates, further
modify the spectral data acquired by airborne sensors (Arroyo-Mora et al., 2021; Schläpfer
et al., 2018; Theiler et al., 2019). This problem is exacerbated by variations in atmospheric
conditions between airborne sensor and the Earth’s surface, which can modify the spectral
signatures, making hyperspectral data from different times and locations difficult to compare
directly (Theiler et al., 2019). Additionally, spectral responses can differ between sensors, and
even the same sensor can vary over time due to calibrations or degradations (Baumgartner et al.,
2012), complicating data comparison. Finally, the spectral data acquired can be influenced
by the illumination (Arroyo-Mora et al., 2021; Schläpfer et al., 2018; Theiler et al., 2019)
and viewing geometry (Duthoit et al., 2008; Lyapustin et al., 2012; Montes and Ureña, 2012;
Schläpfer and Richter, 2014; Schläpfer et al., 2015; Theiler et al., 2019), including the angle of
sunlight and sensor viewing angle, introducing additional variability across space and time and
necessitating more sophisticated data handling and analysis approaches.

More work needs to be done on collecting hyperspectral data (and labelled tree crowns) at
different dates with a broader range of locations but also across a wider range of acquisition
conditions. With this it may be possible to identify features/encodings that remain stable
through time and space so that models may be flexible enough to be applied broadly across
an ecosystem. Most features could have some innate biochemical explanation, or have an
explanation more indicative of different levels of stress among different species. Indeed, there
are likely many interacting effects between bands that we have analysed here. However, it is
also possible that machine learning models applied to real data may find importance in specific
spectral ranges due to noise or collinearity in the data that may not have an easy biological
explanation. Without further analyses, explanations are speculative. Confirming the reason
for the peaks in feature importance would likely require controlled studies involving leaf-level
spectroscopy, coupled with biochemical assays to identify the specific compounds or structure
responsible for these spectral features.

Conclusions. Three key ingredients were responsible for the accuracy, and comprehensive-
ness of the mapping: high-quality field data; a precise segmentation algorithm; repeat imagery.
Being able to accurately locate the crowns of trees and assign a species to them allows for
much better forest monitoring at a granular level. We can study biodiversity by tracking the
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compositional changes with climate change. With the advent of freely available, high spectral
(e.g EnMAP) and spatial resolution (e.g. PlanetLabs) satellite imagery, the approaches here
could be extended for mapping species at a pan-tropical scale.



Chapter 5

Characterising leaf phenology of tropical
forest trees with repeated drone
multispectral and LiDAR surveys





Abstract

Leaf phenology has a strong influence on carbon and water cycling but there remain large
uncertainties around when tropical tree species cycle their leaves and what environmental and
physiological processes govern the patterns. The development of drone-mounted sensors has
vastly improved the spatiotemporal resolution with which biodiverse tropical forest can be
monitored. Here we track the leafing phenology of 3000 tree crowns in tropical moist forests
of French Guiana by conducting lidar and photographic surveys with UAVs every three weeks
over the course of two and a half years. These data allowed us to track changes in Plant Area
Density (PAD) and greenness (as Green Leaf Index; GLI) of individual tree crowns over time,
and understand how leaf quantity and quality varied through time, particularly in relation to the
short dry seasons prevalent in the region. To do this we calculated the periodicity, synchronicity
and regularity of phenological signals, and seasonality and timing of leaf flushing and shedding
from the GLI patterns for 100 dominant species. Species showed distinct leaf phenology
patterns, with considerable variation among species which we hypothesised related to resource
acquisition strategy and local environmental heterogeneity. The majority of trees showed a
leaf cycle period close to one year with some shorter-term cycles and some cycles close to two
years. Half of the species showed a statistically significant degree of “seasonality” for flushing
and shedding of leaves. Most tree species flush new leaves around the transition from wet
to dry season. Interspecific variation was strongly associated with local topographic position
(Topographic Position Index; TPI) preference and tree height. In general, shorter species
showed little variation in phenological character but the patterns of taller species diverged based
on their local topographic habitat preference (gullies through to ridges). Taller species flushed
fresh leaves earlier with respect to the dry season, an effect that was strongest for species
associated with gully location (low TPI) but not apparent for species associated with ridges
(high TPI). This suggested that emergent species that were unlikely to experience water stress
were better able to maximise light interception by presenting efficient leaves throughout the dry
season, compared to emergent trees in drier conditions that were more constrained by the risk
of hydraulic failure. The strength and synchronicity of the leaf cycling signals were greater
for ridge species compared to species that were associated with gullies, suggesting species
associated with better-drained land had greater sensitivity to environmental cues. Taller species
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tended to have shorter leaf cycle periods, potentially linked to a faster resource acquisition
strategy required to emerge beyond the canopy. Intraspecific variation in timing was associated
with tree height; the taller the tree, the earlier it was likely to flush. Intraspecific variation
in leaf cycle period was greatest at high TPI, potentially linked to a facultative exchange
strategy. There was evidence that the amplitude of greenness variation across seasons was
phylogenetically constrained, but none of the other indices were closely linked to evolutionary
history suggesting leaf phenological traits are labile for opportunistic evolutionary niche filling.
Incorporating additional leaf and wood traits would allow for more precise categorisation of
leaf phenology and clearer links to resource acquisition strategy. Linking tree-level variation in
leaf amount and quality to the observed fluxes (e.g. via the eddy covariance method) will shed
light on how seasonal changes of individual tree crowns combine to influence seasonal patterns
of forest productivity.

5.1 Introduction

Leaf phenology — the timing of leaf flushing, senescence and abscission — has important
implications for the seasonality of ecosystem processes such as primary productivity and litter
decomposition (Lieth, 1974). The timing of leaf production and loss determines the temporal
dynamics of the leaf area index (LAI, total leaf area per unit ground area), which is a key
driver of gross and net primary productivity (Chen et al., 2012; Manoli et al., 2018) and a key
determinant of evapotranspiration rates, which in turn influence the availability of soil water
resources, local hydrology and regional water cycles (Teuling et al., 2010). Leaf phenology also
determines the age structure of leaves within a canopy, which influences photosynthetic rates
of leaves (Wu et al., 2016, 2017a,b). Furthermore, leaf phenology affects multi-trophic species
interactions. For instance, leaf emergence impacts herbivore populations which rely on the
availability of young leaves and fruit (van Schaik et al., 1993), which can have cascading effects
on predator populations (Visser and Both, 2005). Synchronicity of leaf emergence among
trees of a given species may help to suppress specialist herbivores (Aide, 1993). The timing
of leaf senescence and abscission also impacts microbial processes in soil, as fallen leaves
provide resources for below-ground communities (Chave et al., 2010; Estiarte and Peñuelas,
2015). Tropical forests have a major influence on global carbon and water cycles (Bonan, 2008;
Field et al., 1998; Piao et al., 2019) and variation in leaf phenology within forest communities
influences these cycles and potentially tropical forest resilience to climate change (Chen et al.,
2020; Cleland et al., 2007). However, the magnitude of matter and energy fluxes are poorly
resolved both spatially and temporally, and the underlying mechanisms through which they
emerge are imprecisely described (Chen et al., 2020; Restrepo-Coupe et al., 2021, 2017; Saleska
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et al., 2003). As a result of these knowledge gaps, dynamic global vegetation models (DGVMs)
fail to predict observed productivity dynamics and climate-vegetation feed-backs (Chen et al.,
2020; Restrepo-Coupe et al., 2017). Improved understanding of leaf phenology patterns could
be vital for the development of new theoretical frameworks to predict resilience to climate
change (Abernethy et al., 2018; Chen et al., 2020; Davis et al., 2022; Pau et al., 2011; Pereira
et al., 2013; Restrepo-Coupe et al., 2017; Wu et al., 2016).

Patterns of whole-canopy leaf phenology vary tremendously across the tropics, from
strongly deciduous in the dry tropics to weakly seasonal evergreen in persistently wet trop-
ics (Reich, 1995). As a first approximation, the whole-canopy phenology of seasonally dry
forests is influenced primarily by the timing of water limitation, whereas the phenology of
rainforests is more influenced by insolation, with leaves being produced to coincide with
peak irradiance (van Schaik et al., 1993; Wagner et al., 2011; Wright and van Schaik, 1994;
Yang et al., 2021). In regions with a pronounced dry period, leaf fall peaks during the dry
season (de Camargo et al., 2018; Frankie et al., 1974; Kumar et al., 2023; Parsons et al., 2014;
Reich and Borchert, 1984; Rivera et al., 2002; Zhang et al., 2014) and new leaves are produced
in anticipation of the wet season to come (de Camargo et al., 2018; Murali and Sukumar, 1993;
Ryan et al., 2017; van Schaik et al., 1993). In the wetter regions of the tropics, peaks in leaf
production have been observed at the end of the wet season in Uganda (Ssali and Sheil, 2023),
and at the start of (or during) the dry season in wet Costa Rica, West Cameroon and the Ama-
zon (Anderson et al., 2011; Doughty et al., 2019; Guan et al., 2015; Huete et al., 2006; Lopes
et al., 2016; Myneni et al., 2007; Reich and Borchert, 1984; Saleska et al., 2016; Taffo et al.,
2019). During drier periods, insolation increases as a result of reduced cloud cover, leading
to debate over whether observed patterns are attributable to there being more light or reduced
moisture. In the seasonally dry tropics, the degree of deciduousness (complete leaf loss) is
greatest in regions with intense or long dry seasons, but is reduced in areas where the soils have
better moisture retention properties (Bohlman, 2010; Ouédraogo et al., 2016) or ground water
is accessible (Borchert, 1994a; Do et al., 2005). Other studies in the dry tropics link declines
in soil moisture availability to increased rates of leaf shedding during dry season (Reich and
Borchert, 1982) and post-drought re-hydration to the renewal of leaf production (Borchert,
1994a,b; Reich and Borchert, 1982). In these dry systems, vapour pressure deficit of air can
influence inter-annual variability in timing (Do et al., 2005). In contrast, there is evidence
that insolation is a key determinant of leaf phenology in the wet tropics, where peaks in leaf
production have been observed to coincide with seasonal peaks in irradiance, allowing trees
to maximize photosynthesis by increasing the area of highly productive young leaves (Lopes
et al., 2016; van Schaik et al., 1993; Wright and van Schaik, 1994). Analyses of remote sensing
data suggest that sunlight is the dominant control of leaf phenology across the tropics with soil
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water stress and vapour pressure deficit playing secondary roles (Li et al., 2021a). However,
large scale vegetation models suggest that vapour pressure deficit and sunlight best explain
the seasonality of leaf flush and fall in the Amazon (Chen et al., 2021, 2020). Water loss is an
unavoidable consequence of photosynthesis, because stomatal pores that allow CO2 to enter
leaves also allow water vapour to escape, so the optimal approach a tree takes to retaining or
shedding leaves during dry periods may be governed by trends in both water availability and
radiation, and their influences on photosynthetic processes (Li et al., 2021a; van Schaik et al.,
1993; Wu et al., 2021). Based on current evidence, it appears that whole-canopy leaf phenology
in the tropics is structured around the timing of maximum insolation unless water limitation
prevents this, so for much of the tropics it may be more helpful to think of light and dark
seasons (rather than wet and dry seasons) (Li et al., 2021a; Wagner et al., 2017; Wright and
Cornejo, 1990). For example, one study demonstrates that different tropical forest types exhibit
asynchronous responses to seasonal and El Niño-driven drought, and suggests that mechanisms
controlling dry forest leaf phenology are related to water-limitation, whereas rainforests are
more light-limited (Pau et al., 2010).

Whole-canopy phenology, as described above, arises from the leaf phenology of individual
species, which can vary considerably within a single site as local heterogeneity in light and
water regimes leaves space for a range of strategies to emerge (de Camargo et al., 2018; Frankie
et al., 1974; Kumar et al., 2023; Kushwaha et al., 2011; Loubry, 1994; Ribeiro et al., 2022;
Sabatier, 1983; Seyoum et al., 2012). Evergreen species, which retain foliage throughout the
year, predominate in tropical moist forests, but can have strong seasonal variation in the rate of
leaf turnover (Coley, 1983; Frankie et al., 1974; Kumar et al., 2023). Deciduous trees, which
become increasingly prevalent in the seasonally dry tropics, can be leafless for just a few days
to several months (Loubry, 1994; Williams et al., 2008). Species can be conceptualized as
falling along a continuum, with leaf phenology responding purely to environmental cues at one
extreme, and being controlled by an internal “clock” at the other (Reich, 1995). Leaflessness,
for example, can be part of a predictable annual cycle (obligately deciduous) or only in response
to specific conditions or stress (facultatively deciduous) (Harenčár et al., 2022; Stevens et
al., 2016). For many species, a complex interplay between internal and external controls
regulates leaf production and loss (Reich, 1995). There is some evidence that leaf phenology
relates to a species’ life history strategy (Álvarez-Yépiz et al., 2017; Chabot and Hicks, 1982;
Méndez-Alonzo et al., 2013; Ribeiro et al., 2022). For instance, in wet/rain forests, fast-
growing, light-demanding, pioneer species with short life spans tend towards continuous and
asynchronous leaf production and leaf senescence (Coley, 1983), while late successional shade-
tolerant species show episodic growth in which branches or a whole crown will flush new leaves,
followed by a period without further development (Reich, 1995). In seasonally dry tropical
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forests, deciduousness is associated with short leaf life span and rapid acquisition of resources,
whereas evergreen leaf habit is associated with long leaf life span and a more conservative
strategy (Chabot and Hicks, 1982; Sobrado, 1991; Wright et al., 2004). The length of the dry
season also dictates the option space: many species are synchronously deciduous in forests
with long dry seasons (Bullock and Solis-Magallanes, 1990; Lieberman and Lieberman, 1984;
Reich and Borchert, 1982, 1984) whereas wetter forests tend to support species that produce
foliage at different times of the year (Reich et al., 1991). Under these conditions, there can be
considerable intraspecific variation too: a single site can support highly synchronous species
co-occurring with completely asynchronous species (Borchert, 1980; Morel et al., 2015; Reich
and Borchert, 1984, 1988; Wright and Cornejo, 1990). Although leaf phenology is usually
discussed in relation to trade-offs between photosynthesis, water balance and irradiance, it
can also relate to pollination strategies (some deciduous trees produce flowers before leafing,
making it easier for pollinators to access the flowers (Frankie et al., 1974)) and avoidance of
herbivory (Aide, 1993). One study suggests that the evolution of leaf phenology is labile in the
tropics (Pau et al., 2011), but more work on phylogenetic constraints is needed (Davis et al.,
2022).

Until recently, field campaigns were the sole approach to monitoring tree-level leaf phenol-
ogy, but these were necessarily limited in scope and duration (see Reich, 1995 and Abernethy
et al., 2018 for an overview). Satellite remote sensing has long been used to characterise and
understand whole-canopy phenology patterns including the green-up of Amazonian forests
during dry periods (Huete et al., 2006; Myneni et al., 2007; Saleska et al., 2016; Wang et al.,
2020), but the suitability of these optical methods to detect changes in LAI and disentangle
effects of sun-sensor artifacts from subtle phenological signals is contested (Morton et al.,
2014; Samanta et al., 2010), and they do not have the resolution to monitor individual trees.
Phenocam networks have allowed for near constant monitoring of individual trees across a
range of systems but each camera is limited by its field of view and phenocams are therefore
unable to capture the true range of patterns that can be observed at a single site (Alberton et al.,
2023, 2017). This study uses new drone technologies, combined with careful fieldwork at
the Paracou field station in French Guiana, to bridge the knowledge gap. Unoccupied Aerial
Vehicles (drones) present a unique opportunity to observe the leaf phenology of individual
trees over time (Park et al., 2019). Being cost-effective and capable of frequent flights over the
same area, UAVs equipped with multispectral and LiDAR sensors can provide high-resolution
data, enabling a more nuanced understanding of tropical forest dynamics. By scanning 60
ha of seasonal moist forest with optical and lidar sensors every three weeks for nearly three
years, we could extract phenological signals for 3000 mapped tree crowns and observe how the
range of patterns observed related to the environmental seasonality. We processed these signals
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to extract phenological metrics for individual trees and species to quantitatively characterise
the timing and variation of leaf flushing and shedding across the site. There has been limited
long-term time series acquisition and there remains uncertainties around what triggers leaf
emergence and shedding across species (Abernethy et al., 2018; Morellato et al., 2016). We
address the following research questions:

1. How does canopy plant area index (PAI; the area of vegetative matter) vary seasonally?
We expected that, as Paracou has a brief dry season and unlikely to experience water
limitation, the total canopy leaf area (and therefore PAI) would peak during the driest
(and sunniest) time of year.

2. Does variation in canopy and crown greenness (proxy for leaf quality/age) align with
variation in PAI (leaf quantity)? We expected that the canopy would flush new leaves at
the transition into the dry season as it prepared new leaves to make the most of increasing
insolation, creating a peak in greenness. At the crown level, we expected PAI and Green
Leaf Index (GLI) to oscillate synchronously (with flushing and shedding) but for there to
be divergence within the cycles as greenness would decline gradually with leaf age but
the total leaf amount would stay fairly constant until shedding (Chavana-Bryant et al.,
2017; Wu et al., 2019a).

3. Do species vary markedly in leaf phenology? We anticipated that, because the dry season
is brief and not severe, periods of water stress are unlikely in typical years, and species
can therefore exhibit a wide range of leaf phenology patterns. It is unlikely that a single
habit will be dominant (Kikuzawa, 1991), but where full leaflessness does occur, it is
unlikely to be for more than a short fraction of the year.

4. Do differences observed among species relate to their resource acquisition strategy? We
expected that the following groups of strategies could be distinguished by their distinctive
leaf phenologies: (1) fast-growing pioneers - little cyclical predictable behaviour, (2)
Strongly seasonal brevi-deciduous / seasonal evergreens, (3) Evergreen, asynchronous
(Reich, 1995).

5. Do topographic position and tree height help to explain inter- and intra-specific variation
in leaf phenology? We anticipated that taller trees and trees with high relative topographic
position (large TPI; ridge locations) would have a more clearly defined phenological
pattern and flush earlier due to their relative hydraulic sensitivity and that differences
would be intensified for trees that are both tall and at high TPI (Bittencourt et al., 2022;
Liu et al., 2021; Markesteijn et al., 2011).
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6. Do the observed leaf phenological traits of species exhibit a phylogenetic signal? Based
on the predictions of (Pau et al., 2011) study we did not expect phenological traits to be
phylogenetically conserved.

Here, we address these questions, by analysing leaf phenology patterns recorded in a
detailed spatio-temporal survey of the forest at Paracou Research Station over a 30 month
period. Applying the AMAPvox modelling framework to track lidar pulses through the canopy
at each time step (Vincent et al., 2017, 2021), we estimated seasonal variation in canopy
Plant Area Index. By extracting crown-level information on Green Leaf Index (GLI; a proxy
for amount of leaves and also their age/quality) and Plant Area Index (PAI; the amount of
vegetative material) for each time step across 3000 tree crowns, we compared how leaf spectral
signal and leaf amount co-varied at the individual level through time. The spectral signals
were represented as continuously varying phenological waveforms that corresponded to the
observed oscillatory patterns of leaf development. To visualise the range of phenological
patterns we generated a series of phenograms which were heatmap representations of the the
GLI time series with each individual tree plotted through time, and the individual time series
were grouped by species. We analysed the crown-level phenological waveforms of individual
trees by developing phenological metrics to quantitatively characterise the variation of leafing
patterns across 100 of the dominant species at the site. Specifically, we extracted the periodicity
and amplitude of the signals, and the timing of peak flushing and shedding. We compared
waveforms across individuals to determine the synchronicity and regularity of a species’ leaf
patterns and evaluated the degree of seasonality of flushing and shedding for each species.
Finally, we compared the phenological metrics to local variation in topography (topographic
position index) and tree height, and analysed the metrics for phylogenetic signal (Pagel’s λ and
Blomberg’s K) to try to explain the observed variation in leaf phenologies. To our knowledge,
this is the first time that variation of leaf phenological patterns at the individual and species
level has been investigated in relation to environmental and phylogenetic drivers in the wet
tropical context.

5.2 Materials and Methods

5.2.1 Study site

The research was conducted in forests at Paracou Field Station, French Guiana (5°16'N 52
°55'W) (see Fig. 3.1). The lowland tropical moist forests grow mostly on shallow ferralitic soils
underlain by a variably transformed loamy saprolite (Gourlet-Fleury et al., 2004). The mean
annual rainfall is approximately 3200 mm with a three month dry season from mid-August
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to mid-November. September, the driest month will typically have 50 mm of rainfall (Bonal
et al., 2008; Wagner et al., 2011) which makes the climate just within tropical monsoon regime
of the Köppen climate classification system (tropical rainforests have a minimum monthly
precipitation of 60 mm) (Köppen, 1884). Full details including a map of the site are given in
Section 3.2.1.

To generate a larger dataset than would have been obtained from manual crown delineation
alone, we combined the manual crowns with crowns generated with the automatic methods
described in Chapter 4. For any area of forest where a manual crown and an automatic crown
overlapped, only the manual crown was retained. To further minimise contamination of the
phenological signals with noise from poorly delineated or incorrectly identified automatic
crowns, we only included automatic crowns if they scored well on both the “delineation” and
“species identification” confidence scores assigned to them (as described in Chapter 4). An
automatic crown polygon required a strong match (IoU > 0.75) across three independent dates
and good average delineation confidence at each date to be considered satisfactory. Then, to
be retained for the species-specific phenological metric extractions, at least 50% of the pixels
contained within the crown had to have been classified as the same species. This is a stricter
threshold than it might otherwise seem as crowns often contained some shaded (NA) pixels,
pixels that contained lianas, and pixels around the edge of the crown mixed with neighbouring
individuals, arising from potential misalignment issues between the lower spatial resolution
hyperspectral scan and the more precise RGB surveys. This method of expanding sample sizes
was not particularly valuable for the most common species in the flux tower region (that already
had a large sample size from the manual crown dataset) or the rarest species across the whole of
the Paracou site (that were unlikely to get an addition of automatic crowns due to low “species
identification” confidence scores). However, it was helpful for expanding the sample sizes of
those species that had good representation across the entirety of the hyperspectral scan (see
Chapter 4) but few manual crowns specifically in the flux tower footprint scanning region. After
this selective expansion of the dataset, the 100 most common species were selected for analysis
of their patterns as these had sample sizes sufficient to reasonably estimate the phenological
metrics described below.

5.2.2 Remote sensing data sources and processing

Both lidar and RGB scans were taken approximately every three weeks to compare how the
spectral properties of the top of the canopy changed with the PAI measured through the canopy
(see Table 5.1). For the lidar scans we included a “dense” area at the core of the flux tower
footprint with an extremely high point density and a “large” area covering approximately 60%
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Table 5.1 The remote sensing data sources used to investigate leaf phenology. Resolution is given as
ground resolution for the RGB orthomosaic and as the average point density for the lidar scans. Altitude
is given as height above canopy.

Scan dates Modality Resolution Altitude Wavelengths Sensor

18-Oct-2020—23-Sep-2023 RGB 5 cm 70 m 400-750 nm (3 bands) 1" CMOS (P4M and Mavic 2)
19-Oct-2020—30-Nov-2022 LiDAR (dense) 430 points/m2 75 m 905 nm RIEGL miniVUX-1UAV
19-Oct-2020—03-Jan-2023 LiDAR (large) 100 points/m2 105 m 905 nm RIEGL miniVUX-1UAV

of the total flux area with a lower point density (see Fig. D.1). This was to compare scanning
parameter requirements but is not elaborated on here (but see Vincent et al., 2023).

RGB

Mosaicking: The RGB orthomosaics were compiled from the raw geotagged UAV photographs
using structure from motion (SfM) photogrammetry in AgiSoft Metashape. The software
aligns overlapping images to produce a sparse point cloud, refines it into a dense point cloud,
and subsequently constructs a 3D mesh. This mesh, integrated with original photo textures,
facilitates the creation of a Digital Elevation Model (DEM). The DEM, combined with the
aligned images, allows for the generation of an orthomosaic, a georeferenced image free from
perspective distortions. Supplying images across several dates in single blocks to the first
steps of the SfM processing improves spatio-temporal coherency (Feurer and Vinatier, 2018a).
Following this approach, instead of processing each date separately, five date blocks were
supplied for the alignment and initial sparse point cloud formation establishing a common
geometry between dates. The dates were then separated for the dense matching steps and final
orthomosaic generation.

Co-registration: Accurate co-registration of data from RGB and hyperspectral imagery
was important to ensure spatial alignment. We used the LiDAR-derived Canopy Height Model
(CHM) as the baseline layer, with all other data being registered to it. This choice was due to
the CHM’s stability and precision in representing the physical landscape, providing a solid
reference for co-registration. Eight control points were manually assigned across the different
datasets, using identifiable features within the LiDAR CHM, such as the flux tower, roads
and dominant trees, as primary reference points and an affine transform was applied based
on these. This co-registration process ensured that the crowns represented across the datasets
corresponded to the same geographical location, serving as the foundation for subsequent
analysis steps, including tree crown delineation and species classification.

Greenness metric extraction: The spectral properties of leaves are known to change
through time as they age (Chavana-Bryant et al., 2019, 2017; Kitajima et al., 1997; Wu et al.,
2019a). Several vegetation indices were compared before deciding which to use for assessing



116 Leaf phenology of tropical forest trees

temporal trends. The Green Leaf Index (GLI; Louhaichi et al., 2001) was selected as it gave
a clear temporal signal that corresponded well to the observed leaf stages at the crown level
(Arkin et al., 2023; Ciocırlan et al., 2022; Vorovencii et al., 2023; see Fig. 5.4):

GLI =
(Green−Red)+(Green−Blue)

(2∗Green)+Red +Blue
(5.1)

where Red, Green and Blue are the colour coordinate values of the respective bands at each
pixel of the processed orthomosaic (0-225). Due to local perturbations and varying conditions
across the orthomosaics (from atmospheric differences and differences in illumination from
cloud cover and shading between trees) that affected the bands in inconsistent ways, it was
necessary to perform a local normalisation when extracting the crown level metrics. This
involved dividing the average index within the crown by the index measured in a 25 m buffer
around the crown to give a locally normalised crown average value. In effect this gave a
value of GLI for a crown relative to that of the local background vegetation (see Fig. D.3). To
account for the irregular sampling through time, we interpolated the GLI data so that each day
was assigned a value. This was done by fitting splines using the zoo R package (Zeileis and
Grothendieck, 2005). This allowed us to analyse and compare between the signals of trees and
calculate the phenology metrics described below.

Point clouds to plant area

Bayesmap (Jalobeanu and Gonçalves, 2014) and the Iterative Closest Point (ICP) algorithm in
CloudCompare (Besl and McKay, 1992; Rusinkiewicz and Levoy, 2001) were used to align
the point clouds through time. To calculate the PAD through space at each point in time from
the point clouds it was necessary to model the extinction of light through the canopy. This
was done by combining the point cloud information with the flight trajectory information and
tracking each laser pulse through the canopy in the AMAPvox software package. Details can
be found in Vincent et al. (2017, 2021). PAD and PAI computed from lidar returns have been
shown to be sensitive to the lidar system characteristics, particularly so to the transmitted power
and the receiver’s sensitivity (Vincent et al., 2023). In the present case a conversion factor
was applied to the raw PAD profiles derived from the low power UAV-LS. This conversion
factor was derived by aligning UAV-LS profile to a coincident PAD profile obtained using
TLS over a one hectare plot. A voxel size of 1 m was selected as it gave a sub-crown spatial
resolution while maintaining the required sampling density of lidar points within each voxel.
We also tested a 2 m voxel size and the signals were consistent with the 1 m method. To
compare the PAD measurements with the GLI measurements, the top 3 meters of PAD was
summed before extracting a value within each tree crown polygon. This ensured that we were
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Fig. 5.1 A simplified visualisation on the stages of PAD calculation using AMAPvox. Extinction is
modelled based on the tracing of lidar pulses through a voxilised space using the UAV flight trajectory
data combined with the point cloud. From the way the light pulses are partially intercepted, the PAD in
each of the voxels is inferred. For full details see Vincent et al. (2017, 2021). Figure credit: Gregoire
Vincent.
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Fig. 5.2 Illustration of the key phenological metrics used to characterise trees and species. As a tree
cycles through its leaves the GLI will oscillate with some kind of characteristic shape and frequency
(a waveform). A peak in GLI is seen with a peak output of fresh leaves, a decline is seen with leaf
aging/senescence and a trough is seen with shedding (minimum leaf balance). Trees of a single species
can have a very regular signal (i.e. each tree’s GLI waveform is very similar) or irregular signals (i.e.
the waveforms appear very different). Trees’ signals can be highly synchronous (i.e. aligned clearly in
time) or asynchronous (i.e. no clear alignment in time). The distribution of flushing or shedding events
can be uniformly distributed through the year or clustered around a seasonal peak.

focusing our analysis on just the crown level vegetation (that correspond with canopy surface
GLI measurements) rather than including variation from the understorey.

5.2.3 Quantifying the dimensions of phenology (key phenological met-
rics)

By overlaying each tree crown outline on the time series of GLI and PAD it was possible
to extract the leaf phenological time series. To visualise the range of phenological patterns
we generated a series of phenograms which were heatmap representations of the GLI time
series. For each individual the GLI was plotted through time, and the individual time series
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were grouped by species and stacked. To make sense of the phenological time series of each
tree/species it was necessary to extract some key phenological metrics from the signals (see
Fig. 5.2). In particular, we were interested in characterising:

• The timing of flush/shedding (of individuals and average/spread of species) relative to
the dry season

• Period of phenological cycles (of individuals and average/spread of species)

• Amplitude of the phenological signals (of individuals and average/spread of species)

• The relative seasonality of flush/shedding (within species) i.e. do events happen uniformly
through the year or do they tend to be clustered around a specific point of the year?

• Synchronicity of the signals (within species) i.e. how well aligned in time are the
waveforms?

• Regularity of the signals (within species) i.e. how similar were the waveforms?

When dealing with phenological timings it is important to treat the data as circular (i.e.
periodic, repeating) otherwise results may be biased or misleading (Staggemeier et al., 2020).
For this it was necessary to find a point in the year to centre the data (zero point). As
previous studies have suggested precipitation predicts phenology well, we used rainfall as
the metric to centre on. Based on historic daily meteorological data from 2004 to 2023 a
smoothed precipitation profile over the year was constructed. From this, a central driest day
was calculated (27-Sept) to act as a zero point for flushing and shedding events over the course
of the study. There was significant change in overall annual rainfall prior to and during the
study: 2020 was slightly drier than usual (2986 mm) whereas 2021 (4238 mm) and 2022 (4337
mm) were particularly wet. However, 27-Sept was a representative centering of the dry season
over the study period (see Fig. D.2).

Timing of minimum and maximum crown greenness (individuals to species): For each
tree, the dates of peak and minimum GLI were identified. The time to the temporally closest
central dry day (27-Sept) was extracted for each point (e.g. 26-Sept-2022 would be -1 and
not +364). To find the representative dates for all trees and for each species, we converted the
differences in days to degrees, leveraging circular statistics. This conversion allowed for the
computation of average angles, which correspond to the mean timings of peak and minimum
greenness across all trees. A (circular) mean of these timings over all crowns for each species
was calculated along with their respective standard errors. Subsequently, the averaged angles
were transformed back into days, revealing the average peak and minimum greenness timings
across the dataset.
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Periodicity (individuals to species): To estimate the periods over which individual trees
exhibit greenness patterns the temporal autocorrelation across dates was calculated. This
evaluated how well the greenness of a tree over a given interval correlates with its past/future
values. After computing the temporal autocorrelation for a tree’s greenness, we identified the
length of time over which the autocorrelation values are maximised (enforcing that maximum
value, that is at least 90 days from the start to exclude the influence of short-term fluctuation
in the analysis). The maximal autocorrelation time then represents the periodicity of a tree’s
greenness pattern. For instance, if this point occurs at 365 days, it suggests an annual pattern
in the tree’s greenness. The periods of individual trees were then aggregated to give average
periods for each species.

Amplitude (individuals to species): For each tree, the difference between the maximum
and minimum observed GLI values was calculated, giving an amplitude value that signifies
the magnitude of GLI fluctuation (relative to the background vegetation in the 25 m window).
This gave an indication of the magnitude of spectral change in the crown and the degree of
difference between peak flushing and shedding. For example, we expected amplitude to be low
for weakly seasonal evergreen species and large for crowns that underwent full leaflessness and
flushed fully within 1-2 weeks. The individual amplitudes were averaged at the species level.

Synchronicity (within species): To measure how similar the leaf stage of trees of the same
species was through the year we calculated their synchronicity. First, the cross-correlation
across the time series of each pairwise combination of trees was computed. This cross-
correlation matrix quantifies how well the greenness patterns of each tree pair correlate with
each other (without allowing any time lags). The average of these pairwise correlations give a
single synchronicity value for that species.

Regularity (within species): This method assessed how similar the greenness waveforms /
phenological patterns of individual trees of the same species were to one another regardless of
when in the year the patterns of each individual were occurring. Flexibility (given through time
lags) was allowed to best align the pairwise patterns of individual trees. Specifically, it used the
average pairwise cross-correlation across crowns of a species. This differs from synchronicity,
as a flexible time lag (of up to one year) is introduced to the GLI signal of one of the pair of
trees and the lag that leads to the best match between the patterns is calculated. Once matched,
the correlation between the signals is calculated. This matching meant the correlation value
for regularity will always be greater than that of the synchronicity value. The regularity value
essentially evaluates whether trees of the same species exhibit similar leaf cycling patterns
without requiring that they are seasonally aligned. For every pair of trees within a species, the
highest correlation and the associated lag are stored in matrices. From these matrices, average
synchronicity and lag values are calculated for each species.
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Seasonality of flushing and shedding (species): From the angles of peak and minimum
greenness (as described above) a radial length for each species was calculated (along with
the average angle). This radial length represents how strongly the peak/minimum dates
were clustered around the mean angle/date. This length gave a measure of seasonality of
flushing/shedding across species that could be tested with the (circular) Rayleigh test of
uniformity which assesses the significance of the mean resultant length. The null hypothesis
was that the flushing/shedding is a uniform circular distribution and the alternative hypothesis
that they form a unimodal distribution with some mean direction and mean resultant length (see
Fig. 5.2). This allowed us to test whether there was significant annual seasonality in flushing
and shedding for each species.

Metric ordination: To understand whether phenological characters could be separated
based on the extracted metrics, we used Phylogenetic Principal Component Analysis (pPCA)
which is a statistical method that combines the principles of Principal Component Analysis
(PCA) and phylogenetic comparative methods (Revell, 2009, 2012). It aims to identify and
understand patterns of variation and covariation in multivariate trait data among related species,
while accounting for the shared evolutionary history that can confound traditional statistical
analyses. We plotted the species on the axes of the first two resultant principal components and
coloured points by tree height to try to elicit a pattern that could be related back to resource
acquisition strategy.

5.2.4 Testing the influence of tree height and topographic position

To begin to understand whether heterogeneity in hydrological conditions influences phenologi-
cal patterns, we compared the observed phenological metrics of the trees to their Topographic
Position Index (TPI; Guisan et al., 1999). TPI compares the elevation of a point on the Earth’s
surface to the average elevation of a surrounding area. This comparison can help to determine
whether a point is, for example, in a valley, on a ridge, or on a slope or flat ground. Valley
bottoms are wetter than ridges due to runoff and drainage (Ågren et al., 2014). TPI is calculated
by comparing the elevation of a specific point to the mean elevation of a surrounding area. This
area is defined by a window size that can vary depending on the scale of analysis. A ridge
location would have a positive value whereas a gully location would have a negative value.
While TPI correlates with relative water availability across a landscape, other factors including
soil properties and variable upstream catchment areas can lead to divergences between TPI
based estimates of soil moisture and direct soil moisture content measurements (Jarecke et al.,
2021). Using a lidar derived DTM we calculated the topographic position index with a 91
m window at 50 cm resolution across the site. This scale was chosen as it was similar to the
size of the forest plots over which soil conditions are known to vary considerably. From this
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we extracted the median TPI value within each tree crown. The mean TPI was calculated for
each species to determine a habitat preference and the standard deviation of TPI values was
calculated to indicate the degree of habitat specialisation.

Tree height is related to tree hydraulics and light availability (Bittencourt et al., 2022) and
so it is likely that tree stature influences observed phenological patterns (Itoh et al., 2003). To
test this effect, we also compared tree heights to the observed phenological metrics. Using a 50
cm DSM and DTM we extracted the tree height, as the 98th percentile height within each tree
crown. Selecting the 98th percentile reduced the chance of defining height based on an outlying
pixel. The mean tree height was calculated for each species to determine a characteristic height
or stature. The standard deviation of height values was also calculated to determine the range
of light conditions a species can tolerate. We allowed for potential interaction between TPI and
tree height.
Interspecific variation

To assess the relationship between topographic position preference and characteristic tree
height and the species level phenological characteristics we used Phylogenetic Generalized
Least Squares (PGLS) analysis. PGLS accounts for the non-independence of species data due
to shared evolutionary history. This method incorporates a covariance matrix derived from
the phylogenetic tree of the studied species, adjusting the regression for their phylogenetic
relationships. The degree of phylogenetic correlation in trait evolution was assessed using the
lambda (λ ) parameter. We used the time calibrated phylogeny of Baraloto et al. (2012) which
included 95 of the 100 species to derive the covariance matrix.

We wanted to understand whether the average tree height, the spread of tree heights and
the average TPI and the spread of TPI had an influence on the (1) timing of flush, (2) period
of leaf cycle, (3) synchronicity of signal, (4) regularity of signal, (4) seasonality of flush
and (5) seasonality of shedding. We hypothesised that (H1) some interacting combination of
species height (i.e. relative location of crown within the canopy) and topographic position
index (i.e. association with gully through to ridge conditions) would explain the variation seen
between species (H0: no association between phenological metrics, and species height and TPI
preference).
Intraspecific variation

To assess the effect of topographic position and tree height at the tree level we used mixed
effects model with species as a random effect. We hypothesized that some combination of tree
height and relative topographic position (TPI) would explain the intraspecific variation in leaf
flush timing, leaf shed timing, period of leaf cycle and amplitude (H0: no association between
phenological metrics, and tree height and TPI).
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5.2.5 Phylogenetic signal

To investigate whether closely related species exhibited similar leaf phenology patterns we
tested the phenological metrics for phylogenetic signal which is the degree to which related
species resemble each other with respect to a specific trait. For this we used the time calibrated
phylogeny of Baraloto et al. (2012) which included 95 of the 100 species. The timing of
flushing and shedding relative to dry season are circular metrics and if it is not treated as such
the phylogenetic signal would be underestimated (Staggemeier et al., 2020). We transformed
the timing data using principal coordinate analysis of pairwise angular distances (as described
in Staggemeier et al., 2020) before testing for phylogenetic signal using Pagel’s λ (Pagel,
1999) and Blomberg’s K (Blomberg et al., 2003), which differ in their sensitivity to certain
aspects of the data: λ is a scaling parameter for the correlations between species, relative
to the correlation expected under a Brownian motion model of evolution; K is a scaled ratio
of the variance among species over the contrasts variance (which measures how much more
closely related species resemble each other than would be expected under a Brownian motion
model of evolution). Blomberg’s K can be sensitive to incompletely resolved phylogenies
and suboptimal branch-length information. Using Blomberg’s K with polytomic chronograms
(incompletely resolved phylogenies) can give inflated estimates of phylogenetic signal and
moderate levels of type I and II biases. Furthermore, pseudo-chronograms (phylogenies with
suboptimal branch-length information) can lead to high rates of type I biases. In contrast,
Pagel’s λ is more robust to incompletely resolved phylogenies and suboptimal branch-length
information (Molina-Venegas and Rodriguez, 2017). This means it may be a more appropriate
alternative over Blomberg’s K to measure and test phylogenetic signal in ecologically relevant
traits when phylogenetic information is likely to be incomplete (Molina-Venegas and Rodriguez,
2017). For completeness, we present both Pagel’s λ and Blomberg’s K but noted their relative
sensitivity when analysing the results of each.

5.3 Results

5.3.1 Plot-level variation in plant area index

There was an approximate 10% change in PAI through time at all four sampled plots (see
Fig. 5.3). While the average PAI across the plots ranged from 8 m2/m2 to over 9 m2/m2 the
seasonal pattern of change across the plots was consistent. The PAI started to increase prior
to the dry season, continued to increase during the dry season reaching its maximum value
towards the end of the dry season before plateauing and declining again during the wetter
months.
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Fig. 5.3 Changes in PAI measured at four plots. PAI was inferred from extinction that was calculated by
tracing the lidar pulses (that penetrated the canopy) through a voxelised space and recording each partial
interception (using AMAPvox). The yellow box represents the dry season timing. Smoothing splines
were fitted to illustrate the overall patterns.

5.3.2 Crown level phenology patterns

Clear leaf phenological patterns were observed at the crown level. Fig. 5.4 gives an example of
the phenophase of a Parkia nitida (Fabaceae) crown. From 2020-10-23 leaf senescence is visible
until in 2020-12-14 a single branch sheds its leaves. By 2021-01-18 that branch has flushed
new leaves while the rest of the crown has shed. By 2021-02-08 a verdant crown with fresh
leaves is visible. Fig. 5.4b shows how the plant area density (PAD) profile of the tree changes
during this period. The crown (from about 23 m upwards) shows a substantial oscillation of
leaf amount over this period. Fig. 5.4c shows how this translates into the normalised GLI and
PAD metrics through time with the full time series included to illustrate the cyclical nature of
its flushing and shedding. A strong peak in GLI is observed as new leaves are flushed followed
by a drop as leaves mature and a gradual decline as leaves undergo senescence. PAD on the
other-hand peaks less strongly with the emergence of fresh leaves and holds more steady until
there is a rapid drop as leaves are shed.

5.3.3 Looking across crowns and species

The extrapolated tree crown map described in Chapter 4 allowed us to look across 3000 species
labelled crowns across the landscape and explore the variability between individuals and species.
A great variety of behaviours was observed (see Fig. 5.5). Where periodicity was observable, it
was usually on a cycle of 9-24 months. Some species put out fresh leaves in advance of dry
season (e.g. Pouteria eugeniifolia, Manilkara bidentata), some during (e.g. Sextonia rubra,
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(a) (b)

(c)

Fig. 5.4 Seasonal changes in a Parkia nitida crown: (a) shows the pattern of shedding and flushing of
the crown over a year in the cropped photographs. (b) shows the vertical profile of PAD change in the
same period with the shedding in the crown clearly visible. (c) shows the normalised Green Leaf Index
(GLI) and Plant Area Density measured across the crown over the full length of the available time series.
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Fig. 5.5 Phenograms for seventeen common species. The heatmaps show the temporal variation in
relative Green Leaf Index (GLI) for each species. The y-axis (with ticks) shows each individual of the
species and the x-axis shows time. The number of individuals of each species observed is given at the
bottom of the y-axis of each sub-plot. To highlight the variation in the patterns, the individuals were
ordered along the y-axis based on the relative GLI value between 2021-06-15 and 2021-08-30 with the
individuals with the largest summed values positioned at the top. The variation is normalised against
the background GLI so that 1 represents a value equal to the GLI of the surrounding canopy and 2
represents a GLI value double that of the surrounding canopy. Bright colours show fresh leaves whereas
dark colours show aging/senescence/shedding. The black vertical lines show the beginning and end of
the dry season.
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Fig. 5.6 Normalised PAD and GLI profiles for a typical Recordoxylon speciosum (Fabaceae) crown. The
lines are derived from breakpoint analysis whereby separate linear functions could be fitted in different
portions of the time series based on improvements to fit estimated with the Bayesian information criterion
(using the strucchange R package). They show the gradual decline in leaf quality compared to the leaf
area that remains relatively steady until shedding. The full leaf off phase is very brief (0-3 weeks).

Parkia nitida, Albizia pedicellaris) and some just after (e.g. Pradosia cochlearia). Some
species were highly synchronised (Albizia pedicellaris, Microphilis obscura), others had a
range of dates over which individuals shed/flushed (Recordoxylon speciosum) and some were
highly asynchronous (e.g. Parkia pendula). Some species were possibly grouped into two
cohorts on inter-annual cycles (e.g. Chrysophyllum pomiferum). Of the three most common
families, Fabacaeae and Sapotaceae tended to show more obvious patterns whereas species
of Chrysobalancaceae seemed to be more cryptic in their patterning (see Figs. D.4 and D.5).
Many species did not exhibit a clear leaf-off phase but still exhibited some periodicity in leaf
renewal.

Those species that exhibited clear annual cycles showed a fairly predictable relationship
between GLI and PAD (see Fig. 5.6). The greenness of leaves decays gradually as the leaves
age. The amount of leaves remains relatively stable until a brief leaf shedding event leads to
a sharp decline. Greenness can be thought of as a proxy for photosynthetic capacity (or leaf
quality). This divergence between leaf amount and leaf quality within the leaf cycle gives some
opportunity for comparing their relative importance with respect to forest primary productivity
(Wu et al., 2017b).
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5.3.4 Key phenological metrics

To quantitatively characterise the observed phenological patterns (and the inter- and intra-
specific variation) we processed the signals from the crowns into key phenological metrics
that described the strength, timing and agreement between signals. The pairwise correlation
between the variables at the species level is shown in Fig. D.10.

The phylogenetic PCA revealed some evidence of trends in phenological strategies, but no
obvious clusters. Towards the bottom of Fig. 5.7 shorter species had highly variable periodicity
and little to no regular phenological structure to their leaf patterns (possible pioneer species).
Towards the top of the plot lie taller trees with highly structured leaf phenology patterns,
typically with strong seasonality in flushing/shedding and synchronicity (possible deciduous
strategy). Towards the right of the plot lie taller trees with long periods and weakly structured
leaf phenology patterns (possible evergreen strategy).

Average peak crown greenness (weighing each crown equally) occurred 70.8 ± 2 days
before the driest point of the year and minimum crown greenness 72.2 ± 2.5 days before the
driest point of the year (20th of September). By comparing the radial histograms of Fig. 5.8 it
was possible to understand the relative distribution through the year of flushing and shedding
and why average peak crown greenness and peak crown shedding occur so close to one another.
Green-up happens suddenly just before the start of the dry season in July as many crowns reach
peak greenness coincidentally. The number of crowns flushing remains high for a period but
decreases gradually as we move into the dry season. On the other hand, the number of crowns
shedding or reaching their minimum greenness builds gradually before the dry season, peaking
at the start of the dry season (August) before drastically dropping off.

By plotting the mean peak in greenness for each species it was possible to see the interspe-
cific variation in green-up timing (see Fig. 5.9). The majority of species greened up as rainfall
started to decline at the end of the wet season and as the dry season was commencing. 63% of
species had their peak in flushing in the four-month window between 120 and 0 days ahead of
the driest point of the year.

The majority of trees showed a periodicity of close to one year (see Fig. 5.10). The strong
peak had significant tails either side. There were secondary peaks that were less than 9 months
and a secondary peak close to 2-years. Some species showed very close agreement among
individuals whereas other species showed a great deal of intraspecific variability (see Fig. D.7).

Just over half of species showed seasonal flushing (54%) and seasonal shedding (50%;
although not necessarily the same species) (see Fig. 5.11). Synchronicity, regularity, amplitude
of oscillation and seasonality of shedding/flushing were all correlated (see Fig. D.10) but key
differences between species are clear where there was divergence. For example, Chrysophyllum
pomiferum (Sapotaceae) had a strong (large amplitude) regular signal but the leaf patterns
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Fig. 5.7 Phylogenetic PCA (Revell, 2009) of the key phenological variables. Synchronicity is a measure
of how well the signals of trees within a species match at any given point in time. Regularity is a measure
of how similar the signal is between trees within a species (regardless of how well aligned they are in
time). Amplitude is a measure of the magnitude of oscillation of the observed signal. Seasonality+ is a
measure of the tendency for individuals of a species to flush at the same time of the year. Seasonality-
is a measure of the tendency for individuals of a species to shed leaves at the same time of the year.
Flush/shedding timing is not included due to its circular nature. The blue arrow shows the hypothesized
slow-fast resource acquisition strategy axis. Pioneer species continually grow and shed leaves with little
regularity as they opportunistically race to fill gaps (Coley, 1983). The more “deciduous” (clear leaf of
phases) trees employ a more structured phenological strategy of regular leaf/growth shedding to make
the most of the seasonal changes in conditions. Shade-tolerant, slow-growing species exhibit longer
periods with less obvious seasonality of leaf patterns (Chabot and Hicks, 1982; Sobrado, 1991; Wright
et al., 2004). Species points are coloured by mean tree height. Short-lived pioneer species are unlikely
to reach the same height as the deciduous or evergreen canopy trees.
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Fig. 5.8 Crown level seasonality of (a) flushing and (b) shedding as shown on a radial histogram and
the black dots show the timings of each individual. The area of each segment is proportional to the
frequency (number of observed crowns). The driest day is shown with a black dashed line and the mean
day of peak/minimum of greening is shown with a red dotted line.

of individuals of this species were highly asynchronous. This species showed a two-year
periodicity and the asynchrony derives from the fact it has two cohorts offset by approximately
a year.

5.3.5 Phenological character with topographic position and tree height

To test the interaction of local topographic position (a proxy for water availability) and tree
height we used mixed effects models at the individual level and phylogenetic least squares
regression at the species level.
Interspecific variation

The average tree height and average TPI (an estimate of landscape habitat association;
low = preference for gullies; high = preference for ridges) of a species, and the interaction
between the two, tended to have a strong influence on the species level phenological metrics
(see Table 5.2). The strength of the interaction term often led to a marked variation in the effect
across the range of TPI and species height which required careful interpretation (see Fig. 5.12).

Short species tended to have their leaf flushing peak later (more positive) relative to the
driest point of the season compared (with little influence of TPI association). As species
topographic position association moves from (high TPI) ridges to (low TPI) gullies, peak
flushing tends to occur earlier relative to the driest point (more negative). There is a significant
interaction between species height and TPI association: towards gullies (low TPI), the timing
of flushing is much more responsive to differences in species height than towards ridges where
differences in species height has little effect of timing. Tree height had a similar effect on the
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Fig. 5.9 The average timing of peak greenness (normalised GLI) for each species relative to the driest
point of the year (20th of September) overlaid on the average daily rainfall at the site. Negative values
are before the driest point and positive values are after. The dotted red line show the (circular) mean
timing of peak greenness across all crowns.
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Fig. 5.10 Histogram of the period duration of the trees in the study. The period of each tree was assessed
using the temporal autocorrelation function. Each tree’s GLI signal was compared against a temporally
lagged version of itself and the lag (greater than 90 days) that gave the maximum correlation was taken
to be the leaf cycle period for that tree.

Table 5.2 Summary table of PGLS Regression Analysis testing the effect of species height and topo-
graphic position index (TPI) association on the key phenological metrics. The effect of mean species
height, mean TPI and their interaction in each on the phenological metrics was tested.

Mean height Mean TPI Height:TPI R2

Period variability −∗∗∗ +∗∗∗ +∗∗∗ 0.810
Peak timing −∗∗∗ +∗∗∗ +∗∗∗ 0.599
Min timing −∗∗∗ − −∗∗∗ 0.596
Period −∗∗∗ +∗∗∗ +∗∗∗ 0.487
Amplitude − +∗∗∗ +∗∗∗ 0.445
Seasonality+ +∗∗∗ − −∗∗∗ 0.393
Seasonality- − − − 0.030
Synchronicity − +∗∗∗ + 0.190
Regularity −∗ +∗ + 0.103

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Fig. 5.11 Synchronicity and regularity of species where alpha (opacity) is scaled between 0-1 and
represents the average amplitude of the GLI signals of individuals of a species (strong oscillation is
shown as a stronger colour). The asterisks represent where there is statistically significant seasonality in
flushing (green) and shedding (red) for a species. Significance codes for seasonality: 0 ‘***’ 0.001 ‘**’
0.01 ‘*’ 0.05 ‘.’ 0.1’ ‘ ’ 1.
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Fig. 5.12 The (inter-specific) influence of characteristic species tree height and TPI association on the
phenological metrics based on Phylogenetic Generalized Least Squares (PGLS) regression. For each
metric, three fixed TPI lines are plotted: low (mean-sd), medium (mean) and high (mean+sd). The
equations of the best fit line are given with the significance codes next to those variables seen to have a
significant influence. The significance symbols (p-values) are based on the scaled predictors whereas
the plots (and quoted coefficients) are in terms of the native values. The R2 values of the regression are
given. Peak/min day is the timing of the peak emergence/shedding of fresh leaves relative to the driest
moment of the year (negative values are prior and positive ones are after). The mean metric value is
given as a horizontal dotted line.
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timing of minimum greenness with taller species shedding leaves earlier however the effect of
TPI association was inverted. The timing of shedding was much more responsive to differences
in tree height for ridge associated species than gully associated species.

Taller species tend to have a shorter leaf cycle period and species with a high TPI association
tend to have longer leaf cycle periods. The interaction between the two is again important: at
low TPI association, period is more responsive to species height whereas at high TPI association
the response in period is less pronounced with less deviation from the usual annual cycle. The
variability of leaf phenology cycle period length had the greatest degree of its variance explained
by these variables (R2 = 0.81). Taller species tended to have a more stable leaf phenology
cycle period length, but this effect is modified by TPI preference. As TPI increases, the leaf
phenology cycle period tends to become more variable (which would appear inconsistent with
its effect seen on synchronicity and regularity). For low TPI associated species, a small increase
in mean height will cause a substantial drop in variability and for medium TPI species the drop
in variability is less pronounced. For high TPI species, this trend is reversed and variability
begins to increase with tree height.

The amplitude of phenological signal of a species generally increases with its TPI preference
but the interaction with tree height is important. For tall species, an increase in TPI preference
causes an increase in amplitude of signal but for medium trees this is less pronounced and for
shorter species there is no apparent association. The seasonality of flushing of a species tends
to increase with species height and the effect is strongest for low TPI associated species and
weak for high TPI associated species. On the other hand, seasonality of shedding had no clear
association with species height or TPI association.

The variation in species synchronicity and regularity were least well explained by TPI
association or tree height. Synchronicity of signals was greater for trees with a high TPI
association. Regularity was also higher for trees with a high TPI association but lower for taller
species. This would appear inconsistent with the results for leaf cycle period variability.
Intra-species variation

Some intra-species variation in the phenological metrics was associated with TPI and tree
height (see Table 5.3). Leaf cycle period tended to increase for trees with higher TPI. Flushing
tended to occur earlier for taller trees; for each meter a tree grows it flushes roughly one day
earlier in the season.

5.3.6 Phylogenetic structure of the phenological metrics

We tested each key phenological metric for phylogenetic signal using Pagel’s λ and Blomberg’s
K tests. In general, the phenological metrics did not show a strong phylogenetic signal with the
exception of amplitude. This meant the spectral difference of a crown of a species (between
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Table 5.3 Summary table of tree level mixed effects models testing the influence of tree height and tree
topographic position index on intra-species variation in phenological characteristics.

Height TPI Height:TPI

Period + +∗ −
Amplitude + + −
Peak timing −∗ − −
Min timing + − +.

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

shedding and fresh leaves) showed some similarity between more closely related species than
more distantly related species. For context, the mean tree height of a species had a much
stronger phylogenetic signal (λ = 0.692, p-value = 0.0007; K = 0.2168, p-value = 0.0028) than
any of the phenological metrics.

5.4 Discussion

By combining UAV imagery with field-mapped crowns and machine learning, we were able to
characterize detailed leaf phenological patterns across a moist tropical forest with a brief dry
season in French Guiana. Other studies have looked at dry/seasonally dry patterns but this is
the first to unpick what happens in a less water limited environment.

How much does canopy PAI vary seasonally? PAI varied through time by about 10%.
Albeit small, this variation in PAI is likely to affect the carbon balance at the forest canopy
scale. Indeed the reduction in PAI occurs in patches (via the defoliation of individual crowns).
Therefore light interception efficiency at the whole canopy level is likely to decrease more
significantly than if PAI was reduced homogeneously across all the crowns. In addition, light
use efficiency will also be reduced as more light will be intercepted by non-photosynthetic
material and because the lower canopy which is briefly exposed to higher-than-usual incoming
light may not adapt readily. We expected that, as Paracou has a brief dry season and is unlikely
to experience water limitation, the PAI of the forest would peak during the driest (and sunniest)
time of year. We saw an increase in PAI that started prior to the dry season, increased through
the dry season and reached its maximum towards the end of the dry season. This was consistent
with the idea that non-water limited tropical forests put out new leaves to maximise light
interception during the relatively cloud free periods (van Schaik et al., 1993; Wagner et al.,
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Table 5.4 Phylogenetic signal in the key phenological variables with the associated p-values.

Variable Pagel’s λ P Blomberg’s K P

Synchronicity 0.0033 1 0.0901 0.1752
Regularity 0.0019 1 0.0230 0.8167
Lag 0 1 0.0747 0.3321
Period 0 1 0.4709 0.3527
Amplitude 0.2495 0.0252 * 0.1722 0.0596 .
Peak date† 0.1004 0.4197 0.0058 0.9391
Min date† 0.1782 0.1849 0.0057 0.9300
Flush seasonality 0 1 0.0154 0.3471
Shed Seasonality 0 1 0.0228 0.1388

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1’ ‘ ’ 1
†These were estimated using the circular approach described in Staggemeier et al. (2020)
and so some caution should be shown when comparing directly with the other estimates.

2011; Wright and van Schaik, 1994; Yang et al., 2021). This direct measurement of canopy
PAI is important as, while consensus is growing around the so-called Amazon green-up (in
most places) during dry periods (Huete et al., 2006; Lopes et al., 2016; Myneni et al., 2007;
Saleska et al., 2016; Samanta et al., 2010; Wang et al., 2020), there has been some dissent
(Atkinson et al., 2011; Morton et al., 2014; Samanta et al., 2010; Silva et al., 2013), and a lack
of in situ quantititative validation of variation in leaf amount. Optical satellite remote sensing
infers LAI from spectral signals of the surface of the canopy. This is known to have issues,
particularly with respect to saturation of signal (beyond a certain point additional leaves do not
contribute to an increase in the optical signal) and artifacts related to imperfect geometric and
radiometric corrections (including the bidirectional reflectance distribution function or BRDF)
(Atkinson et al., 2011; Lyapustin et al., 2012). By directly measuring the extinction of laser
pulses through the upper canopy we showed that there was a 10% seasonal swing in PAI. The
variation in LAI would be greater (as as the relatively stable woody contribution would not be
included) but, while methods are emerging to separate UAV lidar point clouds into leaf and
wood components (Bai et al., 2023; Vicari et al., 2019), that was not within the scope of the
current study. A simpler approach may be to assess the PAD difference between a fully leaved
crown and a leafless crown but this is likely to be limited due to differences between species.

Does variation in canopy and crown greenness align with variation in PAI? Canopy
green-up happened over a matter of weeks, just before the start of the dry season, as many
crowns reached peak greenness coincidentally. The peak flushing (calculated as the circular
average across all crowns) happened 71 days before the driest point of the year which was
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followed by the number of crowns flushing decreasing gradually as the dry season progressed,
until reaching a relative minimum shortly after the driest point of the year. This is consistent
with our observations of PAI increasing through the dry season. We expected that the canopy
would flush new leaves at the transition into the dry season as it prepared new leaves to make
the most of increasing insolation (van Schaik et al., 1993; Wagner et al., 2017; Wright and van
Schaik, 1994; Yang et al., 2021). At the crown level, where there was cyclical flushing/shedding,
we showed that cyclical PAI and greenness followed closely aligned temporal cycles but within
each cycle there was divergence as greenness declined gradually whereas leaf amount stayed
relatively steady until a sudden drop off with shedding. This was in line with what we
anticipated, as leaf spectral properties are known to change; in the visible domain, young leaves
tend to be reddish / yellow towards light green as they approach their peak photosynthetic
capacity, mature leaves are a darker green, and old/senescent leaves become brown/red as
their Chlorophyll breaks down (Chavana-Bryant et al., 2019, 2017; Karageorgou and Manetas,
2006). There has been debate over whether overall leaf quantity (LAI) is the primary driver
for observed photosynthetic seasonality, or whether age-related photosynthetic capacity is
of primary importance (leaf quality) (Wu et al., 2016, 2017a,b). Separating the (spectral)
signal of leaf aging from the (volumetric/areal) signal of leaf amount (Fig. 5.6) gives us
insight into variation in tropical forest photosynthesis and productivity. The fact that we could
discern between the two state variables holds promise for future, comprehensive large scale
analyses that could corroborate or contest the findings of smaller scale phenocam based studies
that have suggested “quality” is the more important driver (Wu et al., 2017b). Our study
was conducted in the flux tower footprint of Paracou Research Station, with the scanning
region carefully delineated/located based on atmospheric modelling, ensuring that all trees that
contribute significantly to the fluxes received by the sensors on the tower are covered. The
next step in the analysis will be to draw correlations between leaf age and leaf amount for the
crowns in the flux tower footprint and the GPP as measured on the flux tower. Eventually,
this will be parameterised within a mechanistic modelling framework such as TROLL (Chave,
1999; Maréchaux and Chave, 2017) which may in turn allow for improved representations of
tropical forest phenology in dynamic global vegetation models (DGVMs) (Chen et al., 2020;
Restrepo-Coupe et al., 2017). This ongoing work is discussed in Chapter 6.

Do species vary in leaf phenology? We quantitatively characterised the observed pheno-
logical patterns (and the inter- and intra- specific variation) extracting a set of key phenological
metrics from the GLI signals that described the strength, timing and degree of agreement
between signals. We anticipated that, because the dry season is brief and not severe, periods
of water stress are unlikely in typical years, and species can therefore exhibit a wide range of
leaf phenology patterns (Loubry, 1994). We thought it unlikely that any single habit would
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be dominant. A broad range of phenological patterns were indeed exhibited, and they were
somewhat structured around the opportunity for light presented in the dry season. For instance,
the majority of species focused their leaf renewal (shedding and flushing) in the transition
to the dry season but there was a lot of variation; there was no point in the year that was
not occupied by a species’ preference for either shedding or flushing. Some species were
highly synchronous in their phenological patterns, flushing and shedding in near perfect unison,
while others showed no sense of alignment in their patterns in agreement with some previous
observations (Morel et al., 2015). The majority of species showed a periodic leaf renewal
pattern that was approximately annual but some species showed a more short term cycling
and others exhibited a periodicity of up to two years (e.g Platonia insignis and Chrysophyllum
pomiferum). Species that had a two-year periodicity scored low in terms of synchronicity and
seasonality but this was because their individuals were split between two cohorts offset by a
year. Within these cohorts there appeared to be good alignment but our approach was unable to
identify this. Around half of the species showed a statistically significant degree of seasonality
(i.e. likely to be focused around a specific point in the year rather than uniformly distributed
through the year) in their flushing and their shedding (although not necessarily the same ones
for each). Those species with very regular signals (i.e. similar waveforms), were likely to be
highly synchronised and have a strong amplitude in their signal although there were several
exceptions (e.g. Chrysophyllum pomiferum as mentioned above). Additional methods that
could cluster species with longer cycles into cohorts could be informative for describing species
strategy.

Do any differences observed among species relate to their resource acquisition strat-
egy? While no clear groupings of strategies emerged, it seemed that species phenological
patterns fell along a continuum that could be related back to resource acquisition strategy. We
had expected to see three groups: (1) Fast-growing pioneer with little cyclical predictable
behaviour, (2) Strongly seasonal brevi-deciduous / seasonal evergreens, (3) Evergreen, asyn-
chronous (Reich, 1995). The phylogenetic PCA was plotted with species coloured by its mean
tree height. It seemed that pioneer species, which were likely to be shorter due to shorter life
spans, flushed and shed with little regularity or structure (and high variability of periodicity)
as they opportunistically raced to fill gaps. The more “deciduous”/seasonal trees employed a
structured phenological strategy of regular leaf/growth shedding to make the most of the sea-
sonal changes in conditions. Shade-tolerant, slow-growing species exhibit longer phenological
periods with less obvious seasonality of leaf patterns. A comparison to the successional status
of the trees could help to substantiate this.

Key to thinking about leaf habits are the leaf and plant economic spectra (Li et al., 2022;
Reich, 2014; Reich et al., 1997; Wang et al., 2023; Wright et al., 2004; Zhao et al., 2017).
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It is generally assumed that deciduous (and to a greater extent pioneer) species employ a
more acquisitive strategy with short-lived leaves that are more photosynthetically active and
incur lower construction and maintenance costs than the longer lived leaves of shade-tolerant,
conservative evergreen species (Eamus, 1999; Reich, 1995; Ribeiro et al., 2022; Sobrado,
1991). In forests that experience a pronounced dry period, deciduous species must maximise
resource capture during their limited growing seasons and display higher gas exchange capacity,
assimilation rate, and water use efficiency compared to their evergreen counterparts (Ribeiro
et al., 2022). In these conditions, leaf habits are intricately linked to water management and
drought tolerance (with alignment to other traits) (de Souza et al., 2020; Méndez-Alonzo et al.,
2013; Sastry and Barua, 2017). Deciduous trees can shed their leaves to prevent water loss
whereas evergreen trees must be equipped to survive water stress with leaves intact which leads
to divergence in approaches (Kaproth et al., 2023; Sakschewski et al., 2021). For example,
evergreen species become more embolism resistant as rainfall decreases but the embolism
resistance in deciduous species does not respond to rainfall (Oliveira et al., 2021). This
influences distributions, as leaf turgor loss point shapes local and regional distributions of
evergreen but not deciduous tropical trees (Kunert et al., 2021), and types of drought resistance,
as deciduous trees are more sensitive to both air and soil drought, whereas evergreen trees
are only sensitive to soil drought (de Souza et al., 2020). Thermo-tolerance, which is greater
in evergreen species than deciduous species, may enforce another axis upon which adaptive
strategy is focused (Sastry and Barua, 2017). Within deciduous species, variation arises
which is linked to the density of their wood; hardwood trees have lower stem water storage
capacity which leads to leaf patterns that are more reactive to water availability than softwood
deciduous species (Lima et al., 2021). However, in systems that do not experience regular water
stress such as wet forests the source of variation in leaf phenology, and its link to resource
acquisition strategy, is less well described/defined. From what we have observed, there is a
mechanism for shedding/flushing leaves that, in general, aligns with maximisation of light
interception. Many of the brevi-deciduous or strongly seasonal evergreen trees appear to use
shedding/flush to renew their leaves for the dry/light season to exploit/capitalise on fresh,
efficient photosynthetic machinery ready for their chance to intercept light and grow (without
any clear/sustained periods of dormancy) (to out-compete their neighbours). Is this mechanism
phenomenologically/physiologically similar to the mechanism employed by deciduous trees in
drier regions that shed to enter a dormant/protective period? I.e., is the shedding mechanism
taking cues from moisture availability but, in this case, as a proxy to thereby optimise for (the
strongly covarying) availability of light? Or is the shedding mechanism in light-optimised forest
phenomenologically distinct, taking a more direct light associated cue? More work needs to be
done to compare suites of (leaf and wood) traits and local habitat preferences (soil, topology)
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to leaf phenological metrics to disentangle and categorise the morass of leaf phenology patterns
observed in non-water limited, seasonally light areas (Ouédraogo et al., 2016).

Do topographic position and tree height help to explain inter- and intra-specific vari-
ation in leaf phenology? Interspecific variation seemed to be explained (partially but signifi-
cantly) by local topographic association and characteristic species height. Tall trees can make
the most of light availability but are typically more hydrologically sensitive as they are exposed
to warmer and drier air which increases evaporative demand and they need to transport water
further upwards against the force of gravity (Midgley, 2003; Ryan and Yoder, 1997). Lowlying
(gully) sites are generally wetter and less likely to experience drought conditions.

In general, shorter species showed little clear variation in phenological character (perhaps
due to the necessity for shade tolerance and minimal risk from hydraulic stress) but the patterns
of taller species diverged based on their local topographic habitat preference (gullies through
to ridges). Taller species flushed fresh leaves earlier with respect to the dry season, an effect
that was strongest for species associated with gully location (low TPI) but not apparent for
species associated with ridges (high TPI). This suggested that emergent species that were
unlikely to experience water stress were more able to maximise light interception by presenting
efficient leaves throughout the dry season than emergent trees in drier conditions that were
more constrained by the risk of hydraulic failure. The strength and synchronicity of the leaf
cycling signals were greater for ridge species compared to species that were associated with
gullies, suggesting species associated with ridges had greater sensitivity to environmental cues.
Taller species tended to have shorter leaf cycle periods potentially linked to a faster resource
acquisition strategy required to emerge beyond the canopy. This relationship is unlikely to hold
across all tree heights as the fastest growing species are short lived (pioneer) but this could
not be captured in our linear analysis. Additionally, leaf lifespan is highly plastic and can be
variable across a tree’s life (Laurans et al., 2012) and emergent trees are not necessarily fast
growers. Examining phenological patterns in relation to growth rates (both in diameter and
height) would help to further elucidate this relationship. Intraspecific variation in timing was
associated with tree height; the taller the tree, the earlier it was likely to flush. Intraspecific
variation in leaf cycle period was greatest at high TPI, potentially linked to a facultative
exchange strategy.

Do the observed leaf phenological metrics of species exhibit a phylogenetic signal? In
general, we found that the characteristics of leaf phenology did not exhibit phylogenetic signal
with the exception of the amplitude of the waveforms which corresponded to the magnitude of
spectral change in the crown between peak flushing and shedding. We anticipated that the leaf
phenology characteristics would not have clear phylogenetic signal in agreement with Pau et al.
(2011)’s predictions for the tropics. The amplitude relates to how close to complete leaflessness
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a species is when it has minimal leaf cover (and potentially bark spectral properties) but also the
“greenness” of its young leaves. It is possible that there is phylogenetic signal present in the axis
that goes from deciduous habit to strongly seasonal evergreen to weakly/aseasonal evergreen
but this could be confounded with the phylogenetic signal present in spectral properties of
young leaves. Young leaves are vulnerable to herbivory and leaf defensive traits, especially
among young leaves, tend to be on the more conservative end of leaf traits (Endara et al., 2017;
Kursar et al., 2009; Uckele et al., 2021). If these traits (e.g. presence of secondary metabolites
/ allelochemicals) translate into spectral differentiation this may exaggerate the signal. A
comparison against the lidar variation will be performed to help partition these effects.

There are several reasons why phenological metrics might have a low phylogenetic signal
in a moist tropical system. Convergent evolution due to environmental adaptation is highly
unlikely as there is such a range of realised strategies. Phenotypic plasticity may explain some
but interspecific variability in itself covered the phenological and environmental variable space.
The capacity to enact rapid (in evolutionary terms) changes may be preferable in these dynamic,
highly populated, energy rich systems leading to highly labile phenological traits. See for
example Parkia that varies considerably in its timing and synchronicity/regularity (Morel et al.,
2015). As we have discussed, leaf phenology is tightly linked to water and light availability
so evolutionary pressure may lead to the ability of clades to evolve quickly into new leafing
patterns to exploit dynamically opening niches.

Conclusions. Leaf phenology is known to have a strong influence on carbon and water
cycling but due to the diversity of patterns it has previously been difficult to comprehensively
characterise in the wet tropics (Zou et al., 2023). The work presented here presents methods to
assess and characterise the broad range of behaviours. The data could be used to parameterise
variations in leaf area index and photosynthetic capacity in vegetation models used to understand
tropical forest productivity under climate change (Chen et al., 2020). By comparing the
phenological patterns we observed to flux tower measurements we will further elucidate the
links between leaf amount, leaf age / quality and forest primary productivity (Wu et al., 2016,
2017a,b). The methods presented here can be employed at other sites across the biome to
broaden our understanding of leaf phenology variation.



Chapter 6

Conclusions: Ecological and technological
change





Abstract

In this thesis, I have applied a range of remote sensing technologies and deep learning (computer
vision) approaches to understand the dynamics of tropical forests from the individual tree to
the landscape scale. I have shown that computer vision approaches can generate insights on
fine scale changes in complex tropical forest landscapes: convolutional neural networks can be
trained to map tree crowns across large forest extents and predict the spread of forest loss from
freely available remote sensing and geospatial data. The individual tree mapping helped to
demonstrate that growth declines with tree height and that taller trees have higher mortality than
intermediate sized trees. Segmentation of multitemporal imagery was shown to further improve
the accuracy of the mapping process, and the integration of hyperspectral data allowed tree
species accounting for 70% of the total tree crown area to be mapped accurately. The species
mapping was a key step in the process of characterising diversity of leaf phenological patterns
at a moist tropical forest site. I found that species height and topographic position preference
explained much of the variability in leaf phenology: specificially, I showed that taller trees
found in moister locations flushed fresh leaves well in advance of the dry season, possibly to
maximise interception of insolation in locations where water was not limiting. Together, these
results demonstrate that deep learning methods can be effective for making ecological inference
from remote sensing data, and emphasise the value of integrating these approaches into studies
of tropical forest dynamics. In this Chapter, I place the findings in a broader context, and
highlight the opportunities for continued development. I discuss the rapid development of deep
learning techniques and how they can be effectively transferred into ecological remote sensing.

6.1 Recent advances in computer vision

The field of deep learning is moving at an incredible pace with new approaches continually
emerging. We did not use transformer networks in the research described in this thesis but
they are becoming increasingly popular and it is worth considering what role they will play
in the remote sensing of tropical forests and the development of work described in this thesis.
Transformer networks signalled a particularly significant advancement, providing advantages
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over recurrent neural network architectures such as LSTMs when processing sequential data,
particularly in natural language processing (Vaswani et al., 2017). Transformers process entire
sequences in parallel, unlike sequential processing by LSTMs, enhancing efficiency in han-
dling large datasets. Their self-attention mechanism captures relationships between sequence
elements, regardless of distance, aiding in understanding entire sequences. Highly scalable,
transformers perform well in large-scale datasets and complex tasks, showing flexibility across
domains including natural language processing (Vaswani et al., 2017), computer vision (Doso-
vitskiy et al., 2020), and protein structure prediction (Jumper et al., 2021). In contrast, LSTMs,
while designed for long-term dependencies, face challenges with long sequences due to the
vanishing gradient problem (Noh, 2021). Transformers avoid this issue with better gradient
flow, making them suitable for deeper model training. Their architecture is also simpler than
LSTMs, lacking complex gating mechanisms. The Vision Transformer (ViT) applies this
approach to computer vision, breaking down images into patches for processing (Dosovitskiy
et al., 2020). While ViTs excel in capturing global context in images and scale well with larger
datasets and compute resources, they have limitations, such as high computational costs and
reliance on large quantities of training data. Convolutional Neural Networks (CNNs), with
their inductive biases, remain efficient for smaller datasets. The field is witnessing a trend of
combining both architectures, leveraging CNNs for feature extraction and ViTs for capturing
global dependencies (Mauricio et al., 2023; Zhang et al., 2021). Recent developments in CNNs,
like InternImage-H’s deformable convolution (Wang et al., 2023), highlight their continued
relevance. This model recently claimed the top spot on two of the COCO instance segmentation
benchmarks1. In domains such as forest ecology, where data are often limited, CNNs might
maintain an advantage. The future of image processing lies in leveraging the strengths of both
ViTs and CNNs, depending on task requirements and available data.

Integrating state-of-the-art approaches, such as transformer networks, into the field of
ecological remote sensing presents several significant challenges. Approaches that have been
established for a number of years, such as U-Net (Ronneberger et al., 2015) and Mask R-
CNN (He et al., 2017), often have a more straightforward integration process into existing
workflows, supported by extensive and clear documentation, which is not true of the newest
techniques. Additionally, ecology typically deals with datasets that are smaller and noisier
compared to well-curated benchmarks like COCO, posing challenges for models that require
large, clean datasets for optimal performance. Furthermore, ecologists are often interested
in features of remote sensing data that are not typically of interest to other users (such as
those that can help to distinguish between tree species), requiring tailored approaches for
effective data processing and analysis. To an ever growing degree, collaborations between

1Since November 2022 and last accessed 15-11-2023: https://paperswithcode.com/task/instance-segmentation

https://paperswithcode.com/task/instance-segmentation
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computer scientists and ecologists are needed to apply the most effective approaches to pressing
ecological questions.

6.2 Forecasting future deforestation

CNNs showed an exciting capacity to automatically extract landscape features relating to
different drivers of forest loss and infer whether loss was likely to continue from a source. The
work highlights the potential for deep learning approaches to make valuable contributions to
preventing forest loss in line with the Glasgow pledge at COP26. Ever increasing volumes of
remote sensing data are becoming freely available and approaches such as those described in
Chapter 2 (Ball et al., 2022) have the capacity to turn them into valuable insights. Previous
attempts at forecasting deforestation have been limited due to the need to engineer features
upon which to predict, which is often unreliable for poorly mapped, dynamic landscape
features. From satellite data and other complementary spatial datasets, our model appeared
able to discriminate between natural forest loss that was unlikely to spread from anthropogenic
deforestation frontiers that are likely to progress over time (e.g. unauthorised gold mines or
newly built roads). However, further work is needed to probe how the “black box” arrives at its
decisions (Carter et al., 2019; Li et al., 2021b). Including additional remote sensing layers as
predictors could provide extra features for the network to learn from that would be otherwise
“hidden” in the multispectral data. Night lights, which provide a dynamic signal for human
presence and economic activity (Levin et al., 2020), could be particularly informative. Higher
resolution imagery (e.g. Planet NICFI, Sentinel-2) may make that feasible to detect more
localised disturbance (e.g. selective logging). The Copernicus Global Land Cover collection
(Buchhorn et al., 2020) could provide labels for more types of land cover transitions which
could help to differentiate between the different kinds of forest loss, although it is only available
at 100 m resolution. Automatic classification of drivers has been demonstrated at coarse
resolutions (10 km) with simple decision tree models applied to derived RS products (Curtis
et al., 2018). Given the apparent ability shown here to discern between natural and human cause
loss, it is likely that a network could be trained to classify and map drivers directly from satellite
imagery at high resolution. However, a comprehensive training set of labelled deforestation
drivers at this resolution does not exist and would require a considerable investment to produce.

Our machine learning approach assumes that historic trends will continue into the near
future. It does not account for shifts in political regimes that could have substantial impacts
on deforestation (Pereira et al., 2020). A changing climate, volatile international economic
conditions and advances in technology further challenge the assumption of stationarity. How-
ever, as the forecasting system can be dynamically updated, the approach is able to learn
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emerging patterns. Evaluating relative risk across pixels makes it possible to prioritise areas for
intervention based on a given strategy or budget. The forecasts could also direct interventions
to emerging frontiers of loss in otherwise isolated and intact landscapes, such as those caused
by illegal mining activities. The approach could potentially be scalable to forests globally.
Governmental and non-governmental organisations could use the tools to understand how
the landscapes in which they operate are likely to change in the near future and refine their
protocols for managing and responding to deforestation risk.

The ability of 3D CNNs to view a pixel’s spatial and temporal context simultaneously has
been shown to improve classification accuracy of land-use classification from remote sensing
data, compared to 2D CNNs (Ji et al., 2018; Xu et al., 2018). One would expect this to be
important for accurate forecasting. However, the 3D approach had fewer individual data points
available than the 2D approach, due to the way data were stacked. The 2D CNN appeared
more robust in cloudier and heterogeneous locations. We tried to use an LSTM RNN approach
to deal with the temporal progression in the data but we found that it was not possible to get
these models to exceed the accuracy of the 2D and 3D CNN approaches. This was in part
due to its inability to be paralellised and make full use of the computing resources available
to us. However, the recent innovations in transformer networks (see Section 6.1) could have
provided greater accuracy and efficiency in handling the sequential aspect of the data. Using
self-attention, they avoid the difficulties in parallelising RNNs, and so can be trained more
efficiently. They will become more effective as the length of the available time series grows
and could help to extend the forecasting horizon.

6.3 Locating and delineating individual trees

We showed that Mask R-CNN was effective at delineating tree crowns in tropical forest
landscapes and that accuracy increased with tree height, meaning that tall trees which store
most carbon are most reliably delineated (Ball et al., 2023). We found that the method could
be quickly trained to perform well on new areas of forest using around ten ~1-hectare images
within which all visible tree crowns had been manually delineated. Our approach (detectree2)
has since been shown to outperform the previous state-of-the art algorithms for tree detection
(DeepForest) with the additional benefit that it can generate accurate estimates of tree crown
area from its precise delineation (Gan et al., 2023). Detectree2, available on GitHub as an
open-source Python packages, has also been incorporated into tree inventory pipelines (Nieding,
2023; Troles et al., 2023). We went on to demonstrate that combining information from scans
at different dates can considerably improve delineation accuracy (Chapter 4).
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Using single-date delineations, the well-differentiated tree crowns at Sepilok West and
Danum in Malaysian Sabah were the easiest to delineate while the even height and tight
packing of upper canopy trees in Paracou resulted in lower accuracy delineation. Furthermore,
at Paracou it is common to observe crowns mixing and growing into each other, which makes
visual separation of crowns challenging. The best performing models were those that were
exposed to training data from all the sites and then “honed” with a limited number of training
iterations on the site to be predicted on, suggesting that our trained models could be transferred
to a new site with little manual data.

Further improvements in accuracy could be achieved by integrating additional data layers
beyond RGB imagery from one time. Firstly, multispectral imagery with NIR bands could help
to distinguish crowns that are difficult to separate in the visible spectrum, but a disadvantage of
introducing this band is that large pre-trained models based on RGB data could no longer be
transferred. Secondly, traditional approaches to tree crown delineation often use a variation
of the watershed algorithm applied to a Digital Surface Models constructed from lidar point
clouds or photogrammetry; Ene et al., 2012); a surface model is a standard output as part of
the mosaicking of UAV imagery using photogrammetry, and it would be possible to stack
an additional band representing the canopy surface onto the RGB data, to give the network
additional clues to help it separate crowns. Thirdly, in our Python package we have implemented
a feature that allows multiclass prediction (as opposed to just the single ‘tree class). We have
started with liana infestation detection in which we identify crowns with and without liana
presence (see Fig. 6.1) and also try to grade the severity of infestations. This work is currently
being drafted as a paper. Detectree2 could also be implemented for species detection in low
diversity systems and tree health mapping and is available to researchers to implement on their
own questions and data. Finally, as I have shown in Chapter 4, delineating crown in RGB
imagery collected on different dates, and then evaluating consistency of delineation, proved
highly effective at providing high-quality information for use in species detection algorithms.
Tracking growth and mortality

Although in theory repeat surveys can be used to assess the growth of trees, we were
cautious in our interpretation of data (Chapter 3). We could be confident that across all sites
taller trees had higher mortality rates and lower growth rates, which is consistent with the
finding of field-based studies (Iida et al., 2014). However, the apparent higher growth and
mortality rates in French Guiana as compared to the sites in Malaysia was potentially a result
of biases introduced by difference in scan parameters (flight height, pulse density, time of year)
among sites, and we resisted the temptation to make direct comparisions across sites (Vincent
et al., 2023). Recent improvements, in lidar inter-calibration (between flights and sensor
parameters; Vincent et al., 2023) may give the consistency required to make comparative
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Fig. 6.1 Multiclass tree crown delineation (instance segmentation) with detectree2 classifying crowns as
either infested or free from lianas.
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assessments of forest growth, but this was beyond the scope of the current study. Inventory
data shows that mean stem diameter growth for trees at Paracou was 1.2 mm/yr (Wagner et al.,
2010) compared to 0.9 mm/yr in Sepilok East, 1.1 mm/yr in Sepilok West and 0.5 mm/yr
in Danum (Ordway et al., 2022; Piponiot et al., 2022) which was not consistent with the
difference in observed height growth rates. We note that these stem diameter growth rates are
not directly comparable to height growth measured in this thesis. Another caveat is that we
defined mortality as a drop in height of more than a statistically determined threshold, but did
not verify that a tree had actually died using field data.

6.4 Mapping tree species across diverse tropical forest land-
scapes

In Chapter 4, our classification of species using hyperspectral imagery extended the number of
species that could be mapped and the completeness of coverage within a diverse tropical forest
landscape. Approximately, 70% of tree crown area at landscape scale was accurately mapped
with 64 species predicted from the hyperspectral data with F1-score > 0.7. This mapping
provided an expanded sample of trees on which the phenology could be analysed in Chapter 5.
Why was the upper red edge important for discriminating species?

Information about leaf chemical and physical characteristics are embedded within spectral
data in complex ways (Féret and Asner, 2011; Jacquemoud and Baret, 1990) because multiple
traits may influence the same spectral regions (Curran, 1989). We found bands in the 748
to 775 nm (upper red edge) range were by far the most important bands for discriminating
species, which was at odds with the finding of Laybros et al. (2019) but align with a previous
assessment of band importance when assessing canopy taxonomic diversity at the same site
Badourdine et al. (2023). The “red edge” is typically identified as lying within the 700-750
nm range, and contains information used to predict as chlorophyll concentration, leaf size,
water content, and general plant health, as well as to classify vegetation (Boochs et al., 1990;
Filella and Penuelas, 1994; Gitelson et al., 2003; Hennessy et al., 2020; Horler et al., 1983;
Thomas and Gausman, 1977). Our research indicates that the spectral region just beyond
the red edge, as classically defined, exhibits particular sensitivity to species variations in the
tropical forest we surveyed. This “upper red edge” lies at the intersection between two regions,
one in which red light is absorbed by chlorophyll and the other in which near-infrared (NIR)
is scattered by cellular structures, potentially providing insights into both biochemical and
structural facets of vegetation. Wavelengths adjacent to this range do not exhibit significant
feature importance, suggesting that the unique reflectance found in the 748-775 nm range might
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capture distinct anatomical characteristics of species, likely pertaining to internal leaf structures
that influence the scattering of NIR light (Ustin et al., 2009). It is not obvious why these bands
came through as overwhelmingly important. A comparable analysis of data obtained by leaf
spectroscopy, accompanied by an analysis of anatomical traits, may help to shed light on this
problem. Perhaps the most perplexing result from Chapter 4 relates to phylogenetic signals.
Most wavebands exhibited a significant phylogenetic signal, but the bands with the strongest
signal were the ones that had least importance when identifying species. Does this mean that
labile traits are more helpful for differentiating between species? Looking within lineages
instead of across the whole phylogeny may be a way to probe this relationship further (Meireles
et al., 2020).

6.4.1 Further improvements in species classification?

We found that linear discrimination analysis, among the more basic classification approaches,
performed as well, or better than advanced approaches such as a multilayer perceptron. More
work is needed to understand how best to constrain the more advanced methods so they can
learn to encode the key crown-level features from limited training data. Scarcity of labelled
data relative to unlabelled data across a landscape lends itself to semi-supervised approaches. I
was involved in a paper using a graph-regularized neural network (GRNN) algorithm for tree
species classification. The proposed algorithm encompasses superpixel-based segmentation for
graph construction, a pixel-wise neural network classifier, and the label propagation technique
to generate an accurate and realistic (emulating tree crowns) classification map on a sparsely
annotated data set (Bandyopadhyay et al., 2022).
Challenges for consistency

A major concern about species classification from hyperspectral imagery is that models
generated at one time and place are not generalisable to other times or regions. A central
problem is that the spectral signatures of individual trees change over time due to factors
including leaf phenology and external factors such as pests or drought (Chen et al., 2022b;
Hesketh and Sánchez-Azofeifa, 2012). Moreover, even within the same species, trees can
display different spectral signatures based on location-specific factors such as soil type, local
climate, structure and topography (Knyazikhin et al., 2013). The spectral data captured by
airborne sensors are also influenced by atmospheric conditions, including cloud cover, gas
composition, and airborne particles (Arroyo-Mora et al., 2021; Schläpfer et al., 2018; Theiler et
al., 2019). These atmospheric variations, occurring between the sensor and the Earth’s surface,
can alter the spectral signatures, thereby complicating the direct comparison of hyperspectral
data from different times and places (Theiler et al., 2019). Additionally, the spectral responses
may vary between sensors, and even the same sensor can show differences over time due to
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calibration shifts or degradation (Baumgartner et al., 2012). Another influencing factor is
the illumination conditions (Arroyo-Mora et al., 2021; Schläpfer et al., 2018; Theiler et al.,
2019) and viewing geometry, which include the angle of sunlight and the sensor viewing
angle (Duthoit et al., 2008; Lyapustin et al., 2012; Montes and Ureña, 2012; Schläpfer and
Richter, 2014; Schläpfer et al., 2015; Theiler et al., 2019). These aspects add further variability
and necessitate more complex data processing and analysis methods. Laybros et al. (2019)
highlights these issues demonstrating a 10% drop in tree species classification accuracy when
models are trained and tested on data separated by just a single day (as compared to those
trained and tested on the same scan). As of November 2023, a new hyperspectral scan is
available for Paracou. Because of the high costs associated with hyperspectral sensing in
remote tropical regions, very few multi-date datasets of this sort are available. By comparing
the new scan to the one from 2016, we will be better able identify the features of the data that
are stable through time allowing for more consistent species mapping.

6.4.2 The value of carefully collected field data

The field dataset from the Paracou field site in French Guiana was developed, curated and
ground validated over a number of years. The careful mapping of what was observed from
above to the reality on the ground was labour intensive but the resultant database of 3600 crowns
provided a robust foundation upon which the research in Chapters 3-5 was built. Without
substantial, high quality ground datasets, remote sensing cannot provide insight into biological
processes (Cavender-Bares et al., 2022; Davies et al., 2021). Despite this, there are few studies
that provide benchmark data upon which tropical tree species mapping approaches can be
tested (Laliberté et al., 2020). The dataset in French Guiana is being expanded: 2500 additional
crowns are being mapped in Nouragues, and these sites also have repeat-surveyed hyperspectral
data. A consortium approach is needed to bring together more researchers to collect similar
data across multiple tropical sites, to advance the generality of hyperspectral modelling of
species.
Scaling up biodiversity mapping using space-borne hyperspectral imagery

The EnMAP (Environmental Mapping and Analysis Program) satellite, a German-led mis-
sion launched in 2022, is equipped with a hyperspectral sensor with 230 spectral channels from
420 nm to 2450 nm, spanning visible, near-infrared, and shortwave infrared regions (Guanter
et al., 2015). The 30m resolution imagery permits detailed analysis of Earth’s surface features,
although it falls short of having the spatial resolution needed for individual tree crown analysis.
However, EnMAP operates on a 27-day repeat cycle, which can be reduced to four days for a
broader swath, utilizing ±5° and ±30° off-nadir tilts, respectively allowing for regular repeat
surveys. The high spectral resolution of EnMAP should allow it to detect subtle changes in
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vegetation but the extent to which this will translate into species or biodiversity mapping in the
tropics is yet to be seen. Hyperspectral data requires difficult, often imperfect, atmospheric cor-
rection when retrieved from an aeroplane which can have a big impact on species classification.
These issues are likely to be exaggerated further for a space-based sensor taking reading over
high-rainfall regions. The data from EnMAP has been freely available to users since November
2, 2022 but there are not yet any publications using the data to study tropical vegetation.

The detailed analyses at specific sites such as Paracou may prove helpful in calibrating
sensors such as EnMAP. Echoing Chave et al. (2019)’s suggestion for biomass remote sensing,
a collection of comprehensively ground surveyed ‘supersites’ could help to bridge the gap
between the rich sources of data from space and insights related to biodiversity and tropical
phenology. Barro Colorado Island (BCI) in Panama is an obvious candidate given its rich
history of research and detailed multi-temporal mapping, but the sites must be representative of
the tropics in their entirety. The Global South in general, and Sub-Saharan Africa in particular,
are chronically underrepresented when it comes to detailed, multi-temporal vegetation surveys
that can be linked to other monitoring infrastructure such as flux towers (Hortal et al., 2015;
Pastorello et al., 2020; Stephenson and Stengel, 2020; Tydecks et al., 2018). As of October
2023, detailed phenological monitoring, methodologically aligned with the monitoring at
Paracou, has been established at Bouamir Research Station, located in the Cameroonian portion
of the Congo Basin. This will provide a valuable comparison with the patterns observed in the
northern Amazon and will be a test of the transferability of the protocols that were developed
in the relatively affluent, European administered department of French Guiana. It goes without
saying that greater financial investment in under-represented regions is a prerequisite for an
effective global monitoring network, but more thought needs to be given to how utile ecological
monitoring can be established in these places in a reliable, consistent and sustainable fashion.
A first step will be to establish and share freely affordable and reproducible processes for
mapping and tracking the dynamics of individual trees. In this vein, I hope this thesis (and its
accompanying datasets and code) can contribute to an improved understanding of the globally
significant ecological processes of the tropics.

6.5 Linking leaf phenology patterns with the carbon cycle
in moist tropical forests

The goal of the PhenObs project, to which my PhD research has contributed, is to evaluate
the links between leaf phenology and the carbon cycle of tropical forests. Tropical forests are
known to play a crucial role in the global carbon (contributing approximately half the stock and
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Fig. 6.2 Solar radiation and Gross Primary Productivity 2004-2022 at Paracou Research Station.

sink of the world’s forests), water and energy budgets. However, the magnitude of matter and
energy fluxes are poorly resolved both spatially and temporally, and the driving mechanisms
remain unclear. For instance, net carbon fluxes between forest and atmosphere depend on
emissions arising from deforestation and degradation activities, but they also relate to forest net
primary productivity. The latter appears to fluctuate over seasonal and inter-annual time scales,
for reasons that are yet to be fully elucidated. Overall carbon assimilation might well be larger
than the emissions caused by land use changes, due, in part, to CO2 fertilisation (Chen et al.,
2022a). Consequently, estimates of the tropical forest carbon sink have the largest uncertainty
of all forests worldwide. The findings of Chapter 5 will be used to inform the ongoing work on
carbon cycling in the PhenObs project. Here, I outline how this work will be developed in the
coming months and years.

6.5.1 The impacts of leaf phenology on primary productivity

As mentioned in Chapter 4 and Chapter 5, all the fieldwork in French Guiana was conducted
within the footprint of a flux tower that monitors gas exchanges between the forest ecosystem
and the atmosphere. In Chapter 5, we demonstrated that while crown greenness and PAI
were synchronised there was divergence within a cycle as PAI stayed relatively level until
shedding while GLI showed a more gradual decline, showing the aging of leaves. By comparing
these patterns to meteorological data and gross primary productivity estimated using the eddy
covariance method from the flux tower sensors (Fig. 6.2), it should be possible to evaluate the
primary driver of seasonality of gross ecosystem productivity and net ecosystem exchange at
the site (Fig. 6.3) and further understand the role of leaf phenology relative to other contributing
factors.
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Fig. 6.3 Partitioning the controls on ecosystem productivity. (a) A schematic of the potential controls
on gross ecosystem productivity; (b) Photosynthetic capacity (PC) and LAI change by leaf ages at
Amazonian site k67 near Santarém, Brazil. PC is amount of photosynthesis per unit of incoming
light measured at flux tower leaf age is defined from phenocam observations and light interception
measurements made by paired LAI 2200 measurements. Source: Wu et al. (2016).

.
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6.5.2 Improving the parameterisation of ecosystem models

Dynamic global climate-vegetation models (DGVMs) are currently the main tools used to
understand and predict Earth’s climate dynamics. They have played a critical role in informing
and influencing major international agreements to mitigate climate change. As a result of
the knowledge gaps identified at the start of this section, DGVMs consistently fail to mimic
observed productivity dynamics or climate-vegetation feedbacks (Restrepo-Coupe et al., 2021),
and therefore cannot be relied upon to accurately predict the fate and role of tropical forests
under changing climate conditions. Lovenduski and Bonan (2017) demonstrated that ocean
models were more congruent than terrestrial models in projections of carbon uptake, and
that reducing uncertainty in terrestrial models requires improving processes understanding,
monitoring and modelling.

A promising way to improve the accuracy of DGVMs is to build a new generation of
individual tree simulators that are built on a detailed understanding of tree biology, including
responses to water supply and leaf phenology (see e.g. Longo et al., 2019). TROLL is among
the advanced process-based models for tropical forests, that predicts carbon and water fluxes
at daily timescale and includes a module that takes leaf phenology into account (Maréchaux
and Chave, 2017). Future work will focus on using TROLL to model ecosystem processes,
building on a detailed knowledge of plant traits gathered from the field site over a number of
years as well as the leaf cycling patterns presented in Chapter 5. It is hoped that this refinement
to the parameterisation will lead to ecosystem models that better reflect observed GPP variation
in tropical forest and thus give more a more reliable foundation for predicting future states of
tropical forests.

6.5.3 Scaling up phenological observations

My thesis has primarily focused on a few hectares of rainforest in French Guiana that are
among the most carefully and intensely studied of any forest on the planet. What opportunities
are there to work over larger scales and gain a more complete picture of the drivers of leaf
phenology? As explained in the introduction of Chapter 5, the vast majority of remote sensing
studies have used passive optical imagery, for example from Sentinel 2. The Global Ecosystem
Dynamics Investigation (GEDI) mission provides an opportunity to assess phenology using an
active sensor in space (Cushman et al., 2023). GEDI is a NASA-led project aimed at providing
high-resolution laser ranging observations of the Earth’s forests and topography. Launched in
December 2018, GEDI is specifically designed to measure the vertical structure of the Earth’s
surface, with a particular focus on forest canopy height, canopy vertical structure, and surface
elevation. GEDI has an unusual spatial structure; a single sample (laser shot) has a footprint of
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25 m and these are collected along eight narrow footprint tracks. Consequently, resampling
the exact same location is extremely rare. Preliminary analyses in the Forest Ecology and
Conservation Group in Cambridge show that GEDI can successfully track bulk patterns of PAD.
This may corroborate the observed trends of overall canopy variation presented in Chapter 5 but
lacks the granularity necessary to characterise the variety of patterns observed at the species and
individual level. Linking our UAV-lidar measurements to GEDI and other optical, spaceborne
sensors may help to generate insights on the subtle phenological patterns across the tropics.

6.6 Concluding remarks

Tropical forests are under intense anthropogenic pressures that are causing them to change at a
rate that is greater than at any other point in human history. Historically, these pressures have
been driven by technological advancements. As we entered an era in which machines possess
interpretation and reasoning capabilities akin to those of humans, and there exists exponential
growth in the amount of Earth observation data, this thesis has explored how deep learning
and remote sensing technologies can be leveraged to comprehend and safeguard these vital
ecosystems. I have shown that deep neural networks coupled with fieldwork can help to map
these forests in unprecedented detail and allow us to observe and decode their cryptic rhythms.
The leaf patterns of tropical forest trees are varied but exhibit adapted structure that capitalises
on the cyclically varying availability of resources. By continuing to refine our understanding of
these patterns, we will enhance our ability to predict the resilience of these ecosystems to the
pressures of global change and understand the degree to which they can buffer and protect us
from this change.
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Harenčár, J. G., Ávila-Lovera, E., Goldsmith, G. R., Chen, G. F., & Kay, K. M. (2022). Flexible
drought deciduousness in a neotropical understory herb. Am. J. Bot., 109(8), 1262–1272.

Harris, N. L., Brown, S., Hagen, S. C., Saatchi, S. S., Petrova, S., Salas, W., Hansen, M. C.,
Potapov, P. V., & Lotsch, A. (2012). Baseline map of carbon emissions from deforesta-
tion in tropical regions. Science, 336(6088), 1573–1576.

Harris, N. L., Gibbs, D. A., Baccini, A., Birdsey, R. A., de Bruin, S., Farina, M., Fatoyinbo, L.,
Hansen, M. C., Herold, M., Houghton, R. A., Potapov, P. V., Suarez, D. R., Roman-
Cuesta, R. M., Saatchi, S. S., Slay, C. M., Turubanova, S. A., & Tyukavina, A. (2021).
Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Chang., 11(3),
234–240.

Harris, N. L., Goldman, E., Gabris, C., Nordling, J., Minnemeyer, S., Ansari, S., Lippmann, M.,
Bennett, L., Raad, M., Hansen, M., & Potapov, P. (2017). Using spatial statistics to
identify emerging hot spots of forest loss. Environ. Res. Lett., 12(2), 024012.

Harrison, D., Rivard, B., & Sánchez-Azofeifa, G. A. (2018). Classification of tree species based
on longwave hyperspectral data from leaves, a case study for a tropical dry forest. Int. J.
Appl. Earth Obs. Geoinf., 66, 93–105.



References 177

Hastings, J. H., Ollinger, S. V., Ouimette, A. P., Sanders-DeMott, R., Palace, M. W., Ducey,
M. J., Sullivan, F. B., Basler, D., & Orwig, D. A. (2020). Tree species traits determine
the success of LiDAR-Based crown mapping in a mixed temperate forest. Remote
Sensing, 12(2), 309.

He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask R-CNN arXiv 1703.06870.
He, K., Zhang, X., Ren, S., & Sun, J. (2014). Spatial pyramid pooling in deep convolutional net-

works for visual recognition, In Computer vision – ECCV 2014, Springer International
Publishing.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition, In
Proceedings of the ieee conference on computer vision and pattern recognition.

Hecht, S. B., & Cockburn, A. (2010). The fate of the forest: Developers, destroyers, and
defenders of the Amazon, updated edition. University of Chicago Press.

Hennessy, A., Clarke, K., & Lewis, M. (2020). Hyperspectral classification of plants: A review
of waveband selection generalisability. Remote Sensing, 12(1), 113.

Hesketh, M., & Sánchez-Azofeifa, G. A. (2012). The effect of seasonal spectral variation on
species classification in the Panamanian tropical forest. Remote Sens. Environ., 118,
73–82.

Hillebrand, H. (2004). On the generality of the latitudinal diversity gradient. Am. Nat., 163(2),
192–211.

Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines vinod nair.
Hoban, S., Bruford, M. W., Funk, W. C., Galbusera, P., Griffith, M. P., Grueber, C. E., Heuertz,

M., Hunter, M. E., Hvilsom, C., Stroil, B. K., Kershaw, F., Khoury, C. K., Laikre, L.,
Lopes-Fernandes, M., MacDonald, A. J., Mergeay, J., Meek, M., Mittan, C., Mukassabi,
T. A., . . . Vernesi, C. (2021). Global commitments to conserving and monitoring genetic
diversity are now necessary and feasible. Bioscience, 71(9), 964–976.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9,
1735–80. https://doi.org/10.1162/neco.1997.9.8.1735

Hoeser, T., & Kuenzer, C. (2020). Object detection and image segmentation with deep learning
on Earth observation data: A Review-Part i: Evolution and recent trends. Remote
Sensing, 12(10), 1667.

Hoffman, G. (2018). Introduction to LSTMs with TensorFlow [Accessed: 2023-10-25].
Hong, S., Kim, S., Joh, M., & Song, S.-k. (2017). Psique: Next sequence prediction of satellite

images using a convolutional sequence-to-sequence network.
Horler, D. N. H., Dockray, M., & Barber, J. (1983). The red edge of plant leaf reflectance. Int.

J. Remote Sens., 4(2), 273–288.

https://doi.org/10.1162/neco.1997.9.8.1735


178 References

Hortal, J., de Bello, F., Diniz-Filho, J. A. F., Lewinsohn, T. M., Lobo, J. M., & Ladle, R. J.
(2015). Seven shortfalls that beset Large-Scale knowledge of biodiversity. Annu. Rev.
Ecol. Evol. Syst., 46(Volume 46, 2015), 523–549.

Hosonuma, N., Herold, M., De Sy, V., De Fries, R. S., Brockhaus, M., Verchot, L., Angelsen,
A., & Romijn, E. (2012). An assessment of deforestation and forest degradation drivers
in developing countries. Environ. Res. Lett., 7(4), 044009.

Houghton, R. A., House, J. I., Pongratz, J., van der Werf, G. R., DeFries, R. S., Hansen, M. C.,
Le Quéré, C., & Ramankutty, N. (2012). Carbon emissions from land use and land-cover
change. Biogeosciences, 9(12), 5125–5142.

Hu, G., Wang, T., Wan, M., Bao, W., & Zeng, W. (2022). UAV remote sensing monitoring of
pine forest diseases based on improved Mask R-CNN. International Journal of Remote
Sensing, 43(4), 1274–1305. https://doi.org/10.1080/01431161.2022.2032455

Hubau, W., Lewis, S. L., Phillips, O. L., Affum-Baffoe, K., Beeckman, H., Cuní-Sanchez,
A., Daniels, A. K., Ewango, C. E. N., Fauset, S., Mukinzi, J. M., Sheil, D., Sonké,
B., Sullivan, M. J. P., Sunderland, T. C. H., Taedoumg, H., Thomas, S. C., White,
L. J. T., Abernethy, K. A., Adu-Bredu, S., . . . Zemagho, L. (2020). Asynchronous
carbon sink saturation in African and Amazonian tropical forests. Nature, 579, 80–87.
https://doi.org/10.1038/s41586-020-2035-0

Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography (MPB-32).
Princeton University Press.

Huertas, C., Sabatier, D., Derroire, G., Ferry, B., Jackson, T., Pélissier, R., & Vincent, G.
(2022). Mapping tree mortality rate in a tropical moist forest using multi-temporal lidar.
International Journal of Applied Earth Observation and Geoinformation, 109, 102780.
https://doi.org/10.1016/j.jag.2022.102780

Huete, A. R., Didan, K., Shimabukuro, Y. E., Ratana, P., Saleska, S. R., Hutyra, L. R., Yang, W.,
Nemani, R. R., & Myneni, R. (2006). Amazon rainforests green-up with sunlight in dry
season. Geophys. Res. Lett., 33(6).

Huntingford, C., Fisher, R. A., Mercado, L., Booth, B. B. B., Sitch, S., Harris, P. P., Cox, P. M.,
Jones, C. D., Betts, R. A., Malhi, Y., Harris, G. R., Collins, M., & Moorcroft, P. (2008).
Towards quantifying uncertainty in predictions of Amazon ‘dieback’. Philos. Trans. R.
Soc. Lond. B Biol. Sci., 363(1498), 1857–1864.

Hurst, J. M., Allen, R. B., Coomes, D. A., & Duncan, R. P. (2011). Size-specific tree mortality
varies with neighbourhood crowding and disturbance in a montane nothofagus forest.
PloS one, 6(10), e26670.

Ienco, D., Gaetano, R., Dupaquier, C., & Maurel, P. (2017). Land cover classification via
multitemporal spatial data by deep recurrent neural networks. IEEE Geoscience and

https://doi.org/10.1080/01431161.2022.2032455
https://doi.org/10.1038/s41586-020-2035-0
https://doi.org/10.1016/j.jag.2022.102780


References 179

Remote Sensing Letters, 14(10), 1685–1689. https://doi.org/10.1109/LGRS.2017.27286
98

Iglhaut, J., Cabo, C., Puliti, S., Piermattei, L., O’Connor, J., & Rosette, J. (2019). Structure from
motion photogrammetry in forestry: A review. Current Forestry Reports, 5, 155–168.
https://doi.org/10.1007/s40725-019-00094-3

Iida, Y., Poorter, L., Sterck, F., Kassim, A. R., Potts, M. D., Kubo, T., & Kohyama, T. S.
(2014). Linking size-dependent growth and mortality with architectural traits across
145 co-occurring tropical tree species. Ecology, 95(2), 353–363.

Interdonato, R., Ienco, D., Gaetano, R., & Ose, K. (2019). DuPLO: A DUal view point deep
learning architecture for time series classification. ISPRS J. Photogramm. Remote Sens.,
149, 91–104.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

IPCC. (2021). Climate change 2021: The physical science basis. contribution of working group
i to the sixth assessment report of the intergovernmental panel on climate change.
Cambridge University Press.

IPCC. (2022). Tropical forests. In Climate change 2022 – impacts, adaptation and vulnerability:
Working group II contribution to the sixth assessment report of the intergovernmental
panel on climate change (pp. 2369–2410). Cambridge University Press.

Isbell, F., Calcagno, V., Hector, A., Connolly, J., Harpole, W. S., Reich, P. B., Scherer-Lorenzen,
M., Schmid, B., Tilman, D., van Ruijven, J., Weigelt, A., Wilsey, B. J., Zavaleta, E. S.,
& Loreau, M. (2011). High plant diversity is needed to maintain ecosystem services.
Nature, 477(7363), 199–202.

Itoh, A., Yamakura, T., Ohkubo, T., Kanzaki, M., Palmiotto, P., Tan, S., & Lee, H. S. (2003).
Spatially aggregated fruiting in an emergent Bornean tree. J. Trop. Ecol., 19(5), 531–
538.

Jablonski, D., Roy, K., & Valentine, J. W. (2006). Out of the tropics: Evolutionary dynamics of
the latitudinal diversity gradient. Science, 314(5796), 102–106.

Jacquemoud, S., & Baret, F. (1990). PROSPECT: A model of leaf optical properties spectra.
Remote Sens. Environ., 34(2), 75–91.

Jactel, H., Bauhus, J., Boberg, J., Bonal, D., Castagneyrol, B., Gardiner, B., Gonzalez-Olabarria,
J. R., Koricheva, J., Meurisse, N., & Brockerhoff, E. G. (2017). Tree diversity drives
forest stand resistance to natural disturbances. Current Forestry Reports, 3(3), 223–243.

Jalobeanu, A., & Gonçalves, G. R. (2014). Automated probabilistic LiDAR swath registration.

https://doi.org/10.1109/LGRS.2017.2728698
https://doi.org/10.1109/LGRS.2017.2728698
https://doi.org/10.1007/s40725-019-00094-3


180 References

Jansson, G., & Angelstam, P. (1999). Threshold levels of habitat composition for the presence
of the long-tailed tit (aegithalos caudatus) in a boreal landscape. Landsc. Ecol., 14(3),
283–290.

Jarecke, K. M., Bladon, K. D., & Wondzell, S. M. (2021). The influence of local and nonlocal
factors on soil water content in a steep forested catchment. Water Resour. Res., 57(5).

Jean, N., Burke, M., Xie, M., Davis, W. M., Lobell, D. B., & Ermon, S. (2016). Combin-
ing satellite imagery and machine learning to predict poverty. Science, 353(6301),
https://science.sciencemag.org/content/353/6301/790.full.pdf, 790–794. https://doi.org
/10.1126/science.aaf7894

Jenkins, C. N., Pimm, S. L., & Joppa, L. N. (2013). Global patterns of terrestrial vertebrate
diversity and conservation. Proc. Natl. Acad. Sci. U. S. A., 110(28), E2602–10.

Ji, S., Zhang, C., Xu, A., Shi, Y., & Duan, Y. (2018). 3D convolutional neural networks for crop
classification with Multi-Temporal remote sensing images. Remote Sensing, 10(1), 75.

Jones, H. G., & Vaughan, R. A. (2010). Remote sensing of vegetation: Principles, techniques,
and applications. OUP Oxford.

Jones, T. G., Coops, N. C., & Sharma, T. (2010). Assessing the utility of airborne hyperspectral
and LiDAR data for species distribution mapping in the coastal pacific northwest,
canada. Remote Sens. Environ., 114(12), 2841–2852.

Jucker, T., Bongalov, B., Burslem, D. F. R. P., Nilus, R., Dalponte, M., Lewis, S. L., Phillips,
O. L., Qie, L., & Coomes, D. A. (2018). Topography shapes the structure, composition
and function of tropical forest landscapes. Ecol. Lett., 21(7), 989–1000.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool,
K., Bates, R., Židek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard,
A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., . . . Hassabis, D.
(2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873),
583–589.

Kalacska, M., & Sánchez-Azofeifa, G. A. (2008). Hyperspectral remote sensing of tropical
and Sub-Tropical forests. CRC Press.

Kamoske, A. G., Dahlin, K. M., Read, Q. D., Record, S., Stark, S. C., Serbin, S. P., Zarnetske,
P. L., & Dornelas, M. (2022). Towards mapping biodiversity from above: Can fusing
lidar and hyperspectral remote sensing predict taxonomic, functional, and phylogenetic
tree diversity in temperate forests? Glob. Ecol. Biogeogr., 31(7), 1440–1460.

Kanowski, P. J., McDermott, C. L., & Cashore, B. W. (2011). Implementing REDD+: Lessons
from analysis of forest governance. Environ. Sci. Policy, 14(2), 111–117.

Kaproth, M. A., Fredericksen, B. W., González-Rodriguez, A., Hipp, A. L., & Cavender-Bares,
J. (2023). Drought response strategies are coupled with leaf habit in 35 evergreen and

https://doi.org/10.1126/science.aaf7894
https://doi.org/10.1126/science.aaf7894


References 181

deciduous oak (Quercus) species across a climatic gradient in the americas. New Phytol.,
239(3), 888–904.

Karageorgou, P., & Manetas, Y. (2006). The importance of being red when young: Anthocyanins
and the protection of young leaves of Quercus coccifera from insect herbivory and
excess light. Tree Physiol., 26(5), 613–621.

Kattenborn, T., Leitloff, J., Schiefer, F., & Hinz, S. (2021). Review on convolutional neural
networks (CNN) in vegetation remote sensing. ISPRS J. Photogramm. Remote Sens.,
173, 24–49.

Kattenborn, T., Schiefer, F., Frey, J., Feilhauer, H., Mahecha, M. D., & Dormann, C. F. (2022).
Spatially autocorrelated training and validation samples inflate performance assessment
of convolutional neural networks. ISPRS Open Journal of Photogrammetry and Remote
Sensing, 5, 100018.

Keenan, R. J. (2015). Climate change impacts and adaptation in forest management: A review.
Ann. For. Sci., 72(2), 145–167.

Keenan, T. F., Hollinger, D. Y., Bohrer, G., Dragoni, D., Munger, J. W., Schmid, H. P., &
Richardson, A. D. (2013). Increase in forest water-use efficiency as atmospheric carbon
dioxide concentrations rise. Nature, 499(7458), 324–327.

Kellner, J. R., Albert, L. P., Burley, J. T., & Cushman, K. C. (2019). The case for remote sensing
of individual plants. American Journal of Botany, 106(9), 1139–1142. https://doi.org/1
0.1002/ajb2.1347

Ken, S., Sasaki, N., Entani, T., Ma, H. O., Thuch, P., & Tsusaka, T. W. (2020). Assessment
of the local perceptions on the drivers of deforestation and forest degradation, agents
of drivers, and appropriate activities in cambodia. Sustain. Sci. Pract. Policy, 12(23),
9987.

Kennedy, C. E. J., & Southwood, T. R. E. (1984). The number of species of insects associated
with british trees: A Re-Analysis. J. Anim. Ecol., 53(2), 455–478.

Kier, G., Kreft, H., Lee, T. M., Jetz, W., Ibisch, P. L., Nowicki, C., Mutke, J., & Barthlott,
W. (2009). A global assessment of endemism and species richness across island and
mainland regions. Proc. Natl. Acad. Sci. U. S. A., 106(23), 9322–9327.

Kikuzawa, K. (1991). A Cost-Benefit analysis of leaf habit and leaf longevity of trees and their
geographical pattern. Am. Nat., 138(5), 1250–1263.

Kim, S., Hong, S., Joh, M., & Song, S.-K. (2017). DeepRain: ConvLSTM network for precipi-
tation prediction using multichannel radar data arXiv 1711.02316.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization arXiv 1412.6980.

https://doi.org/10.1002/ajb2.1347
https://doi.org/10.1002/ajb2.1347


182 References

Kinnebrew, E., Ochoa-Brito, J. I., French, M., Mills-Novoa, M., Shoffner, E., & Siegel, K.
(2022). Biases and limitations of global forest change and author-generated land cover
maps in detecting deforestation in the Amazon. PLoS One, 17(7), e0268970.

Kislov, D. E., Korznikov, K. A., Altman, J., Vozmishcheva, A. S., & Krestov, P. V. (2021).
Extending deep learning approaches for forest disturbance segmentation on very high-
resolution satellite images. Remote Sens. Ecol. Conserv., 7(3), 355–368.

Kissinger, G. (2020). Policy responses to direct and underlying drivers of deforestation: Ex-
amining rubber and coffee in the central highlands of Vietnam. For. Trees Livelihoods,
11(7), 733.

Kitajima, K., Mulkey, S., & Wright, S. (1997). Decline of photosynthetic capacity with leaf age
in relation to leaf longevities for five tropical canopy tree species. Am. J. Bot., 84(5),
702.

Kljun, N., Calanca, P., Rotach, M. W., & Schmid, H. P. (2004). A simple parameterisation for
flux footprint predictions. Bound.-Layer Meteorol., 112(3), 503–523.

Kljun, N., Calanca, P., Rotach, M. W., & Schmid, H. P. (2015). A simple two-dimensional
parameterisation for flux footprint prediction (FFP). Geosci. Model Dev., 8(11), 3695–
3713.

Knipling, E. B. (1970). Physical and physiological basis for the reflectance of visible and
near-infrared radiation from vegetation. Remote Sensing of Environment, 1(3), 155–159.
https://doi.org/10.1016/S0034-4257(70)80021-9

Knyazikhin, Y., Schull, M. A., Stenberg, P., Mõttus, M., Rautiainen, M., Yang, Y., Marshak, A.,
Latorre Carmona, P., Kaufmann, R. K., Lewis, P., Disney, M. I., Vanderbilt, V., Davis,
A. B., Baret, F., Jacquemoud, S., Lyapustin, A., & Myneni, R. B. (2013). Hyperspectral
remote sensing of foliar nitrogen content. Proc. Natl. Acad. Sci. U. S. A., 110(3), E185–
92.

Kokaly, R. F., Asner, G. P., Ollinger, S. V., Martin, M. E., & Wessman, C. A. (2009). Character-
izing canopy biochemistry from imaging spectroscopy and its application to ecosystem
studies. Remote Sens. Environ., 113, S78–S91.

Köppen, V. (1884). The heat zones of the Earth, viewed according to the duration of the hot,
temperate and cold periods and according to the effect of the heat on the organic world.
Meteorologische Zeitschrift, 1(21), 5–226.

Koven, C. D., Knox, R. G., Fisher, R. A., Chambers, J. Q., Christoffersen, B. O., Davies, S. J.,
Detto, M., Dietze, M. C., Faybishenko, B., Holm, J. Et al. (2020). Benchmarking and
parameter sensitivity of physiological and vegetation dynamics using the functionally
assembled terrestrial ecosystem simulator (fates) at barro colorado island, panama.
Biogeosciences, 17(11), 3017–3044.

https://doi.org/10.1016/S0034-4257(70)80021-9


References 183

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep
convolutional neural networks. Commun. ACM, 60(6), 84–90.

Krogh, A. (2020). State of the tropical rainforest (tech. rep.). Rainforest Foundation Norway.
Kumar, K. S., Tripathi, S. K., & Khanduri, V. P. (2023). Phenological patterns of tropical trees

in relation to climatic factors in a mountain moist forest of Indo-Burma hotspot region.
Vegetos, 36(3), 1070–1079.

Kunert, N., Zailaa, J., Herrmann, V., Muller-Landau, H. C., Wright, S. J., Pérez, R., McMahon,
S. M., Condit, R. C., Hubbell, S. P., Sack, L., Davies, S. J., & Anderson-Teixeira, K. J.
(2021). Leaf turgor loss point shapes local and regional distributions of evergreen but
not deciduous tropical trees. New Phytol., 230(2), 485–496.

Kursar, T. A., Dexter, K. G., Lokvam, J., Pennington, R. T., Richardson, J. E., Weber, M. G.,
Murakami, E. T., Drake, C., McGregor, R., & Coley, P. D. (2009). The evolution of
antiherbivore defenses and their contribution to species coexistence in the tropical tree
genus Inga. Proc. Natl. Acad. Sci. U. S. A., 106(43), 18073–18078.

Kushwaha, C. P., Tripathi, S. K., Tripathi, B. D., & Singh, K. P. (2011). Patterns of tree
phenological diversity in dry tropics. Acta Ecol. Sin., 31(4), 179–185.

Kussul, N., Lavreniuk, M., Skakun, S., & Shelestov, A. (2017). Deep learning classification
of land cover and crop types using remote sensing data. IEEE Geoscience and Remote
Sensing Letters, 14(5), 778–782.

Laliberté, E., Schweiger, A. K., & Legendre, P. (2020). Partitioning plant spectral diversity into
alpha and beta components. Ecol. Lett., 23(2), 370–380.

Laurance, W. F. (2007). Have we overstated the tropical biodiversity crisis? Trends Ecol. Evol.,
22(2), 65–70.

Laurans, M., Martin, O., Nicolini, E., & Vincent, G. (2012). Functional traits and their plasticity
predict tropical trees regeneration niche even among species with intermediate light
requirements. J. Ecol., 100(6), 1440–1452.

Laybros, A., Aubry-Kientz, M., Féret, J.-B., Bedeau, C., Brunaux, O., Derroire, G., & Vincent,
G. (2020). Quantitative airborne inventories in dense tropical forest using imaging
spectroscopy. Remote Sensing, 12(10).

Laybros, A., Schläpfer, D., Féret, J.-B., Descroix, L., Bedeau, C., Lefevre, M.-J., & Vincent, G.
(2019). Across date species detection using airborne imaging spectroscopy. Remote
Sensing, 11(7).

Lee, H. S., Davies, S. J., LaFrankie, J. V., Tan, S., Yamakura, T., Itoh, A., Ohkubo, T., &
Ashton, P. S. (2002). Floristic and structural diversity of mixed Dipterocarp forest in
Lambir Hills National Park, Sarawak, Malaysia. J. Trop. For. Sci., 14(3), 379–400.



184 References

Lefcheck, J. S., Byrnes, J. E. K., Isbell, F., Gamfeldt, L., Griffin, J. N., Eisenhauer, N., Hensel,
M. J. S., Hector, A., Cardinale, B. J., & Duffy, J. E. (2015). Biodiversity enhances
ecosystem multifunctionality across trophic levels and habitats. Nat. Commun., 6, 6936.

Leigh, E. G., Jr, Davidar, P., Dick, C. W., Puyravaud, J.-P., Terborgh, J., ter Steege, H., &
Wright, S. J. (2004). Why do some tropical forests have so many species of trees? bitr,
36(4), 447–473.

Levin, N., Kyba, C. C. M., Zhang, Q., Sánchez de Miguel, A., Román, M. O., Li, X., Portnov,
B. A., Molthan, A. L., Jechow, A., Miller, S. D., Wang, Z., Shrestha, R. M., & Elvidge,
C. D. (2020). Remote sensing of night lights: A review and an outlook for the future.
Remote Sens. Environ., 237, 111443.

Lewis, S. L., Edwards, D. P., & Galbraith, D. (2015). Increasing human dominance of tropical
forests. Science, 349(6250), 827–832.

Lewis, S. L., Lloyd, J., Sitch, S., Mitchard, E. T. A., & Laurance, W. F. (2009). Changing
ecology of tropical forests: Evidence and drivers. Annu. Rev. Ecol. Evol. Syst., 40(1),
529–549.

Lewis, S. L., & Maslin, M. A. (2015). Defining the anthropocene. Nature, 519(7542), 171–180.
Li, J., Chen, X., Niklas, K. J., Sun, J., Wang, Z., Zhong, Q., Hu, D., & Cheng, D. (2022). A

whole-plant economics spectrum including bark functional traits for 59 subtropical
woody plant species. J. Ecol., 110(1), 248–261.

Li, Q., Chen, X., Yuan, W., Lu, H., Shen, R., Wu, S., Gong, F., Dai, Y., Liu, L., Sun, Q., Zhang,
C., & Su, Y. (2021a). Remote sensing of seasonal climatic constraints on leaf phenology
across pantropical evergreen forest biome. Earths Future, 9(9).

Li, X., Chen, S., Hu, X., & Yang, J. (2018). Understanding the disharmony between dropout
and batch normalization by variance shift. arXiv preprint arXiv:1801.05134.

Li, X., Xiong, H., Li, X., Wu, X., Zhang, X., Liu, J., Bian, J., & Dou, D. (2021b). Inter-
pretable deep learning: Interpretation, interpretability, trustworthiness, and beyond
arXiv 2103.10689.

Li, Y., Zhang, H., & Shen, Q. (2017). Spectral–Spatial classification of hyperspectral imagery
with 3D convolutional neural network. Remote Sensing, 9(1), 67.

Lieberman, D., & Lieberman, M. (1984). The causes and consequences of synchronous flushing
in a dry tropical forest. Biotropica, 16(3), 193–201.

Lieth, H. (1974). Phenology and seasonality modeling (Vol. 8). Springer Berlin Heidelberg.
Lim, C. L., Prescott, G. W., De Alban, J. D. T., Ziegler, A. D., & Webb, E. L. (2017). Untangling

the proximate causes and underlying drivers of deforestation and forest degradation in
Myanmar. Conserv. Biol., 31(6), 1362–1372.



References 185

Lima, A. L. A. d., Rodal, M. J. N., Castro, C. C., Antonino, A. C. D., Melo, A. L. d., Gonçalves-
Souza, T., & Sampaio, E. V. d. S. B. (2021). Phenology of high- and low-density wood
deciduous species responds differently to water supply in tropical semiarid regions. J.
Arid Environ., 193, 104594.

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid
networks for object detection, In Proceedings of the ieee conference on computer vision
and pattern recognition.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick,
C. L. (2014). Microsoft COCO: Common objects in context, In European conference
on computer vision. Springer.

Liu, F., & Kong, Y. (2015). Zoib: An R package for bayesian inference for beta regression and
zero/one inflated beta regression. R J., 7(2), 34.

Liu, F., & Li, Q. (2016). A bayesian model for joint analysis of multivariate repeated measures
and time to event data in crossover trials. Stat. Methods Med. Res., 25(5), 2180–2192.

Liu, Y., Zhan, Z., Ren, L., Ze, S., Yu, L., Jiang, Q., & Luo, Y. (2021). Hyperspectral evidence
of early-stage pine shoot beetle attack in yunnan pine. For. Ecol. Manage., 497, 119505.

Longo, M., Knox, R. G., Medvigy, D. M., Levine, N. M., Dietze, M. C., Kim, Y., Swann,
A. L. S., Zhang, K., Rollinson, C. R., Bras, R. L., Wofsy, S. C., & Moorcroft, P. R.
(2019). The biophysics, ecology, and biogeochemistry of functionally diverse, vertically
and horizontally heterogeneous ecosystems: The ecosystem demography model, version
2.2 – part 1: Model description. Geoscientific Model Development, 12(10), 4309–4346.

Lopes, A. P., Nelson, B. W., Wu, J., Graça, P. M. L. d. A., Tavares, J. V., Prohaska, N., Martins,
G. A., & Saleska, S. R. (2016). Leaf flush drives dry season green-up of the Central
Amazon. Remote Sens. Environ., 182, 90–98.

Loreau, M., & Hector, A. (2001). Partitioning selection and complementarity in biodiversity
experiments. Nature, 412(6842), 72–76.

Loreau, M., & de Mazancourt, C. (2013). Biodiversity and ecosystem stability: A synthesis of
underlying mechanisms. Ecol. Lett., 16 Suppl 1, 106–115.

Loubry, D. (1994). La phénologie des arbres caducifoliés en forêt guyanaise (5° de latitude
nord): Illustration d’un déterminisme à composantes endogène et exogène. Canadian
journal of botany, 72(12), 1943–1957.

Louhaichi, M., Borman, M. M., & Johnson, D. E. (2001). Spatially located platform and aerial
photography for documentation of grazing impacts on wheat. Geocarto Int., 16(1),
65–70.

Lovejoy, T. E., & Nobre, C. (2019). Amazon tipping point: Last chance for action. Sci Adv,
5(12), eaba2949.



186 References

Lovenduski, N. S., & Bonan, G. B. (2017). Reducing uncertainty in projections of terrestrial
carbon uptake. Environ. Res. Lett., 12(4), 044020.

Lutz, J. A., Furniss, T. J., Johnson, D. J., Davies, S. J., Allen, D., Alonso, A., Anderson-
Teixeira, K. J., Andrade, A., Baltzer, J., Becker, K. M. Et al. (2018). Global importance
of large-diameter trees. Global Ecology and Biogeography, 27(7), 849–864.

Lyapustin, A. I., Wang, Y., Laszlo, I., Hilker, T., Hall, F. G., Sellers, P. J., Tucker, C. J., &
Korkin, S. V. (2012). Multi-angle implementation of atmospheric correction for MODIS
(MAIAC): 3. atmospheric correction. Remote Sens. Environ., 127, 385–393.

Lyu, H., & Lu, H. (2016). Learning a transferable change detection method by recurrent neural
network. https://doi.org/10.1109/IGARSS.2016.7730344

Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., & Johnson, B. A. (2019). Deep learning in remote
sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote Sens.,
152, 166–177.

Ma, Y., Zhao, Y., Im, J., Zhao, Y., & Zhen, Z. (2024). A deep-learning-based tree species
classification for natural secondary forests using unmanned aerial vehicle hyperspectral
images and LiDAR. Ecol. Indic., 159, 111608.

Madritch, M. D., Kingdon, C. C., Singh, A., Mock, K. E., Lindroth, R. L., & Townsend, P. A.
(2014). Imaging spectroscopy links aspen genotype with below-ground processes at
landscape scales. Philos. Trans. R. Soc. Lond. B Biol. Sci., 369(1643), 20130194.

Maire, V., Gross, N., Börger, L., Proulx, R., Wirth, C., Pontes, L. d. S., Soussana, J.-F., &
Louault, F. (2012). Habitat filtering and niche differentiation jointly explain species rel-
ative abundance within grassland communities along fertility and disturbance gradients.
New Phytol., 196(2), 497–509.

Malhi, Y. (2012). The productivity, metabolism and carbon cycle of tropical forest vegetation.
J. Ecol., 100(1), 65–75.

Malhi, Y., Aragão, L. E. O. C., Galbraith, D., Huntingford, C., Fisher, R., Zelazowski, P., Sitch,
S., McSweeney, C., & Meir, P. (2009). Exploring the likelihood and mechanism of a
climate-change-induced dieback of the Amazon rainforest. Proc. Natl. Acad. Sci. U. S.
A., 106(49), 20610–20615.

Malhi, Y., Roberts, J. T., Betts, R. A., Killeen, T. J., Li, W., & Nobre, C. A. (2008). Climate
change, deforestation, and the fate of the Amazon. Science, 319(5860), 169–172.

Manoli, G., Ivanov, V. Y., & Fatichi, S. (2018). Dry-season greening and water stress in
Amazonia: The role of modeling leaf phenology. J. Geophys. Res. Biogeosci., 123(6),
1909–1926.

Marconi, S., Weinstein, B. G., Zou, S., Bohlman, S. A., Zare, A., Singh, A., Stewart, D.,
Harmon, I., Steinkraus, A., & White, E. P. (2022). Continental-scale hyperspectral

https://doi.org/10.1109/IGARSS.2016.7730344


References 187

tree species classification in the united states national ecological observatory network.
Remote Sens. Environ., 282, 113264.

Maréchaux, I., & Chave, J. (2017). An individual-based forest model to jointly simulate carbon
and tree diversity in Amazonia: Description and applications. Ecol. Monogr., 87(4),
632–664.

Markesteijn, L., Poorter, L., Bongers, F., Paz, H., & Sack, L. (2011). Hydraulics and life history
of tropical dry forest tree species: Coordination of species’ drought and shade tolerance.
New Phytol., 191(2), 480–495.

Martin, F.-M., Müllerová, J., Borgniet, L., Dommanget, F., Breton, V., & Evette, A. (2018).
Using single- and Multi-Date UAV and satellite imagery to accurately monitor invasive
knotweed species. Remote Sensing, 10(10), 1662.

Marvin, D. C., Asner, G. P., Knapp, D. E., Anderson, C. B., Martin, R. E., Sinca, F., &
Tupayachi, R. (2014). Amazonian landscapes and the bias in field studies of forest
structure and biomass. Proceedings of the National Academy of Sciences, 111(48),
https://www.pnas.org/doi/pdf/10.1073/pnas.1412999111, E5224–E5232. https://doi.org
/10.1073/pnas.1412999111

Mauricio, J., Domingues, I., & Bernardino, J. (2023). Comparing vision transformers and
convolutional neural networks for image classification: A literature review. NATO Adv.
Sci. Inst. Ser. E Appl. Sci., 13(9), 5521.

Mayfield, H., Smith, C., Gallagher, M., & Hockings, M. (2017). Use of freely available datasets
and machine learning methods in predicting deforestation. Environmental Modelling &
Software, 87, 17–28.

Mäyrä, J., Keski-Saari, S., Kivinen, S., Tanhuanpää, T., Hurskainen, P., Kullberg, P., Poikolainen,
L., Viinikka, A., Tuominen, S., Kumpula, T., & Vihervaara, P. (2021). Tree species
classification from airborne hyperspectral and LiDAR data using 3D convolutional
neural networks. Remote Sens. Environ., 256, 112322.

Mazlan, S. M., Wan Mohd Jaafar, W. S., Muhmad Kamarulzaman, A. M., Saad, S. N. M.,
Mohd Ghazali, N., Adrah, E., Abdul Maulud, K. N., Omar, H., Teh, Y. A., Dzulkifli, D.,
& Mahmud, M. R. (2022). A review on the use of LiDAR remote sensing for forest
landscape restoration. In M. N. Suratman (Ed.), Concepts and applications of remote
sensing in forestry (pp. 49–74). Singapore, Springer Nature Singapore.

McCann, K. S. (2000). The diversity-stability debate. Nature, 405(6783), 228–233.
McGrath, L. J., van Riper, C., 3rd, & Fontaine, J. J. (2009). Flower power: Tree flowering

phenology as a settlement cue for migrating birds. J. Anim. Ecol., 78(1), 22–30.

https://doi.org/10.1073/pnas.1412999111
https://doi.org/10.1073/pnas.1412999111


188 References

McManus, K. M., Asner, G. P., Martin, R. E., Dexter, K. G., Kress, W. J., & Field, C. B.
(2016). Phylogenetic structure of foliar spectral traits in tropical forest canopies. Remote
Sensing, 8(3), 196.

Meakem, V., Tepley, A. J., Gonzalez-Akre, E. B., Herrmann, V., Muller-Landau, H. C., Wright,
S. J., Hubbell, S. P., Condit, R., & Anderson-Teixeira, K. J. (2018). Role of tree size
in moist tropical forest carbon cycling and water deficit responses. New Phytologist,
219(3), 947–958. https://doi.org/10.1111/nph.14633

Meireles, J. E., Cavender-Bares, J., Townsend, P. A., Ustin, S., Gamon, J. A., Schweiger, A. K.,
Schaepman, M. E., Asner, G. P., Martin, R. E., Singh, A., Schrodt, F., Chlus, A., &
O’Meara, B. C. (2020). Leaf reflectance spectra capture the evolutionary history of seed
plants. New Phytol., 228(2), 485–493.

Mena, C. F., Laso, F., Martinez, P., & Sampedro, C. (2017). Modeling road building, deforesta-
tion and carbon emissions due deforestation in the Ecuadorian Amazon: The potential
impact of oil frontier growth. J. Land Use Sci., 12(6), 477–492.

Méndez-Alonzo, R., Pineda-Garcia, F., Paz, H., Rosell, J. A., & Olson, M. E. (2013). Leaf
phenology is associated with soil water availability and xylem traits in a tropical dry
forest. Trees, 27(3), 745–754.

Midgley, J. J. (2003). Is bigger better in plants? The hydraulic costs of increasing size in trees.
Trends Ecol. Evol., 18(1), 5–6.

Mitchard, E. T. A. (2018). The tropical forest carbon cycle and climate change. Nature,
559(7715), 527–534.

Mitchard, E. T. A., Feldpausch, T. R., Brienen, R. J. W., Lopez-Gonzalez, G., Monteagudo, A.,
Baker, T. R., Lewis, S. L., Lloyd, J., Quesada, C. A., Gloor, M., Ter Steege, H., Meir, P.,
Alvarez, E., Araujo-Murakami, A., Aragão, L. E. O. C., Arroyo, L., Aymard, G., Banki,
O., Bonal, D., . . . Phillips, O. L. (2014). Markedly divergent estimates of Amazon
forest carbon density from ground plots and satellites. Glob. Ecol. Biogeogr., 23(8),
935–946.

Miyamoto, M., Mohd Parid, M., Noor Aini, Z., & Michinaka, T. (2014). Proximate and
underlying causes of forest cover change in Peninsular Malaysia. For. Policy Econ., 44,
18–25.

Moffette, F., Alix-Garcia, J., Shea, K., & Pickens, A. H. (2021). The impact of near-real-time
deforestation alerts across the tropics. Nat. Clim. Chang., 11(2), 172–178.

Molina-Venegas, R., & Rodriguez, M. A. (2017). Revisiting phylogenetic signal; strong or
negligible impacts of polytomies and branch length information? BMC Evol. Biol.,
17(1), 53.

https://doi.org/10.1111/nph.14633


References 189

Montes, R., & Ureña, C. (2012). An overview of BRDF models. University of Grenada,
Technical Report LSI-2012, 1, 19.

Morel, H., Mangenet, T., Beauchêne, J., Ruelle, J., Nicolini, E., Heuret, P., & Thibaut, B. (2015).
Seasonal variations in phenological traits: Leaf shedding and cambial activity in parkia
nitida miq. and parkia velutina benoist (fabaceae) in tropical rainforest. Trees, 29(4),
973–984.

Morellato, L. P. C., Alberton, B., Alvarado, S. T., Borges, B., Buisson, E., Camargo, M. G. G.,
Cancian, L. F., Carstensen, D. W., Escobar, D. F. E., Leite, P. T. P., Mendoza, I., Rocha,
N. M. W. B., Soares, N. C., Silva, T. S. F., Staggemeier, V. G., Streher, A. S., Vargas,
B. C., & Peres, C. A. (2016). Linking plant phenology to conservation biology. Biol.
Conserv., 195, 60–72.

Morley, R. J. (2011). Cretaceous and Tertiary climate change and the past distribution of
megathermal rainforests. In M. Bush, J. Flenley, & W. Gosling (Eds.), Tropical rain-
forest responses to climatic change (pp. 1–34). Berlin, Heidelberg, Springer Berlin
Heidelberg.

Morley, R. J. Et al. (2000). Origin and evolution of tropical rain forests. John Wiley & Sons.
Morton, D. C., Nagol, J., Carabajal, C. C., Rosette, J., Palace, M., Cook, B. D., Vermote, E. F.,

Harding, D. J., & North, P. R. J. (2014). Amazon forests maintain consistent canopy
structure and greenness during the dry season. Nature, 506(7487), 221–224.

Mou, L., Bruzzone, L., & Zhu, X. X. (2019). Learning spectral-spatial-temporal features
via a recurrent convolutional neural network for change detection in multispectral
imagery. IEEE Transactions on Geoscience and Remote Sensing, 57(2), 924–935.
https://doi.org/10.1109/tgrs.2018.2863224

Mugabowindekwe, M., Brandt, M., Chave, J., Reiner, F., Skole, D. L., Kariryaa, A., Igel, C.,
Hiernaux, P., Ciais, P., Mertz, O., Tong, X., Li, S., Rwanyiziri, G., Dushimiyimana, T.,
Ndoli, A., Uwizeyimana, V., Lillesø, J.-P. B., Gieseke, F., Tucker, C. J., . . . Fensholt,
R. (2022). Nation-wide mapping of tree-level aboveground carbon stocks in rwanda.
Nature Climate Change. https://doi.org/10.1038/s41558-022-01544-w

Muller-Landau, H. C., Condit, R. S., Chave, J., Thomas, S. C., Bohlman, S. A., Bunyave-
jchewin, S., Davies, S., Foster, R., Gunatilleke, S., Gunatilleke, N. Et al. (2006). Testing
metabolic ecology theory for allometric scaling of tree size, growth and mortality in
tropical forests. Ecology letters, 9(5), 575–588.

Murali, K. S., & Sukumar, R. (1993). Leaf flushing phenology and herbivory in a tropical dry
deciduous forest, southern india. Oecologia, 94(1), 114–119.

Myneni, R. B., Yang, W., Nemani, R. R., Huete, A. R., Dickinson, R. E., Knyazikhin, Y., Didan,
K., Fu, R., Negrón Juárez, R. I., Saatchi, S. S., Hashimoto, H., Ichii, K., Shabanov,

https://doi.org/10.1109/tgrs.2018.2863224
https://doi.org/10.1038/s41558-022-01544-w


190 References

N. V., Tan, B., Ratana, P., Privette, J. L., Morisette, J. T., Vermote, E. F., Roy, D. P., . . .
Salomonson, V. V. (2007). Large seasonal swings in leaf area of Amazon rainforests.
Proc. Natl. Acad. Sci. U. S. A., 104(12), 4820–4823.

Naeem, S., Bunker, D. E., Hector, A., Loreau, M., & Perrings, C. (2009). Biodiversity, ecosystem
functioning, and human wellbeing: An ecological and economic perspective. Oxford
University Press.

Newstrom, L. E., Frankie, G. W., & Baker, H. G. (1994). A new classification for plant
phenology based on flowering patterns in lowland tropical rain forest trees at La Selva,
Costa Rica. Biotropica, 26(2), 141–159.

Newton, P., Miller, D. C., Byenkya, M. A. A., & Agrawal, A. (2016). Who are forest-dependent
people? a taxo nomy to aid livelihood and land use decision-making in forested regions.
Land use policy, 57, 388–395.

Nicolau, A. P., Herndon, K., Flores-Anderson, A., & Griffin, R. (2019). A spatial pattern
analysis of forest loss in the Madre de Dios region, Peru. Environ. Res. Lett., 14(12),
124045.

Nieding, R. (2023). Unsupervised machine learning via feature extraction and clustering
to classify tree species from High-Resolution UAV-based RGB image data (Doctoral
dissertation). Otto-Friedrich-Universität Bamberg, Germany.

Nilus, R., Maycock, C. R., Majalap-Lee, N., & Burslem, D. (2011). Nutrient limitation of tree
seedling growth in three soil types found in sabah. Journal of Tropical Forest Science,
133–142.

Nkem, J. N., Somorin, O. A., Jum, C., Idinoba, M. E., Bele, Y. M., & Sonwa, D. J. (2013).
Profiling climate change vulnerability of forest indigenous communities in the congo
basin. Mitigation and Adaptation Strategies for Global Change, 18(5), 513–533.

Noh, S.-H. (2021). Analysis of gradient vanishing of RNNs and performance comparison.
Information, 12(11), 442.

Nunes, M. H., Davey, M. P., & Coomes, D. A. (2017). On the challenges of using field
spectroscopy to measure the impact of soil type on leaf traits. Biogeosciences, 14(13),
3371–3385.

Ocer, N. E., Kaplan, G., Erdem, F., Matci, D. K., & Avdan, U. (2020). Tree extraction from
multi-scale uav images using Mask R-CNN with FPN. Remote Sensing Letters, 11(9),
847–856. https://doi.org/10.1080/2150704X.2020.1784491

Oliveira, R. S., Eller, C. B., Barros, F. d. V., Hirota, M., Brum, M., & Bittencourt, P. (2021).
Linking plant hydraulics and the fast-slow continuum to understand resilience to drought
in tropical ecosystems. New Phytol., 230(3), 904–923.

https://doi.org/10.1080/2150704X.2020.1784491


References 191

Ollinger, S. V. (2011). Sources of variability in canopy reflectance and the convergent properties
of plants. New Phytol., 189(2), 375–394.

Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Un-
derwood, E. C., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F.,
Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., & Kassem, K. R.
(2001). Terrestrial ecoregions of the world: A new map of life on Earth: A new global
map of terrestrial ecoregions provides an innovative tool for conserving biodiversity.
Bioscience, 51(11), 933–938.

Ordway, E. M., Asner, G. P., Burslem, D. F., Lewis, S. L., Nilus, R., Martin, R. E., O’Brien, M. J.,
Phillips, O. L., Qie, L., Vaughn, N. R. Et al. (2022). Mapping tropical forest functional
variation at satellite remote sensing resolutions depends on key traits. Communications
Earth & Environment, 3(1), 247.

Ouédraogo, D.-Y., Fayolle, A., Gourlet-Fleury, S., Mortier, F., Freycon, V., Fauvet, N., Rabaud,
S., Cornu, G., Bénédet, F., Gillet, J.-F., Oslisly, R., Doucet, J.-L., Lejeune, P., & Favier,
C. (2016). The determinants of tropical forest deciduousness: Disentangling the effects
of rainfall and geology in central Africa. J. Ecol., 104(4), 924–935.

Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401(6756),
877–884.

Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L.,
Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W.,
McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., & Hayes, D. (2011). A large and
persistent carbon sink in the world’s forests. Science, 333(6045), 988–993.

Park, J. Y., Muller-Landau, H. C., Lichstein, J. W., Rifai, S. W., Dandois, J. P., & Bohlman, S. A.
(2019). Quantifying leaf phenology of individual trees and species in a tropical forest
using unmanned aerial vehicle (UAV) images. Remote Sensing, 11(13), 1534.

Parsons, S. A., Valdez-Ramirez, V., Congdon, R. A., & Williams, S. E. (2014). Contrasting
patterns of litterfall seasonality and seasonal changes in litter decomposability in a
tropical rainforest region. Biogeosciences, 11(18), 5047–5056.

Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y.-W., Poindexter, C.,
Chen, J., Elbashandy, A., Humphrey, M., Isaac, P., Polidori, D., Reichstein, M., Ribeca,
A., van Ingen, C., Vuichard, N., Zhang, L., Amiro, B., Ammann, C., . . . Papale, D.
(2020). The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy
covariance data. Sci Data, 7(1), 225.

Pau, S., Okin, G. S., & Gillespie, T. W. (2010). Asynchronous response of tropical forest leaf
phenology to seasonal and El Niño-driven drought. PLoS One, 5(6), e11325.



192 References

Pau, S., Wolkovich, E. M., Cook, B. I., Davies, T. J., Kraft, N. J. B., Bolmgren, K., Betancourt,
J. L., & Cleland, E. E. (2011). Predicting phenology by integrating ecology, evolution
and climate science. Glob. Chang. Biol., 17(12), 3633–3643.

Pausas, J. G., Austin, M. P., & Noble, I. R. (1997). A forest simulation model for predicting
eucalypt dynamics and habitat quality for arboreal marsupials. Ecol. Appl., 7(3), 921–
933.

Pereira, E. J. d. A. L., de Santana Ribeiro, L. C., da Silva Freitas, L. F., & de Barros Pereira,
H. B. (2020). Brazilian policy and agribusiness damage the Amazon rainforest. Land
use policy, 92, 104491.

Pereira, H. M., Ferrier, S., Walters, M., Geller, G. N., Jongman, R. H. G., Scholes, R. J., Bruford,
M. W., Brummitt, N., Butchart, S. H. M., Cardoso, A. C., Coops, N. C., Dulloo, E.,
Faith, D. P., Freyhof, J., Gregory, R. D., Heip, C., Höft, R., Hurtt, G., Jetz, W., . . .
Wegmann, M. (2013). Ecology. essential biodiversity variables. Science, 339(6117),
277–278.

Perz, S. G., Caldas, M. M., Arima, E., & Walker, R. J. (2007). Unofficial road building in the
Amazon: Socioeconomic and biophysical explanations. Dev. Change, 38(3), 529–551.

Phillips, O. L., Malhi, Y., Higuchi, N., Laurance, W. F., Nunez, P. V., Vasquez, R. M., Laurance,
S. G., Ferreira, L. V., Stern, M., Brown, S., & Grace, J. (1998). Changes in the carbon
balance of tropical forests: Evidence from long-term plots. Science, 282(5388), 439–
442.

Piao, S., Liu, Q., Chen, A., Janssens, I. A., Fu, Y., Dai, J., Liu, L., Lian, X., Shen, M., & Zhu, X.
(2019). Plant phenology and global climate change: Current progresses and challenges.
Glob. Chang. Biol., 25(6), 1922–1940.

Piao, S., Sitch, S., Ciais, P., Friedlingstein, P., Peylin, P., Wang, X., Ahlström, A., Anav, A.,
Canadell, J. G., Cong, N., Huntingford, C., Jung, M., Levis, S., Levy, P. E., Li, J., Lin,
X., Lomas, M. R., Lu, M., Luo, Y., . . . Zeng, N. (2013). Evaluation of terrestrial carbon
cycle models for their response to climate variability and to CO2 trends. Glob. Chang.
Biol., 19(7), 2117–2132.

Piotrowski, M. (2019). Nearing the tipping point: Drivers of deforestation in the Amazon
Region. Inter-American Dialogue: Washington, WA, USA.

Piponiot, C., Anderson-Teixeira, K. J., Davies, S. J., Allen, D., Bourg, N. A., Burslem,
D. F. R. P., Cárdenas, D., Chang-Yang, C.-H., Chuyong, G., Cordell, S., Dattaraja,
H. S., Duque, Á., Ediriweera, S., Ewango, C., Ezedin, Z., Filip, J., Giardina, C. P.,
Howe, R., Hsieh, C.-F., . . . Muller-Landau, H. C. (2022). Distribution of biomass
dynamics in relation to tree size in forests across the world. New Phytologist, 234(5),



References 193

https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/nph.17995, 1664–1677. https://doi
.org/10.1111/nph.17995

Plotkin, J. B., Potts, M. D., Yu, D. W., Bunyavejchewin, S., Condit, R., Foster, R., Hubbell, S.,
LaFrankie, J., Manokaran, N., Seng, L. H., Sukumar, R., Nowak, M. A., & Ashton, P. S.
(2000). Predicting species diversity in tropical forests. Proc. Natl. Acad. Sci. U. S. A.,
97(20), 10850–10854.

Poorter, L., Bongers, F., Aide, T. M., Almeyda Zambrano, A. M., Balvanera, P., Becknell,
J. M., Boukili, V., Brancalion, P. H. S., Broadbent, E. N., Chazdon, R. L., Craven, D.,
de Almeida-Cortez, J. S., Cabral, G. A. L., de Jong, B. H. J., Denslow, J. S., Dent, D. H.,
DeWalt, S. J., Dupuy, J. M., Durán, S. M., . . . Rozendaal, D. M. A. (2016). Biomass
resilience of neotropical secondary forests. Nature, 530(7589), 211–214.

Potapov, P., Hansen, M. C., Laestadius, L., Turubanova, S., Yaroshenko, A., Thies, C., Smith,
W., Zhuravleva, I., Komarova, A., Minnemeyer, S., & Esipova, E. (2017). The last
frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci
Adv, 3(1), e1600821.

Prospere, K., McLaren, K., & Wilson, B. (2014). Plant species discrimination in a tropical
wetland using in situ hyperspectral data. Remote Sensing, 6(9), 8494–8523.

Purves, D. W., & Turnbull, L. A. (2010). Different but equal: The implausible assumption at
the heart of neutral theory. J. Anim. Ecol., 79(6), 1215–1225.

Qie, L., Lewis, S. L., Sullivan, M. J. P., Lopez-Gonzalez, G., Pickavance, G. C., Sunderland, T.,
Ashton, P., Hubau, W., Abu Salim, K., Aiba, S.-I., Banin, L. F., Berry, N., Brearley,
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Appendix A

Chapter 2 Supplementary Materials

A.1 Delimitation of study areas

A.1.1 Madre de Dios

The boundary of Madre de Dios was taken from a shapefile of Peru’s administrative Depart-
ments1.

A.1.2 Junin region

The study region was defined by the following steps: Starting layers were:
1) Shapefile of Peru’s administrative Departments
2) WWF map of the entire Amazon Ecoregion

Junin, and the five surrounding departments, Pasco, Apurimac, Ayachcho, Cusco and
Huancavelica, were selected and merged (dissolved) into one area. Then, the intersection of
the dissolved departments and the Amazon Ecoregion was calculated. Some small islands
detached from the main area were removed. To allow for predictions close to the edge of the
region, a second region was also defined by adding an additional buffer of 0.09 degrees and the
removing any internal islands that had not been included.

1https://data.humdata.org/dataset/limites-de-peru

https://data.humdata.org/dataset/limites-de-peru
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A.2 Datasets and feature extraction

A.2.1 Global Forest Change dataset and Landsat imagery

The Global Forest Change dataset (Hansen et al., 2013) gives areas (at approximately 30×30
meter resolution) that have been detected from Landsat imagery as undergoing forest loss. The
first release of the global map of forest cover loss, was made in 2013 and contains a map of
forest extent (in 2000), annual loss (from 2000 to 2012), and overall gain (from 2000 to 2012).
Since then, the data set has been updated annually with the same methodologies being used as
in 2013. The current Version 1.8, includes forest loss from 2000 through to 2020. The features
of the data is given in Table A.1.

“Tree cover” is defined as “all vegetation greater than 5 meters in height, and may take the
form of natural forests or plantations across a range of canopy densities". Forest loss is defined
as “the disturbance or complete removal of tree cover canopy (below 30% tree canopy cover)".
The forest loss detection does not differentiate between permanent tree cover loss or temporary
loss from which the forest will recover. It also does not determine whether the cause of the loss
is natural or human induced. The dataset comes with a layer of percentage tree canopy cover
observed in the year 2000, a data mask map (describing areas of land or permanent water) and
a cloud-free multi-spectral (Landsat) satellite image from the year 2000. Additionally, each
annual release comes with the most recent available cloud-free Landsat image composite from
that year (the “last” layer) and updated layer an annual forest loss (“lossyear”).

The latest data was extracted for the Madre de Dios area and the Junin area described above.
Consistent cloud-free Landsat imagery was available from 2014. Annual forest loss events
were available from 2001 to 2020.

Table A.1 Layers of the Global Forest Change dataset.

Variable Description Value

treecover2000 Percentage of tree cover in the pixel observed in 2000. 0 - 100
gain One if gain happens during the period: 2000 - 2012, zero otherwise. 0 or 1
lossyear The year when loss was detected, one-indexed from year 2001, or zero if no loss occurred. 0 - 18
datamask No data (0), mapped land surface (1), and permanent water bodies (2). 0,1 or 2
first_b30 The Landsat 7 red band built from the first cloud free pixels in 2000. 0 - 255
first_b40 The Landsat 7 near infrared band built from the first valid pixels in 2000. 0 - 255
first_b50 The first Landsat 7 short wave infrared band built from the first valid pixels in 2000. 0 - 255
first_b70 The second Landsat 7 short wave infrared band built from the first valid pixels in 2000. 0 - 255
last_b30_2013 (/2014/..) The Landsat 7 red band built from the latest valid pixels in 2013 (/2014...). 0 - 255
last_b40_2013 (/2014...) The Landsat 7 near infrared band built from the latest valid pixels in 2013(/2014...). 0 - 255
last_b50_2013 (/2014/..) The first Landsat 7 short wave infrared band built from the latest valid pixels 2013 (/2014...). 0 - 255
last_b70_2013 (/2014/..) The second Landsat 7 short wave infrared band built from the latest valid pixels 2013 (/2014...). 0 - 255
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Since the utility of optical satellite imagery is highly reliant on cloud cover (which can be
persistent across the Andean Amazon), some late-in the year losses may only detected in the
following year. The assignment of deforestation events to a particular year should therefore be
treated with some caution.

Additionally, two different algorithms were used to generate the the measurements of tree
cover loss - one for 2001-2010 and another for 2011-2018. The new algorithm is more sensitive
to small-scale agricultural, fire-caused, or other forest losses.

Global Forest Watch noted that they observe large spike in the tree cover loss in the years
2016 and 2017 globally, and that the causes for that are determined to be fires. While this can
be considered as an anomaly in their dataset, they also suggest that other pre-2011 fire-related
losses may not detected by their initial algorithm. The scientists involved in this project are
working to back-cast the new algorithm to generate one consistent time series of forest loss
events.

A.2.2 Digital surface model

The second set of models for the Junin/Ashaninka area were further developed by the inclusion
of an elevation predictor layer to allow the models to learn from features of the topology.

A Digital Elevation Model (DEM) or Digital Surface Model provides a digital representation
of the Earth’s surface. In the We included the Japan Aerospace Exploration Agency’s (JAXA)
30-m resolution ALOS Global DSM as a layer for the models. Including a DSM as a layer
gives another dimension to the data and allows the deep networks to learn and predict from
features of the topology of the areas of interest.

We compared the available DEM/DSM sources. Alternatives included NASA’s SRTM DSM,
the MERIT DEM and the TanDEM-X DEM. The later two were excluded as their resolution
was too low. SRTM is said to struggle in sloping regions with foreshortening, layover and
shadow.

ALOS PALSAR is an L-band product and so has better canopy penetration when compared
to C-band products. This means it is more reflective of topology rather than canopy surface.

JAXA’s ALOS Global DSM was judged to be the most precise and suitable to complement
the Global Forest Change and satellite data described above.

A.2.3 Feature extraction

Global Forest Change dataset (Hansen et al., 2013) is divided into 10x10 degree tiles, each
of which comes with six raster files per tile: treecover, gain, data mask, loss year, first and
last (see Table A.1). All files contain unsigned 8-bit values and have a spatial resolution of
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1 arc-second per pixel, which correspond to approximately 30 meters per pixel around the
equator. After 2013 loss year and last files were updated annually. The last 2020 loss year
file assign an integer value 0-20 to each pixel. 1-20 corresponds to the year (2001-2020) at
which a forest to non-forest event was observed at this location. 0 is assigned if no change is
detected in the period 2001-2020. The dataset is encoded such that once a pixel is assigned as
deforested, it does not go back to forested at any time in the future. We collected the following
ten tif files: treecover, gain, datamask, all “last” files from 2014 to 2020 and the most recent,
2020, loss year file. Since we wish our models to be able to predict the label of each pixel
of the regions by analyzing an image, or time series of images, that captures its local region,
we also included pixels lying in a buffer area of 0.09 degree (or approximately 10km) in our
dataset. This allowed us to extract features from images that cover area up to 10km away from
within region pixel.

From the processed dataset we then assigned 7-8 predictor values to each pixel, 2 stationary
and 5 that vary each of the years 2014-2020. Table A.2 provides explanation for each of them.
Each pixel also has a corresponding lossyear value ∈ 0,1,2,3,4, ...20, where 1-20 indicate the
year at which it was marked as deforested or 0 if it did not experience deforestation up to year
2020.

Table A.2 Predictor layers for the forecasts.

Variable Description Value
datamask Mapped land surface (0), and permanent water bodies (1). 0, 1
treecover2000 Percentage of tree cover in the pixel observed in 2000. 0 - 100
elevation* Height above sea level in meters 0 - max(h)
recent loss1(t) If pixel transitioned from forest to non-forest in years [t, t - 2) 0, 1
recent loss2(t) If pixel transitioned from forest to non-forest in years [t-2, t - 5) 0, 1
recent loss3(t) If pixel transitioned from forest to non-forest in years [t-2, t - 5) 0, 1
recent loss4(t) If pixel transitioned from forest to non-forest in years [t-2, t - 5) 0, 1
last_b30(t)† Normalised TAO reflectance Landsat 7 band 3 (red) from the latest valid pixels in year t 0 - 255
last_b40(t)† Normalised TAO reflectance Landsat 7 band 4 (NIR) from the latest valid pixels in year t 0 - 255
last_b50(t)† Normalised TAO reflectance Landsat 7 band 5 (SWIR) from the latest valid pixels in year t 0 - 255
last_b70(t)† Normalised TAO reflectance Landsat 7 band 7 (SWIR) from the latest valid pixels in year t 0 - 255
* optional layer
†latest available cloud-free observation at pixel

We constructed an additional feature from Hansen et al. (2013) data called recent_loss(t).
Deforestation tends to cluster around an emergent point (contagion) so we wanted to encode
the proximity, in time and space, of recent loss. Therefore, we wanted to have feature that
summarised the information of neighbouring pixels’ deforestation state. We chose to represent
recent loss as four, one-hot encoded layers, each layer representing loss within a specified
period in the recent past.
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All our models were build so that they can take two or more tensors with the same spatial
dimensions, which we define below, and forecast if deforestation is observed in the following
year at the locating corresponding to the spatially-central pixel of these tensors.

The first 3D tensor that any of our models receives, which we named “Static", is tensor
of shape S ∈ R2×(2r+1)×(2r+1) where (2r + 1)× (2r + 1) is its spatial dimension and r is a
predefined hyperparameter indicating the number of pixels the input tensor have in each spatial
direction from the target central pixel (which has spatial coordinates (r+ 1× r+ 1) for an
image of spatial size (2r+1)× (2r+1) ). The two channels of this tensor are treecover2000
and datamask. The third optional DSM layer may also be included and in this case there are
three channels.

Our second set of tensors is a time series of 3D tensors Xt−3,Xt−2,Xt ∈ R5×(2r+1)×(2r+1),
where again each tensor has spatial dimensions (2r + 1)× (2r + 1) but depth 5. The five
channels of a tensor with time index t are recentloss(t), last_b30(t), last_b40(t), last_b50(t)
and last_b70(t) as defined in Table A.2. The depth of the time series stack can be varied but
for the sake of illustration we will use a time series of 3 years. Finally, each tensor with time
index t comes with a label Yt+1 ∈ {0,1} which takes value 1 only if the target central pixel (at
spatial location r+1× r+1) is marked as deforested exactly in year t +1. To clarify this, here
we note that if this pixel was labeled as deforested in any other year t j ̸= t +1 ,lossyeart j = 1,
or was never labeled as deforested in the study period 2001-2018, lossyeart = 0∀t j ∈ 1,2, ..20,
then Yt+1 = 0.

Due to the characteristics of Hansen et al. (2013) dataset, we know that if a pixel is labelled
as deforested in year t j then the pixel never returns to the state of being forested. Additionally,
if its the percentage of tree cover observed in 2000 was below 30%, than this location is
not considered as forest. Only if a pixel with treecover2000 < 30% experience “gain" in
the study period 2001-2012 we may assume it corresponds to a forested area from 2013
onward. Finally, if it has datamask = 1 then we know it is a permanent water body. Having
stated this facts, we note that if our models aim to forecast the label of a pixel with index j ,
Y j

t+1 ≡ I{lossyear j = t +1}, they would not be of any use if we know that this pixel j is not a
forested area in year t. It will never be reverted to forest and therefore detecting deforestation at
this location in year t +1 doesn’t make sense. Therefore, when predicting the labels of pixels
Y j

t+1 in year t +1, we restricted these set of pixels to be:

Jt =: { j ∈M : (lossyear j > t ∪ lossyear j = 0)

∩(datamask j = 0)∩ (treecover j > 30% ∪ gain j = 1)}
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where M is the index set of pixels lying within Madre de Dios boundaries.
Since channel treecover2000 has range 0:100, and the Landsat bands 0:255, we rescaled

each of them to be in the range 0:1.
For our last 3 models that utilize a time series of tensors we worked with the following

dataset: [Sj,X j
2014,X

j
2015,X

j
2016] as set of input tensors and Y j

2017 as the set of labels to be
predicted where j ∈ J2016. We split the data into train,validation and test with ratio 6:2:2 to
select the best model of each class. We evaluated their performance on [Sj,X j

2015,X
j
2016,X

j
2017]

as the set of input tensors and Y j
2018 as the set of labels to be predicted where j ∈ J2017.

Our Model 1, 2D CNN model, is able to analyze only mono-temporal tensors and from
them to extract features forecasting the central pixel deforestation label in the following year.
We used the union of the following data pairs of tensors and labels as dataset: [Sj,X j

2014] as
an input tensors and Y j

2015 as the set of labels to be predicted where j ∈ J2014. [Sj,X j
2015] as an

input tensors and Y j
2016 as the set of labels to be predicted where j ∈ J2015. [Sj,X j

2016] as an
input tensors and Y j

2017 as the set of labels to be predicted where j ∈ J2016. We evaluated its
performance on : [Sj,X j

2017] as an input tensors and Y j
2018 as the set of labels to be predicted

where j ∈ J2017.
Here we note that to choose the best trained model form each model class, Model 2, Model

3, Model 4, we used as validation and text data that has labels in 2017, and therefore this
models were biased towards the more recent year. Therefore, when choosing our best trained
2D CNN model, we use all data pairs to train it, but for early stopping validation data and
model selection test data we used the pair [Sj,X j

2016] - Y j
2017, j ∈ J2016.

A.3 Model architectures

A.3.1 Rationales

Deep learning methodologies are invaluable in attempting to make sense of the rapidly growing
amount of satellite data being beamed back from space. Their capabilities of analysing
satellite imagery of any resolution and providing unprecedented insights of a huge social
and environmental importance from successfully predicting poverty (Jean et al., 2016) to
anticipating undetected weather events (Hong et al., 2017). Zhu et al. (2017) gave a summary
of the recent advances in the application of deep learning methods to remote sensing data.
Forecasting spatial patterns of deforestation is a temporal extension of the well studied land
use/cover classification task.

Kussul et al. (2017) investigated the performance of Random Forests classifier (RF), an
ensemble of fully connected Neural Networks with single hidden layer (NN) and two ensembles
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of Convolutional Neural Networks (the first 1D CNN and the second - 2D CNN) for crop
classification. They used time series of six spectral Landsat-8 bands and two Synthetic-aperture
radar (SAR) bands as an input feature vector (of total dimension 54) for each of the models.
While the first 1D CNN model considered only the target pixel’s channels as an input and used
convolution in the spectral domain, the 2D CNN takes as an input a patch of pixels and aims
to label the central pixel. Thus convolution was made in the spatial domain. They reported
the overall classification accuracy of RF, the ensemble of NN and the ensemble of 1D and
2D CNNs to be 88.7%, 92.7%, 93.5%, and 94.6% respectively. Their results agree with the
common belief that 2D convolutions in the spatial domain outperform not only in the computer
vision domain but in the hyperspectral imaging as well. Therefore, we set our first model to be
a 2D CNN that analyzes mono-temporal multi-spectral images.

Recent computer vision developments in 3D CNNs by Tran et al. (2015), where the
third dimension usually refers to the time axis, has been utilized in the architecture of some
hyperspectral classification networks. However, in the hyperspectral case, the third dimension
usually refers to the spectral domain. Thus, in a 3D CNN, convolution operations are performed
spatial-spectrally, while in 2D CNNs, they are done only spatially. Li et al. (2017) proposed
a simple 3D CNN consisting of only two convolutional layers and one fully connected layer
followed by a softmax layer. They compared its classification performance against a stacked
autoencoder, a deep brief network and a 2D CNN on five different hyperspectral image datasets.
While for the last three models, a prior Principal Component Analysis was performed to
decrease the spectral dimension of the data, their simple 3D CNN architecture was applied on
the hyperspectral images directly. Their model slightly outperform in all of the five data sets.
The 2D CNN method was second best overall. An important note they made was that, as 3D
CNN contains far fewer parameters to tune than a 2D CNN, it converges relatively quicker. A
more complicated 3D CNN was also considered by Chen et al. (2016) who paid great attention
on regularization techniques such as L2 regularization and Dropout. We note that the two
proposed 3D CNNs models (Chen et al., 2016; Li et al., 2017) aimed to takes full advantage of
both spectral and spatial information contained within HSIs data (where a pixel has more than
100 spectral bands), but they only analyzed mono-temporal cloud-free images.

The increasing temporal capabilities of today’s sensors enable the use of temporal, along
with spectral and spatial features. We decided to test the ability of a 3D CNN network to extract
spatio-temporal features of forest loss.

When dealing with multidimensional time series data, Recurrent Neural Networks have
proven their ability to mange time dependencies. Recently, they have started to be popular
tool in the remote sensing community. In Lyu and Lu (2016) a land cover change detection
task was addressed using a RNN model on a small time series. In their algorithm, a long
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short-term memory (LSTM) based RNN is used to learn the joint spectral-temporal feature
representation from a bi-temporal image sequence. In addition, Lyu and Lu (2016) showed
the flexibility of their network by applying it to detect not only binary labels, but multi-class
changes and showed that their framework performs just as good for change detection in an
“unseen” scene without fine-tuning. The RNN-based approach of Ienco et al. (2017) was
proposed for land cover classification. Both models, these of Lyu and Lu (2016) and Ienco et al.
(2017), demonstrated their superiority over standard machine learning algorithms. However, in
both of them a time series of single pixel channels is considered as an input and thus the spatial
features of a location remains unexplored.

Conversely, as an attempt to utilize both the temporal and the spatial domain of a video
data, a commonly used architecture in the computer vision field deals with first extracting
high-level visual percepts from the top-layers of pretrained 2D CNNs and second, feeding
them to an RNN in order to analyze temporal variation. This approach was first considered in
the remote sensing field by Mou et al. (2019) in a framework named Recurrent Convolutional
Neural Network (ReCNN). It detects land cover changes using bi-temporal satellite imagery.
This architecture first learns the spatio-spectral high-level features of the two satellite images
(each of which has 6 bands of resolution 30m2 taken in different years) via 2D CNN encoder
and then consequently feed these two features vectors (fT 1

, fT 2
) in a RNN architecture. They

argued that the conditional probability of a pixel’s label can be modelled by an RRN where
p(fT 2|fT 1

) = φ(hT 2
) and hT 2

is the final recurrent hidden state that the RNN branch outputs.
This RNN idea was taken from Lyu and Lu (2016) where instead of f, they used the single pixel
channels. Finally, they applied a fully connected layer, followed by a Softmax activation to
express φ .

They compared the performance of such a framework for both bi- and multi-class change
detection on two different scenes and reported results achieved from long short-term memory
(LSTM) based ReCNN, Gated Recurrent Unit (GRU) based ReCNN, Fully Connected ReCNN
and a RNN framework as in Lyu and Lu (2016). They demonstrated that architecture like
ReCNN can achieve state-of-art accuracy due to its ability to learn spatio-spectro-temporal
features via its 2D encoder. ReCNN with a LSTM cell was reported to the best. The authors of
Interdonato et al. (2019) used a similar approach to perform land cover classification task. They
also combined a CNN and ReCNN architectures as a fusion of two branches and demonstrated
how the efficient leverage of these two complementary sources of information together can
outperform architectures where only one of them is considered (just the CNN or just the ReCNN
branch).

Ballas et al. (2015) argued that methods where an RNN is used to analyze already extracted
high-level visual percepts (as ReCNN does) suffer from capturing fine motion information due
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to the spatial invariance of the top-layers of CNNs. They propose an architecture that applies
an RNN not only on the 2D CNN top-layer but also on the intermediate convolutional layers.
This was possible due to the use of Convolutional Recurrent Neural Networks (ConvRNN), a
method where the input’s spatial structure is preserved by replacing all matrix multiplications
with convolutions. This idea was first introduced in the Remote sensing field by SHI et al.
(2015) who argued that while the commonly used fully connected - LSTM layer well handle
temporal correlation, it performs too much reduction on the spatial side of the data. They
showed that the proposed model, characterised as an extension of the general LSTM that has
convolutional operations on the place of the matrix multiplication operations, could be used as a
network for general spatio-temporal sequence forecasting problems. This network architecture
was then successfully applied for predicting sea level anomaly Braakmann-Folgmann et al.
(2017). Marc Rußwurm and Marco Körner used this approach to improve their simpler LSTM
RNN crop classifier, (Rußwurm and Körner, 2017), by substituting the fully connected LSTM
operations with convolutional ones (Rußwurm and Körner, 2018b). Moreover, they noticed
that this updated architecture is able to handle images which have not been filtered from clouds
and achieved state-of-art accuracy.

The above innovations inspired us to trail 2D CNN, 3D CNN and ConvRNN architectures.
They have demonstrated their power in land use/cover classification on data similar to that
which available to us.

A.3.2 Components

Convolutional Neural Networks

Our data set was spatially organized into a grid with pixel-level observations. A leading type of
Neural Network that are specially designed for analyzing grid-structured data is Convolutional
Neural Networks (CNNs). CNNs have similarities with the general Artificial Neural Networks
(ANNs) : they are still built up of filters that have learnable weights and biases and each of
the filter takes some inputs, perform a dot product and activate it with a non-linear function.
They differ in that they assume that the input data has a specific structure that determines their
filters shape. Moreover, in each layer, the filters of CNNs are only linked with a local regions
of the input tensor rather than with the full set of input’s entries as are filters (neurons) in the
fully connected layers of ANNs. Fig. A.1 illustrates how these two networks differ. Because in
ANNs the outputs of the filters are scalar values, they are usually called neurons. In an ANN, a
neuron n in layer l takes some input vector x (or the outputs of previous layer l −1), performs
a dot product of all its values with its learnable weights w and add the bias term b. Then this
neuron output is activated by a non-linear activation function f . Thus, a single neuron returns a
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scalar feature after processing all the input data. Any information about the structure of the
input is lost. In CNNs each filter slides (“convolve”) across one or more dimensions of the input
tensor, performs a dot product between its entries and the input entries at these local regions
and record its response at each location in an activation map. The number of dimensions across
which the filter slides determines the dimensionality of the output map. With 1D-, 2D- or
3D-CNNs one usually refers to the number of dimensions across which the filters slide. In this
project we used models that involve 2D and 3D convolutional filters. Below we present the
key concepts of 2D and 3D CNNs that one needs to know to understand the architecture of our
models.

Fig. A.1 A) neuron (filter) in an Artificial Neural Network is connected to all neurons in the previous
layer (input features). It preforms a dot product of its weights with the input feature vector and returns a
scalar activation value. B) A filter in a 2D Convolutional Neural Network has 3D shape. It slides across
the height and width of the input 3D tensor (features) and thus is connected to only one local region of
the input at a time. It performs a dot product of its weights with the input entries at that location and
map the activated value to a 2D map of activations (feature map). Adapted from: Fei-Fei Li (2017)

2D Convolutions

In this subsection we present the key concepts of 2D CNNs.
While a black and white image has a 2D rectangular shape, colour images are represented

as a stack of three 2D grid maps each of which specify the intensity of Red, Green and Blue
present at a particular location on the grid. The mixture of the three forms the colour. For
hyper/multi-spectral images the number of channels is usually considerably larger. 2D CNNs
for image processing constrain their filters to be made of set of spatially small 2D kernels,
where the number of kernels always extends to the number of channels in the image. The stack
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of these kernels along the channel axis forms the 3 dimensional filter. The filter slides across
the height and width of the input, performs a dot product at each location and its bias term
and map its activated responses to a 2D feature map (activation map). Fig. A.2 illustrates this
2D convolutional operation. In the figure the image has size 5×5×3 (height, width, depth).
Additionally, a zero padding of size 1 is applied which makes its size 7×7×3. Padding means
to add extra pixels outside the image (zero padding is when these added pixels have value 0
in all of their channels and the size of the padding defines how many pixels are added in each
direction). In Fig. A.2 two filters are present in the first hidden layer of the network. Each
of them has weights with dimension 3×3×3 and a bias term. The image and the filters are
shown as sliced across the channel domain. Take the first filter for example. It performs a dot
product at each location and maps it to a 2D feature map. The equation for 2D Convolution is
as follows:

vx,y
l, j = f

(M−1

∑
m=0

h=H j−1

∑
h=0

w=W j−1

∑
w=0

kl jm
h,wv(x+h),(y+w)

(l−1),m +bl j

)
Where l denotes the layer where the new output v is. j is the number of feature maps in this
layer l and M is the number of feature maps (the depth of the input 3D tensor) in the previous
l−1 layer. Applying j filters to an image results in output with j feature maps (3D output tensor
of depth j). x and y are the spatial coordinates of v. kl jm

h,w is the h,w,m value of the jth filter in
layer l and bl j is its bias term. f is a non-linear activation function. In Fig. A.2 the highlighted
output (=-2) is the x,y = 1,2 entire of feature map j = 1 in layer l = 2. Here, the image is
convolved at stride 2, where by stride 2 it is meant that the filter performs a dot products with
local regions of the image that have their centers 2-pixels apart.

Fig. A.2 Convolution of 2 filters with an image. Sourced from (Fei-Fei Li, 2017)
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3D Convolutions

In a 3D convolutional operation, filters slide across three of the dimensions of the input tensor
and therefore they are made of a set of 3D kernels, where again this set size extends to the forth
dimension of the input tensor. The stack of these 3D kernels makes the filter four dimensional
tensor. As our data set has four dimensions: channels, time, height and width, if we slide
the filters across the space and time domain, the network will be able to learn filters that get
activated when they detect some type of spectral feature at particular time and location. 3D
convolution is analogous to the 2D convolution with the difference being that the filter and the
tensor has one more additional dimension. To visualize how 3D convolution works, consider
Fig. A.3, where we present a four dimensional tensor as sliced across its forth dimension -
the channel domain (the slices of the filter are denoted as 3D kernels). The filter slides along
the three dimensions (height, width and time) of the input tensor, performs a dot product
of its weights and the entries of the input tensor at these regions, add the bias and map the
activated responses he gets at each spatio-temporal region to a 3D activation map. We present
the equation for 3D convolution as Li et al. (2017) did. It is:

vx,y,z
l, j = f

(M−1

∑
m=0

H j−1

∑
h=0

W j−1

∑
w=0

Tj−1

∑
t=0

kl jm
h,w,tv

(x+h),(y+w),(z+t)
(l−1),m +bl j

)
Where again l denotes the layer where the new output v is. j is the number of 3D feature maps
in this layer l and M is the number of feature maps in the previus layer (the forth dimension of
the input 4D tensor). x,y and t are the spatio-temporal coordinates of v. kl jm

h,w,t,m is the h,w, t,m
weight of the jth filter (∈ Rm×H j×W j×Tj) and bl, j is its bias term. f is a non-linear activation
function. Applying j filters to a 4D tensor results in output with j 3D feature maps, which when
stack together, form the new four dimensional tensor of activations.
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Fig. A.3 3D Convolution of 4D tensor.

Deep Convolutional Neural Networks

Networks are “deep" when they have more than one hidden layer. All layers presented in the
figures above ( Fig. A.1,Fig. A.2 and Fig. A.3) are the first hidden layer of the networks which
take as an input the features of the input layer - the raw images. A layer is called hidden if
it is not the input or the output layer. A network is called “Convolutional" if it has at least
one convolutional filter in any of its layers. As we discussed above, in a 2D CNN each filter
slides along 2 dimensions of the 3D input tensor and returns a 2D activation map. The stack
of all filters’ activation maps in a layer is the new 3D tensor of high level features that will be
propagated to the next layer. For a 3D convolution, the 3D activation maps of the filters in a
layer are stacked to form the new 4D tensor. By propagating the image in such a way through
the layers, the network is able to extract high level features.

Fig. A.10 illustrates the architecture of our first proposed model, which is indeed a deep
2D Convolutional Neural Network. Our 2D CNN model takes as an input a mono-temporal
multispectral image, propagates it through the network and returns a softmax output that
indicates the probability of observing deforestation at the location where the center of the
image is. Hereby we note once again, the task of this network is classification forecasting,
rather than nowcasitng. In Fig. A.10 one can see that each convolutional layer, activated with
rectified linear unit (Hinton (2010) ReLU(x) = max(x,0)), is followed by a layer called “2D
Batch Normalization" layer. In the diagram of our model’s architecture one can also see layers
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named as “Dropout" and “Spatial Pyramid Pooling Layer". In the rest of this section we explain
what these layers do and discuss several issues one must consider when utilizing them.

Batch Normalization

Batch Normalization was introduced by Ioffe and Szegedy (2015). It is a layer that normalizes
each filter to have a zero mean and unit variance. Ioffe and Szegedy (2015) showed that
employing such layers in Neural Networks can be beneficial in several ways: the networks train
faster as it enables the gradient descent algorithm to take higher learning rates; the convergence
of the loss function is significantly less sensitive to how the weights are initialized; it offers
some level of regularization by adding small noise to the data and sometimes can even work as
well as dropout which can decrease the need of dropout layers present in the network. A 2D
Batch Normalization layer in a CNN as proposed by Ioffe and Szegedy (2015) normalizes the
entries of each feature map before their activation. The normalization is done by taking the
mean and variance estimated across all locations and batches.

Consider a minibatch that has m 3D tensors (height, width and depth) that are convolved
with the d filters of the current layer. The output of this layer is then a stack of d 2D feature maps.
During training each of (l,k)th element (l ∈ 0,2, ..H j,k ∈ 0,1..Wj) of the jth ( j = 1,2,3, , ..d)
feature map that evolves from processing image under index b (b ∈ 0,1,2,3...m) in the batch is
transformed as follows:

ŷb, j,l,k = x̂b, j,l,k × γ +β x̂b, j,l,k =
xb, j,l,k − Ê[x j]

Moving√
σ̂

Moving
j + ε

where γ and β are learnable scale and shift parameters and ε is a constant added for numerical
stability. Also:

Ê[x j]
Moving = ∑

B
Ê[x j] σ̂

Moving
j =

m×Hi ×Mi

m×Hi ×Mi −1 ∑
B

σ̂ [x j]

Are the moving averages of the empirical mean(Ê[x j]) and variance (σ̂2[x j]) across batches (B
is the batches index set). During inference they are kept as the constants. Ê[x j] and σ̂2[x j] are
obtained as follows:

Ê[x j] =
m

∑
i=0

H j

∑
h=0

W j

∑
w=0

xi, j,h,w σ̂2x j =
1

m×H j ×M j

m

∑
i=0

H j

∑
h=0

W j

∑
w=0

(xi, j,h,w − Ê[x j])
2

Where H j,Wj are the spatial size of the jth feature map and xi, j,h,w is the (h,w)th entire of the
jth feature map of the ith 3D tensor in the batch. The equations for 3D Batch Normalization is
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analogous with the difference being in that feature maps are 3D tensors and hence:

Ê[x j] =
m

∑
i=0

Tj

∑
t=0

H j

∑
h=0

W j

∑
w=0

xi, j,t,h,w σ̂
2[x j] =

1
m×Tj ×H j ×M j

m

∑
i=0

Tj

∑
t=0

H j

∑
h=0

W j

∑
w=0

(xi, j,t,h,w − Ê[x j])
2

In their original paper, Ioffe and Szegedy (2015) employed Batch Normalization by first
normalizing the entries of the feature map x̂b, j,l,k → BN[xb, j,l,k] = ŷb, j,l,k and then activating
them by a non-linear activation function f (ŷb, j,l,k) , e.g. ReLU. However, the case what should
be the right order of applying f and BN() to the input features is a topic of debate. Although
up to our knowledge there is not a scientific body of work that address this problem, as many
other experts in the field, we empirically showed that when ReLU is applied before a Batch
Normalization layer : y = BN[ReLU(x)], our networks perform better. The results of these
experiments are shown in the Appendix.

Dropout

Dropout was proposed by Srivastava et al. (2014) as a technique for regularizing neural networks
by adding noise to the entries of the hidden layer. More precisely, during training it works
by multiplying the hidden activations with a Bernoulli random variable which takes value 0
with probability p or 1 - with 1-p respectively. As networks get deeper, the number of weights
grows exponentially. This cause networks to overfit if no regularization measurements are
employed. Employing dropout approximates an inexpensive way of training and inference of
exponentially many networks. The way this is done is by randomly switching off different
neuron units during each training forward pass. Without some of its neurons, the network
represents a different function, or sub-network. When trained with dropout, the network cannot
depend on any given neuron as it might be suddenly dropped out. This prevents it from learning
features that depends on each other and also from returning an output that depends on one
particular feature. During inference, we want the model to use all of its learned weights and not
to drop out. When deployed, we multiply the scores of each neuron by the probability of it not
being dropped 1− p. To understand how it works, let us consider a feature vector of activations
x = (x1,x2, ..xd). If we apply dropout on this layer, the vector becomes x = (a1x1,a2x2, ...adxd)

where ak are independent Bernoulli random variables. When testing, the vector becomes
x = ((1− p)× x1,(1− p)× x2, ...(1− p)× xd) (See Fig. A.4). Alternatively, one can scale up
the activations by multiplying them with 1

1−p during training and not modify them at inference
(this is how pytorch implements it). In our models we have employed dropout in the second to
last fully connected layer. The reason for that is because each of other layer of our networks is
followed by a Batch Normalization layer. In their research Li et al. (2018) theoretically showed
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that although both Batch Normalization layer and Dropout layer are very powerful regualization
tools, their joint utilization in a neural network can lead to worse performance. The reason
for this is because employing a Dropout layer has the side effect of shifting the variance of
the neurons when the model is switched form training to inference state. On the other side, at
inference the Batch Normalization layer maintains its statistical variance that has been learned
during training. This variance dismatch, which Li et al. (2018) defined as “variance shift",
makes the model unstable if a Dropout layer is applied before a Batch Normalization layer. Li
et al. (2018) also confirmed their findings empirically by performing experiments on widely
used networks architectures. Li et al. (2018) then suggested two methods that can prevent this
variance disharmony when both regularization techniques are used: the simpler one is Dropout
layer to be applied only after the last Batch Normalization layer, and the other is to use modified
formula for the Dropout scaling factor 1-p. In our model we employed their first suggestion
and only used dropout after the last Batch Normalization Layer. We confirmed their suggestion
is valid by performing experiments on applying Dropout layer in several other layers, which
were then followed by a Batch Normalization layer.

Fig. A.4 Applying dropout in a fully connected layer with probability of dropping a neuron p = 0.25.
During inference each feature is multiplied by 1-p = 0.75.

Spatial Pyramid Pooling layer

The final piece of architecture present in the first two models that has not yet been discussed is
the Spatial Pyramid Pooling layer. To begin with, general pooling layers are another type of
layers commonly used in 2D CNNs architectures that are inserted between convolutional layers.
However, their filters do not have learnable weights. Their only function is to progressively
decrease the input spatial size which consequently decrease the number of network parameters.
The effect of employing pooling layers is reduced number of computational operations and
decreased overfitting. Pooling layers vary depending on the way they reduce the impute size:
max-pooling layers, average-pooling layers, etc. The pooling filters slide along the image and
independently downsample each depth slice of the input. Fig. A.5 demonstrate how a Maxpool
filter of spatial size 2× 2 slides across the input height and width at stride 2 and return the
downsampled 3D tensor with decreased spatial size by factor of 2.
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Fig. A.5 Independently downsamling each slice of an input volume with a Maxpooling filter of spatial
size2×2 at stride 2. Left: Input volume of size 224x224x64 result in a volume of 112x112x64 (Note
the depth of the volume is preserved). Right: Downsampling of a single slice with the corresponding
Maxpool filter’s kernel. The 2×2 kernel slides across the input slice and returns the maximum pixel
value it receives at each location. Source: Fei-Fei Li (2017)

Standard 2D CNN architectures for image classification usually consist of several to many
convolutional layers which are then followed by fully connected layers. The last high-level
3D feature map generated by the final convolutional layer is then flattened to a 1d vector and
passed to the first fully connected layer. The size of this 1d feature vector is determined by
the size of the final 3D feature map which also defines the number of filters the network has
in the first fully connected layer. While the number of parameters in the convolutional layers
depends only on the filters’ sizes, the output of these layers depend on the filters and image
sizes. Therefore in order to be able to design an architecture that has convolutional followed
by fully connected layers, the size of the image must be predefined. He et al. (2014) proposed
another pooling strategy, “Spatial Pyramid Pooling", that enables networks to be trained on
images with various spatial sizes. They proposed 2D CNN with a spatial pyramid pooling layer
between the last convolutional and the first fully connected layer, called “SPP-net", which has
fixed number of parameters and is able to analyze images regardless of their spatial size. They
demonstrated that employing the Spatial Pyramid Pooling strategy improve on many widely
used CNNs architectures for image classification and object detection tasks that fit the input
image to the required size by cropping or padding it. We decided to implement their strategy as
we wanted to assess our model’s performance when the input satellite images capture smaller
or larger land regions without the need of prepossessing the images or modifying the models.
This also allowed us to explore what is the optimal image size for a model with fixed number
of parameters. Fig. A.6 illustrate how the Spatial Pyramid Pooling layer takes a 3D tensor with
arbitrary spatial size and returns a fixed-size feature vector.
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Fig. A.6 Input 3D tensor of arbitrary spatial size and depth 256 is forwarded to a spatial pyramid pooling
layer that has 3 filters. The three filters slide across the spatial domain of the input and return 3D tensors
of size 16×16×256 , 4×4×256 and 1×1×256 respectively. There tensors are then flattened and
connected together to form a feature vector of fixed size = 256× (16×16+4×4+1×1) that is then
the input of the following fully connected layer. Source: He et al. (2014)

A Spatial Pyramid Pooling layer has predefined fixed number of pooling filters. One can
chose the function with which these filters downsample: max, average, etc. However, the
spatial size of these filters and the stride at which they slide across the spatial domain of the
input tensor is dynamic, it adapts according to the spatial size of the input. This filters are
then able to return 3D tensors of predefined spatial size and same depth as the input tensor.
Having fixed number of 3D output tensors with fixed spatial size and depth, when flattened
and contacted together, they form a fixed-size feature vector. In Fig. A.6 the spatial pyramid
pooling layer has predefined number of filters 3 with predefined spatial sizes 16×16, 4×4
and 1×1 respectively. The input 3D tensor has arbitrary spatial size and depth of 256. After
flattening and connecting the output of each pooling filter, the extracted 1d feature vector has
size 256× (16×16+4×4+1×1). The equations that govern the dynamics of the pooling
filters’ spatial sizes and stride is as follows:
sh = f loor(Hx/Hk) sw = f loor(Wx/Wk)

kh = f loor(Hx/Hk)+Hxmod(Hk) kw = f loor(Wx/Wk)+Wxmod(Wk)

Where sh,sw are the strides at which the pooling filter must slide across the height Hx and width
Wx of the input 3D tensor. This filter must also have height and width kh and kw respectively.
The output after sliding it across the input tensor has the desired height and width Hk,Wk and
same depth d as the input tensor depth.
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Recurrent Neural Networks

Rather than learning features that can explain the current state of a pixel, our model differs
in that it tries to learn features that can identify if the target area will become deforested
the following year. Our hypothesis is that those features can be extracted from past and
current satellite images and moreover, that the temporal structure of these observations contains
information that can be beneficial for the accuracy of our prediction - e.g if we assume that a
deforestation event is not a sudden event but rather a continuous process, the model may be
able to learn the target area’s deforestation tendency.

There are two ways a model can learn these features - one is called feed forward and the
other - recurrent. So far we presented our CNN model and 3D-CNN model as feed forward
learning models - the signals flow one direction only: from the input layer of image features to
the final layer producing the output (class label Ŷt+1). In such models the output of any layer
does not affect the current or any of the previous layers. In our second model, Model 2: 3D
CNN, we extract features st+1 given a 4D input tensor that is formed by concating sequence of
inputs images xt−k,xt−(k−1), ..,xt with a fixed window size k along the time axis and propagate
it forward through the network until the final layer that has softmax activation indicating our
confidence of the central pixel label.

In a recurrent learning process, the signals may travel both forward and backward direction
by introducing loops in the network. Fig. A.7 outline the main difference between feed-forward
and recurrent learning networks. The forward propagation of a simple “vanilla” Recurrent
Neural Network with only one hidden layer is governed by the following equation:

st = φ(Ws × st−1 +Ux ×xt +b) = φ([W|U]× [st−1|xt]T +b)

Where:
× is matrix multiplication operation,
si ∈ Rh, xi ∈ Rm, W ∈ Rh×h, U ∈ Rh×m, b ∈ Rh,
so that [W|U] ∈ Rh×(h+m) and b ∈ R≂ are the weight matrix and the bias vector of the hidden
layer and [si−1|xi]T ∈Rh+m is its input. φ is a non-linear squashing function, usually hyperbolic
tangent. We set s0 = 0h.
We see that in thus defined forward propagation, the output of a hidden layer sk−1 is looped back
and contacted with the new input image xk. This new input ([st−k|xk]T ) is then passed again to
the same hidden layer and a new “updated" sk output is returned, allowing the network to process
the images sequentially. The iteration continues until all input images are learned. At each step,
the output sk has “learned" all the input images the network have seen so far: {xk−1,xk−2.. }).
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Due to this internal memory, RNN’s are able to remember important information about the new
inputs they received, which makes them powerful in predicting what’s coming next.

This ability to “memorize" have made them very popular in tasks that deals with sequential
data type. Depending on the objective, several types of architectures have been developed. One
possible architecture is “many-to-many" where at each iteration the model use the most recent
sk to predict the future output (in our case this can be class label Ŷk+1 = θ(sk)). In this case the
loss is evaluated as sum of all individual losses: Ltot = ∑k Lk = BCEloss(Ŷk+1,Yk+1). Other
tasks may require a single prediction of a future event, given past time-series data, for which
one usually use the architecture “many-to-one". In such a model, we may only use the final
“most knowledgeable" feature vector st to make a prediction and may only report the final loss
L = BCEloss(Ŷt+1,Yt+1). This two differences are reflected in the red square of Fig Fig. A.7
B). Due to their empirically proven power, many variations of RNNs have been developed.

Fig. A.7 A) CNN model with feed forward architecture: The signals from the images travel one direction
only,from the input layer to the output layer; B) Vanilla Recurrent Neural Network has recurrent learning:
the output of the hidden layer is looped back, cocated with the new image and forwarded to the same
layer again. When the output of the layer is also forwarded to the next layer at each time, the model has
“many-to-many" architecture. When the hidden layer forwards the output only at the last time itteration,
the architecture is “many-to-one".

Long Short Term Memory Cell

Nevertheless, when dealing with long sequential data, during learning, back- propagation, a
"Vanilla" RNN may suffer from exploding or vanishing gradients. While for the first case,
exploding gradients, truncating the gradients can solve the undesirable effect, the vanishing
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gradients problem is much harder to overcome. Fortunately, Hochreiter and Schmidhuber
(1997) proposed the concept of Long-Short Term Memory RNN structure which was able to
solve the vanishing gradients problem. Since than, several variations of the LSTM RNNs were
proposed. Below we briefly outline the concept of the LSTM cell as defined in the Deep learing
book by Goodfellow et al. (2016). The governing equations in an LSTM cell are as follows:

ft = σ(W f ht−1 +U f xt +b f ) = σ([W f |U f ]× [ht−1|xt]T +b f )

it = σ(Wiht−1 +Uixt +bi) = σ([Wi|Ui]× [ht−1|xt]T +bi)

ot = σ(Woht−1 +Uoxt +bo) = σ([Wo|Uo]× [ht−1|xt]T +bo)

gt = tanh(Wght−1 +Ugxt +bg) = tanh([Wg|Ug]× [ht−1|xt]T +bg)

ct = ft ⊙ ct−1 + it ⊙gt

ht = ot ⊙ tanh(ct)

× : matrix multiplication operator

⊙ : the Hadamard (element-wise) product

xi ∈ Rd : input vector to the LSTM unit

hi ∈ Rh : output vector of the LSTM unit (also known as hidden state)

gi ∈ Rh : input activation vector

ci ∈ Rh : LSTM internal state vector

fi ∈ Rh : forget gate’s activation vector

ii ∈ Rh : input gate’s activation vector

oi ∈ Rh : output gate’s activation vector

W ∈ Rh×h,U ∈ Rh×d and b ∈ Rh : weight matrices and bias vector parameters



228 Chapter 2 Supplementary Materials

Fig. A.8 Information flow in a LSTM cell. Sourced from: Hoffman (2018)

Fig. A.8 illustrate this LSTM cell architecture. A new feature vector gt is learned as in the
"vanilla" RNN case - a regular neuron units (with weights matrix and bias vector Wg|Ug|bg)
are fed with the connected new input vector xt and the previous output vector ht−1. In the
case above, we have used hyperbolic tangent function to squash the neurons’ outputs but any
squashing nonlinear function can be used. In a LSTM architecture, however, this combination
of present input and past output is also fed to three other gate vectors, which will decide how the
new learned feature vector ð≈ will be handled: they block, pass or output the new information
based on its importance, which they have filtered with their own set of weights. How much of
gt will be accumulated in the internal state cell ct is controlled by the input gate vector it . A
forget gate vector ft decides how much of the current cell state information ct−1 will be blocked.
Finally, the new output, the updated memory ct , is squashed with a hyperbolic tangent function
but before being returned, it is regulated by the output gate vector oi. All the gate unit vectors
have a sigmoid nonlinear activation, or also called squashing, function. Some variations of the
LSTM architecture use the state cell as an extra input to the gate units. By temporally stacking
several LSTMs layers above one another, a deeper network can be achieved.

Convolutional Long Short Term Memory Cell

We now extend this idea of LSTM cell with the recently developed Convolutional LSTM
structure. The modification of this LSTM RNN architecture as Convectional was first proposed
by SHI et al. (2015). In the same year Ballas et al. (2015) proposed Convolutional RNN with
Gated Recurrent unit (unit similar to the LSTM unit). The goal of SHI et al. (2015) work was
to develop an algorithm that gives precise prediction of rainfall intensity in a local region over
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a short period of time, a problem which they defined as "spatio-temporal sequence forecasting".
They used a sequence of past radar maps as an input and a sequence of a fixed number future
radar maps as an output, task very similar to ours. Furthermore, they evaluated the performance
of their model, which they named ConvLSTM, on the Moving-MNIST dataset and showed that
ConvLSTM is able to achieve state-of-art accuracy on any task that deals with spatio-temporal
sequence forecasting. Their design differs from the general LSTM cell in that all the inputs
x1,x2, ...xt, hidden states h1,h2, ...ht, internal state cells c1,c2, ...ct and gates of ConvLSTM are
3D tensors whose last two dimensions define their spatial dimensions. One can imagine them
as vectors standing on a spatial grid. For each cell in that grid the ConvLSTM determines its
future state and output by analyzing the input features and the past states of its local neighbours.
This is achieved by substituting the matrix multiplication operations with convolutions. Below
we provide the key equations of the ConvLSTM cell that we emplyed in our model. We adopted
the ConvLSTM equations from Rußwurm and Körner (2018b) and make note that they differ
form those proposed by in that SHI et al. (2015) LSTM cell structure uses the state cell as an
extra input to the gate units.

ft = σ(W f ∗ [ht−1|xt]+b f )

it = σ(Wi ∗ [ht−1|xt]+bi)

ot = σ(Wo ∗ [ht−1|xt]+bo)

gt = tanh(W f ∗ [ht−1|xt]+bg)

ct = ft ⊙ ct−1 + it ⊙gt

ht = ot ⊙ tanh(ct)

∗ denotes the convolution operator
⊙ denotes the Hadamard (element-wise) product
d,w,h: the depth, width and height of the input tensor
r: number of channels of the hidden state, internal state cell and all the gates tensors
k1 × k2: kernel size of the feature maps
xi ∈ Rd×w×h: input tensor to the LSTM unit
hi ∈ Rr×w×h: output tensor of the LSTM unit (hidden state)
[hi−1|xi] ∈ R(r+d)×w×h: connected input tensor
gi ∈ Rr×w×h: input activation tensor
ci ∈ Rr×w×h: LSTM internal state tensor
fi ∈ Rr×w×h: forget gate’s activation tensor
ii ∈ Rr×w×h: input gate’s activation tensor
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oi ∈ Rr×w×h: output gate’s activation tensor
W ∈ Rr×(r+d)×k1×k2 are the weights of the r stacked convolutional featues maps (each ∈
R(r+d)×k1×k2) and b ∈ Rr is a vector with the bayes each of the r features maps has. The initial
state cell c0 and h0 are initialized as zero value tensors. To preserve the spatial size of the
convolutional outputs we used zero padding of size [k1

2 ]× [k2
2 ] where we used kernels with odd

sizes k1,k2.

Fig. A.9 Convolutional LSTM Cell

A.3.3 Model Architecture 1: 2D Convolution Neural Network

Our first proposed model, which we consider as our base model due to its simple architecture,
is a 2D Convolution Neural Network with four 2D convolutional layers (2D Conv), one Spatial
Pyramid Pooling layer (SPP) and 2 fully connected layers (FC) with a Dropout layer(DO)
in between them. The final fully connected layer takes as input feature vector of size 100
and returns a scalar value squashed by a sigmoid non-linearity function, σ . The output is
therefore in range [0,1] and indicates the model confidence of observing deforestation at the
location corresponding to the spatially central pixel (with spatial coordinates (r+1,r+1)) of
the input tensor in the following year. The filters of each layer are activated with ReLU and
this activations are then normalized by a Batch Normalization layer(BN).

For a datapoint j, the input of this model is a 3D tensor, SX j
t , that dimension R7×(2r+1)×(2r+1).

This input results from stacking its static 3D tensor, Sj ∈ R2×(2r+1)×(2r+1), and one 3D tensor,
Xj

t ∈ R2×(2r+1)×(2r+1), of js time series of 3D tensors {Xj
k}

t
k=t−2. They are stacked along the

channel axis so that the input of the network becomes SX j
t . The predicted label is Ŷ j

t+1 where
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j ∈ Jt as defined above. Due to the SPP layer our model is capable of analyzing 3D tensor of
any spatial size, which is regulated by r.

We have constructed this model such that we can vary the spatial size, the stride and the
padding of the filters of any of the 2D convolutional layers (2DConv). The number of filters
per convolutional layer is also set as free model parameter. The Spatial Pyramid Pooling layer
(SPP) parameters are also allowed to vary, the number of pooling filters ,n, and the spatial size
of this filters ,k ∈ R2,n. By varying them one changes the size of the first fully connected layer
(FC), as its size depend on the Spatial Pyramid Pooling layer output. Finally, the last free model
parameter is the Dropout rate, p, with which the Dropout layer(DO) switches-off some of the
connections between the two fully connected layers while training. As suggested by Li et al.
(2018) we only employed a dropout layer after the last Batch Normalization Layer (BN). In this
model architecture each convolutional layer is activated by ReLU, then these activations are
normalized with a 2D Batch Normalization layer. The normalized features are then propagated
to the next convolutional layer (2DConv → ReLU → 2DBN → 2DConv). The normalized
activations of the last 2D convolutional layer are then downsampled by the SPP layer and
passed to the first FC layer. Its output of size 100 is activated again with ReLU and normalized
with 1D BN layer. Only then dropping is implemented. We summarize the propagation of this
model as follows: SX j

t ∈ R7×(2r+1)×(2r+1) → 4×(2DConv→ReLU→2DBN) → SPP(n,k) →
FC(spp,100) → ReLU → 1DBN → DO(p) → FC(100,1) → σ → Ŷ j

t+1

Fig. A.10 illustrates these architecture.

A.3.4 Model Architecture 2: 3D Convolution Neural Network

Our first proposed model is able to take advantage of the spatial and spectral domain of the
input due to its 2D convolutional layers. However, it is not able to utilize the time domain of a
datapoint j. It analyzes a 3D tensor SXt

j that arses from stacking the Static features of j, S j,
and only one element of jth time series X j

t .
Our second model, 3D CNN, takes on the other side takes full advantage of the time domain

and thus is able to analyze jth spectral,spatial and time domain simultaneously. This is achieved
via 3D convolutional layers present in its architecture, that consists of two branches which
meet together to return the final prediction. More precisely, for the jth data point the model
takes as an input the js static tensor S j ∈ R2×(2r+1)×(2r+1) and its full time series of non static
tensors {X j

t−2,X
j
t−1,X

j
t }, each ∈ R5×(2r+1)×(2r+1). It then propagate these two parts of the

input to two different branches. The static tensor S j is passed to a 2D Convolutional Branch
and the time series of tensors {X j

k}
t
k=t−3 to a 3D Convolutional Branch. Each branch extract

high-level features which are then propagated together in the rest of the network. Finally, the
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Fig. A.10 Model 1: 2D CNN. Architecture summary:
Input tensor SX j

t ∈ R7×(2r+1)×(2r+1) → 4×(2DConv→ReLU→2DBN) → SPP(n,k) → FC(spp,100) →
ReLU → 1DBN → DO(p) → FC(100,1) → σ → Ŷ j

t+1

model returns an output Ŷ j
t+1 indicating the confidence of the model to observe deforestation at

the target location in the following year t+1 where j ∈ Jt .
Here we give more detailed explanation what each branch does. {X j

k}
t
k=t−3 is passed to a

3D Convolutional Branch in the form of 4D tensor obtained by stacking the sequence by the
time domain. Thus the input tensor X j ∈R5×3×(2r+1)×(2r+1) has its first domain defined by the
channels, the second by the time and the last two, by the space. The 3D Convolutional Branch
“convolve" with X j across its last three dimensions, time, height and width in two sequential
3D convolutional layers. Due to our limited time domain, of size 3, the 4D filters have shape
∈ Rc,2,kh,kw , where the first dimension extends to the number of the input channels and the last
three define the shape of its 3D kernels. While setting different values to their spatial sizes is
possible, the size of its time domain could only be 2. The model slides its filters’ 3D kernels
along thee time domain at stride 1 and no padding is applied on the input 4D tensor. Therefore,
after the two 3D convolutional layers the output of the 3D Convolutional Branch was a 3D
tensor of high-level features with no time domain, Z j

x. We summarize this propagation as
follows: X j ∈ R5×3×(2r+1)×(2r+1) → 2×(3DConv→ReLU→3DBN)→ Z j

x ∈ Rc1,h,w

S j is passed to a 2D Convolutional branch that “convolve" with the input along the spatial
domain in two sequential 2D convolutional layers (conv. layers) and return a 3D tensor of high
level features, Z j

s . We set the model to have convolutional filters in both branches of the same
spatial size so that both 3D tensors of high-level filters evolving from the two branches to have
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the spatial size,(h timesw). We summarise this branch as follows: S j ∈ R2×(2r+1)×(2r+1) →
2×(2DConv→ReLU→2DBN)→ Z j

s ∈ Rc1,h,w

This two 3D tensors of high-level features,Z j
x,Z j

s , returned form each branch are then
stacked along their third domain to form the 3D tensor Z j, and propagated it to the rest of
the network. The final part of the network has another two 2D convolutional layers and after
the last convolutional operation, the output is propagated to a SPP layer, two FC layers with
DO in between and a sigmoid squashing function as in our CNN model. We summarise the
final part of the network as follows: Z j ∈ R(c1+c2),h,w → 2× (2DConv → ReLU → 2DBN) →
SPP(n,k)→ FC(spp,100)→ ReLU → 1DBN → DO(p)→ FC(100,1)→ σ → Ŷ j

t+1

In this model architecture, again, we utilized 2DBN and 3DBN between each 2D and 3D
convolutional layers after applying ReLU activation function. The number of filters in each
of the 2D and 3D conv layers was set as free parameter, as well as the spatial size of the
filters. Parameters of SPP and DO layers are allowed to vary too. The model is able to analyze
tensors of any spatial size.This model flexibility allowed us to experiment with its architecture.
Fig. A.11 illustrate our second model architecture.

Fig. A.11 Model 3: 3D CNN Model. Architecture summary:
X j ∈ R5×3×(2r+1)×(2r+1) → 2×(3DConv→ReLU→3DBN)→ Z j

x ∈ Rc1,h,w

S j ∈ R2×(2r+1)×(2r+1) → 2×(2DConv→ReLU→2DBN)→ Z j
s ∈ Rc2,h,w

Z j ∈ R(c1+c2),h,w → 2×(2DConv→ReLU→2DBN) → SPP(n,k) → FC(spp,100) → ReLU → 1DBN
→ DO(p) → FC(100,1) → σ → Ŷ j

t+1
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A.3.5 Model Architectures 3 & 4: Convolutional and Deep Convolu-
tional Long Short Term Memory Recurrent Neural Network

While our second, 3D CNN, model was able to utilize all three dimensions of the input data, it
has feed-forward learning. When one has sequential data, recurrent learning is usually very
powerful learning process. This inspire us to design our next two models so that they learn the
temporal structure of the input data recurrently. More precisely, they both have Convolutional
Long Short Term Memory cell, or cells, in their architecture.

Both our Model 3 and Model 4 have architecture similar to that of our 3D CNN model. For
a data pint j, they take as an input its static tensor S j ∈ R2×(2r+1)×(2r+1) and its time series
{X j

t−2,X
j
t−1,X

j
t }, each ∈ R5×(2r+1)×(2r+1). Again the static tensor S j and the time series of

tensors {X j
k}

t
k=t−3 are separately propagated through two separate branches, (Encoder + Conv

LSTM RNN) and 2D CNN Static, each of which return 3D tensors of high-level features
,Z j

x,Z j
s . Z j

x,Z j
s are then stacked together along their channel axis to form Z j. This joint 3D

tensor is propagated through the rest of the network. Finally, the model return Ŷ j
t+1 where

j ∈ Jt .
Here we give detailed explanation what these two branches does. The branch that takes

{X j
t−2,X

j
t−1,X

j
t } of both Model 3 and Model 4 differs form this in our second model,3D CNN,

in two ways, it has Encoder sub-branch and a Convolutional Long Short Term sub-branch,
ConvLSTM.

The Encoder encodes the time series of 3D tensors {X j
k}

t
k=t−3 to another time series of

3D high-level features {X̃ j
k}

t
k=t−3. It does so by feeding each X j

t j through the same three 2D

conv.layers. We summarise this sub-branch as follows:Encoder : {X j
k}

t
k=t−3 → {X̃ j

k}
t
k=t−3 :

Xt ∈ R5×(2r+1)×(2r+1) → 3×(2DConv→ReLU→2DBN) → X̃t ∈ Rc1×h1×w1

Xt−1 ∈ R5×(2r+1)×(2r+1) → 3×(2DConv→ReLU→2DBN) → X̃t−1 ∈ Rc1×h1×w1

Xt−2 ∈ R5×(2r+1)×(2r+1) → 3×(2DConv→ReLU→2DBN) → X̃t−2 ∈ Rc1×h1×w1

This time series of high-level 3D features, {X̃ j
k}

t
k=t−3, is then handled recurrently buy

the ConvLSTM sub-branch.ConvLSTM of Model 3 pass this new time series to one 2D
Convolutional Long Short Term Memory cell and after the last iteration of this cell, this branch
of the model returns a 3D feature tensor, Zj

x, that stores the essential spatio-temporal “memory"
of the model input. Model 4 differs from Model 3 in that its ConvLSTM sub-branch is “deep".
More precisely, the time series of high-level features, {X̃ j

k}
t
k=t−3, is passed to a stack of several,

say d, ConvLSTM cells. The latest in time output of the deepest cell is returned as a 3D feature
tensor that stores the essential spatio-temporal “memory", Zj

x. We sumarise this sub-branch of
Model 4 as follows: Conv LSTM RNN: {X̃ j

k}
t
k=t−3 → d×(ConvLSTM) → Z j

x ∈ Rc2,h2,w2
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The branch of Model 3 and 4 taking S j is identical and also very similar to that of Model
2. S j is passed to three sequential 2D convolutional layers (conv. layers) and return a 3D
tensor of high level features, Z j

s . Here again we set the model to have convolutional filters
in this branch such that the output of this branch has the same spatial size as the output of
the ConvLSTM sub-branch. Thus, this branch, which we denote as 2D CNN Static, returns
Z j

s ∈ Rc3,h2,w2 . We summarise this branch as follows: 2D CNN Static: S j ∈ R2×(2r+1)×(2r+1)

→ 3×(2DConv→ReLU→2DBN)→ Z j
s ∈ Rc3,h2,w2

Finally, the outputs of the two branches,Z j
x,Z j

s , are stacked together along the channel axis
to form Z j ∈R(c2+c3),h2,w2 which is then propagated through the rest of the network. We denote
this part of the network as 2D CNN Joint. It consists of three 2D conv. layers, SPP layer
and two 2 FC layers with DO layer in between. The output of the last FC layer is squashed
with sigmoid non-linearity, σ , and has value Ŷ j

t+1 ∈ [0,1].We summarise this propagation as
follows: 2D CNN Joint Z j ∈ R(c2+c3),h2,w2 → 3×(2DConv→ReLU→2DBN) → SPP(n,k) →
FC(spp,100) → ReLU → 1DBN → DO(p) → FC(100,1) → σ → Ŷt+1

Fig. A.12 illustrate the model architecture of Model 4, that has d = 2 ConvLSTM cells one
above another in its ConvLSTM sub-branch. Here again, we have designed our models to be
flexible with respect to their hyper-parameters. For Model 4 one can explore how the model
performance change when the number of filters and their spatial size of each layer present in
the network take different values, by changing the depth, d, of the ConvLSTM network section,
by controlling the overfitting effect with different dropout ratio, p, and the downsampling rate
of the parameters of the SPP layer. Finally, as with our other models, the input tensors can be
of any spatial size ((2r+1)× (2r+1)).

A.4 Methodological notes

Data within the training periods was split into training, validation and test sets by 3:1:1.

A.4.1 Training

For Model Architectures 2, 3 and 4 models were first trained on 2014-2017 input data matched
with 2018 labels. They were then trained on 2015-2018 input data on 2019 labels.

Model Architecture 1 was trained on 2014 input with 2015 labels, 2015 input with 2016
labels, 2016 input with 2017 labels, 2017 input with 2018 and 2018 input with 2019 labels all
at once.

5-fold cross validation took place during the training routines to track how well the models
were learning.



236 Chapter 2 Supplementary Materials

Fig. A.12 Model 4: Deep ConvLSTM Neural Network with 2 ConvLSTM cells. Architecture summary:
Encoder: {X j

k}t
k=t−3 → {X̃ j

k}t
k=t−3

X j
t ∈ R5×(2r+1)×(2r+1) → 3×(2DConv→ReLU→2DBN) → X̃ j

t ∈ Rc1×h1×w1

X j
t−1 ∈ R5×(2r+1)×(2r+1) → 3×(2DConv→ReLU→2DBN) → X̃ j

t−1 ∈ Rc1×h1×w1

X j
t−2 ∈ R5×(2r+1)×(2r+1) → 3×(2DConv→ReLU→2DBN) → X̃j

t−2 ∈ Rc1×h1×w1

Conv LSTM RNN: {X̃ j
k}t

k=t−3 → 2×(ConvLSTM) → Z j
x ∈ Rc2,h2,w2

2D CNN Static:
S j ∈ R2×(2r+1)×(2r+1) → 3×(2DConv→ReLU→2DBN)→ Z j

s ∈ Rc3,h2,w2

2D CNN Joint:
Z j ∈ R(c2+c3),h2,w2 → 3×(2DConv→ReLU→2DBN) → SPP(n,k) → FC(spp,100) → ReLU → 1DBN
→ DO(p) → FC(100,1) → σ → Ŷ j

t+1
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Fig. A.13 Arrangement of training, testing and forecasting processes
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A.4.2 Model tuning

For the initial broad model inter-comparison we conducted a grid search to find effective
model parameters. For the development of the most promising models we used a Bayesian
hyperparameter sweep Snoek et al. (2012) as implemented on WandB.

A.4.3 Testing

To understand how well models would forecast they had to be tested on a time period that was
outside of the training period. To do this we see how well they can predict deforestation in
2020 (an unseen year for the model). The models that can predict deforestation that happened
2020 with the best accuracy are identified and their parameters are recorded.

A.4.4 Forecasting

The models with the best parameters were updated with training data from 2015 to 2019 (with
2020 labels). The model weights were retained to keep the learning that had taken place on the
2014-2018 data.

The updated model is used to forecast deforestation for 2021. It produced a risk map across
all forested land in the area of interest. A threshold based on anticipated overall levels of
deforestation could be applied to the map at a required level (e.g. from 0 to 1) to identify pixels
that are likely to undergo deforestation.

A.4.5 Class Imbalance Problem

The number of pixels that become deforested in Madre de Dios 2017 and 2018 accounted
for around 0.30%, 0.26% of the total number of pixels covering the forested study area on
which our models were trained. This ratio of 99.7 : 0.3 made our dataset extremely imbalanced.
Therefore, by simply prediction all pixels as forested one would get misleading accuracy of
99.7%, but such model will useless model. To address this issue we took several steps. Our
objective was to be able to identify the top 20% most susceptible areas with high accuracy so
that attention could be. In reality, a perfect model predicting up to 20% deforestation labels
would be able to achieve no more than 80.3% accuracy as 19.7% non-deforested pixels would
be labelled as suspected. Therefore, when testing and training our models we needed to make
class-aware sampling. Recently, this class imbalance problem was addressed by Buda et al.
(2018) in the context of Deep Learning models. They examined the impact such an imbalance
can have on CNNs classifiers via several experiments and empirically concluded that the effect
of it is detrimental. They also investigated the efficiency of several algorithms dealing with class
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Fig. A.14 Percentage deforested pixels of all pixels covering Madre De Dios area.

imbalance, commonly used in the Machine Learning field, when applied on Deep Learning
methods. Their results shows that the best approaches in the DL field are oversampling, or if
training time is a problem, undersampling is an alternative, where sampling must be done to
the extend where the imbalance is completely removed.

While we assumed (Buda et al., 2018) conclusion that undersampling is the right approach
when dealing with imbalanced data, the extend to which this should be done we set as a
“free”,tuning, parameter. Our reasoning for this is that the cost of missing to detect future
deforestration event is much higher than raising a wrong deforestation alarm.

To explore what should be the ratio of forested to deforested pixels in our train, validation
and test data, we developed a sampling algorithm, which when given a dataset Dt and a
parameter θ , returns a new undersampled dataset D̃t . This new dataset D̃t has all data-points
of the the minority class, pixels labelled as deforested (Y j

t+1 = 1, j ∈ Jt), but the number of
observations form the majority class, forested pixels(Yt+1 = 0 j ∈ Jt), is set to be such that
the ratio of the two classes in D̃ is θ . The observations from the majority class are randomly
selected and at each call of this algorithm, the set of observation drawn from the majority class
was updated with new, distinct, set of randomly selected forested observations. The following
section explains how we utilized this algorithm in our models training process.
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A.4.6 Optimizer and loss function

In our training process we used Adam optimizer (Kingma and Ba, 2014) and Binary Cross
Entropy Loss.

A.4.7 Early Stopping regularization

Early stopping is a regularization technique that is used when there is an iterative learning
process. Several variations of this technique exist, but the one we utilize aims to make the
model a better fit to data outside of the training set, validation dataset.

Here we describe the way we employed early stopping regularization. After each epoch,
the model under training was set to interference state and its performance was evaluated on
a separate validation data set. The ratio of training data size to validation data size was kept
to 60:20. Each data set has equal ratio of 0 and 1 labels, the ratio of forested to deforested
pixels labels, which was set to θ . At each epoch iteration, if the performance of the model
on this validation data set was better than its performance in the previous iteration according
to a certain criterion, the leering process continue to iterate through the batches one more
time until new epoch is completed. If however, the performance on this iteration is worse, a
counter variable starts counting how many times the updated model after each epoch is worse
than the previously best one. That is, if the model gives tree times in a row, i+1, i+2, i+3,
worse performance than the one recorded at iterations i, the counter has value 3. The counter
counts up to pre-defined “waiting time” and is reset to 0 each time a new, better performing
model is found. In our training strategy we set the “weighting time” to be 3. Which means
that if our model performs three times in a row worse than it did at iteration i, then we stop
the learning process, and chose the model with weights evaluated at iteration i. If the model
however performs worse at iteration i+1 and i+2 than it did at i, but at i+3 it is better according
to the criteria, the counting process restart and the model. The model at iteration i+4 is now
compared with the previously best, i+3.

The above described algorithm is general, and well known within DL community. The
way we modified this algorithm is by re-sampling our taring and validation data sets after each
epoch by calling our sampling algorithm with input parameter θ , which preserves the ratio of
0 to 1 labels in both train and validation data set, but update the under-sampled class of 0 labels,
with new, distinct, randomly sampled 0 labels. We also investigated the effect of employing
this Early Stopping technique with different criteria, namely the Area Under The Receiver
Operating Characteristics (AUC), Weighted Binary Cross entropy Loss and the Cost from Cost
matrix. As training time was an issue, we only run our algorithm up to 5 epochs, with “waiting
time” 3 and the best performing model was returned. Fig. A.15 illustrates the training process
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of three different models, where for each different criterion was selected and demonstrate the
advantages of utilizing Early Stopping regularization.

Fig. A.15 Training with an Early Stopping regularization.
A The selected criterion is Weighted Binary Cross entropy Loss. The selected model is the one learning
its weights up to epoch 1. The model overfits afterwards. While the loss evaluated on the train data
decrease (blue line), on validation data the loss it increase (yellow line) with minimum validation loss
recorded at epoch 1.
B The selected criterion is AUC ROC. The selected model is the one learning its weights up to epoch 4.
The model does not overfit up to epoch 4. However, the AUC on validation data decrease at the next
epoch 5. The learning process is ended due to time limitations.
C The selected criterion is Cost from Cost matrix. The selected model is the one learning its weights up
to last epoch 5 when both train and validation cost was at its lowest figure. The can not be said to overfit.
However, while a smooth decrease of the cost was observed on train data, the validation cost has drop at
epoch 2 and spike at epoch three.

A.4.8 Training models with mono-temporal and multi-temporal inputs

Our four models’ ability to correctly forecast deforestation events is compared using labels
corresponding to the year 2018, Ŷ j

2018, for j ∈ J2017. The input data for our last three models,
Model 2, Model 3, and Model 4, is {(S j,X j

2015,X
j

2016,X
j

2017)| j ∈ J2017}, whereas Model 1 takes
as input {(S j,X j

2017)| j ∈ J2017}.
When training, the only possible training data for Model 2, Model 3, and Model 4 is

{(S j,X j
2014,X

j
2015,X

j
2016)| j ∈ J2016} with corresponding labels Ŷ j

2017, for j ∈ J2016. This data,
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before being undersampled (with a ratio of 0:1 labels = 99.7:0.3), was divided into training,
validation, and test data subsets with a ratio of 6:2:2. The training and validation datasets were
used for training with Early Stopping regularization. We used the test data to select the best
’tuned’ model of each class. The ratio of 0 to 1 labels was kept the same in all three subsets:
training, validation, and test. The sampling algorithm with parameter θ was then used on each
of the data subsets when we examined the effect of different imbalance ratios. However, when
training our CNN model, different setups for training data are possible. In the subsection below,
we discuss how we addressed that issue.

A.4.9 Training and testing CNN models with different time set up

Our first, 2D CNN, model takes a singe 3D-tensor as an input SX j
t ∈ R7×2r+1×2r+1 and output a

integer score x̂ j
t ∈ [0,1] that can be interpreted as our confidence level of pixel j to be deforested

in year t+1. Then, for specified threshold tr we assign Y j
t+1 = Ixt>tr. Considering the above

notations, the data set for a CNN model is then defined as Dt = {(SX j
t ],Y

j
t+1)| j ∈ Jt} if only

one year data is used. However, one can also use the more than one year data by disregarding
the time index of the data but only using features with one year lag from their predicted labels.
To be more precise, a set up as Dtk = Dt−k ∪Dt−(k−1)∪ ....∪Dt−1 ∪Dt is possible, in which
case k+1 years of data is utilized. This possibilities made us ask several questions. Firstly,
what is the optimal number of year, k? Secondly, if one year is used, is our first model time
invariant? That is, if we train it on D2015 = {(SX j

2015],Y
j

2016)| j ∈ J2015}, how it performs on
the two data-sets D16 = {(SX j

16],Y
j

17)| j ∈ J2016} and D2015 = {(SX j
2017],Y

j
2018)| j ∈ J2017}?.

Finally, to be compared with the rest of our models, that have taring and validation and test
data sets with labels in 2017, how should we train our CNN model so as to be equally biased
towards labels in 2017 while simultaneously utilizing all years data.

To answer the last, we did as follows, while the training data year was allowed to vary.
However, for validation and test data we used 20% and 20% of the original D2016 data (where
the ratio of 0:1 labels was 99.7 : 0.3) respectively. The rest 60% were considered as part of the
training data. We then applied the sampling algorithm with parameter θ on each of the data
subsets to examine the effect of different imbalance ratios θ .

After we selected our best 2D CNN model, we used its hyper parameters to train a model
on D2015 = {(SX j

2015],Y
j

2016)| j ∈ J2015} and examined how it performs on the two data-sets
D2016 = {(SX j

2016],Y
j

2017)| j ∈ J2016} and D2017 = {(SX j
2017],Y

j
2018)| j ∈ J2017}.
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A.5 Computation

A.5.1 Software

The development of the neural networks and processes to train and test them were done using
the PyTorch library Version 1.9.0. An Anaconda virtual environment was used to manage
package dependencies. The environment to perform all tasks relevant to this project (forecast)
is saved on the project GitHub repository as a .yml file.

A.5.2 Computing resources / hardware

A High Performance Computing cluster was used to train, test and forecast. Typically, tasks ran
with four Tesla P100-PCIE-16GB GPUs and twelve 5980MB CPUs up to twelve hours although
this could vary depending on resource availability and task requirements. The operating system
was Linux-3.10.0-1160.66.1.el7.x86_64-x86_64-with-glibc2.10 and Python version was 3.8.2.

A.6 Initial trails: experimental set up

A.6.1 Model 1: 2D CNN model

To tune our first model we selected a base set of hyperparameters and performed a grid search.
Our base model was trained on the full set of data available:

D2014−2016 = D2014 ∪D2015 ∪D2016 =

{(SX j
2014,Y

j
2015)| j ∈ J2014}∪{(SX j

2015,Y
j

2016)| j ∈ J2015}∪{(SX j
2016,Y

j
2017)| j ∈ J2016}

However, to ensure equal bias towards labels in the year 2018 as with the rest of our models,
we used only 60% of {(SX j

2016,Y
j

2017)| j ∈ J2016} for training and allocated the remaining 20%
for validation and 20% for test data. We iteratively cycled the training and validation data
with k-fold cross-validation. When splitting the data, no undersampling was performed, and
the split was done so that the original ratio of 0 to 1 labels was preserved in all three data
subsets (99.688:0.312). Thus, 64,803,129, 21,601,044, and 21,601,046 pixels were allocated
for the training, validation, and test datasets respectively, with the total size of the 2016 data
being |J2016| = 108,005,219. For training and validation undersampling of our base model,
we used θ = 1, meaning the ratio of 0 to 1 labels was modified to 1:1. As a result, after
undersampling, the sizes of the training and validation datasets were reduced to 404,978
and 134,994, respectively. Unless explicitly stated in the model experiment setup (case 12),
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after each epoch, we changed the training dataset to one year older data, which was again
undersampled to have a ratio θ = 1. Therefore, at epoch 1, 60% of the undersampled 2016
data, D̃60%

2016, was used for training, and 20%, D̃20%
2016, was allocated for validation. At epoch 2,

new undersampled data was added for training, namely D̃2015, while the validation data was
resampled with new 2016 zero values via our sampling algorithm with θ again set to 1. For
epoch 3, the same procedure was performed with the new training data being D̃2014. If the
model was allowed to continue iterating to epochs 4 and 5, the training data would be newly
undersampled D̃20%

2016 and D̃2015.
The default Early Stopping Criterion was AUC, the weighting time 3 and the maximum

number of epoch iterations 5. Weighted BCE with positive weights 5 was used as loss to be
optimize. We used Adam optimizer (Kingma and Ba, 2014) with default learning rate of 0.0001.
The batch size of all training experiments in this report was set to 80.

The default model architecture was as follows:
Input tensor SX j

t ∈R7×35×35 → 4×(2DConv→ReLU→2DBN) → SPP(2, [13,5]) → FC(1552,100)
→ ReLU → 1DBN → DO(0.2) → FC(100,1) → σ → Ŷ j

t+1

That is, the default input spatial dimensions was (35×35) and it was propagated to 4 2D
conv. layers that decreased its spatial size form 35 to 25. Conv. layer 1 had 8 filters each with
spatial size (5×5), conv. layers 2 and 3 had 16 filters each with spatial size (3×3),and finally
conv. layer 4 had 8 filters each with spatial size (3×3). All slided at stride 1 with no padding
applied. Then a SPP layer downsampled it to a 1d vector of size 1552 via 2 max pooling
filters returning 3D tensors of spatial size 13×13 and 5×5 respectively. This was fed to the
two fully conceded layers which had dropot ratio 0.2. We then let examined how the network
will perform if the the following hyperparameters were changed: shown: dropout ratio: 0.5,
dropout ratio: 0, θ : |Y = 0| : |Y = 1| = 1:2 = 0.5, Input spatial size: 45×45, SPP with n = 2
and k = [15,5], Number of filters in conv. layers 1 to 4: 16, Early Stopping criterion: BCE
loss, BCE loss as loss to be optimized, Weighted BCE loss with positive weight 2 as loss to be
optimized, Learning rate of Adam: 0.001, use only year D2016. Results of these experiments
are shown in Table A.3.

A.6.2 Model 2: 3D CNN model

For the other three models the full time series of data was utilised:

{(S j,X j
2014,X

j
2015,X

j
2016)| j ∈ J2016}

It was split to train, validation and test data sets with ratio 6:2:2 in such a manner that the
original ratio of 0 to 1 labels was preserved (99.69 : 0.31). Thus 64803129, 21601044 and
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21601046 pixels were allocated for the train, validation and test data sets respectively with the
total size of the 2016 data being |J2016| = 108005219. For train and validation undersampling
of our base model we used θ = 1, or said differently, the ratio of 0 to 1 labels was modified to
1:1. Thus, after undersampling, the training and validation data sizes were decreased to 404978
and 134994 respectively.

Here again for default training set up we used weighted BCE loss with positive weight 3,
ADAM optimizer with learning rate 0.0001 and used AUC as an early stopping criterion.

The model architecture was as follows:
Branch 1 : X j ∈ R5×3×35×35 → 2×(3DConv→ReLU→3DBN)→ Z j

x ∈ Rc1,h,w

Branch 2: S j ∈ R2×35×35 → 2×(2DConv→ReLU→2DBN)→ Z j
s ∈ Rc2,h,w

Branch 3: Z j ∈ R(c1+c2),h,w → 2×(2DConv→ReLU→2DBN) → SPP(1,15) → FC(spp,100)
→ ReLU → 1DBN → DO(0.3) → FC(100,1) → σ → Ŷ j

t+1

That is, each of the 2 3D conv. layers of the branch taking X j ∈ R5×3×35×35 have 16 4D
filters of dimension R5,2,3,3 which slide at stride 1 and no padding was applied. Each of the 2
2D conv. layers of the branch taking S j ∈ R2×35×35 have 8 3D filters of of dimension R2,3,3

which slide at stride 1 and no padding is applied. Finally, the branch taking Z j ∈ R32,31,31

has 4 3D filters of dimension R32,3,3 which slide at stride 1 in each of its 2 2D conv. layers.
No padding is applied. The SPP layer has one max pooling filter that returns a 3D tensor of
dimension R4,13,13 which is flattened and passed to the first fully connected layer. A dropout
ratio before the final FC layer of rate 0.3 is applied.

We tested this base set up against: dropout = 0.5, larger spatial sizes of the filters in the first
two branches - filters of branch 1 and branch 2 ∈ R5,2,5,5 and ∈ R2,5,5 respectively, increased
number of filters in each of the three branches - 8, 32, 8 respectively, SPP with n=2 and
k = [12,5] , Cost of Confusion Matrix as an early stopping criterion, input image size 31 and
45, θ = 0.5, weighted BCE loss with weight 10, L2 regularization with parameter 0.6 and
finally, learning rate of ADAM 0.001. Table A.4 summarize the results of this experiment.

A.6.3 Model 3 and 4: ConvLSTM RNN model & Deep ConvLSTM RNN
model

For our last two models, Model 3: ConvLSTM RNN and Model 4: Deep ConvLSTM RNN, the
training, validation and test data set up was identical as this of Model 2. Base Model 3 differed
form base Model 4 only in that Model 4 has two identical ConvLSTM cells one after another,
which defined it as “deep".

The base set up was weighted BCE loss with positive weight w = 5, AUC as an early
stopping criterion, Adam optimizer with learning rate 0.0001, θ = 1.
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The base models architecture is as follows:
Encoder:
{X j

k}
t
k=t−3 ∈ R5×25×25 → 3×(2DConv→ReLU→2DBN) → {X̃ j

k}
t
k=t−3 ∈ Rc1×h1×w1

Conv LSTM RNN: {X̃ j
k}

t
k=t−3 → 2×(ConvLSTM) → Z j

x ∈ Rc2,h2,w2

2D CNN Static:
S j ∈ R2×25×25 → 3×(2DConv→ReLU→2DBN)→ Z j

s ∈ Rc3,h2,w2

2D CNN Joint:
Z j ∈ R(c2+c3),h2,w2 → 3×(2DConv→ReLU→2DBN) → SPP(1,12) → FC(spp,100) → ReLU
→ 1DBN → DO(0.3) → FC(100,1) → σ → Ŷ j

t+1

That is, the input spatial size is 25x25. The Encoder branch have 3 2D conv. layers with 8
filters each, of dimension R5,3,3 that slides at stride 1 and no padding is applied.

The Conv LSTM RNN than take {X̃ j
k}

t
k=t−3 ∈ R8×19×19 pass it to 2×(ConvLSTM)

(1×(ConvLSTM) for Model 3) and return Z j
x ∈ R8,19,19. Both ConvLSTM cells have 8 filters

for each of the gates, with each filter ∈ R8,3,3. However, a padding of size 1 is applied in order
for the cell to be recurrent. Each filter slides at stride 1.

Both 2D CNN Joint and 2D CNN Static have 8 filters in each of their 3 2D conv. layers,
each of spatial dimension 3x3, sliding at stride 1 and no padding is applied. The SSP layer has
one maxpooling filter that returns 3D tensor ∈ R8,12,12. Finally, dropout of rate 0.3 is applied
between the two FC layers.

We compared these models, against this that has the following changes: dropout = 0.5, for
Model 3 the number of filters in each of the for branches was changed from (8,8,8,8) to (8,8,4,4),
(16,8,4,4), (16,16,4,4), and for Model 4 from (8,(8,8),8,8) to (16,(8,8),8,8), (16,(16,16),8,8),
(8,(8,8),4,4), Where the first input of the notation (.,.,.,.) is the number of filters in the Encoder,
the second for 2×(ConvLSTM) / 1×(ConvLSTM) for Model 3 and so on. We also compared
models when for early stopping criterion the confusion matrix was evaluated, when the input
have size 31, 35, wen θ = 0.5, L2 regularization with parameter 0.2 and finally, ADAM with
learning rate 0.001. The results of this experiments are displayed in Table A.5 and Table A.6
for Model 3 and 4 respectively.
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A.7 Experimental Results

A.7.1 Broad model intercomparison (Madre de Dios)

Model performance within training period

Table A.3 Model 1, Experimental results

hyperparameter epochs Total time AUC on Train AUC on Valid. AUC on Test
base 3 3.2h 0.924 0.921 0.921
dropout ratio: 0.5 5 6h 0.935 0.918 0.917
dropout ratio: 0 1 2.5h 0.911 0.922 0.921
θ : 0.5 4 1.7h 0.930 0.934 0.933
In size: 45×45 4 5h 0.943 0.950 0.951
SPP: n = 2,k = [15,5] 4 4h 0.936 0.918 0.919
hidden dim = 16 4 4.4h 0.940 0.942 0.942
WBCEL as ES Crit. 1 4h 0.912 0.878 0.877
BCE loss 5 5h 0.944 0.908 0.907
WBCE loss with w = 2 5 5h 0.944 0.914 0.913
learining rate 0.001 4 5.25 0.939 0.930 0.931
use only year D2016 2 2h 0.914 0.927 0.926

Table A.4 Model 2, Experimental results

hyperparameter epochs Total time AUC on Train AUC on Valid. AUC on Test
base 3 6h 0.92862 0.94201 0.9428
dropout = 0.5 2 10h(max) 0.93471 0.94981 0.9510
filters sizes: (5,2,5,5),(2,5,5),(32,3,3) 2 12h (max) 0.93588 0.94741 0.9456
num of filters: 8,32,8 2 10h(max) 0.94540 0.95599 0.9563
SPP with n=2 and k = [12,5] 4 10h(max) 0.94666 0.95731 0.9569
Cost as ES 3 10h(max) 0.94196 0.93736 0.9371
In size 31 5 10h(max) 0.94359 0.95100 0.9509
In size 45 3 10h(max) 0.94132 0.95189 0.9514
θ=0.5 4 5h 0.93257 0.94898 0.9479
wBCE loss, w= 10 3 10h(max) 0.93109 0.93944 0.9393
L2 reg. with 0.6 2 10h(max) 0.92067 0.92135 0.9203
ADAM lr = 0.001 4 10h(max) 0.94794 0.93456 0.9348
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Table A.5 Model 3, Experimental results

hyperparameter epochs Total time AUC on Train AUC on Valid. AUC on Test
base 3 6h 0.92862 0.94201 0.9428
dropout = 0.5 5 10h(max) 0.93047 0.94497 0.9457
hidden dim=(8,8,4,4) 5 10h(max) 0.92581 0.94429 0.9429
hidden dim=(16,8,4,4) 3 10h(max) 0.92859 0.94707 0.9474
hidden dim=(16,16,4,4) 3 8h 0.92962 0.94573 0.9464
Cost Matrix as ES 5 5h 0.93768 0.93787 0.9378
size = 31 4 10h(max) 0.93143 0.94165 0.9417
size = 35 4 9h 0.93248 0.94808 0.9484
θ = 0.5 3 2h 0.90706 0.92173 0.9361
wBCE loss with w = 10 4 6h 0.91791 0.94352 0.9423
L2 regularization with param 0.6 2 10h(max) 0.92067 0.92135 0.9203
ADAM lr = 0.001 4 10h(max) 0.94794 0.93456 0.934

Table A.6 Model 4, Experimental results

hyperparameter epochs Total time AUC on Train AUC on Valid. AUC on Test
base 4 5h 0.92831 0.94184 0.9420
dropout = 0.5 5 8h 0.93149 0.94147 0.9413
hidden dim= (16,(8,8),8,8) 2 10h(max) 0.92767 0.93447 0.9350
hidden dim=(16,(16,16),8,8) 2 10h(max) 0.92766 0.94244 0.9433
hidden dim= (8,(8,8),4,4) 5 5h 0.92678 0.94099 0.9408
Cost Matrix as ES 5 5h 0.93565 0.94194 0.9417
θ = 0.5 3 3h 0.91713 0.93774 0.9363
wBCE loss with w = 10 3 5h 0.91369 0.92903 0.9295
L2 regularization with param 0.6 1 10h(max) 0.88856 0.91088 0.9102
ADAM lr = 0.001 5 7 0.94709 0.95324 0.9540

A.7.2 Testing on 2018

Our four best models of each class are compared on labels corresponding to year 2018,
Ŷ j

2018, j ∈ J2017. The input data for our last three models, Model 2, Model 3, Model 4, is
{(S j,X j

2015,X
j

2016,X
j

2017)| j ∈ J2017}, whereas Model 1 takes as an input {(S j,X j
2017)| j ∈ J2017}.

Scenario 1: Ratio of forested to deforested pixels in 2018 (0:1 labels) is 1:1 and our model
predicts the top 50% of the data it receives as deforested. The data size after undersampling
with ratio 1:1 is 572978.
Scenario 2: Ratio of forested to deforested pixels in 2018 (0:1 labels) is 1:4 and our model
predicts the top 20% of the data it receives as deforested. The data size after undersampling
with ratio 4:1 1432445
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Scenario 3: Ratio of forested to deforested pixels in 2018 (0:1 labels) is 9:1 and our model
predicts the top 20% of the data it receives as deforested. The data size after undersampling
with ratio 9:1 2864890

We ran this test on the three best models, form class Model 1: 2D CNN, Model 2: 3D CNN,
and Model 4: Deep ConvLSTM RNN model. Fig. A.16, Fig. A.17 and Fig. A.18 summarize
the our final results. Overall, all model preserve their accuracy when tested on the subsequent
year and achieve similar accuracy. Nevertheless, Model 2: 3D CNN achives highest score on
Scenario 3, which approximate the actual imbalance of forested to deforested pixels the most.

Fig. A.16 Model 1: 2D CNN
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Fig. A.17 Model 2: 3D CNN

Fig. A.18 Model 4: Deep ConvLSTM RNN
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Notes on initial experimentation

The spatial size of input matters in 2D CNNs. For almost all models increasing the number
of filters in their layer is beneficial. Setting weighted BCE loss with high weight penalty to
wrongly predicted deforested labels, or sampling the model in favour for the deforested pixels
(θ = 0.5 - ratio 0:1 labels) does not show any noticeable difference in accuracy. The best
performing model is Model 2: 3D CNN, followed by Model 4 and 3. Model 1 is ranked as last.

For our first Model 1, 2D CNN, that the size of the input image is crucial. Secondly,
increasing the networks’ depth also resulted in better performance on test data. The way
we employed dropout did not have noticeable influence, moreover, when it was completely
switched off, the accuracy on test and validation data was higher, and the opposite trend was
observed when dropout was set to 0.5. Therefore, we can be confident that the way we utilize it
is efficiently. Finally, training with smaller learning rate results in a comparable accuracy for the
benefit of the faster learning process. We believe this is possible due to the Bach Normalization
Layer after each activation.

Our second Model, 3D CNN, noticeably outperformed Model 1 in all experimental scenarios
and we confidently conclude that the utilization of the time domain is of huge importance. For
this model, the size of the input image is not noted to make huge difference when set to 31,
35 or 45. However, increasing the number of filters in the 3D CNN leads to better accuracy.
Furthermore, if the downsampling rate is at a lower rate, performance improves. The wast two
facts give us the intuiting that the model has much more information to learn and a deeper
network may even result in a higher accuracy.

The third model, ConvLSTM RNN performs almost as well as model 2. All figures about
AUC ROC on test data are very similar and clear conclusions can not be made. The only clear
conclusion we can make is that including weight decay, also known as L2 penalty resulted in
the worst performing model in each model class, although applied with the small parameter
0.6.

Our best model of class Model 4, Deep ConvLSTM model, resulted by a training process
when the learinig rate was set to 0.001, and is the second best model overall. The inclusion of
additional ConvLSTM cell did not show any significant improvement.

Overall, we conclude that our second proposed model, 3D CNN, achieves the best AUC
measurement on the 2017 test data set. It is also simpler then our Model 3 and 4. Furthermore,
due to its overall highest performance in all test scenarios, we believe the convergence is not by
“chance”.
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A.7.3 Developed models: Madre de Dios and Junin region

2D CNN results

Training and testing plots and accuracy statistics are available on WandB 1

3D CNN results

Training and testing plots and accuracy statistics are available on WandB 2

1https://wandb.ai/patball/forecasting2D
2https://wandb.ai/patball/forecasting

https://wandb.ai/patball/forecasting2D
https://wandb.ai/patball/forecasting
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B.1 Study sites and remote sensing data collection

Orthomosaics were generated from the raw aerial photographs in AgiSoft Metashape. This
software uses structure from motion to generate a 3D elevation surface from the raw aerial pho-
tographs (Westoby et al., 2012) which is then projected back into 2D to create a landscape scale
image (orthomosaic). This gave georeferenced photographs, largely corrected for distortions.
Some distortion remained at the edges of the mosaic, so the analysis focused on the core areas
where the imagery was not distorted.

B.1.1 Sepilok (East & West) and Danum

Sepilok Forest Reserve (5° 50' N 117° 56 ' E) is a region of lowland tropical rainforest
in Sabah, a state in Malaysia. The Reserve is one of the oldest protected areas of forest in
Asia, founded by the Sabah Forest Department in 1931. The Reserve spans nearly 4500 ha,
with ground elevation varying between 50 and 250 metres above sea level. Three distinct
forest types are present: alluvial dipterocarp, sandstone dipterocarp and heath forest. Danum
Valley contains lowland tropical rain forests dominated by dipterocarps and are among the
tallest forests on the planet (Shenkin et al., 2019). The three Malaysian sites experience a
similar climate with approximately 2300 mm rainfall per year with the wettest months between
November and February (Nilus et al., 2011).

The 2014 lidar data of Sepilok and Danum were collected using a Leica ALS50-II ALS
flown at an altitude of nearly 2000 metres, attached to the belly of a Dornier 228-201. The ALS
sensor emitted pulses at around 80 Hz with a field of view of 14.0°, and a footprint of about 40
cm diameter. The average pulse density was 11 pulses m-2. The ALS data were preprocessed
by NERC’s Data Analysis Node and delivered in LAS format.



254 Chapter 3 Supplementary Materials

The 2020 lidar data in Sepilok was collected using a RIEGL LMS-Q560 mounted on
a helicopter flying at 200 metres altitude at a ground speed of approximately 100 km/hr.
This resulted in an average pulse density of 38 m-2. Further processing used LAStools
(http://rapidlasso.com/lastools/). Points were randomly resampled to match the point den-
sity across dates. Points were split into two groups, ground and non-ground, and a digital
elevation model (DEM) was fitted to the ground points, producing a raster of 1 m resolution.
The DEM elevations were subtracted from elevations of all non-ground returns, known as the
digital surface model (DSM) to create a canopy height model (CHM) raster of resolution 1 m.

The 2014 RGB imagery was collected using a Leica RCD105 Digital Camera, attached to
a plane flown at an altitude of 796 metres, with a ground resolution of 10 cm. Photographs
have been orthorectified and collated into homogenous mosaics using Agisoft Metashape. This
software used the Structure from Motion method to calculate the elevation of the observed
surface, of which the photographs are mapped to, This results in georeferenced photographs
that are corrected for distortions. The files were delivered in the GeoTIFF format.

B.1.2 Paracou

The Paracou field station is situated in a lowland tropical forest near Sinnamary, French Guiana
(5°16'N 52 °55'W). It is a forest similar to Sepilok Forest Reserve, which is also a lowland
tropical forest.

ALS data were acquired in September 2016, and November 2019 by ALTOA, operating
a RIEGL LMS-Q780 sensor attached to an aircraft flying at 800m. On all dates, the scan
frequency was 400 kHz and the final point density was above 50 m-2. The creation of a CHM
was carried out using the same process as used for Sepilok.

On the same flights as the ALS scans, RGB images were collected using an IXA180 Phase
One camera with an 8 cm ground sampling distance.

Hyperspectral imagery was also collected over Paracou, with a Hyspex VNIR-1600 (Hyspex
NEO, Skedsmokorset, Norway) sensor-mounted alongside the RIEGL scanner. Its bands
covered a spectral range of 414–994 nm with a spectral sampling distance of 3.64 nm. Images
were orthorectified and georeferenced to 1 m spatial resolution with the PARGE software using
the DSM from the lidar data.
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Fig. B.1 An original RGB image is displayed on the left, while a contrasted enhanced (stretched) RGB
image is displayed on the right of this figure. Stretching the colours of the image to the values allows for
easier identification of individual trees when carrying out manual tree crown delineations. The effect is
particularly noticeable in the lower left corner of the images.

B.2 Tree crown data

B.2.1 Manual delineation

Manual tree crown labelling was carried out at each study site, to create training and test sets
for our analysis. Labelling was carried out in open-source graphical geospatial software, QGIS,
using a combination of RGB, lidar, and, in the case of Paracou, hyperspectral imagery. To
increase the contrast between individual trees the colours of the RGB imagery were stretched.
Polygons were carefully drawn around the perimeter of all distinguishable trees for a number
of areas in each region. JGCB carried out the manual labelling for Paracou. A visualisation of
the difference between the original and the stretched image is given in Fig. B.1.

B.2.2 Training and validation data

Examples of the training data are given in Fig. B.4.

B.3 Data preparation and processing

To apply Detectree2 to remote sensing RGB images of tropical forests, the geospatial raster
image must be tiled and converted into a png format, and the manual crown segmentations used
for training must also be converted from geospatial shapefiles into JSON files that align with
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the pngs. These training tiles are ingested into Detectree2, which then learns how to identify a
tree, and then can make predictions on new tiles.

Training tiles were separated into 5-folds so that cross validation could be performed during
the hyperparameter tuning phase. Testing tiles were spatially separated from the training tiles
and only seen by the network at the evaluation phase.

B.4 Model architecture, tuning and training

B.4.1 Model architecture

Mask R-CNN (He et al., 2017) is a framework for instance segmentation. It builds on Faster
R-CNN (Ren et al., 2015), which carries out object detection using a Region Proposal Network
(RPN). An RPN is a fully convolutional network, trained end-to-end, that generates Regions of
Interest (RoIs) for each image. These RoIs have object bounds and objectness scores attached
to them, giving the bounds of the RoI, and the likelihood of the RoI containing an object. These
RoIs are then passed through fully connected convolutional networks to determine the class
of image contained, and the exact mask of each object, within the respective bounding box.
For full details on the structure of Mask R-CNN, please refer to the GitHub repository for this
work (https://github.com/PatBall1/Detectree2). The schematic of the architecture of the model
architecture is given in Fig. B.2.

We selected the R101-FPN configuration - this architecture combines a 101 layer deep
ResNet (He et al., 2016) module with a Feature Pyramid Network module. The configuration
sets the backbone of the network which is the part that views and extracts features from the
scene as a whole. The R101-FPN backbone consists of a 101 layer deep ResNet (He et al., 2016)
module with a Feature Pyramid Network (Lin et al., 2017) module. The initial model weights
were generated from pre-training of the network on the ImageNet dataset1. It is possible to
“freeze” the backbone to different depths depending on the amount of flexibility the user wants
to introduce in moving away from the pre-trained model weights. An example of the different
predictions is given in Fig. B.3.

B.4.2 Data augmentation

The training data was augmented by submitting the training data to a variety of transformations
including vertical and horizontal flips, rotation, and varying the saturation and contrast of the

1https://www.image-net.org/

https://www.image-net.org/
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Fig. B.2 Illustration of the Mask R-CNN predictions and architecture from He et al. (2017).

images. These augmentations are designed to increase the variety of training data seen by the
model, to allow it to generalise more readily to new images.

B.4.3 Training and hyperparameter tuning

We selected the AP50 of the segmentation predictions on the (randomly selected) validation
fold as our metric for optimisation. AP50 is the average precision of predictions when a correct
match is granted for IoU > 0.5.

AP50 was also used as the metric for early stopping whereby if the model performance
failed to improve for a set number of training iterations (the “patience”), training would
be terminated and the best model up to that point would be saved. This is a technique for
regularisation and prevents wasted computation. As with all deep networks, there were several
of hyperparameters that controlled the way the networks handled data handling and were
trained. The first of these relates to the architecture of the algorithm, namely the number of
hidden layers in the ResNet backbone (He et al., 2016) of the network. ResNets are used
as the backbone of Mask R-CNN as very deep neural networks are particularly difficult to
train, due to the vanishing gradients problem (Glorot and Bengio, 2010). ResNets use skip
connections, whereby certain layers in the network are skipped during backpropagation to
avoid this problem.
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Fig. B.3 (A) Crown bounding boxes predicted by DeepForest (Weinstein et al., 2019), and (B) crowns
predicted by Detectree2. The colours in plot B merely distinguish predicted trees. A comparison of
manually delineated crowns, overlaid on lidar (C) and RGB (D).

Fig. B.4 Examples of training data provided to Mask R-CNN. The different colours help to distinguish
between trees.
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Table B.1 Tunable hyperparameters (with their optimised value) and a description of their purpose.

Hyperparameter (=val) Description

dl_nums_workers (=2) To speed up the training process, we make use of the num_workers optional attribute of the DataLoader class.
The num_workers attribute tells the data loader instance how many sub-processes to use for data loading. By default, the num_workers value is set to zero, and a value
of zero tells the loader to load the data inside the main process.
This means that the training process will work sequentially inside the main process. After a batch is used during the training process and another one is needed, we
read the batch data from the disk.
Now, if we have a worker process, we can make use of the fact that our machine has multiple cores. This means that the next batch can already be loaded and ready to
go by the time the main process is ready for another batch. This is where the speed up comes from. The batches are loaded using additional worker processes and are
queued up in memory.

ims_per_batch (=2) If we use 16 GPUs and IMS_PER_BATCH = 32, each GPU will see 2 images per batch.

gamma (=0.1) The iteration number to decrease the learning rate by GAMMA.

backbone_freeze_at (=3) Freeze the first several stages so they are not trained. There are 5 stages in ResNet. The first is a convolution, and the following stages are each group of residual
blocks.
Freezing a layer prevents its weights from being modified. This technique is often used in transfer learning, where the base model(trained on some other dataset is
frozen.

warmup_iters (=120) Warm-up steps are just a few updates with low learning rate before training. After this warm-up, the regular learning rate is use, (schedule) to train the model to
convergence. The idea is that this helps the network to slowly adapt to the data intuitively.
If the data set is highly differentiated, it can suffer from a sort of "early over-fitting". If your shuffled data happens to include a cluster of related, strongly-featured
observations, your model’s initial training can skew badly toward those features - or worse, toward incidental features that are not truly related to the topic at all.
Warm-up is a way to reduce the primacy effect of the early training examples. Without it, one may need to run a few extra epochs to get the convergence desired, as
the model un-trains those early superstitions.
Many models afford this as a command-line option. The learning rate is increased linearly over the warm-up period. If the target learning rate is p and the warm-up
period is n, then the first batch iteration uses 1p/n for its learning rate; the second uses 2p/n, and so on: iteration i uses i∗ p/n, until we hit the nominal rate at iteration
n.
This means that the first iteration gets only 1/n of the primacy effect. This does a reasonable job of balancing that influence.
Note that the ramp-up is commonly on the order of one epoch – but is occasionally longer for particularly skewed data, or shorter for more homogeneous distributions.
One may want to adjust, depending on how functionally extreme ones batches can become when the shuffling algorithm is applied to the training set.

momentum (=0.9) Momentum in neural networks is a variant of the stochastic gradient descent. It replaces the gradient with a momentum which is an aggregate of gradients. Momentum
can increase speed when the cost surface is highly non-spherical because it damps the size of the steps along with directions of high curvature thus yielding a larger
effective learning rate along with the directions of low curvature.

batch_size_per_image (=1024) The batch size defines the number of samples that will be propagated through the network. For instance, let’s say you have 1050 training samples and you want to
set up a batch_size equal to 100. The algorithm takes the first 100 samples (from 1st to 100th) from the training dataset and trains the network. Next, it takes the
second 100 samples (from 101st to 200th) and trains the network again. We can keep doing this procedure until we have propagated all samples through of the network.
Problem might happen with the last set of samples. In our example, we have used 1050 which is not divisible by 100 without remainder. The simplest solution is just
to get the final 50 samples and train the network.
Advantages of using a batch size < number of all samples:
It requires less memory. Since you train the network using fewer samples, the overall training procedure requires less memory. That is especially important if you
are not able to fit the whole dataset in your machine’s memory. Typically networks train faster with mini-batches. That is because we update the weights after each
propagation. In our example we have propagated 11 batches (10 of them had 100 samples and 1 had 50 samples) and after each of them we have updated our network’s
parameters. If we used all samples during propagation we would make only 1 update for the network’s parameter.
Disadvantages of using a batch size < number of all samples:
The smaller the batch the less accurate the estimate of the gradient will be.

weight_decay (=0.001) Weight decay is a regularization technique by adding a small penalty, usually the L2 norm of the weights (all the weights of the model), to the loss function. loss = loss
+ weight decay parameter * L2 norm of the weights.
Why do we use weight decay? To prevent overfitting. To keep the weights small and avoid exploding gradient. Because the L2 norm of the weights are added to the
loss, each iteration of your network will try to optimize/minimize the model weights in addition to the loss.

base_lr (=0.0003389) In machine learning and statistics, the learning rate is a tuning parameter in an optimization algorithm that determines the step size at each iteration while moving
toward a minimum of a loss function. Since it influences to what extent newly acquired information overrides old information, it metaphorically represents the speed
at which a machine learning model "learns". In the adaptive control literature, the learning rate is commonly referred to as gain.
In setting a learning rate, there is a trade-off between the rate of convergence and overshooting. While the descent direction is usually determined from the gradient of
the loss function, the learning rate determines how big a step is taken in that direction. A too high learning rate will make the learning jump over minima but a too low
learning rate will either take too long to converge or get stuck in an undesirable local minimum.
In order to achieve faster convergence, prevent oscillations and getting stuck in undesirable local minima the learning rate is often varied during training either in
accordance with a learning rate schedule or by using an adaptive learning rate.

max_iter (=462) An iteration describes the number of times a batch of data passed through the algorithm. In the case of neural networks, that means the forward pass and backward
pass. So, every time you pass a batch of data through the neural network, you completed an iteration. When you increase the number of iterations, you get closer to
the minima and the set of optimal parameters, and these are what improve performance.
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Fig. B.5 An example comparison of the training of deep and shallow networks. These plots are taken
from He et al. (2016) and they illustrate that deeper neural networks do not necessarily learn as well as
shallower neural networks.

Other hyperparameters that can be optimised in Mask R-CNN relate to the training of the
network. Namely the learning rate, the number of iterations and the batch size. The optimisation
of these hyperparameters was carried out using Weights and Biases, which uses grid search to
determine the optimal hyperparameters. The hyperparameters selected are given in Table S4.1.

We found that while increasing the depth of the ResNet increased the training time of the
algorithm, it improved accuracy scores. The batch size was limited by computing resources
available. The number of iterations was the key metric to optimise, as we found that our model
began to overfit the training data if trained for too many iterations. To determine the number of
iterations, we plotted a graph (Fig. B.6) of both the total training loss and the total validation
loss to determine the minimum of the total validation loss, and hence the optimal number of
iterations to train the model. As Mask R-CNN consists of three predictions, namely the class,
bounding box and mask, the total loss is the sum of these three losses.

We see that after around 800 iterations, the model started to overfit the training data, at the
expense of performance of the validation dataset. As such we determined to stop the training of
Mask R-CNN at 800 iterations, and then used the saved weights after 800 iterations to predict
tree crowns in Sepilok.

B.5 Evaluation metrics

Two key metrics are used in this work to evaluate the performance of the model: the AP50
score, and the F1 Score. AP50 relates to the area under the precision-recall curve (AUC-PR)
evaluated at a particular threshold for the Intersection over Union, in our case 0.5. A high value
for AP50 means that we are seeing both high precision and recall of the model at our particular
IoU cutoff. The IoU cutoff was selected as 0.5, on the basis of previous studies evaluating the
accuracy of individual tree delineation methods (e.g. Aubry-Kientz et al., 2019; Hao et al.,
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Fig. B.6 The total training and validation loss of Mask R-CNN as the model trained. Both total training
and validation loss were calculated every 20 iterations.

2021). In rare cases where more than one automatic delineation had an IoU of greater than 0.5
with a manual crown, then the automatic delineation with the greatest IoU was considered a
true positive and the others were classed as false positives.

B.6 Model accuracies and parameters

Full model parameters and accuracies are given in Table B.2.

B.7 Maps of predictions

Maped predictions are given in Fig. B.7 to Fig. B.10.
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Table B.2 Model accuracies and parameters across sites
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Table B.3 A comparison of the contribution of over/undersegmentation to the accuracies across sites

Site # test trees Precision Recall F1 score Oversegmentation* Undersegmentation*

Paracou 381 0.595 0.543 0.568 0.206 0.336
Danum 278 0.713 0.662 0.687 0.128 0.257
Sepilok East 167 0.612 0.653 0.632 0.13 0.448
Sepilok West 704 0.604 0.656 0.648 0.226 0.234
TOTAL/AV. 1530 0.631 0.6285 0.63375 0.1725 0.31875
* As described in Clinton et al. (2010)

Fig. B.7 Example delineation results at Danum
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Table B.4 The accuracy of predictions by tree height
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Fig. B.8 Example delineation results at Sepilok West

Fig. B.9 Example delineation results at Sepilok West
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Fig. B.10 Example delineation results at Paracou

B.8 Sensitivity to image resolution

We performed a preliminary analysis on how sensitive the delineation accuracy is to changes
in the image resolution. We then carried out another test, where we trained our model on
the highest resolutions available to us (8 and 10 cm), before testing it on lower resolutions
to determine the model’s sensitivity to resolution. The lower resolutions were chosen as they
are typical resolutions of modern, high-resolution satellite imagery. The final test was to train
and test the model on low resolutions to determine if this workflow would increase the skill
of the model on lower resolutions. As seen in Fig. B.11, illustrate that our model trained on
high resolution (0.1 m) imagery is most successful when predicting on similar resolutions,
and its performance degrades for resolutions an order of magnitude greater (1 m and 2 m).
However, we illustrate that when the model is trained on similar resolutions to those it is tested
on, performance is largely maintained. It is only on resolutions greater than 1 m that the
performance degrades significantly.
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Fig. B.11 The sensitivity of the accuracy of the segmentations to the resolution of images used in training
and testing.

B.9 Growth and mortality details

Growth and mortality rates were estimated from the CHMs of the repeat lidar data. Tree height
was defined by the median value of the CHM within the overlayed crown polygon. To calculate
growth rate (in m / yr), we evaluated the difference in height of individual trees in the two
years of measurements, and divided by the time between the measurements (assuming an
approximately constant growth rate).

Mortality estimates were derived by fitting a robust least squares regression to the change
in tree height against the original tree height. Mortality events were defined as a drop in height
of 3 standard deviations or more from this fit. The rate of mortality (%/yr) was calculated as
the percentage of detected trees that died divided by the time between scans. The tree mortality
rates were grouped into height bins (depending on the original height of each tree). A drop of
three standard deviations is strict but it is possible that drops could result from non-mortality
events such as snapping or other wind damage. Uncertainty estimates were determined by
bootstrapping (repeatedly sampling from the complete set of predicted crowns).
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Table B.5 The coefficients and intercepts for the robust least squares fit between original tree height and
the change in tree height.

Site Slope Intercept

Danum −0.110±0.006 1.86±0.26
Paracou −0.028±0.0003 1.06±0.01
Sepilok East −0.060±0.004 1.67±0.10
Sepilok West −0.072±0.003 2.72±0.12

Plots for the other sites not shown in the main paper are given in Fig. B.12. These plots
illustrate the different characteristics of each forest site.

Fig. B.12 The robust least squares fit for change in height and tree height for Sabah (Danum, Sepilok
West and Sepilok East). The dashed lines indicate three standard deviations either side of the best fit and
red points below the lower bound indicate likely mortality events.
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Table B.6 Extended results of growth an mortality.
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C.1 Three-way human manual segmentation comparison

To test how well different human interpreters agree when identifying tree crowns from imagery
provided to them, two plots at Paracou were selected to be delineated by three expert human
analysts. Three expert humans analysts (familiar with remote sensing data and segmentation
methods), Analysts A, B and C were asked to segment the tree crowns of two plots. The
segmentation was performed in QGIS with the following data layers available to the human
analysts: 2015 and 2016 RGB and lidar CHM, 2016 hyperspectral layers.

The three sets of delineations for each of the two plots were compared against each other to
determine the degree of congruence. A match was granted when polygons from one set had a
Jaccard/IoU > 0.5 with one from another set.

Plot 1 results
Comparison A-B: 28 congruent segments (Jaccard>0.5): 90% of A’s crowns and 56% of B’s
Comparison A-C: 30 congruent segments (Jaccard>0.5): 97% of A’s crowns and 60% of C’s
Comparison B-C: 42 congruent segments (Jaccard>0.5): 84% of B’s crowns and 84% of C’s.

Plot 2 results
Comparison A-B: 19 congruent segments (Jaccard>0.5): 65% of ’s crowns and 48% of B’s
Comparison A-C: 22 congruent segments (Jaccard>0.5): 76% of A’s crowns and 46% of B’s
Comparison B-C: 28 congruent segments (Jaccard>0.5): 72% of B’s crowns and 58% of C’s.

The results show that humans can interpret images quite differently highlighting the chal-
lenge of achieving high accuracy with automated methods of tree crown delineation.
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Fig. C.1 A comparison of manual human tree crown delineations (Plot 1). Set A: black, Set B: green,
Set C: blue.

C.2 Tree crown database

The dataset and data description is available in this GitHub repository: https://github.com/umr
-amap/ParacouTrees.

To train machine learning algorithms and evaluate automatic tree crown delineation and
species identification from remote sensing data it is necessary to have an extensive ground truth
map of tree crowns. Generating this takes time and attention to the specific attributes of each
crown. Careful ground validation is necessary to have confidence in correct individual/species
assignment and delineation (avoiding over/under segmentation).

C.2.1 Premises of the dataset

The growth of crowns is relatively slow, meaning an undisturbed crown will not change its
shape significantly between scans/field missions. Creating crown polygons is a time consuming
process as it requires a careful comparison/contemplation of the different modalities (and time
steps thereof) of scans against field inventory data.

Significant changes to the crown are due to:

• Tree death

• Branch fall

https://github.com/umr-amap/ParacouTrees
https://github.com/umr-amap/ParacouTrees
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Fig. C.2 A comparison of manual human tree crown delineations (Plot 2). Set A: black, Set B: green,
Set C: blue.

It is not feasible or time efficient to produce a new set of crowns for each new scan. Instead,
the crowns are updated (by hand) when a significant change is detected. The fields StartDate
and EndDate are used to track the validity of a crown. fid_1 is a unique identifier for an
individual tree - multiple, temporally distinct, crown polygons may be associated with an
fid_1. StartDate and EndDate are set to NULL when a crown is created. If a crown is seen
to no longer be valid (e.g. due to a branch fall or mortality), EndDate is set to the date of the
scan that shows this. A new crown may be created if an existing crown changes due to branch
fall, if a significant portion of an existing crown is revealed by a branch fall or the mortality of
an occluding tree, or if a new tree is discovered. Full details of the fields are given below.

C.2.2 Fields of dataset

A series of fields are used to describe the crown polygons:

• fid (int): unique identifier for each crown polygon

• fid_1 (int): a unique identifier for individual trees (not polygons). This can be useful
to track individuals if a crown has changed significantly through time (see StartDate,
EndDate).

• Site (str): Paracou, Nouragues etc.
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• PlotOrg (str): Necessary at Paracou (CIRAD, CNES or INRA). This helps in linking
the polygons to the inventory datasets.

• PlotNum (int): plot number

• SubPlot (int): some plots have subplots contained within them

• LocalID (int): the tree number as recorded on the tree’s tag

• TrunkMatch (int): {1,2,3,4} These integers describe how well the crown polygon
(as delineated from the remote sensing data) has been matched to a trunk in the field.

• CrownIntegrity (int): {1,2,3,4} These integers describe how sure we are that a
delineated polygon is that of a single, complete crown.

• Lianas (bool): as to whether lianas as present in the crown of the tree delineated

• StartDate (date): Date at which the crown becomes visible or has changed shape

• EndDate (date): Date at which the crown becomes absent or has changed shape

• Dead (bool): a crown might be present but belong to a dead tree

• GroundValid (bool): has the crown been checked in the field?

• Creator (str): name of the person to have made the polygon

• Comments (str): for any comments before or in the field

• BaseLayer (str): which remote sensing datasource has been used as the "anchored"
location of the crown

C.3 Additional plots

Fig. C.3 shows the frequency distribution of pixels by species. Fig. C.4 shows the variation in
spectra between two individuals of a single species. Fig. C.5 shows the relative variation of
spectra between and within species.
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Fig. C.3 Distribution of pixels available for training by species.
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Fig. C.4 Spectral values distribution for pixels in two separate Pradosia cochlearia crowns. Shaded
areas indicate standard deviation of spectral values for each crown.
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Fig. C.5 Intraspecies variation vs interspecies variation across the top ten most common tree species
by pixel frequency. Each grey line is the standard deviation of spectral values for a given species at
that spectral band. Low values indicate consistency for a species at a spectral band. The red line is the
standard deviation across the species.
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D.1 Modelling flux tower footprint

To estimate the scanning area that would most effectively isolate the trees responsible for the
signals received at the flux tower sensors, we modelled the flux tower footprint. A flux tower
footprint refers to the geographical area that is responsible for the fluxes of carbon dioxide,
water vapor, and other gases that are measured at the sensor atop of the tower. It therefore
delineates the patch of forest for which the calculated fluxes, exchanges and productivity (GPP,
NEE etc.) are valid. The footprint is influenced by a range of factors including the height of
the tower, the roughness of the surface terrain, and atmospheric conditions, and varies through
time as conditions change, which can make it difficult to calculate.

To estimate the footprint area, we used the scaling approach of Kljun et al. (2004, 2015)
which maps the footprint region from highest contribution to lowest in two dimensions onto
the forest canopy. This Flux Footprint Prediction (FFP) method, designed to work with data
obtainable from flux tower measurements, has been shown to correspond well more complex,
computationally intensive dispersion models. It gives not just the extent but also the width
and shape of footprint estimates,. From the meteorological data recorded at the flux tower
(including wind speed and direction) and physical parameters of the tower/sensor and canopy,
we calculated regions from highest contribution of fluxes to lowest contribution over three
month periods from 2014 to 2019 .

Based on these footprints it was possible to define two scanning areas: (1) a large area that
covers the top 60% contribution throughout the year and (2) a smaller dense area that covers
the top 30% contribution throughout the year. Based on the observed temporal variability of the
footprint we were confident that our scanning area would be the primary source of the signals
received by the eddy covariance sensor.
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Fig. D.1 Dense and large scan area

D.2 Rainfall

To understand whether our dry central point (27-Sept) was representative over the years of
study we plotted the monthly rainfall (Fig. D.2).

D.3 Tree crown dataset

As described in Chapter 4 we used automated methods to extrapolate our manual crown dataset
across the entire landscape in the flux tower region. For the automatic crowns with selected
those for which we had good confidence in the segmentation and the species (based on the
confidence scores of the methods). This allowed us to increase our sample from 1,243 manual
crowns to 5,116 manual and automatic crowns. This was particularly useful for those species
with limited representation in the manual dataset (but not the rarest species which were dropped).
The 100 most dominant species were retained for further analyses as these had a sample size
large enough to have some confidence in the species level metrics described below. These
metrics require a comparison between trees of the same species.
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Fig. D.2 Monthly rainfall at Paracou across the period of the phenological study. The dashed line
represents the historic dry point of the year (27-Sept).

D.4 Processing UAV data

D.4.1 GLI crown level extraction

GLI extraction was normalised with a 25 m buffer around the crown to account for local and
inter-temporal perturbations (see Fig. D.3).

D.4.2 Pointcloud to PAD (AMAPvox)

The processing of the multitemporal lidar data required several processing steps before it was
ready to analysis including:

• PosPac: Trajectometry optimization, using DGPS information (local base or KROU or
KOUG)

• BayesMap Jalobeanu and Gonçalves, 2014 and ICP (CloudCompare) Besl and McKay,
1992; Rusinkiewicz and Levoy, 2001 were used to improve flight line and point clouds
matching (impoved point cloud and trajectometry)

• Cloud Station: Point cloud and trajectometry export

• LasTools: Clipping and DTM extraction
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Fig. D.3 The crown (green) GLI was normalised by the GLI in a region of 25m buffer around the crown
to reduce noise from perturbations across the orthomosaic.

• AmapVox: PAD computation Vincent et al., 2017

• Tree crown level extraction of PAD

The PAD readings were validated with LAI2200 readings and PAR sensors:

• On top of the flux tower :

– 2 sensors, acquisition frequency : one measurement per 15 minutes

• In CNES plots:

– Spacing/coordinates : 25 sensors in the middle of the plot, evenly spaced on a
50*50m grid

– Acquisition frequency : one measurement per 15 minutes

• In INRA plots

– Spacing/coordinates : 13 sensors in total, located in the P1 and P9 corners (6
sensors) and middle of the plots’ sides (7 sensors)

– Acquisition frequency : one measurement per 15 minutes

BayesMap was used to help align point clouds through time Jalobeanu and Gonçalves, 2014
AMAPVox is an open-source software for analysing lidar-vegetation interactions that we

used to estimate plant area density (PAD) in a 3D voxelised representation of the canopy.
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AMAPvox tracks every laser pulse through a 3D grid, calculating the effective sampling area
and local attenuation in each voxel based on laser beam characteristics and pulse interactions
within the voxel. Utilizing different return weighting options and estimation methods, it allows
for the computation of canopy attenuation profiles by integrating the 3D local attenuation data
horizontally while considering ground elevation.

PAD data was produced with voxel size 1m and 2m and beam angle filtering 20 °and 45 °.
For details on UAV bias/correction see Vincent et al. (2023). For AMAPvox parameterisation
see Vincent et al. (2021).

D.5 Additional plots

D.5.1 Phenograms

To visually inspect phenological patterns within each species we created heatmap “phenograms”
(Fig. D.4).

D.5.2 Periods of trees

We assessed the periodicity of all trees. Fig. D.7 gives the distributions for ten dominant
families.

D.5.3 Amplitude of signals

Fig. D.8 shows the amplitudes of the phenological signals.

D.5.4 Shedding seasonality

Fig. D.9 shows the seasonality of minimum GLI.

D.5.5 Pairwise correlations

To check for correlations between the phenological metrics we plotted the pairwise correlations
(Fig. D.10).
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Fig. D.4 Phenograms for Fabaceae. The temporal variation in relative Green Leaf Index for each species.
The y-axis (with ticks) shows each individual of the species and the x-axis shows time. Bright colours
show fresh leaves where as dark colours show senescence/shedding. The black vertical lines show the
beginning and end of the dry season.
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Fig. D.5 Phenograms for Sapotaceae. The temporal variation in relative Green Leaf Index for each
species. The y-axis (with ticks) shows each individual of the species and the x-axis shows time. Bright
colours show fresh leaves where as dark colours show senescence/shedding. The black vertical lines
show the beginning and end of the dry season.
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Fig. D.6 Phenograms for Chrysobalanaceae. The temporal variation in relative Green Leaf Index for
each species. The y-axis (with ticks) shows each individual of the species and the x-axis shows time.
Bright colours show fresh leaves where as dark colours show senescence/shedding. The black vertical
lines show the beginning and end of the dry season.
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Fig. D.7 Measured periods of the species based on auto-correlation.
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Fig. D.8 The amplitude of the phenological signals averaged at the species level. The amplitude of a
GLI signal was taken to be the difference between its minimum and maximum recorded value.
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Fig. D.9 The average timing of minimum greenness (normalised GLI) for each species relative to the
driest point of the year (20th of September) overlaid on the average daily rainfall at the site. Negative
values are before the driest point and positive values are after. The dotted red line show the (circular)
mean timing of peak greenness across all crowns. Inset is the radial histogram for crown shedding/ date
showing the driest day and mean peak of greening with the same line style as the main plot.
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Fig. D.10 Pairwise correlations of the phenological metrics and height and TPI variables. Synchronicity
is a measure of how well the signals of trees within a species match at any given point in time, regularity
is a measure of how similar the signal is between trees within the a species (regardless of of well aligned
in time they are in time) and lag is the mean shift in time (days) required to align the signal of trees
within the same species. Amplitude is a measure of the strength of the observed signal.
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