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Ce manuscrit résume les travaux de recherche que j’ai effectués depuis ma thèse, en incluant 
cette dernière. Il est composé de deux grandes parties.  

La première partie est intitulée notice individuelle. Cette notice résume sous forme de listes le 
déroulement de ma carrière de chercheur, les différentes valorisations associées à mon 
travail de recherche et les différentes activités en lien. Les sections successives reprennent le 
découpage suggéré dans le ‘formulaire HDR’ de l’Université Paris Sud.  

La seconde partie est une synthèse scientifique des activités que j’ai menées jusqu’à présent. 
Elle est divisée en différents chapitres permettant de marquer et d’illustrer l’évolution de mes 
activités. Elle présente également mon projet de recherche pour les années à venir. Cette 
synthèse est rédigée en anglais. 
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presentation). International workshop, Environmental Omics, Integration and 
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Modelling, 18-20 October 2018, Barcelona, Spain 

9 2018 

Chapleur O*, Poirier S, Madigou C, Lê Cao K-A, Déjean S. 2018. 
Development of microbial indicators of anaerobic digestion inhibition with omics 
data integration. Biostatistics workshop, Mathematical Institute, Toulouse, France 

 

 
6. Communications scientifiques nationales 

Année Référence 

1 2009 

Chapleur O*, Bouchez T. 2009. Ingénierie écologique des communautés 
microbiennes dans les bioprocédés de traitement anaérobie des déchets ligno-
cellulosiques, 2ème Journée Thématique Microbiologie Environnementale FIRE, 
14 janvier 2009, Paris, France. 

2 2009 

Chapleur O*, Mazéas L, Bouchez T. 2009. Ingénierie écologique des 
communautés microbiennes dans les bioprocédés anaérobies de traitement des 
déchets. Colloque Groupe des Acteurs de l’Ingénierie Ecologique (GAIE), 9 
décembre 2009, Paris, France. 

3 2012 

Chapleur O*, Bize A, Serain T, Mazéas L, Bouchez T. 2012. Co-inoculation 
d’un contenu ruminal et d’un digestat d’ordures ménagères dans un réacteur batch 
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du réseau national biofilm, 24 janvier 2012, Narbonne, France  

4 2013 

Chapleur O*, Wu T-D, Guerquin-Kern J-L, Mazéas L, Bouchez T. 2013. La 
technique SIMSISH, une méthode précise et quantitative pour décrypter les 
réseaux multifonctionnels des communautés microbiennes complexes. Journées 
thématiques du Réseau National Biofilm, 20 novembre 2013, Pau, France. 

5 2013 

Chapleur O*, Bize A, Bouchez T, Bureau C, Madigou C, Mazéas L. 2013. 
Développement d’outils analytiques innovants pour les bioprocédés et 
biotechnologies microbiennes de valorisation des déchets. Colloque 
BIOMINNOV, 9 décembre 2013, Romainville, France 

6 2015 

Poirier S*, Bouchez T, Chapleur O. Les composés inhibiteurs de la digestion 
anaérobie : état de l’art et stratégies d’acclimatation. Journées Recherche et 
Innovation biogaz méthanisation, 3 – 5 Février 2015, Rennes, France 

7 2016 

Madigou C, Poirier S, Chapleur O*. 2016. Amélioration de la résistance au 
phénol d’un microbiote anaérobie par une stratégie d’acclimatation. Journées 
thématiques de l’association française d’écologie microbienne (AFEM), 31 mai -1 
juin 2016, Marseille, France 

8 2016 

Poirier S*, Chapleur O. 2016. Influence de l’azote ammoniacal sur la 
composition d’un écosystème anaérobie issu d’un digesteur industriel. Journées 
thématiques de l’association française d’écologie microbienne (AFEM), 31 mai -1 
juin 2016, Marseille, France 

9 2018 
Cardona L*, Mazéas L, Chapleur O. 2018. Improving waste valorisation: the 
data omics integration intake. Journées de l’Ecole Doctorale ABIES  
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7. Communications internationales par affiche 
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1 2010 

Chapleur O*, Mazéas L, Bouchez T. 2010. Ecological engineering of microbial 
communities through substrate adaptation: consequences on anaerobic digestion of 
cellulose in municipal solid waste. World Congress on Anaerobic Digestion (AD 
12), 31 October-4 November 2010, Guadalajara, Mexico.  

2 2011 

Chapleur O*, Mazéas L, Bouchez T. Ecological engineering of microbial 
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engineering of anaerobic digesters? Conference on Biogas Microbiology (ICBM 
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Madigou C, Poirier S, Chapleur O*. 2016. Acclimation of an anaerobic 
microbiota subjected to inhibitory phenol concentration. International Symposium 
on Microbial Ecology (ISME 16), 21-26 August 2016, Montreal, Canada. 

7 2017 

Cardona L*, Poirier S, Madigou C, Bouchez T, Mazéas L, Chapleur O. 2017. 
Understanding the effect of ammonia on anaerobic microbiota during biowaste 
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3 May 2017, Wageningen, Netherlands 

8 2017 
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inoculum source and nitrite concentration on anaerobic ammonium oxidation 
bacteria enrichment. International Ramiran conference, 4-6 September 2017, 
Wexford, Ireland. 

9 2017 

Chapleur O*, Déjean S, Lê Cao K-A. 2017. Identifying biomarkers by 
integrating multiple-omics datasets to improve anaerobic digestion. International 
workshop, Environmental Omics, Integration and Modelling, 18-20 October 2018, 
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10 2018 

Chapleur O*, Poirier S, Lê Cao K-A. 2018. Effect of ammonia on the dynamics 
of anaerobic digestion microbiome: omics data integration in a time course 
context. International Symposium on Microbial Ecology (ISME 17), 12-17 August 
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11 2018 

Cardona L*, Lê Cao K-A, Bureau C, Madigou C, Rouillac L, Lê Cao, Mazeas 
L, Chapleur O. 2018. Multi-omics data integration to decipher the impact of 
feeding composition on the microbiota of anaerobic digestion. International 
Symposium on Microbial Ecology (ISME 17), 12-17 August 2016, Leipzig, 
Germany. 

 

 
8. Actions de vulgarisation 

Année Référence 

1 2010 

Invité de l’émission « Pose ta question » diffusée sur « Terre d’infos tv » en 2010, 
thème « Déchets et Recyclage ». Emission de vulgarisation réunissant un groupe 
d’enfants, une journaliste et un expert sur des sujets liés à l’environnement.  

2 2011 
Rapport annuel 2011 Irstea « 30 questions pour comprendre la recherche 
environnementale », réponse à la question 17 : « Comment travaille un chercheur » 

3 2012 
Participation à l’ouvrage « Quelle énergie durable pour demain ? », édité par 
Irstea, partie « optimiser les processus microbiens de dégradation des déchets »  

4 2013 

Présentation « Recherche pour le développement d’outils pour améliorer la gestion 
des bioprocédés anaérobies. » lors des « rencontres éco-technologiques 2013 » du 
réseau PEXE, éco-entreprises de France et des Instituts Carnot, 2 juillet 2013, 
Nanterre, France. 

5 2014 
Présentation « Processus de dépollution grâce aux écosystèmes microbiens » lors 
des « rencontres de l’INRA », 28 février 2014, Salon International de 
l’Agriculture, Paris, France 

6 
2016-
2017 

Encadrement d’un groupe d’étudiants de classe préparatoire pour un projet 
collectif sur la méthanisation 
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Collaborations et contrats de recherche 

1. Contrats de recherches obtenus  

• Coordination du projet METHARESIST  (EC2CO INSU CNRS 42k€ 2015-2016): 
“Approches méta-omiques pour établir des stratégies de résistance des digesteurs 
anaérobies aux micropolluants, cas du phénol”.  

• Co-coordination du projet DIGESTOMIC  (ANR, 450k€, 2016-2020): “Elaboration 
de nouvelles stratégies opératoires pour lever les verrous de la digestion anaérobie et 
élargir ses domaines d’application à l’aide d’approches méta-omiques”. Responsable 
d’un des trois work-package du projet. 

• Coordination d’un projet d’échange scientifique bilatéral avec l’Australie 
(financement PHC FASIC, IRSTEA, ED ABIES, AFRAN : 17k€, 2017-2019). 

• Coordination du projet STABILICS (ANR, 220k€, 2019-2023): “Nouvelles 
perspectives dans les déterminants de la stabilité des bioprocédés anaérobies en 
couplant des approches multi-omiques et statistiques”. 

2. Collaborations nationales ou internationales soutenues  

• Collaboration avec des chercheurs de l’UR OPAALE d’Irstea Rennes : un article 
de revue, une présentation orale et une présentation affichée cosignés (thèse R. 
Connan 2013-2016) participation au comité thèse de S. Piveteau (encadrement ML 
Daumer 2015-2018) 

• Collaboration avec le laboratoire LGPM de Centrale-Supélec : co-encadrement 
d’un stage avec le Dr. B. Taidi (A. AshDSouza) en 2016 

• Collaboration avec Suez Environnement : partenaires du projet ANR 
DIGESTOMIC (2016-2020) 

• Collaboration avec Pontificia Universidad Católica de Valparaíso, Chili : accueil 
et encadrement d’un doctorant (O. Franchi) pendant 3 mois en 2017.  

• Collaboration avec l’équipe IAQA, AgroParisTech, UMR GENIAL :  partenaire 
des projets METHARESIST (2015-2016) et DIGESTOMIC (2016-2020). 

• Collaboration avec l’Institut de Mathématiques de Toulouse : séjour scientifique 
de plusieurs mois en 2017 auprès du Dr S. Déjean, divers articles cosignés, partenaires 
du projet ANR STABILICS. 

• Collaboration avec l’équipe du Dr K-A Lê Cao, Melbourne Integrative 
Genomics, à l’Université de Melbourne, Australie : séjour scientifique de plusieurs 
mois en 2017 puis 2019, divers articles cosignés, partenaires du projet ANR 
STABILICS. Co-organisation d’un workshop sur l’analyse des données omiques en 
juin 2018 à l’université Paris Saclay (25 participants). Co-organisation d’un workshop 
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« Advancing environmental biotechnologies through advanced microbiology and 
cutting-edge computational statistics » à l’Université de Melbourne en avril 2019 (35 
participants). 

• Collaboration avec le laboratoire de chimie moléculaire (LCM) de l’école 
polytechnique: analyse métabolomique d’échantillons, la préparation d’un article co-
signé est en cours, partenaires du projet ANR STABILICS.  
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Expériences d’encadrement 

1. Tableau récapitulatif des expériences d’encadrement 

 
Total 

Encadrement de doctorants 2 (une thèse soutenue en 2016 et une 
thèse en cours, soutenance janvier 2020) 

Encadrement de stages de niveau M2 5 

Encadrement de stages de niveau L3 ou M1  2 

Encadrement autre Stage ingénieur fin d’étude : 7 

Doctorant en séjour court (3 mois) : 1 

Postdoctorant: 1 

2. Encadrement de stagiaires 

Année  Nom Titre du stage Niveau  Pourcentage 
d’encadrement 

2008 An Shu Identification de groupes fonctionnels au 
sein de communautés microbiennes 
complexes dans les bioprocédés de 
traitement anaérobie des déchets ligno-
cellulosiques  

M2 100% 

2009 Charlotte 
Richard 

Influence de la température sur les groupes 
microbiens fonctionnels responsables de la 
dégradation de la cellulose  

M2 100% 

2009 Adeline 
Desprez 

Evaluation de l'Effet du Protocole de la 
Technique NanoSIMS-ISH  

M2 100% 

2009 Vincent 
Hébrail 

Etude de l'effet d'un changement brutal de 
température (passage de 55°C à 35°C puis 
de 35°C à 55°C) sur la réponse des groupes 
microbiens fonctionnels de dégradation de 
la cellulose  

Stage 
Ingénieur 

100% 

2010 Thibaut 
Serain 

Influence of the introduction of an 
exogenous biomass on anaerobic 
degradation of cellulose in municipal solid 
waste digesters 

Stage 
Ingénieur 

100% 
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2010 Florian 
Almeras 

Influence d'une biomasse exogène (sur le 
démarrage des fonctions microbiennes et les 
potentialités de dégradation de la cellulose 
dans les bioprocédés de méthanisation – Cas 
de la bactérie Fibrobacter succinogenes 

Stage 
Ingénieur 

100% 

2012 Raphaël 
Civade 

Impact du phénol sur la diversité et la 
stabilité des communautés microbiennes de 
dégradation de la cellulose dans les 
bioprocédés anaérobies 

M2 100% 

2013 Yohan 
Rodolphe 

Impact of growing concentrations of phenol 
on microbial communities degrading 
cellulose in anaerobic conditions 

4ème 
année 
ingénieur 

100% 

2016 Alexia 
AshDSouza 

Developing a method of measuring Cell 
quantity and vitality in a culture of 
Arthrospira platensis 

4ème 
année 
ingénieur 

80% 

2017 Camille 
Levrard 

Effet de l’ajout de co-substrats sur les 
performances d’un digesteur anaérobie et les 
dynamiques microbiennes associées 

L3 75% 

2018 Delphine 
Cirederf 

Suivi des dynamiques microbiennes de la 
digestion anaérobie à l’aide d’approche 
ADN et ARN 

L3 75% 

2018 Sophie 
Renault 

Exploratory statistical analysis of multi-
omics data to decipher the mechanisms of 
anaerobic digestion inhibition 

4ème 
année 
ingénieur 

100% 

2018 Pierre-
Antoine 
BAR 

Ammonia inhibition of anaerobic digestion: 
A Research on the mitigation mechanisms 
of ammonia inhibition by zeolite 

4ème 
année 
ingénieur 

80% 

2019 Alexandra 
Claudin 

Effet de la codigestion sur le processus de 
digestion anaérobie en termes de 
performance des digesteurs et de dynamique 
des populations microbiennes  

M2 80% 

3. Autres expériences d’encadrement 

2017 : accueil d’Oscar Franchi (doctorant chilien) pendant trois mois au laboratoire pour un 
travail collaboratif (un article en cours de rédaction « Low temperature sewage sludge 
anaerobic digestion: full-scale proof of interest and study of microbial adaptation. »). 
Pourcentage d’encadrement lors de son séjour : 75%.  

2014-2017 : accompagnement de Céline Madigou au cours d’un projet de montée en 
compétence pour le passage du grade d’Assistant Ingénieur à Ingénieur d’Etude. Promotion 
réalisée en 2017. Valorisation du travail sous forme de deux articles (2016 et 2019) pour 
lesquels je suis dernier auteur. 

2018-2020: postdoctorat de Francesc Puig-Castellví dans le cadre du projet DIGESTOMIC 
(Accueil conjoint AgroParisTech-Irstea). Deux articles dont je suis dernier auteur sont en 
cours de révision.  
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4. Encadrement de doctorants 

4.1. Simon Poirier  

• Dates : 2013-2016  

• Titre de la thèse : Exploration écologique des phénomènes d’inhibition associés à la 
digestion anaérobie pour le développement d’indicateurs microbiens et de stratégies de 
résistance 

• Directeur de thèse HDR : Théodore Bouchez 

• Pourcentage d’encadrement : 

o Conception du dispositif expérimental : 90% 

o Suivi du travail expérimental : 90% 

o Analyse et interprétation des résultats : 80% 

o Valorisation des résultats : 80% 

• Production scientifique : 4 articles de revue et 2 data paper, 1 article en cours de 
révision (je suis dernier auteur de l’ensemble de cette production) 

• Devenir : contrat postdoctoral obtenu en sortie de thèse (INRA Micalis, Jouy-en-
Josas) (2 ans). Pour suivre, Simon débutera un nouveau postdoctorat à l’EPLF, en 
Suisse (septembre 2019).  

4.2. Laëtitia Cardona  

• Dates : 2017-2020 

• Titre de la thèse : Exploration écologique des phénomènes d’inhibition associés à la 
digestion anaérobie pour le développement d’indicateurs microbiens et de stratégies de 
résistance 

• Directeur de thèse HDR : Laurent Mazéas 

• Pourcentage d’encadrement : 

o Conception du dispositif expérimental : 80% 

o Suivi du travail expérimental : 90% 

o Analyse et interprétation des résultats : 80% 

o Valorisation des résultats : 80% 

• Production scientifique : Au moins 4 articles sont prévus pendant la thèse (1 est 
accepté, 2 sont actuellement en révision et 1 en écriture) 
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Activités administratives et d’intérêt 

collectif 

1. Contribution à la vie et au fonctionnement du collectif de recherche  

Depuis le 1er janvier 2018 je suis responsable du pôle analytique de l’équipe PROSE. Le pôle 
analytique de l’équipe regroupe les agents en charge de l’analyse des échantillons produits au 
cours des expérimentations. Il est composé d’un technicien de la recherche, un assistant 
ingénieur et cinq ingénieurs d’étude. Il concentre les compétences associées aux différentes 
méthodologies analytiques développées dans l’équipe, notamment la chimie analytique, la 
microbiologie, la biologie moléculaire, la bioinformatique et la biostatistique.  

J’ai pour missions d’assurer l'animation et la coordination des activités du pôle et de participer 
au management de l'équipe en lien avec le Directeur de l'unité (en particulier gestion des 
ressources humaines du pôle analytique, conduite des EAP, suivi des congés et des 
missions,…).  

2. Contribution à l’enseignement ou aux formations 

Depuis 2016 j’ai pris part à la construction d’un nouvel enseignement à l’Ecole Polytechnique 
(Graduate Degree ECOSEM : « Ecotechnologies for Sustainability and Environment 
Management Master »). Cette formation a accueilli ses premiers élèves en septembre 2018. 
Au sein de cet enseignement je suis responsable et interviens dans le module « Exploration 
and statistical analysis of complex datasets » (20h). J’interviens également dans le module 
« Microbial ecology for environmental sciences » (11h).  

J’interviens ou suis intervenu dans d’autres enseignements en écologie microbienne (master 
2) (notamment Master 2 Microbiologie Appliquée et Génie Biologique, AgroParisTech).  

J’ai participé ou participe à différent comités de thèse (Diane Plouchart – INRA LBE, Tristan 
Cerisy - Genoscope, Simon Piveteau – Irstea Rennes, Nelly Badalato – Irstea Antony, 
Gregory Marandat – Irstea Antony, Thomas Jouen – Irstea Antony).  

3. Relecture d’articles 

Relecture d’articles pour différents journaux : Biosystems Engineering, Biotechnology for 
Biofuels, Bioressource Technology, Journal of Environmental Quality, Journal of 
Microbiological Methods, Microorganisms, Plos One, Science of the Total Environment, 
Waste Management, Water Research, Water Science and Technology. 
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SCIENTIFIC 

SYNTHESIS 
 

From describing to managing environmental 
biotechnologies, through a combination of 

molecular ecology and biostatistics 
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Preamble 

As a research scientist, I was sometimes asked what my field of expertise was. Even though 
my research is very multidisciplinary I would say that I am a microbial ecologist, with a 
strong focus on microbial bioprocesses and more specifically anaerobic digestion using 
molecular biology. In other words a molecular microbial ecologist in the service of 
biodegradation bioprocesses. Not sure that makes the things clearer…  

I’ve been exploring this field since I started my PhD. Some people could find that it is 
dramatic, but on the contrary I think that I was really lucky.  

Since I started my PhD, methods used to analyse the microbial communities have changed 
and evolved a lot. It brought a constant renewal in the research I do. New techniques in 
microbial ecology have been invented and deployed. New perspectives have been opened. 
New questions have been addressed. It required taming the new methodologies, adapting 
them to our samples, formalising the new research issues and learning how to make the most 
of the data obtained. All of this mostly in the service of one process, the anaerobic digestion. 
From year to year, my activities evolved continuously; I created new collaborations with 
scientist from new fields, constantly renewing my satisfaction.  

One of the first paper I read as a master student exploring the world of microbial ecology, and 
that probably influenced my work a lot, was a recent (at that time) opinion letter by Curtis in 
Nature Reviews Microbiology entitled “Microbial ecologists: It's time to 'go large'” (Curtis, 
2006). Curtis began his paper as follows: « Microorganisms are small, they are extremely 
important and there is an awful lot of them — 1030to be inexact. But we have only a vague 
idea of the extent of microbial diversity, with estimates differing by factors of 1,000 or more. 
We have even less of an idea about the proportional abundance of microorganisms, and not 
much of a clue how these patterns do and do not change. This is not simply a search for 
trivial facts. These concepts underlie all explorations in, and exploitations of, the microbial 
world”. That paper was really important to me. It made me realise that the exploration of the 
microbial world was only in its infancy, despite the key importance of microorganisms in 
most of the natural and anthropic biological processes. It also made me understand that all 
these processes constituted great ecosystems at the microbial scale, with characteristics and 
functioning very similar to the ‘macroscopic ecosystems’ I had been studying during my 
master: composed of multiple species, with competitions and interactions, dynamic and 
changing, etc. I understood that focusing on only one or a few selected species was probably 
not the best option for describing and improving the processes.  

The interest of studying the system as a whole was well known from microbial ecologist who 
tried to include it as much as possible in their studies. “So why are we still in the dark?” 
asked Curtis. “There are many considerations, but the single factor that outweighs all others 
is sample size — we are looking at vast systems with pathetically small samples. A clone 
library of 1,000 might sound fine but in a community of 1018 it is modest: one clone for every 
1012 individuals.” What to do then? Stop studying these systems? Focus only on the most 
dominant microorganisms? Combine all strengths to target only one selected microbial 
ecosystem or process? Change methods? Responses arrived quickly. The 13 years period 
between now and that paper has indeed seen the advent of high-throughput methodologies, in 
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particular new generation sequencing (NGS), and the drop of sequencing cost and the 
generalization of the use of omics technologies. Along with others, these new developments 
allowed to take a giant step in the exploration of microbial ecosystems, and to start to “face 
up to the scale of the microbial world, retool and 'go large'” as suggested by Curtis. They 
enabled a spectacular progress in a wide variety of fields.  

How to go further? “To escape from the Captain Cook phase of one-off heroic explorations, 
we must industrialize and automate sample processing and analysis” said Curtis. That’s also 
more or less what microbial ecologists have started to do in the last years, once they 
successfully managed the new techniques. More and more samples, time points, conditions, 
replicates are processed. Of course, microbial interactions are still not crystal clear. Microbial 
management is still at its infancy. Industrializing is still difficult for technical and financial 
reasons. On a certain point of view we are still in the dark, but the dark is not as dark as 
before and I believe that the tremendous amount of data we are now able to generate at a 
‘reasonable’ cost will help us to bring more and more light to the fascinating microbial world. 
However, according to me, a crucial aspect, which is not detailed in Curtis’s article, is the 
need to find methods to organise these data, analyse them and extract essential information. 
Curtis mentions mathematical modelling. How exactly? To answer which questions? That 
will probably be the challenge of the next 10 years.  

 

Of course, microbial bioprocesses and specifically anaerobic digestion benefited a lot from 
these developments. The microbial ecosystem of anaerobic digestion is both very complex 
and dynamic. It is composed of an intricate network of microorganisms interacting together to 
progressively degrade complex organic molecules into small one carbon molecules: the 
methane and the carbon dioxide. It provides an answer to strong environmental issues as it 
enables valorisation of waste through the production of biogas, a renewable energy. However, 
despite it has been used and empirically improved for a century, the underlying microbial 
processes are still not mastered. The process still misses stability and management tools to be 
fully exploited. Anaerobic digestion has therefore provided and still provides a highly relevant 
field to apply previously mentioned methods to answer unexplored questions. The last 
developments of microbial ecology enabled a better description of the degradation processes, 
of the function at stake, of the role of the microorganisms… They enabled to understand that 
the performances of the process are strongly dependant of the dynamics of the microbial 
ecosystem. It is now time to organize these data, and to complete them in order to implement 
new microbial management strategies to improve the functioning of bioprocesses. 

 

This document presents my contribution to enlighten on the functioning of microbial 
communities of anaerobic bioprocesses. It is divided in 5 parts. The first part introduces 
briefly the topic of my research. Three chapters summarize the main works carried out and 
results obtained. The last part presents the perspectives envisaged to extend and enhance the 
work already carried out.  
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General introduction 

My research is at the crossroads of different disciplinary fields. Society issues (sustainable 
waste management, production of renewable energy, etc.) and various scientific disciplines 
(microbial ecology, molecular biology, omics, biostatistics, etc.) are mixed together. To put 
my work into perspective, this introduction will briefly present the issues of waste 
management and treatment in a global context, with a focus on anaerobic digestion. I will also 
introduce several microbial ecology methods used to further study and understand microbial 
ecosystems. I will conclude by mentioning different ways of dealing with the increasing 
amounts of data generated by these methods. 

1. Microbial bioprocesses for waste treatment 

1.1. Waste production and waste treatment in France 

In 2015, waste production in France represented 324.5 million tonnes, of which 228 million 
tonnes for the construction sector, 62.5 million tonnes for economic activities outside 
construction, 30.6 million tonnes for households and 4 million tonnes for communities. 

If production of household waste (waste generated by households and collected by the public 
service) had more than doubled in France between 1960 and 2000 (reaching more than one 
kilo per inhabitant per day), it started to decrease in 2002 thanks to incentive procedures. The 
current production however still forms a very important flow to manage. Four main 
elimination channels have been developed in France to deal with this flow (Figure 1): sorting 
for recycling, thermal treatments (incineration), biological treatments and landfilling.  

 

Figure 1: Treatment of household waste in France, in 2015 (from ADEME: déchets chiffres clés 2017). 
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In 2014, the sorting centres absorbed 27% of household waste. Incineration treated 33%. 
Biological treatments enabled to eliminate 16% of this mass. Finally, and thanks to the 
concomitant development of three other techniques, the use of landfill storage remained 
necessary to cope with only 24% of this flow of waste. 

A greater attention to environmental issues has prompted decision-makers to reorient their 
waste management policy. More stringent discharge standards have been imposed. Waste is 
now considered as a resource that can potentially be valued physically, energetically and 
economically. There has been a growing interest in biological waste treatment. Indeed, an 
important fraction of household waste is composed of organic matter (Figure 2) and forms an 
ideal substrate for biological treatment processes. In total organic waste, excluding 
agricultural waste, amounts for 46.4 million tonnes, of which 20.2 million tonnes are collected 
by the public service every year in France.  

 

Figure 2: Household waste composition in France, in 2017 (from ADEME. MODECOM 2017). 

1.2. Biological treatment of waste 

There are two types of biological waste treatment: composting and anaerobic digestion.  

Composting is an aerobic process of transformation of fermentable matter, under controlled 
conditions (aeration/mixing) in order to obtain a stabilized fertilizer rich in humic compounds, 
the compost. I will not describe it further in this document as it is not the process I have been 
working on.  

Conversely, anaerobic digestion (or methanization) is an anaerobic process that can be 
implemented in anaerobic digesters, or biogas plant1. This bioprocess is based on the 
microbial degradation of the organic matter contained in waste. It produces on the one hand 

                                                 
1 Anaerobic digestion also occurs spontaneously in natural ecosystems, where organic matter 
is present and oxygen is scarce, such as marshes, lakes, rice paddies, lacustrine and marine 
sediments, soil, mammalian gut, intestinal tract of ruminants and termites, etc. 
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biogas rich in methane that can be converted into valuable electrical and thermal energy; and 
on the other hand the digestate, a stabilized residue that can be in some cases used as a 
fertilizer (Figure 3). As it allows converting waste into energy resource, anaerobic digestion 
(AD) is highly relevant for environmental protection and for our quest to increase energy 
efficiency.  

Almost any organic material can be processed with anaerobic digestion; however, the level of 
biodegradability is the key factor in the successful application of anaerobic digestion. For 
example, lignocellulosic material rich in cellulose and hemicellulose polymers as well as 
recalcitrant lignin are not broken down easily by anaerobic microorganisms and do not always 
provide a sufficient methane yield in anaerobic digesters. On the contrary, biowaste, such as 
leftover food, sewage sludge, animal waste, green waste, etc. are very adapted as they enable 
to achieve quickly high levels of degradation and biogas production. According to the type, 
source and volume of feeding, anaerobic digesters are designed and engineered using different 
configurations. Their size can vary from a few dozen of litres up to several dozen of cubic 
meters. They can be fed in batch or continuous mode, with waste containing a high or low 
portion of solids. They can be operated under different temperature conditions and with 
difference residence time of the waste in the digester. They are sensitive to different inhibitors 
and to the modification of the operational parameters, as well as the composition of waste. 
The influence of some of these parameters is detailed in the paragraph 1.4. 

 

Figure 3: Anaerobic digestion is the microbial conversion of organic matter into valuable biogas and 
digestate that can be used as fertilizer. 

In France in 2016, more than 600 biogas plants supplied nearly 4 TWh of heat and electricity, 
including methanization of household waste, methanization of sludge from wastewater 
treatment plants, industrial and agricultural methanization. Agricultural methanization 
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currently accounts for more than 50% of the plants and 30% of the energy produced. They are 
spread all over France (Figure 4). Biogas has been recognized as a renewable energy under 
the EC Directive (2001/77 / EC) since September 2001. 

 

Figure 4: French park of methanization centres in 2016 (from ADEME: déchets chiffres clés 2017). 

1.3. The anaerobic digestion 

As illustrated on Figure 3, anaerobic digestion consists of the microbial degradation of the 
organic matter contained in the waste into biogas, composed mainly of carbon dioxide and 
methane. This simplistic representation does not illustrate the complexity of anaerobic 
digestion. Indeed, organic residues are composed of a wide variety of different materials 
meaning different types of molecules. Their degradation goes through many intermediates 
between the initial organic matter and the final biogas. It is catalyzed by a wide variety of 
microorganisms acting simultaneously, some of them feeding only on a very specific type of 
molecules, others being more ubiquitous. Because the biodegradation products of a reaction 
serve as substrates for the following reactions, important interactions between microbial 
populations exist. They form a complex microbial ecosystem within bioprocesses with an 
intricate network of interactions. To describe it more precisely, anaerobic digestion is often 
divided into four main stages: the hydrolysis, the acidogenesis, the acetogenesis and the 
methanogenesis (Figure 5). 

1.3.1. The four main steps of anaerobic digestion 

1.3.1.1. Hydrolysis 

Hydrolysis consists of destructuring a substrate made of complex organic matter into simpler 
molecules that are easily assimilated by microorganisms. In this step, macromolecules such as 
nucleic acids as well as biopolymers (polysaccharides, lipids, proteins) are degraded 
(hydrolysed) into water-soluble fragments (monomers) such as monosaccharides, fatty acids, 
amino acids and nitrogen bases (Batstone et al., 2002; Cirne et al., 2007). These reactions are 
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catalyzed by exo-enzymes (Goel et al., 1998; Sanders et al., 2000; Zhang et al., 2007). The 
degradation rates depend on the nature of the substrates. This step is generally considered as 
limiting for the entire degradation process and especially when the organic matter is 
composed of complex molecules such as lignin or cellulose. 

1.3.1.2. Acidogenesis 

During acidogenesis, the monomers resulting from the hydrolysis step are mainly fermented 
into organic acids and alcohols. Volatile fatty acids (VFA) such as formate, acetate, 
propionate, butyrate or valerate, alcohols (propanol, butanol, ethanol ...) as well as other 
organic acids (caproic, succinic ...) are synthesized (Batstone et al., 2002). This step also leads 
to the formation of dihydrogen and carbon dioxide. It can be 30 to 40 times faster than 
hydrolysis (Moletta, 1993). 

1.3.1.3. Acetogenesis 

Acetogenesis allows the transformation of the various metabolic intermediates from the 
previous phases into acetate, dihydrogen and carbon dioxide. Two metabolic pathways have 
been identified: 

• The heteroacetogenic pathway results in the production of acetate, dihydrogen and 
carbon dioxide. This pathway can also induce the production of VFA (propionate, 
butyrate ...). 

• The homoacetogenic pathway leads only to the production of acetate. It can be 
synthesized either from organic molecules such as sugars, or degradation products 
such as formate, dihydrogen and carbon dioxide. 

The reaction rates of acetogenesis are generally slow and subject to inhibition problems due to 
the presence of dihydrogen which modifies the thermodynamic equilibrium of the global 
kinetics. A very low partial pressure of dihydrogen is therefore necessary to make the 
production of acetic acid thermodynamically possible, the accumulation of dihydrogen 
leading to the interruption of acetogenesis (Siriwongrungson et al., 2007). 

This phase is one of the key steps in anaerobic digestion. Indeed, any dysfunction at this level 
may result in an accumulation of hydrogen and VFA associated with a significant decrease in 
pH, resulting in the inhibition of the next step of methanogenesis (Stams, 1994). 

1.3.1.4. Methanogenesis 

Methanogenesis is the final step in the process of anaerobic digestion. It consists in the 
conversion of the products of acetogenesis (mainly acetate, dihydrogen, carbon dioxide and 
formate) in methane. Two metabolic pathways are involved during this last transformation: 

• Acetoclastic methanogenesis produces methane and carbon dioxide from acetate. 
• Hydrogenotrophic methanogenesis uses dihydrogen and carbon dioxide to produce 

methane 

Other metabolites such as methanol or methylamine can also be precursors of methane 
(methylotrophic methanogenesis) (Lovley and Klug, 1983). 
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Figure 5: Anaerobic digestion is usually divided into four main steps. It is performed by a complex microbial 
community composed of interacting bacteria and archaea. 

1.3.2. Multiples clades of microorganisms are involved 

Key microorganisms driving the AD process form an extremely complex microbial 
community, mainly composed of bacteria and archaea, able to degrade the organic matter 
across multiple pathways, with lots of functional redundancies2. Those microorganisms 
collectively constitute the AD microbiome. They are generally specific of one of the 
previously described steps. The next paragraphs present the most important players of each 
step, based on the current knowledge.  

1.3.2.1. Hydrolytic microorganisms 

Hydrolysis is mainly performed by hydrolytic bacteria from various phylogenetic groups. In 
addition, some eukaryotic fungal groups found in the rumen are also able to hydrolyse 
complex organic matter (Nsereko et al., 2000). Hydrolytic bacteria are anaerobic, strict or 
optional. Their growth rate is relatively fast and their doubling time can reach a few hours 
although this step is often limiting in the overall methanization process. The extreme diversity 

                                                 
2 Ecological phenomena that multiple species representing various taxonomic groups can share similar roles in 
the ecosystem. 
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of the microbial communities involved in this step makes an exhaustive inventory impossible. 
Nevertheless, among the many microbial genera involved in hydrolysis, it is possible to 
mention Acetivibrio, Anaerovibrio, Bacillus, Bacteroides, Butyrivibrio, Cillobacterium, 
Clostridium, Lachnospira, Micrococcus, Mocrococcus, Peptococcus, Pseudomonas, 
Ruminococcus, Succinomonas, Staphylococcus or Syntrophomonas (Moletta, 2015). 

1.3.2.2. Acidogenic microorganisms 

Acidogenic or fermentative microorganisms are strictly anaerobic. They have a rapid 
metabolism and growth rate, and can survive extreme pH or temperature conditions (Bayard 
and Gourdon, 2001; Moletta, 2015). The rapid metabolism of this trophic group compared to 
the later stages of anaerobic digestion (acetogenesis and methanogenesis) can be a source of 
inhibition. Indeed, an excess of acidogenic species compared to methanogens, caused for 
example by an overload of organic compounds, can lead to an accumulation of intermediate 
compounds such as acetate and dihydrogen, unfavourable to the growth of methanogens 
(Siegert and Banks, 2005; Moletta, 2015). Therefore, acidogenesis is a key step in anaerobic 
digestion whose reaction products must be degraded or extracted as quickly as possible. 
Acidogens are mainly represented by the genus Clostridium. However, the genera 
Acetobacterium, Bacillus, Bacteroides, Pelobacter and Ulyobacter as well as the family 
Enterobacteriaceae also include acidogenic bacteria (Ali Shah et al., 2014; Moletta, 2015). 

1.3.2.3. Acetogenic microorganisms 

Acetogenic bacteria are strictly anaerobic, very sensitive to pH and have very slow growth 
(Ali Shah et al., 2014). The two metabolic pathways of acetogenesis are carried out by two 
distinct bacterial populations.  

• The heteroacetogenic pathway is performed by syntrophic microorganisms that 
necessarily produce dihydrogen (called OHPA for "Obligate Hydrogen Producing 
Acetogens"). The growth of OHPA requires a very low partial pressure of dihydrogen 
(<10-4 atm). Indeed, dihydrogen has an inhibitory action on microbial growth and 
biochemical reactions (Moletta, 2015). It must therefore be constantly removed by a 
second microorganism in order to make acetate consumption possible (Schink, 1997; 
Huiliñir et al., 2008; Nie et al., 2008). OHPAs necessarily grow with microorganisms 
consuming dihydrogen. They have a rather slow growth (doubling time from 1 to 7.5 
days) (Girguis et al., 2005) and are mainly found in the genera: Syntrophobacter, 
Syntrophomonas, Syntrophus, Syntrophococcus or Syntrophosphora (Ali Shah et al., 
2014). 

• Homoacetogenic acetate-producing bacteria are divided into two groups according to 
the origin of the acetate. The first group uses a carbon substrate (volatile fatty acids, 
ethanol, etc.) and are found in genera such as Butyribacterium and Peptococcus.  The 
second group reduces carbon dioxide with dihydrogen. These microorganisms allow in 
particular the maintenance of non-inhibitory concentrations of dihydrogen. They are 
found within the genera Acetoanaerobacterium, Acetobacterium, Acetofilamentum, 
Acetohalobium, Acetomicrobium, Acetothermus, Acetotitomaculum, Clostridium, 
Eubacterium, Sporomusa or Thermoanaerobacter (Ali Shah et al., 2014; Moletta, 
2015). 

1.3.2.4. Methanogenic microorganisms 

The production of methane is carried out by strictly anaerobic archaea. Methanogenic archaea 
belong to 7 phylogenetic orders: Methanococcales, Methanopyrals, Methanobacteriales, 
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Methanosarcinales, Methanomicrobiales, Methanocellales and Methanoplasmatales (Sakai et 
al., 2008; Paul et al., 2012; Borrel et al., 2013).  

• Hydrogenotrophic methanogenic archaea live in syntrophic association with the 
hydrogen producing species (OPHA). They help to maintain a low pressure of 
dihydrogen necessary for the good progress of anaerobic digestion. Apart from the 
genus Methanosaeta, all the methanogenic archaea are able of carrying out this 
reaction. The most represented genera are Methanosarcina, Methanobacterium, 
Methanobrevibacter, Methanospirillum, Methanogenium and Methanocorspusculum 
(Ali Shah et al., 2014; Moletta, 2015). 

• Acetoclastic methanogenic archaea are dominated by the order Methanosarcinales and 
in particular by two genera: Methanosaeta and Methanosarcina. Methanosarcina 
usually becomes dominant when acetate concentrations are above 5mM. 

• The main methylotrophic archaea belong to the genus Methanosarcina (Ali Shah et 
al., 2014; Moletta, 2015), to the order Methanobacteriales (in particular 
Methanosphaera stadtmanae species) and to the order Methanoplasmatales (in 
particular Methanomassiliicoccus luminyensis and Candidatus Methanomethylophilus 
alvus species) (Borrel et al., 2013). 

1.4. Parameters influencing anaerobic digestion equilibrium 

The stability and efficiency of biogas production in anaerobic digesters highly relies on the 
stability of the complex microbial community described above (Pap et al., 2015). This 
equilibrium can be strongly influenced by the operational parameters of the AD. We describe 
some of them below. 

1.4.1. Redox potential  

The first steps of anaerobic digestion are performed by strict or facultative anaerobic bacteria. 
However, methanogenesis is performed by strictly anaerobic archaea. Oxygen has a 
bacteriostatic or even bactericidal effect on the methanogens. The redox potential represents 
the state of reduction of the system and can directly be related to the oxygen concentration of 
the medium. For anaerobic digestion to take place, it is generally assumed that the redox 
potential must be less than -300 mV. 

1.4.2. The temperature 

Despite the wide range of temperatures observed in natural AD, industrial anaerobic digesters 
are mostly operated at three levels of temperature: psychrophilic (4-15 °C), mesophilic (20-40 
°C) and thermophilic (45-70 °C) (Van Lier et al., 1997), mesophilic and thermophilic 
temperatures being the most frequent. The operating strategies are chosen according to the 
treatment objectives but also the environment in which the digester is implanted. The 
advantages and disadvantages of thermophilic versus mesophilic conditions were described in 
many studies, e.g. (Kim et al., 2002; Labatut et al., 2014). Mesophilic processes were shown 
to be more stable and robust, requiring less energy for heating and generating fewer odours. 
They have less probability of inhibition by ammonium or long chain fatty acids (Fernández-
Rodríguez et al., 2015) . However, thermophilic processes have the potential to produce 
biogas with a higher methane yield, to increase the degradation rate of organic solids (Lü et 
al., 2014) and to destroy more pathogenic organisms (Moset et al., 2015). For example 
thermophilic sludge digestion can improve energy balance and nutrient recovery potential in 
full-scale municipal wastewater treatment plants (De Vrieze et al., 2016a). Psychrophilic 
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digestion can be performed more easily, as no heating of the digesters is required, but has 
lower yields.  

Temperature can affect the growth of microorganisms and enzymatic activity. An important 
part of the microorganisms can grow at only one temperature condition, and modifying the 
temperature of the process can strongly affect the microbiome and its functioning (Zhu et al., 
2018). Numerous examples of process failure after temperature modification are available in 
the literature. For example, in response to temperature shocks in reactor, a decrease in specific 
anaerobic activity and reactor efficiency can occur, including lower organic carbon removal 
efficiency, accumulation of volatile fatty acids and decrease in biogas yield (Lau and Fang, 
1997; Chae et al., 2008; Lindorfer et al., 2008; Kundu et al., 2014; Zhu et al., 2017). In all 
cases, authors observed strong modifications of digesters microbial communities and 
ecological dynamics after changes in the operating temperature (Noll et al., 2010; Pap et al., 
2015; Chapleur et al., 2016a; Lin et al., 2016; Westerholm et al., 2017) and after restoration of 
temperature (Luo et al., 2015; Chapleur et al., 2016a).  

1.4.3. pH and alkalinity 

pH affects growth of microorganisms and enzymatic activity (Boone and Xun, 1987; Veeken 
et al., 2000). Methanogens are extremely sensitive to changes in this parameter. The pH 
modifies in particular the physicochemical equilibrium of acids and bases such as volatile 
fatty acids and ammonia nitrogen (Mata-Alvarez et al., 2000) or the liquid / gas equilibrium 
(for example carbonate/carbon dioxide). Optimum conditions for anaerobic digestion are 
around neutrality, between 6.5 and 8.5.  

1.4.4. Inhibitors  

Anaerobic microorganisms are vulnerable to a wide variety of inhibitory substances that can 
be either contained in organic waste or formed during their degradation within digesters 
(Chen et al., 2008a). Most reported inhibitors are ammonia, sulphides, heavy metals (Cu, Zn, 
Cr, Cd, Ni, Pb…), different ions (Na+, K+, Ca2+, Mg2+…), long chain fatty acids, N-
substituted aromatics, halogenated aliphatics, phenols. Literature shows considerable 
variations in the inhibition/toxicity levels reported for most substances. The major reason for 
these variations is on the one hand the complexity of the anaerobic digestion process where 
mechanisms such as antagonism, synergism, acclimation, and complexing could significantly 
affect the phenomenon of inhibition (Chen et al., 2008a) ; and on the other hand the 
specificity of the studies, using different types of reactors, different inocula, not always taking 
into account the synergistic effect of multiple inhibitors on the process… 

1.5. What remains to be done 

In a context of environmental protection and research for increasing energy efficiency, 
methanization arouses a renewed interest because it allows converting waste to both an energy 
resource and an organic amendment. However, some obstacles still hamper its development 
and prevent it to be commercialized as widely as it could. AD is not fully controlled and still 
has an important potential for improvement (Carballa et al., 2015). A major limitation is the 
important susceptibility of the microbial communities to changes in operational conditions of 
the digesters (some of them listed above) that can lead to unstable methane formation. Despite 
the functional redundancy within digesters, the inhibition of certain key sensitive populations 
such as methanogenic archaea automatically results in decreased production yields and 
potentially in process failure leading to significant economic losses. Furthermore, the 
dynamics of the populations and industries cause sudden and unpredictable changes of 
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quantity and composition of waste to treat. Until recently, the methanization was considered 
not being well enough mastered to face these changes and present the desired flexibility. 

Controlling AD microbial community stability is not a trivial task. Experience feedback from 
industrial operators shows that digesters remain little instrumented. Their successful operation 
relies on the know-how of the developer rather than on objective criteria. It strongly limits the 
standardisation, transfer and broad use of successful operational strategies. Such situation is 
mainly due to the limitation of microbial-based management of anaerobic reactors. Indeed, 
the microbiome, which is the key player of the AD process, has remained largely unknown for 
a long time and was a “Black box”. However, efficiency and good functioning of AD totally 
depend on the complex balance of AD microbiome. Microbial-based management of 
anaerobic reactors is a major hurdle to better control and improve AD.  

To build such management strategies, a better knowledge of the functioning of AD 
microbiome, of the influence of operational parameters on microbial equilibrium and of the 
processes leading from microbial balance disruption to process macroscopic failure is 
required. The rather recently developed microbial ecology methodologies now allow to better 
describe complex microbial communities. They provide the information necessary to perform 
functional microbiome diagnostics (Vanwonterghem et al., 2014a) which could help to build 
real microbial management strategies of anaerobic digestion and to set microbial indicators of 
optimal performance and warning indicators of process failure (Koch et al., 2014). Those 
indicators could be key enzymes, inhibitors or key microbial population for which on-line 
abundance monitoring techniques are currently being developed, for instance based on flow 
cytometry analyses or sequencing (Broger et al., 2011; Hammes et al., 2012; Koch et al., 
2013). Better consideration of the functioning of the microbial ecosystem would enable to 
refine the management and control of microbial processes for waste degradation and biogas 
production and to improve their stability.  

My research work aims at this objective.  

2. Microbial ecology 

2.1. The first approaches 

The first attempts to study microbial complex communities (including microbiome from AD) 
relied on conventional cultivation techniques, implying the isolation of pure cultures. This 
process was time-consuming. All isolated microorganism required numerous physiological 
and biochemical tests for full characterization. Moreover, it is now estimated that less than 
1% of microbes are cultivable (Amann et al., 1995). The study of complex microbial 
ecosystems was therefore biased. The advent of PCR (polymerase chain reaction) and the 
identification of several genetic biomarkers have has shattered the methodological barriers 
associated with culture-based methods, as microorganisms can now be studied in-situ, without 
isolation and cultivation.  

The gene coding for the small 16S subunit of the ribosomal RNA (16S ribosomal RNA gene, 
Figure 6) is one of the most used biomarker to study prokaryotes (bacteria and archaea). Its 
sequence is used to identify microorganisms and to reconstruct phylogenies. Indeed, 
ribosomal RNA is a highly conserved molecule, which means that it is present in all 
prokaryotes. 16S rRNA gene also contains hypervariable regions that can provide species-
specific signature sequences useful for identification (they form a molecular identity map to 
identify microorganisms). Highly conserved sequences between hypervariable regions can be 
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used to design universal PCR primers. It enables to reliably produce the same sections of the 
16S sequence across different taxa for comparison purpose.  

Carl Woese and George E. Fox pioneered the use of 16S rRNA in phylogenetics. Using this 
tool, they demonstrated in 1987 that organisms were divided into three major domains 
(Eubacteria, archaea, Eukarya), thus rejecting the classical dichotomy between prokaryotes 
and eukaryotes.  

 

Figure 6: Secondary structure of the 16S RNA molecule (from rna.ucsc.edu/). 

During the last thirty years, new techniques have been developed, bringing together different 
molecular tools to study the diversity and ecology of microbial populations without going 
through isolation petri dishes. All these techniques, based on the genetic characterisation of 
the microorganisms composing the medium, rely to a large extent on the properties of the 
ribosomal RNA molecule and make it possible to analyse complex and natural samples 
directly. I detail some of them in the next paragraphs, mainly those I had the opportunity to 
use during my work.  

2.1.1. Fingerprinting  

Complex microbial ecosystems consist of a large diversity of interdependent individuals 
interacting with each other. It is important to study the microorganisms of these systems in a 
global way, especially their relative dynamics over time. To this end, several techniques have 
been developed to monitor the general evolution of microbial communities. They are grouped 
under the name of fingerprinting techniques. 
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These methods are generally based on the differential electrophoresis migration of ribosomal 
DNA fragments previously amplified by PCR. The variability of the microorganism within 
the community leads to a variability of the PCR products (size or sequence of the amplified 
fragment) that enables to differentiate the members of the microbial community. Resolution 
of the PCR product with electrophoresis produces a community profile, or genetic fingerprint, 
a kind of barcode that characterizes the diversity of a sample at a given moment. These 
barcodes can be compared to evaluate the dynamics of microbial diversity within a microbial 
ecosystem, or the diversity of one sample relative to another. They can be associated with 
variations in operating conditions. 

Numerous fingerprinting techniques were developed, such as for example: 

• denaturing gradient gel electrophoresis (DGGE) (Muyzer et al., 1993) which is based 
on the migration of amplicons in an acrylamide gel containing a denaturing gradient. It 
separates amplicons of the same size based on their different denaturing ability which 
is determined by their base pair sequence. The resulting bands can be cut and 
sequenced to identify the corresponding microorganisms. 

• single strand conformation polymorphism (SSCP) (Orita et al., 1989) which is based 
on the denaturation of double stranded amplicons into single strands of DNA. 
Depending on their sequence, the single strands will adopt different 3D conformations 
and will have a differential migration in electrophoresis. 

• restriction fragment length polymorphism (RFLP) (Laguerre et al., 1994; Moyer et al., 
1994) which is based on the variability in the size of rRNA fragments generated by a 
restriction enzyme. After amplification of the 16S gene of a complex microbial 
sample, enzymatic digestion is performed by one or several restriction enzymes, 
chosen for their cut-off frequency. The fragments obtained can be analysed by gel or 
capillary electrophoresis, thus giving the fingerprint of the community. 

• automated ribosomal intergenic spacer analysis (ARISA) (Garcia-Martinez et al., 
1999; Ranjard et al., 2000) which is based on the observation of the size of the 
intergenic transcribed spacer (ITS) present between the genes encoding 16S rRNA and 
23S rRNA. This region has a very high heterogeneity in terms of size and composition 
of nucleotide bases. After PCR amplification of this zone, the amplicons are separated 
by electrophoresis. The heterogeneity of the lengths of the ITS from one species of 
microorganism to another makes it possible to reveal small modifications in the 
genetic structure and thus to distinguish phylogenetically closely related species. 

Even if they do not directly give information on the identity of the microorganisms involved, 
these techniques have been used for many years for their speed and repeatability, but also 
because they offered at a reasonable cost, an overview of the community of a sample. 

2.1.2. Fluorescent in-situ hybridization 

Fluorescent in-situ hybridization (Amann et al., 1995) enables to visualize in-situ specific 
populations. This technique is based on the hybridization of oligonucleotides, called probes, 
on a complementary nucleotidic sequence directly inside the cell. The probes can be more or 
less generalist, i.e. attach to a wider or more restricted number of microorganisms (species, 
orders, phyla ...). A fluorescent dye is attached to the probes. After hybridization, the samples 
are observed using an epifluorescence microscope or with a confocal laser scanning 
microscope. Microorganisms hybridized within the sample can thus be identified (Figure 7). 
Different probes targeting different signature sequences and labelled with different 
fluorescent molecules can be used in the same hybridization to study several types of 
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microorganisms at the same time and observe, for example, colocalisation of syntrophic 
microorganisms. 

 

  
FISH hybridization Confocal laser scanning microscope. Identification of different 

microorganisms in a complex 
sample with FISH. 

Figure 7: Fluorescent in situ hybridization. 

2.1.3. 16S metabarcoding  

The identification of members of microbial communities with sequencing techniques provides 
access to a higher level of information than fingerprinting techniques. For cost reasons, 
sequencing used to be reserved to very specific and selected samples. In recent years, it has 
benefited from significant progresses that have drastically reduced its cost while exponentially 
increasing the amount of sequences produced. High-throughput sequencing (HTS) methods, 
also called NGS (for next-generation sequencing) are more and more used as a standard, and 
progressively replace fingerprinting approaches.  

Targeted metabarcoding is the most widely used high-throughput methodology to infer the 
structure and composition of microbial communities. For archaea and bacteria, it is based on 
the amplification of a fraction the 16S gene (several hundreds of base pairs), followed by 
sequencing. Amplified region can vary according to the type of microorganisms targeted. The 
microbial 16S gene contains nine hypervariable regions (V1-V9) with a length of 
approximately 30-100 base pairs each, as illustrated on Figure 8.  

 

Figure 8: Conserved, variable, hypervariable regions within the 16S rRNA gene and the various primers 
used for amplification. Conserved regions are represented in blue, variable regions in gray, and hypervariable 

regions in red. (adapted from (Shahi et al., 2017)). 
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The degree of conservation of these different regions varies widely. The most conserved 
regions are common within high levels of taxonomy while the less conserved regions are 
specific of genus or species. Although no hypervariable region can accurately classify all 
bacteria from Domain to Species, some can reliably predict specific taxonomic levels. Many 
community studies select semi-conserved hypervariable regions like the V4 for this reason, as 
it can provide resolution at the phylum level as accurately as the full 16S gene (Yang et al., 
2016).  

16S metabarcoding nowadays constitutes a standard tool for microbial ecologists. It still has 
several limits. It struggles to differentiate between closely related species (Větrovský and 
Baldrian, 2013). For example, in the families Enterobacteriaceae, Clostridiaceae, and 
Peptostreptococcaceae, species can share up to 99% sequence similarity across the full 16S 
gene (Jovel et al., 2016). As a result, the V4 sequences can differ by only a few nucleotides, 
leaving reference databases unable to reliably classify these bacteria at lower taxonomic 
levels (Jovel et al., 2016). In these cases, the use of other markers such as DNA gyrase 
subunit B (gyrB) (Poirier et al., 2018b), RNA polymerase subunit B (rpoB) (Case et al., 
2007), DNA recombinase protein (recA), protein synthesis elongation factor-G (fusA), or 
dinitrogenase protein subunit D (nifD) (Holmes et al., 2004) could improve the assignation 
and abundance estimation for crucial taxonomic groups. 

Metabarcoding is often based on DNA amplification (16S RNA gene) rather than 16S RNA. 
It can lead to incorrect interpretation of the community parameters, as microbial abundance 
does not necessarily reflect activity (De Vrieze et al., 2016b). In different studies, I observed 
that the difference between microbial community response on 16S RNA (active community) 
and 16S RNA gene (microbial diversity present in the digester, even if not active) could be 
important, the response time of RNA being much faster than that of DNA regarding both 
increase and decrease of abundance, in particular under stress conditions. In some case, RNA-
based approach can thus be preferred to obtain reliable information on actual community 
parameters (De Vrieze et al., 2016b).  

Finally, even if archaea and bacteria are often referred as the most abundant microorganisms 
in AD, authors evidenced that fungi can also play an important role in AD (Sun et al., 2015) 
even if less investigated (Theuerl et al., 2019). Similar approaches using 18S RNA gene or 
ribosomal ITS regions as biomarker instead of 16S can target their abundance (Sun et al., 
2015).  

2.2. New developments linked to high-throughput omics 

"Omics" approaches have recently been developed to increase the level of information 
obtained through conventional microbial ecology techniques. They consist in apprehending 
the complexity of the microbial ecosystem as a whole, using the least restrictive 
methodologies possible. They can target the different ‘layers’ of the biological systems: DNA, 
RNA, proteins, metabolites. The four tools which are commonly encompassed under the 
heading (meta)omics are metagenomics, metaproteomics, metatranscriptomics and 
metabolomics. The advent of these methodologies will provide microbiologists with the tools 
to represent portraits of a community’s genes, gene expression, and metabolite production in a 
single sample, providing great insights into the understanding of microbial communities of 
complex environments, in particular bioprocesses. For example, Sales et al. reviewed different 
application of metaomics to enhance the recovery of carbon and phosphorus as well as energy 
from wastewater (Sales and Lee, 2015). Methodological frameworks for linking bioreactor 
function to microbial communities and environmental conditions are progressively being 
proposed (De los Reyes et al., 2015; Sales and Lee, 2015). 
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2.2.1. Metagenomics 

Metagenomics is the random sequencing of genomic DNA fragments extracted directly from 
a microbial community inhabiting a natural or engineered environment. It allows access to the 
encoded functional traits and identities of the members of the community. It goes beyond 16S 
rRNA gene based characterization by providing insight into the physiological potential of the 
community. It enables to recover new enzymes through function-based analyses. 

In AD systems, current studies aim at reconstructing important metabolic pathways and 
genomes (Badalato, 2014; Vanwonterghem et al., 2014a; Maus et al., 2016). It does not only 
reveals great phylogenetic and functional diversity (Maus et al., 2016), but it can also help 
understand the observations made with metabarcoding on how reactor set-up and operational 
conditions influence the community composition and function (Wong et al., 2013).  

2.2.2. Metatranscriptomics 

Metatranscriptomics involves the sequencing of reverse transcribed mRNA extracted from a 
microbial community, to measure in situ gene expression. Compared to metagenomics it 
focusses only on community members inferred to be metabolically active. Only a few studies 
have been published so far in the field of AD. A PhD was completed in our lab on the 
“Development and implementation of metatranscriptomic tools” and set-up the different steps 
of the protocol (Dr Marandat, 2012-2015). In more recent work, Delforno et al. used a 
bioinformatics pipeline developed at Irstea to compare the microbial active community in 
anaerobic digesters treating anionic surfactant contaminated wastewater (Delforno et al., 
2019). Interestingly, Maus et al. observed that high abundance of microorganisms as deduced 
from metagenome analysis did not necessarily indicate high transcriptional or metabolic 
activity, and vice versa, stressing the complementarity of both approaches (Maus et al., 2016).  

2.2.3. Metaproteomics 

Metaproteomics is the characterization of the proteins extracted from a microbial community 
under a given set of conditions at a specific time point. Metaproteomics can be used to detect 
catalytic enzymes, entire metabolic pathways and novel functional proteins. Metaproteomics 
can also be used to identify the distribution of metabolic activities among a community and 
how populations cooperate or compete (Lü et al., 2014; Bize et al., 2015).  

Identification of the proteins still relies on the presence of their sequence in reference 
databases but the exponential increase in database size should reinforce the attractiveness of 
this approach in the future. Moreover, metaproteomics can be used in combination with 
metagenomics to complement or create database of enzymatic and other protein functions 
(Hanreich et al., 2013).  

2.2.4. Metabolomics 

Metabolomics approaches provide a qualitative and quantitative measure of all low 
molecular-weight molecules contained in a sample. These molecules can be involved in 
cellular metabolic reactions and required for the maintenance, growth and normal function of 
microbial community. In the case of AD, they can arise from the degradation of organic 
matter by the microorganisms. Metabolomics gives access to informative details about key 
metabolic pathways (Vanwonterghem et al., 2014a). Application of whole community 
metabolomics to anaerobic digesters is difficult due to the very large range of metabolites 
with limited a priori knowledge (Vanwonterghem et al., 2014a). Until now, mainly specific 
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metabolites or regulatory compounds were analysed (De Kok et al., 2013). Development of 
new high-resolution instrumentation enables untargeted approaches.  

The data generated by these broadband technologies opens the way for new approaches no 
longer based on an initial hypothesis that needs to be verified (so-called "Hypothesis driven") 
but guided by the data generated ("Data Driven" approach). It is from the analysis of these 
data generated without a priori that hypotheses should be taken into account and studied. The 
probability of highlighting an operation that would not have been thought of as the hypothesis 
is thus higher and opens the way to the development of disruptive technologies.  

3. Treating big data sets with biostatistics approaches 

The decrease of the cost of sequencing and the advent of omics studies generate an increasing 
amount of massive data obtained from different analytical devices. Specific bioinformatics 
tools are required to convert this raw data into processed data ready to be analysed. Databases 
of sequences or proteins are also required to identify the microorganisms or functions at stake. 
These tools are constantly evolving and improving. I will not present them in this manuscript.  

The data obtained after bioinformatics treatments are usually high dimensional and extracting 
information from them is challenging. Appropriate tools are therefore needed to handle these 
datasets suitably. Classical multivariate ordination methods have been widely used to treat 
fingerprinting, 16S or omics data. They enable to reduce the dimension of the data, and to 
summarize hundreds of initial variables into a few, easier to explore and visualize. They 
highlight the level of similarity or dissimilarity of individuals within a dataset. Among these 
methods we can cite:  

• The principal component analysis (PCA) which is a dimensionality-reduction method. 
It identifies the largest sources of variation in a dataset. It uses orthogonal linear 
transformation of data to form principal components. The first principal component 
explains as much of the variability in the data as possible, and each following principal 
component explains as much of the remaining variability as possible. The results of 
the PCA enable to highlight the covariances which exist between the different 
individuals by a simple observation of the Euclidean distance. 

• Principal coordinates analysis (PCoA, also known as metric multidimensional scaling 
MDS) is a generalization of principal component analysis. It attempts to represent the 
distances between samples in a low-dimensional, Euclidean space. It first calculates a 
distance matrix between the samples and then maximizes the linear correlation 
between the distances in the distance matrix, and the distances in a space of low 
dimension, just as PCA. Any dissimilarity coefficient or distance measure may be 
used to build the distance matrix used as input (ex: Bray-Curtis distance). When the 
distance metric used is Euclidean, PCoA is equivalent to Principal Components 
Analysis. 

• The non-metric multidimensional scaling (NMDS) is a ranking method. It also uses a 
matrix of distances within samples to collapse information from multiple dimensions. 
Contrary to PCA and PCoA, NMDS is an iterative algorithm. NMDS routines often 
begin by random placement of data objects in ordination space. The algorithm then 
begins to refine this placement by an iterative process, attempting to find an ordination 
in which ordinated object distances closely match the order of object dissimilarities in 
the original distance matrix. The stress value reflects how well the ordination 
summarizes the observed distances among the samples. 
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Many other methods such as correspondence analysis (CFA), independent component 
analysis (ACI) can also be used to address multivariate datasets from bioprocesses (Glassey, 
2013). 

However, above described methods are limited in their findings. For example they do not 
permit to account for time or experimental effect, or to treat several types of data at the same 
time. New methods are being developed. Some of them and the possibility they offer will be 
presented in chapter 3.  
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Chapter 1: Targeting specific degradation 
processes with stable isotopes 

One of the biggest challenges that microbial ecologists face is to identify which 
microorganisms are carrying out a specific set of metabolic processes in the natural 
environments; that is, who is doing what and under which conditions. Anaerobic digesters, as 
many other microbial processes, rely on synergistic interactions of a huge variety of 
microorganisms. In this complexity, understanding which functional guilds are involved in the 
degradation processes of specific molecules is not straightforward, and identifying the 
members of these different guilds is even more complex.  

At the end of the 1990s, the best way to address the question of the link between identity and 
function remained culture. Microorganisms of a targeted environment were first isolated and 
cultivated in the laboratory, using growth media that contained a desired substrate. A 
subsequent characterization of the isolated microorganisms was performed at the 
physiological, biochemical and genetic levels. The metabolic properties of these microbial 
isolates could then be used to infer their potential roles in situ in the environment as well as 
the role of related microorganisms. An important limitation of this approach was that most 
prokaryotic species that are present in the natural environment are not cultivable in the 
laboratory using traditional cultivation methods. Indeed it was shown that only 0.1 to 10% of 
the phylogenetic groups that are widely distributed in the environment are cultivable (Amann 
et al., 1995) and this fraction could not be reflective of microbial diversity as some microbial 
families are less culturable than others (Johnson, 1998). 

Advances in molecular techniques provided alternative strategies for microbial ecologists to 
characterize organisms within particular habitats (Ranjard et al., 2000). PCR-based methods 
enable to get information on the microorganisms independently of cultivation. In particular, 
targeting of the 16S ribosomal RNA subunit or the corresponding genes became an 
established and robust mean to describe the phylogenetic diversity of microbial communities 
and extended considerably the knowledge of complex microbial environment such as 
anaerobic digesters. However, the rRNA sequences that revealed a remarkably vast microbial 
diversity generally provided few direct clues regarding the interactions and metabolic 
capabilities of the microorganisms that these sequences represent. Thus, the fundamental 
question remained as pertinent as ever: which functions are attributable to which 
microorganisms in the natural environment? 

Use of stable isotopes enabled a giant step to evaluate the fate of specific compounds and to 
probe functional microorganisms. Several methods using them were specifically developed to 
target specific mechanisms within complex environments. The first part of my research work, 
mainly during my PhD, was dedicated to the application of these methodologies to further 
describe and understand anaerobic digestion, in particular after modifications of operating 
parameters. This chapter presents the state of the art of these methods, as well as the main 
results I obtained.  
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1. Stable isotope labelling to trace functionality 

1.1. Principle and state of the art 

1.1.1. Stable isotopes 

Of the known chemical elements, 54 elements have more than one stable nuclide, or stable 
isotope (not radioactive). The stable isotopes of one element differ by the number of neutrons 
they contain. Elements found in molecules of natural systems consist in a mixture of the 
different isotopes in very reproducible proportions, one of them being generally more 
abundant than the others. Main elements composing organic matter (carbon, hydrogen, 
nitrogen, oxygen, sulfur…) have more than one stable isotope. For example, carbon has two 
stable isotopes: 12C (natural abundance of 98.9%) and 13C (natural abundance of 1.1%). 
Nitrogen has 2 stable isotopes: 14N (natural abundance of 99.6%) and 15N (natural abundance 
of 0.4%). Oxygen has 3 stable isotopes: 16O (natural abundance 99.7%), 17O (natural 
abundance 0.2%) and 18O (natural abundance 0.037%). The property that one of the isotopes 
is predominant is of great interest, as it opens the possibility to use the others as tracers.  

Indeed, numerous molecules can be synthesized and artificially enriched in one rare isotope. 
Stable isotopes do not suffer from legal restrictions and health problems associated with 
radioisotopes. A labelled molecule can thus be placed in the presence of a complex 
community of microorganisms directly in their environment. Its assimilation or degradation 
will result in the gradual enrichment of the microorganisms involved in its metabolism in 
stable isotopes, and the production of degradation by-products themselves enriched.  

Different techniques were developed to trace the fate of the labelled molecules in microbial 
ecosystems. Isotope-ratio mass spectrometry (IRMS) allows the precise measurement of the 
relative abundance of isotopes in molecules of a given sample. It is a powerful analytical 
technique to monitor the degradation of enriched molecules and identify the degradation 
products. Molecular biology methods, grouped under the name of ‘Stable isotope probing’ 
(SIP), aim at identifying active microorganisms by the selective recovery and analysis of 
isotope-enriched cellular components. They are presented in the next section.  

1.1.2. Stable isotope probing 

According to the cellular component targeted, different approaches are used.  

1.1.2.1. Different molecules, different methods 

The SIP-DNA technique has been formalised by Radajewski et al. in 2000. It is based on the 
fact that carbon or nitrogen isotope labelling increases the density of DNA (Meselson and 
Stahl, 1958). Recovering denser DNA can thus give access to the identity of the active 
microorganisms. For that purpose, after isolation, DNA is subjected to caesium chloride 
(CsCl) buoyant density-gradient centrifugation (Radajewski et al., 2002). The solution of 
caesium chloride subjected to a strong centrifugal force has the property of forming 
spontaneously an extremely resolving density gradient. Nucleic acids placed in this gradient 
will be distributed according to their density, which makes it possible to separate the heavy 
nucleic acids from the light. Labelled nucleic acids, from microorganisms involved in the 
degradation of the labelled substrate, can then be sequenced. It is therefore possible to identify 
microorganisms responsible for a particular process in a complex environment.  
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Manefield et al. reasoned that RNA could serve as a more responsive biomarker than DNA 
for use in SIP. Indeed RNA molecules are present in higher copy numbers, show higher 
turnover rates, and are produced independently of cellular replication. (Manefield et al., 
2002). This increased sensitivity enables to reduce the amount of (costly) labelled substrate 
used or the length of the incubation required to obtain a link between metabolic function and 
taxonomic identity. Native RNA having a higher buoyant density than DNA, caesium 
trifluoroacetate (CsTFA) is preferred to create the density gradient.  

Microbial populations responsible for sulphate-reduction coupled to acetate oxidation in 
estuarine sediments were identified by targeting the 13C enrichment of the polar lipid derived 
fatty acids (PLFAs) with an isotope ratio mass spectrometer after growth on 13C labelled 
acetate (Boschker et al., 1998).  

SIP was also applied to proteins (Jehmlich et al., 2008). The authors developed a method to 
analyse the specific metabolic activity of a single bacterial species within a consortium 
making use of [13C]-toluene for metabolic labelling of proteins. Labelled proteins were 
subsequently analysed by 2D gel electrophoresis and mass spectrometry to characterize their 
identity as well as their 13C content as an indicator for function and activity of the host 
organism.  

1.1.2.2. Limits 

Despite these methods are really powerful to target specific processes, they present several 
limits.  

The principal consideration for determining whether SIP will be suitable for investigating a 
specific process is whether the nucleic acids (or other biological molecule) of the target 
organisms will contain a sufficient proportion of labelled atoms to permit the collection of the 
heavy nucleic acid fraction. For example, microbial non-labelled DNA with a G/C content of 
35–70% ranges in density of approximately 1.69–1.73 g.cm-3

 (Radajewski et al., 2003), 
whereas the calculated buoyant density for the same DNA with a 13C content of 100% is 
approximately 1.75–1.79 g.cm-3. The more enriched the DNA is, the more resolved the 
separation will be. 

In this way, long incubation periods (>40 days) have been necessary before labelled DNA 
extracted from soil samples can be correctly observed in a CsCl gradient (Radajewski et al., 
2000). However, any such incubation results in the formation of labelled products and 
intermediates of substrate metabolism, which can then be assimilated by non-target 
microorganisms (cross-feeding) and bias the results. In order to help circumvent these 
weaknesses, careful experimental design with different incubation times can help detect and 
minimize cross-feeding (Radajewski et al., 2000).  

Another risk is that target organisms grow on both labelled and naturally occurring (non-
labelled) substrates, resulting in moderate stable isotope enrichment.  

1.2. Examples of research outputs associated to these 

methodologies 

1.2.1. General objectives and methods 

I mainly applied Stable Isotope Probing methodologies during my PhD. Research questions 
targeted were associated to the methanization of cellulose, used as a model substrate. 
Lignocellulose is indeed a major component of the biosphere (Lynd et al., 2002). An 
important amount of this bioresource is available and it is also the most voluminous type of 
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waste produced by our societies (Bayer et al., 2007). The objective of my work was to better 
describe the microbial communities responsible for cellulose degradation and to assess the 
possibilities to modify these communities with environmental levers. For example 1) I 
evaluated the possibility to add specialized microbial flora in anaerobic digesters 
(bioaugmentation) to improve cellulose degradation (Chapleur et al., 2014) 2) I evaluated the 
influence of temperature changes on the cellulolytic community (Chapleur et al., 2016a), 3) I 
evaluated the possibility to model an initial inoculum into different cellulolytic communities 
through preliminary incubations with simple substrates (Chapleur, 2012).  

In all these experiments, 13C-labelled cellulose was used to probe microorganisms responsible 
for cellulose degradation. Experiments were performed in laboratory batch digesters (50 mL 
of liquid phase). I mainly used DNA-SIP protocol. I successfully applied the RNA-SIP 
protocol on mixed 13C-labelled pure cultures, but the amount of RNA recovered after the 
processing of environmental samples was never sufficient to perform the downstream 
applications. 13C-labeled cellulose degradation and reaction pathways were monitored over 
time through Gas Chromatography–Combustion–Isotope Ratio Mass Spectrometry 
(GC-C-IRMS) of biogas (methane and carbon dioxide) and volatile fatty acids (acetic and 
propionic acids). Analytical framework is summarized in Figure 9. 

In this manuscript I will focus on one example (bioaugmentation experiment (Chapleur et al., 
2014) and illustrate the different contributions of SIP to target 13C cellulose degradation. 

 

Figure 9: Analytical framework employed for experiment targeting the degradation of 13C labelled 
cellulose. Cellulose was introduced in anaerobic digesters. Gas and liquid samples were analysed with GC-C-
IRMS to monitor the fate of the cellulose (degradation products). Functional microorganisms progressively 

enriched in stable isotope (green). After DNA extraction, labelled DNA was isolated with ultracentrifugation on 
density gradient.  
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1.2.2. Bioaugmentation of anaerobic digesters with ruminal content  

1.2.2.1. Objectives of the research 

Cellulose hydrolysis often limits the kinetics and efficiency of anaerobic degradation in 
industrial digesters. In animal digestive systems (in particular ruminants or termites), 
specialized microorganisms enable cellulose biodegradation at significantly higher rates 
despite much lower residence times than in digesters (Weimer et al., 2009). Several studies 
involving ruminal microorganisms in anaerobic digesters have therefore been conducted to 
enhance methane production and the rate of cellulose degradation (Gijzen et al., 1987; Blasig 
et al., 1992; Barnes and Keller, 2003). They theorized that inoculating reactors with ruminal 
content increased cellulose solubilisation rates in the digestion processes of lignocellulosic 
waste. However, macroscopic observations suggest that ruminal microbiota may not easily 
settle in industrial anaerobic digesters and outcompete native solid waste microorganisms 
(O'Sullivan and Burrell, 2007). In this context I performed a study with the objective to assess 
the potential of ruminal microbial communities to settle and to express their cellulolytic 
properties in anaerobic digesters.  

Replicated cellulose-degrading batch incubations were set up and run in parallel. They were 
co-inoculated with municipal digester sludge and ruminal content (Figure 10). Microbial 
synthesized 13C cellulose was added in several digesters. Non-labelled cellulose was used in 
control experiments.  

 

Figure 10: Experimental design of bioaugmentation experiment. 

1.2.2.2. Monitoring of the degradation performances after 

bioaugmentation 

Briefly, we observed that cellulose degradation in co-inoculated incubations was efficient but 
not significantly improved compared to controls inoculated with municipal digester sludge 
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only. The main difference was the start of methane production, which occurred later in bottles 
that had not been co-inoculated (not shown).  

The isotopic composition of VFAs and gas was measured across time with GC-C-IRMS. It 
enabled to estimate the amount of metabolites degraded from cellulose and from other 
substrates (present in the inoculum). Results are illustrated on Figure 11 for VFAs. We 
observed that an important fraction of the VFAs was not 13C-enriched, which suggested that 
they came from ruminal content degradation. However, an important accumulation of 13C 
enriched VFAs was observed from day 7. It confirmed that cellulose was significantly 
degraded in these incubations.  

 

Figure 11: Volatile fatty acids accumulation: (A) total (B) according to the enrichment type. 

Microbial populations were monitored to identify those responsible of cellulose degradation.  

1.2.2.3. Monitoring of the functional microbial dynamics after 

bioaugmentation 

Parallel incubations had been performed with cellulose that was either 13C-labeled or 
unlabelled (control incubation). Total DNA from both sets of incubations was extracted from 
samples recovered at different incubation times and centrifuged in a CsCl gradient in specific 
tubes. After buoyant density gradient ultracentrifugation, content of each tube was divided in 
24 fractions of different densities. DNA concentration/density profiles from 13C-labeled 
experiments were compared over time (Figure 12). Total DNAs extracted from the control 
experiments with unlabelled cellulose were also processed in parallel as negative controls.  

Control DNAs extracted from all incubations performed with unlabelled substrates exhibited a 
density ranging from 1.68 to 1.71 g/mL. In DNA density profiles obtained on Days 2, 7, 16 
and 44, the peak of density profiles shifted to the highest values from Day 2 to Day 44, 
indicating an increase in the proportion of heavy DNA. At Day 44, this peak was significantly 
shifted in labelled experiments when compared with that of the controls. These results 
suggested a progressive assimilation of labelled carbon by the microbial biomass. No clear 
‘heavy peak’ could be distinguished from a ‘light peak’, probably because the density of the 
heavy DNA was not different enough. Moreover, cellulose is at the beginning of multiple 
pathways and its degradation into biogas implies a wide number of microorganisms. DNA 
recovered in our incubation probably originated from microorganisms enriched at different 
levels of 13C resulting in a continuum of density.  
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Following these observations, the various DNA fractions in each sample were pooled, based 
on their density, into three fractions designated as Light, Medium and Heavy, characterized 
by a mean density of 1.69, 1.71 and 1.73 g/mL respectively, as illustrated in Figure 12. Heavy 
and light fractions were supposed to contain DNA of microorganism respectively involved or 
not involved in the cellulose degradation process. Medium was supposed to contain DNA of 
microorganisms weakly enriched in 13C, possibly involved in cellulose degradation but also 
involved in the last steps of the degradation or in cross-feeding.  

 

Figure 12: CsCl density gradient profiles of DNA extracted from 13C-labeled cellulose incubations after 2, 
7, 16 and 44 days. The first graph depicts the CsCl density gradient profile of DNA extracted from a negative 

control with unlabelled cellulose. Total DNA distribution into gradient fractions was quantified fluorometrically. 

To complement this data, and in order to check that DNA had actually been separated 
according to its isotopic enrichment through ultracentrifugation, ARISA was performed on 
the different fractions of DNA recovered after SIP in one sample of an incubation with 13C 
and one sample of the unlabelled control incubation. Figure 13 A and B shows the results 
obtained at Day 16 for archaea and bacteria respectively.  
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On archaeal profiles, bands A and B were recovered in the heavier DNA fractions of the 
labelled sample, whereas they were recovered in the lighter DNA fractions of the unlabelled 
control. It confirmed that a shift in archaeal DNA density due to 13C-labeling was observed in 
this experiment and that labelled DNA could be recovered in specific fractions. The same 
observations were made on bacterial profiles (Figure 13 B). Bands C, D, E and F were 
recovered in the heavier DNA fractions of the labelled sample whereas they were recovered in 
the lighter DNA fractions of the control. It therefore appears that they corresponded to 
microorganisms involved in 13C-cellulose degradation and that ultracentrifugation enabled to 
correctly resolve enriched and not enriched DNA. 

 

Figure 13: Archaeal (A) and bacterial (B) ARISA profiles of the different DNA fractions recovered after 
ultracentrifugation for 13C-labeled cellulose incubation and negative control with unlabeled cellulose after 

16 days. 
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To evaluate the involvement of ruminal microorganisms in cellulose degradation, DNA from 
the heavy fraction was sequenced to target 16S rRNA gene. Analysis was focused on the day 
16. This date was selected because it corresponded to a stage at which approximately 1/3 of 
the final cumulated methane had been produced, enriched VFA were at their maximum level 
(Figure 11), and it was associated with a clear shift in the DNA density profiles (Figure 12) 
and fractioned DNA ARISA profiles (Figure 13 A and B). This sampling point thus seemed to 
represent the best available compromise to clearly identify the microbes involved in the 
processes while at the same time minimizing possible cross-feeding biases. Ruminal content 
and industrial mesophilic digester sludge used as inocula were also sequenced.  

The analysis showed that none of the microorganism of the ruminal content settled in the 
digesters and was involved in cellulose degradation. Co-inoculation did not enable the 
expression of ruminal microbial community during cellulose degradation in an anaerobic 
digester. We hypothesized that the inocula competed for the carrying out of this functional 
process. The industrial microbial community was more flexible than the natural one and 
seemed to exhibit greater resistance to changes in incubation parameters. On the contrary, the 
rumen’s highly specialized species did not adapt and settle in the microcosms. Ruminal 
microbiota was probably consumed by other microorganisms coming from the industrial 
sludge. Our conclusion was that other specific parameters were probably needed for ruminal 
community to settle in the reactor. This study showed that exploiting the rumen’s cellulolytic 
properties in anaerobic digesters is not straightforward. Co-inoculation can only be successful 
if ruminal microorganisms manage to thrive in the anaerobic digester and out-compete native 
microorganisms, which requires specific nutritional and environmental parameters, and a 
meticulous reproduction of the selection pressure encountered in the rumen. SIP was a 
powerful method to really focus on the degradation of a specific substrate and obtain these 
conclusions. In the same way I used these approaches to evidence an asymmetrical response 
of anaerobic digestion microbiome to temperature changes (Chapleur et al., 2016a). 

1.3. Perspectives 

The use of biomarkers in combination with stable isotope analysis was a very new approach 
in microbial ecology when I started my PhD. In 2007 in their paper entitled “Who eats what, 
where and when? Isotope labelling experiments are coming of age”, Neufeld et al. wrote that 
Isotope-labelling experiments would change the way microbial ecologists investigate the 
ecophysiology of microbial populations and cells in the environment. They anticipated a shift 
from discovery-driven science to hypothesis-testing experimentation (Neufeld et al., 2007). 
Since then, a great number of papers applying this technique to a variety of subjects have 
appeared (Ge et al., 2006; Chen et al., 2008b; Pinjing et al., 2009; Ito et al., 2012; 
Kleinsteuber et al., 2012). Stable isotope probing (SIP) techniques have become state-of-the-
art in microbial ecology over the last ten years. 

Dumont and Murrell suggested to go further than only identify active microorganisms and 
also clone 13C-labelled DNA from a DNA-SIP experiment to generate a metagenomic library 
of the microorganisms and get insights in the functions of a particular environmental process 
(Dumont and Murrell, 2005). Development of sequencing and high-throughput omics enabled 
to do so without the tedious process of cloning multiple DNA fragments. SIP has evolved 
going from identification of active microorganisms with 16S sequencing to targeted 
metagenomics of active microbial populations with stable-isotope probing (Chen and Murrell, 
2010; Coyotzi et al., 2016). For example, a recent study combined both approaches to target 
key long-chain fatty acid-degrading populations in anaerobic digesters (Ziels et al., 2018). 
Recent studies detecting labelled mRNA demonstrated that RNA-SIP was not limited to the 
analysis of rRNA, but could enable targeted transcriptomics (Lueders et al., 2016).  
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I’m currently not using SIP in the research projects I coordinate, but I’m associated to the 
VIRAME ANR project (coordination Dr Ariane Bize, Irstea) which evaluates the possibility to 
use SIP approaches to indirectly label viruses.  

2. Associated methodologies for isotope incorporation visualisation and 

quantification 

Methods described in the previous section enable to identify microorganisms involved in a 
degradation process. However, they do not link identity to a specific biochemical process and 
do not enable to measure levels of isotope enrichment. Different methods coupling isotope-
labelling experiments and in situ hybridization have been developed to investigate the 
ecophysiology of microbial populations. They reveal the specific uptake of isotopically 
labelled substrates within individual cells and the phylogenetic affiliation of the very same 
cells.  

Among them, MarFISH (Lee et al., 1999) combines fluorescence in situ hybridization and 
microautoradiography (mar) but is limited to radioactive isotopes. Raman FISH (Huang et al., 
2007) allows the detection of isotopes incorporated into cells using Raman microscopy but 
has a lateral resolution of about 1 µm and requires that the minimum amount of label within a 
cell is 10% to detect a spectral shift. Development of secondary ion mass spectrometry 
(SIMS) made possible to measure precisely the isotopic composition of microbes after 
isotopic enrichment (Orphan et al., 2001). In particular, nanoSIMS instrument, with an 
important resolution (down to 50 nm) and a great sensitivity (less than 0.1% of difference in 
the labelling can be detected) enables to measure the incorporation of stable isotopes in 
individual cells.  

When I arrived at Irstea, a very innovative method, based on the combined use of stable 
isotopes labelling, FISH and nanoSIMS had just been developed (Li et al., 2008). It has been 
called SIMSISH (Simultaneous analysis of microbial identity and function using NanoSIMS). 
I had the opportunity to carry out a technical validation of the accuracy of this method 
(Chapleur et al., 2013). I also applied this technique to measure the isotopic enrichment of 
cells involved in methanol degradation. The method and the results obtained are presented in 
the next sections.  

2.1. NanoSIMS and SIMSISH technique 

NanoSIMS is a nanoscopic scale resolution chemical imaging mass spectrometer based on 
secondary ion mass spectrometry. Briefly, an ion beam is emitted inside the instrument. It 
collides with the surface of the sample. The collision that occurs causes atoms to sputter from 
the sample surface. They become secondary ions, which are then detected after transfer 
through a mass spectrometer (see Figure 14). Resolution of the instrument allows precise 
isotopic and elemental measurements of the surface of various types of samples (geological, 
biological, etc.). Analysis can be realized in two dimensions to map the surface of the 
samples.  
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Figure 14: Illustration of the principle of nanoSIMS from (Wagner, 2009). Primary ion beam sputters the 
sample. Secondary ions are emitted and will be detected in the mass spectrometer.  

The concept of SIMSISH (Li et al., 2008) relies on performing FISH experiments on samples 
containing microorganisms enriched in a stable isotope (typically samples from a SIP 
experiment). In the probes used for FISH, the fluorescent dyes are replaced by molecules 
containing elements rarely present in biomass, like halogens. Analysis in the nanoSIMS of 
samples hybridized this way allows on the one hand the detection of probes distribution in the 
samples (halogens signal) and on the other hand the mapping of the isotopic composition on 
the sample (for example 12C and 13C signal). Using a single instrument, it is thus possible to 
simultaneously detect the hybridization of the oligonucleotide probe revealing the 
phylogenetic identity of the targeted microbe and monitor in situ, at the single-cell level, its 
isotopic enrichment in various elements of biological interest. Concept of the method is 
illustrated in Figure 15.  

Measures of isotopic composition of microorganisms can be used in combination with 
degradation models to get information on the role of the different microorganisms in the 
degradation chain (see Figure 16). Briefly, the idea is that, according to their function in the 
digestion process, the microorganisms feeding on labelled substrates or on the degradation 
products of the labelled substrates will increase their isotopic composition in the atom of 
interest. By comparing on the one hand the modelled theoretical isotopic composition of 
microorganisms performing the different functions across time, and on the other hand the 
measures of the actual isotopic composition of the microorganisms suspected to carry out 
these functions, it is possible to confirm or deny their role.  
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Figure 15: Schematic representation of the SIMSISH methodology. After stable isotope labelling, samples 
are spread on silicon wafers and hybridized with halogenated probes targeting specific microorganisms. Samples 

are analysed in a nanoSIMS instrument. A caesium ion beam extracts secondary ions from the surface of the 
samples. Analysis of the ions in a mass spectrometer enables to map the stable isotope enrichment and the 
halogens distribution. By comparing the different images, identified microorganisms can be associated to a 

specific isotope enrichment that can be used to determine the function of the microorganisms.  

 

Figure 16: How to link function and identity with SIMSISH? Degradation of a labelled molecule (A) can be 
modelled to estimate the theoretical isotopic enrichment of its degradation products (B, C, D, E) and the isotopic 
composition of the microorganisms that would be involved in the different steps of the process (microorganisms 
1, 2, 3). Actual isotopic composition of the microorganisms identified in the samples (microorganisms A, B, C) 
can be measured with SIMSISH. The measured isotopic composition can be compared to the predictions of the 

model to hypothesize the role of the microorganisms.  
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2.2. Evaluation of the influence of the experimental procedure of 

SIMSISH on enrichment measures with nanoSIMS 

Treatment and preparation of samples prior to nanoSIMS analysis with SIMSISH are factors 
that can modify the initial composition of the microbial cells. Indeed, hybridization is 
performed on PFA-fixed and ethanol-permeabilized cells. Halogenated probes used have a 
natural isotopic carbon composition. Even if only a limited number of probes and exogenous 
atoms are introduced (and endogenous atoms removed) into cells during the fixation and 
hybridization procedures, the samples might be modified resulting in differences between the 
original isotopic content and the apparent isotopic composition of cells measured by 
nanoSIMS. 

To evaluate the influence of these procedures, I realized an experiment where the isotopic 
enrichment of E. coli cells was measured before treatment, after fixation, and after 
hybridization. Single cell level analyses, realized with nanoSIMS at Institut Curie, were 
compared to reference analyses, at population level on cells pellets, and realized with 
elemental analyser-isotopic ratio mass spectrometer (EA-IRMS). Analyses were performed on 
a set of E. coli cells isotopically labelled at different levels of 13C enrichment (1.10%, 2.08%, 
3.06%, 6.00%, 10.89%, 20.68%, 40.26%, 59.84%, 79.42% and 99.00% of 13C for EA-IRMS 
and 10.9, 20.7, 40.3 and 79.4 % of 13C for nanoSIMS). 

Results of the different measures are presented on Figure 17. EA-IRMS and nanoSIMS 
measurements showed independently that the fixation and hybridization procedures used in 
SIMSISH technique had little influence on the carbon isotopic composition of E. coli treated-
cells. This indicated that only a very small amount of exogenous carbon was introduced in 
cells during SIMSISH procedure (a theoretical calculation suggested that the amount of 
carbon introduced with probes during SIMSISH procedure was less than 0.22% of the total 
amount of carbon in E.coli cells).  

 

Figure 17: Isotopic composition of untreated, fixed and fixed hybridized cells measured with EA-IRMS 
and nanoSIMS. (a) 13C isotopic composition of fixed, and fixed/hybridized E.coli cells measured with EA-

IRMS compared to 13C isotopic composition of untreated cells – (b) 13C isotopic composition of fixed/hybridized 
E.coli cells measured with nanoSIMS compared to 13C isotopic composition of untreated cells. 

Additionally, untreated and fixed/hybridized cells were analysed in mixture with nanoSIMS 
for the enrichment values of 10.9, 20.7, 40.3 and 79.4 % of 13C. A set of images showing 
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sulfur and iodine emission as well as corresponding 13C abundance map is presented in Figure 
18. Sulfur is an indication of the total biomass. Iodine signal enables an identification of 
hybridized cells from the non-hybridized (untreated) ones.  

 

Figure 18: NanoSIMS images obtained for mixed untreated and fixed/hybridized cells grown in enriched 
culture media with nominal 13C abundance of 10.9, 20.7, 40.3 and 79.4%. Panel (a) shows the secondary ion 
of 32S- image as an image of total biomass (scale bar : 5 µm). Panel (b) shows the secondary ion of 127I- image as 

an indication of hybridized cells. (c) 13C Isotopic abundance map of corresponding area. 

We observed that nanoSIMS provided an efficient discrimination between lateral neighbour 
cells. It revealed that incorporation of labelled carbon was homogeneous in all the cells of the 
same type, and within the cells. Iodine signal enabled to clearly identify the labelled cells. We 
concluded that isotopic composition of single cells could be determined precisely with 
SIMSISH. 

We also observed that multiple labelling was possible to perform several isotopic 
measurements and identification at the same time or to study specific syntrophic interactions 
(Figure 22). Combined with stable isotope probing, SIMSISH constitute an elegant tool to 
decipher networks of biogeochemical processes catalysed by uncultured microorganisms 
within complex environments.  
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2.3. Combination of SIMSISH with modelling to assess the function 

of microorganisms 

To illustrate the potential of SIMSISH, an experiment was set up to identify the 
microorganisms responsible of the different pathways activated during mesophilic anaerobic 
degradation of methanol. Methanol is a small molecule, but under anaerobic conditions, it has 
a complex web of possible degradation routes, summarized in Figure 19.  

 

Figure 19: Summary of the degradation pathways possible for the anaerobic digestion of methanol, and 
main microorganisms involved. 

Anaerobic batch digesters were set-up and fed with 13C-labeled methanol (PhD of Tianlun 
Li). Concentration and isotopic enrichment of degradation intermediates and products were 
analysed. Based on the values measured, it was demonstrated that only a part of the 
degradation routes shown in Figure 19 were active. They are illustrated on Figure 20. Based 
on this diagram, a mathematical model describing the functioning of the ecosystem was 
developed (by Pr Vassily Vavilin during a scientific stay in the lab). It was fitted on 
macroscopic data (gas, VFA, methanol, dissolved inorganic carbon). Mass balanced equations 
were computed both for 12C and 13C. Equations describing the temporal isotopic enrichment 
pattern of microbial functional groups were designed based on hypothesis made on their in 
situ ecophysiology. 
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Figure 20: Degradation pathways activated during the mesophilic anaerobic digestion of methanol.  

A SIP strategy allowed to identify the functional microorganisms. Specific FISH probes 
labelled with halogens were designed to target these microorganisms. For example, archaea of 
Methanosarcina genus can use the hydrogenotrophic or acetoclastic pathways to produce 
methane (reactions 6 and 8 on Figure 20). Their isotopic enrichment across time according to 
the type of metabolism was modelled by V. Vavilin and is presented on Figure 21. 

 

Figure 21: Modelled 13C enrichment of acetoclastic and hydrogenotrophic archaea across time in the 
conditions of the anaerobic digester degrading 13C-methanol.  

I prepared samples with the SIMSISH technique to target Methanosarcina cells with a 
brominated probe and bacteria in general with an iodinated probe. Samples were analysed 
with nanoSIMS at Institut Curie. Images of one sample taken after 25 days are presented on 
Figure 22. Sulfur image showed a big round form surrounded by smaller forms with a typical 
shape of cell. We hypothesized that the round form was a cluster of archaea that was 
surrounded by bacteria. Indeed, clear bromine and iodine signals, corresponding to probes 
hybridization, were observed and enabled the identification of both Methanosarcina archaea 
and bacterial cells at the same time. NanoSIMS also enabled to measure the isotopic 
enrichment of the archaeal cluster and of the nearby bacterial cells. The mean 13C enrichment 
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of archaeal cluster was 30.0% (standard error = 1.3%), and the mean enrichment of bacteria 
was 24.4% (standard error = 2.5%), showing that both types of microorganisms were involved 
in methanol degradation at different levels. 

 

Figure 22: NanoSIMS images of a sample taken at day 25 from an anaerobic digester fed with 13C-labeled 
methanol labelled with a generalist bacterial iodinated probe (EUBI) and a Methanosarcina genus specific 

brominated probe (MS1414). Panel (a) shows the secondary ion of 32S- image as an image of total biomass. 
Panel (b) shows the secondary ion of 81Br- image as an indication of Methanosarcina cells identity. Panel (c) 

shows the secondary ion of 127I- image as an indication of total bacteria. Panel (d) shows the 13C Isotopic 
abundance map. 

Another measure performed later, at day 42, but this time with only an iodinated probe for 
archaea, resulted in the images presented on Figure 23. Another cluster of archaea was 
evidenced with the iodine signal. This time the isotopic enrichment of the cells of the cluster 
was 39.7%. Modelling predictions were compared to isotopic enrichment measured at the 
single cell level (Figure 21). It showed that, in the conditions of this experiment, archaea of 
Methanosarcina genus behaved as acetoclasts.  
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Figure 23: NanoSIMS images of a sample taken at day 42 from an anaerobic digester fed with 13C-labeled 
methanol labelled with an archaeal iodinated probe. Panel (a) shows the secondary ion of 32S- image as an 
image of total biomass. Panel (b) shows the secondary ion of 127I- of archaeal cells. Panel (c) shows the 13C 

Isotopic abundance map. 

Similarly, we questioned the identity of microorganisms responsible for methanol oxidation 
(reaction 4, Figure 20). Based on the sequences of microorganisms identified with SIP, 
several FISH probes were designed. One of them, GAM489, targeted bacteria from the class 
Gammaproteobacteria. NanoSIMS analysis showed that these cells exhibited an enrichment 
similar to the one modelled for autotrophic methanol oxidizers (not shown here), suggesting 
that they were involved in this reaction. SIMSISH procedure therefore provided meaningful 
indication to understand the in situ functional behaviour of uncultured microbes. 

3. Conclusion 

Methods making use of stable isotope showed up to be very performant to target specific and 
complex questions, provided that they were used meticulously. According to me, their main 
limitation is that they are very tedious and costly, especially if the labelled molecule used 
must be synthesized specifically. They require that the question targeted is very specific and 
that the experimental set-up is properly designed.  

For example, nanoSIMS instrument is powerful to measure the isotopic enrichment of single 
cell. However, this technique requires a lot of time of observation. Spotting specific 
microorganisms, even if labelled, in an area of one square millimetre is very complex. To 
realise accurate measurement it is important that cells are either deposited in single or 
homogenous layers. Analysis requires a long implantation of the ion beam to observe a 
surface important enough. Sometimes successive analyses at different resolution or with 
different parameters are required to obtain image showing both halogens signal and an 
accurate measure of the isotopic enrichment. Instruments are very costly, no automatization is 
possible. Coupling this approach with modelling is complex. A single carbon organic 
molecule such as methanol is already at the origin of multiple reactions, carried out by 
multiple microorganisms. With this in mind, nanoSIMS enabled to evidence various microbial 
interactions that had never been proven before, or to understand the fate of substrate in the 
microbial community and to visualise food network in microbial spatial organisation (Jiang et 
al., 2016; Musat et al., 2016; Nuñez et al., 2018; Tao et al., 2019).  
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Finally, I think that stable isotope probing, used in combination with high-throughput 
untargeted methods, will probably enable to gain more complex information. They have 
already been combined with metagenomics, as said before (Ziels et al., 2018). Use of 
untargeted metabolomics to analyse sample from SIP experiments would open new 
perspectives to decipher the pathways of degradation of a specific compound in a complex 
environment.  
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Chapter 2: Screening of numerous 

experimental conditions with molecular 

tools to study the inhibition of anaerobic 

digestion 

After spending several years analysing in detail particular situations using SIP methods, I 
decided to explore other approaches. I took advantage of the possibility to analyse multiple 
samples in parallel with fingerprinting or metabarcoding (provided by the reduction of 
analytical costs) to set-up experiments testing simultaneously multiple conditions. My new 
research questions did not aim at deciphering one specific mechanism anymore, but aimed at 
comparing the dynamics of the microbial community as a whole under various conditions. 
The objective was to get insight into the drivers or the bottlenecks of the process under 
various conditions (1) to better understand how these conditions impact AD process and (2) to 
propose management strategies to optimize the functioning of AD. I chose to explore the topic 
of the inhibition of anaerobic digestion with this approach. Indeed, anaerobic digestion 
process still remains vulnerable to a wide variety of inhibitory substances that induce poor 
operational stability, preventing AD wide commercialization (see General Introduction, 1.4.4 
page 43).  

In a first series of experiments, I evaluated the effect of different levels of inhibitors on AD 
performance and microbial dynamics. In a second series of experiments, I assessed the 
potential of different operational strategies to mitigate the inhibition of AD. Testing multiple 
experimental conditions required using appropriate methods to compare the effects, organise 
the generated data and extract the relevant information. The results presented in this chapter 
were produced by me or during the PhD of Simon Poirier and Laëtitia Cardona that I 
supervised, or during a joint work with Céline Madigou (assistant engineer) who wished to 
develop new skills to become a study engineer (position obtained in 2017).  

1. Effect of different inhibitors of the anaerobic digestion 

Exploring the literature related to AD inhibition, I observed that most of the time, the studies 
assessed the effect of an inhibitor by testing only one or a few levels of inhibitor (for example, 
low and high concentration). I also observed that, from one study to the other, adding the 
same concentration of an inhibitor often resulted in different effects, both on the degradation 
performances and on the microbial community, because of the specificity of the experimental 
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set-up (type of inoculum, feeding, reactor etc.). It limited the possibilities to assess globally 
the effect of one inhibitor on AD microbiome.  

To overpass this limitation, I decided to assess within the same experiment the effect of a 
wide range of concentration of an inhibitor. Levels of inhibition were selected to obtain an 
amplitude of inhibition going from no inhibition to total inhibition of the process (i.e. no 
methane production at extremely high level of inhibitor). The objective was to describe the 
impact of the different levels of inhibitor on microbial communities’ dynamics and to identify 
the key phylotypes involved into the resistance to the inhibitor. Using different levels of the 
same inhibitor enabled to evidence different ‘thresholds’ of inhibition.  

Three published papers are related to this research topic. 

• Increasing concentrations of phenol progressively affect anaerobic digestion of 
cellulose and associated microbial communities (Chapleur et al., 2016b) 

• Anaerobic digestion of biowaste under extreme ammonia concentration: identification 
of key microbial phylotypes (Poirier et al., 2016b) 

• Community shifts within anaerobic digestion microbiota facing phenol inhibition: 
Towards early warning microbial indicators? (Poirier et al., 2016a) 

The influence of two inhibitors (ammonia or phenol) on the anaerobic degradation of two 
types of substrate (cellulose or biowaste) was tested in batch reactors. The following 
paragraphs present the reasons for selecting these inhibitors, the effect of the inhibitors on the 
degradation performances and on the microbial communities based on a selection of the 
results I obtained.  

1.1. State of the art related to the studied inhibitors  

Ammonia and phenol were selected from a wide variety of potential inhibitors. They are often 
present in waste or can be produced during its degradation. They are therefore frequently 
encountered in industrial digesters. As described in the next paragraphs, even if they have 
already been studied, there is still no consensus on the levels of concentrations which are 
inhibitory and no consensus on their effects on the microbial communities. These inhibitors 
were complementary. They are of different nature (inorganic and organic molecules). Phenol 
can be degraded during the process while ammonia cannot. Both could be easily manipulated 
and quantified in our lab.  

1.1.1. Ammonia 

Ammonia is regularly mentioned as the primary cause of digester failure (Yenigün and 
Demirel, 2013), even though it is an essential nutrient for the growth of microorganisms at 
low level. Many traditional AD substrates such as livestock manure, slaughterhouse by-
products and food industrial residues contain a high nitrogen concentration. It is due to the 
presence of organic nitrogen such as urea and proteins which readily release ammonia upon 
digesters during their anaerobic degradation (Rajagopal et al., 2013). 

In liquid media, ammonia can be found into two distinctive forms: the unionized free 
ammonia nitrogen (FAN or NH3) and the ammonium ion (NH4

+). Total ammonia nitrogen, 
abbreviated as TAN, is a combination of unionized free ammonia and ammonium ion. The 
chemical equilibrium between FAN and TAN concentrations mainly depends on pH and 
temperature (Anthonisen et al., 1976). FAN is considered more toxic to anaerobes than TAN. 
The most widely accepted mechanism explaining FAN inhibition is based on change of 
intracellular pH due to its passive diffusion through cell walls, increasing the maintenance 
energy requirement and inhibiting specific enzyme reactions (Wittmann et al., 1995). TAN 
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has been reported to induce 50% reduction in CH4 production at a wide range concentrations 
varying from 1.7 g/L to 14.0 g/L (Chen et al., 2008a). According to Sung and Liu (2003), total 
inhibition occurs in the range of 8.0-13.0 g/L of TAN depending on pH and inoculum. 
Similarly, toxic effect of FAN was observed from 150 mg/L to 1200 mg/L (Rajagopal et al., 
2013; Yenigün and Demirel, 2013). The wide range of inhibiting FAN or TAN concentrations 
can be ascribed to the differences in nature of substrates, environmental conditions (pH, 
temperature, hydraulic retention time) and acclimation of inoculum (Van Velsen, 1979). 

The inhibitory effect of ammonia is known to mainly influence the methanogenesis (Calli et 
al., 2005b). However there is no consensus on its exact role. For example, under ammonia 
stress, acetoclastic methanogens are usually considered to be more vulnerable than the 
hydrogenotrophic ones (Koster and Lettinga, 1984; Angelidaki and Ahring, 1993). Thanks to 
stable isotope-based analytical techniques, a metabolic shift in methanogenesis from the 
acetoclastic mechanism to the syntrophic pathway (in which hydrogenotrophic methanogens 
are involved) was pointed out when ammonia concentration is increased (Schnürer and 
Nordberg, 2008). Other studies also showed that increasing concentrations of ammonia 
induced a growth of Syntrophic Acetate Oxidation (SAO) Bacteria and hydrogenotrophic 
methanogens (Karakashev et al., 2006; Westerholm et al., 2012). However, in these latter 
studies, acetoclastic methanogens were still detected. Conflicting results tended to 
demonstrate that acetoclastic methanogenesis was predominant under ammonia stress (Calli et 
al., 2005a; Fotidis et al., 2014). Furthermore, Hao et al., (2015) indicated that besides the 
SAO pathway, acetoclastic methanogenesis catalyzed by Methanosarcina spp was still active 
at high ammonia levels.  

1.1.2. Phenol 

Phenols can be produced from the biodegradation of naturally occurring aromatic polymers 
such as humic acids and tannins or from degradation of xenobiotic compounds such as 
pesticides (Fang et al., 2006). Different pre-treatments applied to increase biogas production 
efficiency from lignocellulosic materials are also known to result in the production of 
phenolic compounds (Monlau et al., 2014). They are regularly detected at concentrations 
reaching up to several grams per litre in different types of effluents from petrochemical or 
paper industry (Veeresh et al., 2005; Rosenkranz et al., 2013) or in contaminated sewage 
sludge or municipal solid waste (Hoyos-Hernandez et al., 2014). Phenol concentrations up to 
4288 mg/kg were measured in digestion sludge of anaerobic digesters degrading different 
types of organic waste such as pig manure, biowaste and plant materials (Levén et al., 2012). 
Although phenol can be biodegraded to harmless compounds under methanogenic conditions, 
high concentrations are toxic to different groups of microorganisms involved in methane 
production (Olguin-Lora et al., 2003; Rosenkranz et al., 2013). Their detrimental effects on 
anaerobic micro-organisms have been observed in anaerobic systems treating municipal solid 
waste, olive mill wastes and wine distillery wastewater (Busca et al., 2008). Phenol is indeed 
a membrane-damaging microbiocide that affect membrane proteins and alter the cell wall 
permeability, inducing progressive leakage of intracellular constituents (McDonnell and 
Russell, 1999). In particular, it was observed that unexpected phenol shock loadings within 
not acclimated anaerobic digesters can induce major disruptions in AD bioprocess, leading to 
the decrease of biogas production rate and longer treatment durations (Veeresh et al., 2005). 
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1.2. Effect of phenol and ammonia on the degradation 

performances 

1.2.1. Screening of multiple inhibitory levels: experimental design 

To test the influence of different levels of inhibition, a similar experimental design was used 
in (Chapleur et al., 2016b; Poirier et al., 2016a; Poirier et al., 2016b), as illustrated in Figure 
24. In these three experiments, batch anaerobic digesters of 1L were set-up, inoculated with a 
sludge coming from an anaerobic digester, fed with either biowaste or cellulose (chosen as 
two representative substrates for AD) in biochemical methane potential buffer (BMP). 
Ammonia or phenol was added in order to reach 10 different concentrations. The different 
concentrations were chosen based on the literature to go from non-inhibited reactors to totally 
inhibited reactors. All incubations were performed in triplicates. Time zero samples were 
collected before starting incubation of the reactors and one sample was taken every week until 
biogas production was completed. Degradation performances were monitored (biogas 
production and composition, VFA, total organic carbon).  

 

Figure 24: Typical experimental design used in my experiments to assess the influence of one inhibitor on 
AD. 

1.2.2. Effect of the inhibitors on the degradation performances 

The average cumulated methane production of the different triplicate reactors of the different 
experiments are presented in Figure 25A, Figure 26A and Figure 27A. In all the experiments, 
as inhibitor concentration increased, rates and levels of total methane production decreased 
progressively. For both experiments with phenol (Figure 25A and Figure 26A), independently 
of the type of substrate (cellulose or biowaste) phenol concentrations under 1.00 g/L resulted 
in a moderate inhibition of methane production. Methanogenesis occurred up to 2.00 g/L of 
initial phenol concentration, despite importantly inhibited. At higher phenol concentration, no 
CH4 was produced. For the experiment with ammonia, a moderate effect was observed under 
10.0 g/L of TAN, corresponding in this experiment to 242 mg/L of FAN. Digesters were only 
importantly inhibited at concentrations higher than 25.0 g/L of TAN (387 mg/L of FAN).  

The experimental design used gave us access to a progressive gradient of effects. No sharp 
inhibitory threshold was observed. 
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In general, in all the experiments, methane production was more affected than carbon dioxide 
production (not illustrated in this document), presumably because archaeal activity was more 
sensitive to inhibition than bacterial activity. 

We noted that ammonia levels remained stable all along the experiment in (Poirier et al., 
2016b). On the contrary, the biogas data revealed that total biogas production in all the 
bioreactors containing less than 1.25 g/L of phenol exceeded that in the control, suggesting 
that phenol degradation to biogas occurred as already observed by (Fedorak and Hrudey, 
1984; Wang et al., 1991). It was confirmed by measuring the concentration of phenol in the 
reactors across time (see figures 3 and 2 in the full texts of (Chapleur et al., 2016b; Poirier et 
al., 2016a)). Phenol was converted to biogas once the degradation of the main substrate was 
completed, suggesting that its degradation was less favourable or required the growth of 
specific microorganisms.  

In all these experiments, performance of degradation was also assessed by monitoring the 
VFA accumulation dynamics. These data are not illustrated in this manuscript, but, in general, 
we observed that as the level of inhibitors increases, VFA consumption was progressively 
delayed, resulting in a bigger accumulation.  

 

Figure 25: (A) Cumulated CH4 production (mg of C) over time (number of days) and (B) specific 
methanogenic activity for the different initial concentrations of phenol in reactors degrading cellulose 

(Chapleur et al., 2016b). Mean values of triplicate bioreactors are presented and error bars represent standard 
deviation within triplicates. All experimental specific methanogenic activities (SMA) values are shown for each 

triplicate. Calculated fitting of experimental values to the Hill model is shown as well as IC50. 
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Figure 26: (A) Cumulated CH4 production (mL) over time (number of days) and (B) specific 

methanogenic activity for the different initial concentrations of phenol in reactors degrading biowaste 
(Poirier et al., 2016a). Mean values of triplicate bioreactors are presented and error bars represent standard 

deviation within triplicates. All experimental specific methanogenic activities (SMA) values are shown for each 
triplicate. Calculated fitting of experimental values to the Hill model is shown as well as IC50. 

 
Figure 27: (A) Cumulated CH4 production (mL) over time (number of days) and (B) specific 

methanogenic activity for the different initial concentrations of ammonia in reactors degrading biowaste 
(Poirier et al., 2016b). Mean values of triplicate bioreactors are presented and error bars represent standard 

deviation within triplicates. All experimental specific methanogenic activities (SMA) values are shown for each 
triplicate. Calculated fitting of experimental values to the Hill model is shown as well as IC50. 
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1.2.3. Modelling of the gas production and comparison of the half 

maximal inhibitory concentrations 

To facilitate the comparison of the different conditions tested, cumulative production curves 
were analytically compared by fitting experimental data with a modified Gompertz three-
parameter model (Equation 1) where M(t) is the cumulative methane production (mL) at time 
t (days); P is the ultimate methane yield (mL); Rm is the maximum methane production rate 
(mL/days); λ is the lag phase (days); e is the exponential constant. 

�(�) = �	 × 	
� �−	
� ���×	� 	× (� − �) + ���  

Equation 1: Gompertz three-parameter model 

It provided three quantitative indicators to compare accurately the different parameters of gas 
production, as illustrated Figure 28. This method is commonly used to analyse gas production 
data (Ware and Power, 2017). Logistic regression can also be used for the same purpose 
(Ware and Power, 2017).  

For example, it confirmed that in both experiments with phenol, the inhibitory effect of the 
inhibitor on ultimate biogas production was very limited up to initial concentrations of 1.00 
g/L. However, at these concentrations, maximum production rate values (Rmax) gradually 
decreased along with increasing phenol levels. In parallel lag times (λ) increased. The 
detrimental effect of phenol, at these concentrations, was therefore a slowdown in the 
degradation.  

 

Figure 28: Gompertz equation enables to summarize gas production curves with 3 parameters. 

In order to compare the inhibitory effect of ammonia or phenol in our studies with other 
studies, AD inhibition was more precisely quantified by calculating a half maximal inhibitory 
concentration value (IC50). IC50 is a quantitative measure that indicates how much of a 
particular inhibitory substance is needed to inhibit a given biological process by 50%. 
Specific methanogenic activity (slope of the methane production curve during maximum 
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production, Rm parameter of Gompertz model) was selected as an indicator of AD efficiency. 
IC50 was determined from the correlation plot between Rm and the level of inhibitor. The 
experimental values were fitted to the Hill model by non-linear regression using Marquard’s 
algorithm and a non-linear regression program (Fechner et al., 2010). The concentration of 
inhibitor required for a 50% reduction of the methane production rate was estimated (Figure 
25B, Figure 26B and Figure 27B).  

In experiments using phenol as an inhibitor, IC50 of respectively 1.40 g/L phenol (Chapleur et 
al., 2016b) and 1.25 g/L of phenol (Poirier et al., 2016a) were determined (see Figure 25B and 
Figure 26B). They were in keeping with values reported by other authors for different 
substrates: (Wang et al., 1991) observed an IC50 of 1.25 g/L during experiments on acetate 
degradation, (Sierra-Alvarez and Lettinga, 1991) determined that acetoclastic methanogenesis 
in granular sludge was half-inhibited at 1.10 g/L of phenol etc. Various inhibiting phenol 
concentrations can be attributed to the differences in nature of substrates, environmental 
conditions (pH, temperature) and acclimation of inoculum. Interestingly, we noticed 
important standard deviations for the methane production of bioreactor inhibited with 1.50 
g/L of phenol in (Chapleur et al., 2016b) while all the other triplicates behaved very similarly. 
As this value was close to the IC50, microbiome may have evolved stochastically toward 
strong inhibition or moderate inhibition.  

IC50 for experiment with ammonia was 19.0 g/L of TAN. Considering inhibiting TAN 
concentrations reported in literature, it was surprisingly high (Chen et al., 2008a). For 
example, similar batch toxicity assays showed a 50% decrease in SMA at TAN range of 8.0 - 
13.0 g/L with acclimated biomass (Sung and Liu, 2003). However FAN corresponding to this 
IC50 in our experiment was calculated and was circa only 333 mg/L, due to the high buffering 
capacity of BMP solution. It was comparable to the values of the literature (Rajagopal et al., 
2013). This observation confirmed previous results which demonstrated that FAN is more 
toxic to methanogenesis than TAN (Kayhanian, 1994).  

1.3. Effect of phenol and ammonia on the microbial dynamics 

1.3.1. Thresholds of inhibition determined with fingerprinting 

ARISA was initially selected to study the dynamics of microbial communities because it 
made it possible to process a large number of samples efficiently in order to obtain a well-
replicated dataset. This large dataset was appropriate to correctly identify ecological patterns 
and correlate environmental variables with microbial community structure (Prosser, 2010). 

For (Chapleur et al., 2016b) (cellulose digestion inhibited by phenol), 324 samples were 
processed for both archaea and bacteria. They correspond to 12 different sampling dates for 
all triplicates of bioreactors (between Days 0 and 69). As it was impossible to compare all of 
them visually, they were compared statistically with a PCA (Figure 29).  

For both archaea and bacteria, it was observed that up to 0.10 g/L, the effect of phenol on 
microbial diversity in general was not significant, in accordance with performance data 
(diversity profiles were similar to diversity profiles of non-inhibited digesters). The dispersion 
of profiles at each level of phenol was mainly correlated to the date of sampling (not shown). 
At higher concentrations (0.50 to 1.00 g/L), profile distribution shifted for both archaea and 
bacteria. Phenol induced structural modifications in the community’s composition. Several 
microorganisms were inhibited by phenol and were replaced by more tolerant ones. However, 
at 0.50 g/L, no decrease of the degradation performances had been observed, indicating that, 
at this concentration, performance stability was linked to a structural modification of 
microbial communities, revealing a process of adaptation to the inhibitor. The possibility to 
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acclimate the microbiome of AD to the presence of phenol was subsequently tested, see 2.3 
and (Madigou et al., 2016). At still higher concentrations, the same communities remained 
dominant but performances decreased, meaning that microorganisms were progressively 
inhibited, especially archaea (from 1.00 g/L upwards). Digesters reached their limits of 
adaptability to the inhibitor and progressively lost efficiency. Beyond 1.50 g/L, rather similar 
profiles were observed for bacteria for all the concentrations. They were close to the profile of 
the inoculum, suggesting that even if bacteria remained active, none of them gained a 
significant advantage over the others compared to the initial inoculum (as the community did 
not change drastically, based on ARISA data). For archaea, we observed that profiles of 
reactors with 2.00 and 4.00 g/L of phenol were very different from profiles of lower 
concentrations. It was linked to the strong archaeal activity decrease observed with methane 
production.  

 

Figure 29: Principal Component Analysis (PCA) of archaeal (A) and bacterial (B) microbial diversity 
profiles generated by ARISA in (Chapleur et al., 2016b). The colour scale represents the initial phenol 
concentration in the bioreactors. For archaea, the first and second axes of the PCA provided the clearest 

separation of ARISA profiles, with resp. 36.9% and 21.5% of the total variance, while for bacteria, the first and 
third axes provided the clearest separation of ARISA profiles, with resp. 40.8% and 13.0% of the total variance. 

Same approach was applied to the other studies (not illustrated in this document). Briefly, 
ARISA analysis in (Poirier et al., 2016a) (biowaste digestion inhibited by phenol) indicated 
that phenol induced microbial reorganizations from 0.50 g/L for archaea (gradual influence of 
phenol up to 2.00 g/L), and from 0.75 g/L for bacteria whereas AD final performances were 
not impaired up to 1.00 g/L of phenol. Above 1.25 g/L, all bacterial ARISA profiles were 
rather similar. These results were in compliance with (Chapleur et al., 2016b) despite the 
differences between the experiences (inoculum, substrate).  

In (Poirier et al., 2016b) (biowaste digestion inhibited by ammonia), ARISA evidenced that 
from 0.0 g/L to 10.0 g/L of TAN, both archaeal and bacterial populations were progressively 
affected by ammonia. It seems that they were able to rapidly and gradually modify their 
composition to resist to increasing levels of TAN. 10.0 g/L appeared as a threshold beyond 
which bacterial communities were strongly modified (25.0 and 50.0 g/L of TAN) and archaea 
could not adapt. 
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Even if they cannot yield the specific phylogenetic identities of key phenol-tolerant or 
ammonia-sensitive microorganisms, ARISA fingerprinting profiles provided qualitative 
information on the response of archaeal and bacterial communities to different levels of 
inhibitors. Used at different time points, they also provided a powerful tool to evidence the 
dynamics of microbial communities in my work.  

1.3.2. Identification of the key phylotypes at stake 

The purchase of a benchtop sequencer in our lab gave me the opportunity to use 16S 
metabarcoding on samples from (Poirier et al., 2016a; Poirier et al., 2016b) (biowaste 
inhibition by phenol or ammonia). We were able to go further than the analysis of ARISA 
fingerprinting profiles that had initially been planned and in particular we identified the key 
phylotypes at stake during the inhibition. For both experiment, 44 samples were sequenced 
with 16S metabarcoding of DNA for each condition tested (different time points within one 
replicate).  

In this document I illustrate the approach with the results of (Poirier et al., 2016a) (biowaste 
inhibition by phenol). Relative abundances of the archaeal and bacterial OTUs are presented 
in Figure 30 and Figure 31. This data was processed with PCA to identify the key phylotypes 
and their threshold of inhibition (not illustrated in this document). 

 

Figure 30: Relative abundances of the archaeal genera generated by 16S rRNA gene sequencing in 
(Poirier et al., 2016a). Samples were clustered by initial phenol concentration (g/L) and by collection date 

(number of days). Different shades of the same colour were used to represent archaeal OTUs belonging to the 
same genus.  

Up to 0.50 g/L, phenol did not influenced archaeal composition much. Then a gradual shift 
between one OTU from Methanosarcina genus (MS2 in red) and one OTU from 
Methanoculleus genus (MC1 in blue) was observed along with increasing phenol 
concentrations from 0.50 g/L up to 2.00 g/L. We hypothesized that Methanoculleus played a 
key role in the maintenance of active methanogenesis through the establishment of specific 
syntrophic interactions probably with bacterial syntrophic acetate oxidizers. Methanoculleus 
was indeed shown to be the predominant group of methanogens in digesters with syntrophic 
acetate oxidation (SAO) (Schnürer et al., 1999). However, when inhibitory pressure became 
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too important, Methanoculleus was in turn inhibited. Archaeal community was then 
dominated by Methanolinea (ML1 in green) probably not much active but highly abundant in 
the inoculum.  

 

Figure 31: Relative abundances of the bacterial families generated by 16S rRNA gene sequencing in 
(Poirier et al., 2016a). Samples were clustered by initial phenol concentration (g/L) and by collection date 

(number of days). Different shades of the same colour were used to represent bacterial OTUs belonging to the 
same family.  

Similarly to archaea, from 0.00 g/L up to 0.50 g/L, bacterial composition dynamics was not 
influenced by phenol. From 0.75 g/L up to 1.50 g/L, increasing phenol concentrations caused 
important modifications within dominant communities. Relative abundance of family 
Synergistaceae (SYNE in red) increased along with increasing initial phenol concentrations 
until reaching 24%-33%. Bacteria affiliated to this family have been described as anaerobic 
amino-acid degraders and syntrophic acetate oxidizers able to cooperate with Methanosaeta 
(Ito et al., 2011). We hypothesized that they had a potential role in SAO with Methanoculleus 
(not described yet), which was the predominant methanogen at high inhibitory concentrations. 
In the meantime abundance of Syntrophomonadaceae (SYNT in dark blue) dropped. 
Syntrophomonadaceae have also already been associated with SAO (Schnürer et al., 1999; 
Carballa et al., 2015).We hypothesized that the increasing levels of phenol lead to a shift of 
syntrophic interaction and that SAO could be maintained due to a possible functional 
redundancy between Syntrophomonadaceae and Synergistaceae. At 2.00 g/L, we also noticed 
that the relative abundance of families belonging to order Clostridiales dropped (in particular 
families Lachnospiraceae (LACN in cyan) and Ruminococcaceae (RMNC in blue)), leading 
to the predominance of populations assigned to order Bacteroidales (in particular families 
Bacteroidaceae (BCDA in light green) and Porphyromonadaceae (PORP in green). We 
suggested that they could be part of the bacterial key players at high phenol concentrations. 

Same approach was applied to ammonia inhibition study (Poirier et al., 2016b). We observed 
a gradual methanogenic shift between two OTUs from genus Methanosarcina when TAN 
concentration increased up to 25.0 g/L. Proportion of potential syntrophic microorganisms 
such as Methanoculleus and Treponema progressively rose with increasing TAN up to 10.0 
and 25.0 g/L respectively, while Syntrophomonas and Ruminococcus groups declined. In 25.0 
g/L assays, Caldicoprobacter were dominant.  
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Among other things, both studies presented in this paragraph emphasized the key importance 
of establishing or maintaining syntrophic interactions to resist to the inhibitors and maintain 
methane production.  

1.4. To be continued 

To carry on with this topic, new experiments have been set-up by Laëtitia Cardona during her 
PhD. In particular, as the inhibition involves many rearrangements of the microbial 
community that are limited by the growth of microorganisms, we questioned the effect of 
adding ammonia at different speeds in the reactors. These experiments were performed in 6 
semi-continuous reactors, more complex to operate and monitor than batch reactors but closer 
from industrial systems. Microbial dynamics were targeted with both 16S RNA gene 
metabarcoding, and 16S RNA metabarcoding, that better reflects the activity of the 
microorganisms. Patterns of waste degradation across time and under the different types of 
inhibition were monitored with metabolomics. Data of this experiment are still being analysed 
(see also chapter 3, section 3.2) but the new experimental design and the new analytical 
methods that have been used will enable to get further insights in the fate of AD microbiome 
under inhibitory pressure. 

2. Mitigation of the inhibition 

In parallel to the work presented in the first section of this chapter, I also evaluated the 
possibility to mitigate the inhibition of AD by phenol and ammonia. Based on the 
observations made in the experiments presented above, in particular that (1) establishing or 
maintaining syntrophic interactions was essential to resist to the inhibitors and that (2) the 
microbiome could adapt to resist to the inhibitor up to a certain concentration, I designed 3 
experiments.  

Two of them evaluated the possibility to use different support media to facilitate the 
resistance of the microbiome to ammonia and phenol.  

• Improving anaerobic digestion with support media: Mitigation of ammonia inhibition 
and effect on microbial communities (Poirier et al., 2017) 

• Support media can steer methanogenesis in the presence of phenol through biotic and 
abiotic effects (Poirier et al., 2018a) 

One of them evaluated the possibility to acclimate the microbiome to the presence of phenol.  

• Acclimation strategy to increase phenol tolerance of an anaerobic microbiota 
(Madigou et al., 2016) 

The next paragraphs present a brief review of the strategies used to mitigate inhibition by 
ammonia and phenol, with a focus on the use of support media. The main findings of my 
work related to this topic are then presented.  

2.1. State of the art related to the strategies used to overcome 

inhibition  

2.1.1. Multiple strategies have been considered 

Different strategies were studied to mitigate the ammonia or phenol inhibition at different 
steps of the process.  
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Some of them consist in reducing the level of the inhibitors in the reactors, for example by 
dilution (Yun et al., 2016). In the case of livestock effluents, many studies use an air stripping 
process to remove excess ammonia nitrogen (Lei et al., 2007; Abouelenien et al., 2010; Serna-
Maza et al., 2015). Desalination cells (Zhang and Angelidaki, 2015) or electrochemical 
systems are used to remove ammonia from recycled effluent or digestate (Desloover et al., 
2015). 

Some of them consist in modifying the operating conditions to reduce the inhibition pressure 
or facilitate the action of the microorganisms. For example, trace elements necessary for the 
growth of the microorganism can be added (Uludag-Demirer et al., 2008; Westerholm et al., 
2015). In order to counteract ammonia inhibitory effect, pH and temperature adjustment have 
also been implemented (Strik et al., 2006; Wang et al., 2014). Anaerobic co-digestion allows 
to balance the C/N ratio by mixing at least two substrates, one with a low protein content 
(Zhang et al., 2013), resulting in a lower level of ammonia in the reactors.  

Some of them consist in modifying the microbial community so that it becomes more 
resistant. It includes microbial acclimation (Abouelenien et al., 2009; Gao et al., 2015) and 
bioaugmentation to enhance the resistance of the microbial community by the addition of 
adapted preground cultures (Hajji et al., 2000; Westerholm et al., 2012; Fotidis et al., 2014). 

More recently, many studies underlined that the addition of different materials or polymers to 
AD process led to significant increase in organic matter degradation, as well as in biogas 
production, in particular under inhibitory conditions. They are detailed in the next paragraph. 

2.1.2. Use of active support media 

Recent studies highlighted that adding support media in anaerobic digesters could result in an 
increased biogas production despite the presence of inhibitors by specifically shaping the 
microbial ecosystem (Milan et al., 2010; Mumme et al., 2014). One of the hypotheses is that 
microbial colonization of these supports could enhance proximity of microorganisms in 
aggregates and favour cross-feeding, metabolic end products of one species becoming 
substrates for nearby species until the final end products. In particular, syntrophic associations 
of anaerobic digestion could benefit a lot from this type of structures as they require that the 
pool size of the shuttling intermediate is kept low to allow efficient cooperation. However, 
even if the positive effect of these supports was evidenced, clear explanations on the 
underlying mechanisms are still missing. In particular, to go further in the optimization of this 
operating strategy in industrial processes, a better understanding of the influence of supports 
on key phylotypes steering the microbial community towards enhanced biodegradation 
performance is needed. 

Among these materials, zeolite is a natural rock known for its natural ion-exchange properties, 
absorptive capacity and to be a support for the biomass (Montalvo et al., 2012). It has been 
proven to be an effective way to mitigate ammonia inhibition due to its high adsorption 
capacity and selectivity for ammonium (Ho and Ho, 2012; Montalvo et al., 2014). It was also 
proven to favour biomass growth due to microorganisms immobilization on the surface of 
zeolite particles (Weiss et al., 2013). Authors also reported that zeolites, presenting a high 
local conductivity, could facilitate the interactions between microorganism (Montalvo et al., 
2012).  

Electrically conductive materials such as biochar or activated carbon are known to promote 
interspecies electron exchange and to enhance specific electro-active microorganisms 
improving AD performance (Lee et al., 2016; Lu et al., 2016). They were proven to promote 
Direct Interspecies Electron Transfer (DIET) between Geobacter and Methanosarcinales (Liu 
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et al., 2012). DIET is particularly interesting as it may be a more effective mechanism for 
interspecies electron exchange than indirect transfer via the production of reduced molecules 
such as H2 and formate (Subramanyam, 2013). Biochars demonstrated significant 
improvements within AD process facing ammonia inhibition (Mumme et al., 2014; Lu et al., 
2016). Finally activated carbon is known to adsorb organic molecules such as phenol.  

The supplementation of the reactors with biopolymers such as chitosan can also enhance 
granulation (Hudayah et al., 2016) and specific methanogenic activity (Lertsittichai et al., 
2007).  

2.2. Effect of active support media to mitigate the inhibition of AD 

2.2.1. Experimental design  

To evaluate the effect of support media on anaerobic digestion under inhibitory conditions, 
three experiments were set-up in parallel, in batch digesters as described in 1.2.1. In the first 
series, no inhibitor was added. In the second series, 1.3 g/L of phenol was added. In the third 
series, 19 g/L of TAN was added. These values corresponded to the IC50 values determined 
in the experiment described in 1.2.3. The objective was to bring a high, but not too important 
inhibitory pressure.  

For each series, 6 conditions were tested in triplicate. Five support media were separately 
added within batch digesters (2 zeolites, 2 activated carbons and 1 chitosan). One control 
without support media was also set-up.  

Experimental design is presented in Figure 32.  

 

Figure 32: Experimental design used to test the influence of support media to mitigate the inhibition. 
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2.2.2. Effect of the support media on biogas production 

First observation was that, in the experiment without inhibitor, CH4 and CO2 production 
kinetics remained relatively similar and were not affected by the addition of support media 
(not illustrated).  

On the contrary, when the digesters were inhibited, an important effect of the support media 
on gas production was observed (Figure 33 and Figure 34), especially for methane. 

For digesters inhibited by phenol (Figure 33), in all cases, addition of support media 
considerably reduced the lag phase observed for methane production in digesters inhibited 
without support media. It also increased the maximum production rate of biogas in general. 
Digesters with activated carbon exhibited a biogas production close to the production of non-
inhibited digesters. It was explained by the rapid adsorption of phenol on the activated carbon 
(abiotic effect). The other support media (zeolite and chitosan) also improved the 
performances despite they had no influence on the phenol concentration in the reactor. We 
hypothesized that they had a direct effect on the microbial communities (biotic effect). 
Ultimate gas production was increased compared to the control without inhibitor as phenol 
was degraded and metabolized into biogas.  

 

Figure 33: Cumulated CH4 and CO2 production (mL) over time (number of days) for the different 
support media initially added in the presence of 1.3 g/L of phenol. (Poirier et al., 2018a). Mean values of 

each triplicate of bioreactors are presented for CH4 and CO2 production and error bars represent standard 
deviation within triplicates. The black line represents the mean values of all bioreactors for CH4 and CO2 

production under non-inhibiting conditions. 



 

 88 

For digesters inhibited by ammonia (Figure 34), both zeolites mitigated ammonia inhibition 
and enhanced anaerobic digestion compared to inhibited digesters without support. 
Surprisingly, the distinct additions of activated carbons revealed contrasted results. In 
presence of activated carbon 1, lag time was reduced by 10 days while activated carbon 2 led 
to an increase of 21 days of the lag time compared to inhibited digesters without support. 
Similarly, the addition of chitosan also led to an extra inhibitory effect while no effect of 
chitosan was observed during the control experiment without ammonia. The additional 
inhibitory effect brought by chitosan and activated carbon 2 was not clear but was probably 
due to a synergistic effect between a molecule contained in these media and ammonia. Indeed 
no adverse effect had been observed in bioreactors supplemented with these support media in 
reactors not inhibited.  

 

Figure 34: Cumulated CH4 and CO2 production (mL) over time (number of days) for the different 
support media initially added in the presence of 19 g/L of TAN. (Poirier et al., 2017). Mean values of each 
triplicate of bioreactors are presented for CH4 and CO2 production and error bars represent standard deviation 

within triplicates. The black line represents the mean values of all bioreactors for CH4 and CO2 production under 
non-inhibiting conditions. 

Once the positive effect of the support media to mitigate inhibition of AD was confirmed, we 
focused on understanding their effect on AD microbiome.  

2.2.3. Effect of active support media on the microbial community 

For the different experiments, microbial dynamics were investigated with 16S RNA gene 
metabarcoding. Several samples were analysed for each condition. Consistently with 
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performance results, we observed that archaeal and bacterial compositions were not 
significantly influenced by supports media addition in not inhibited reactors. On the contrary, 
in presence of inhibitors, support media had an influence. Two different approaches were used 
to analyse the data and highlight the key players among the important number of OTUs 
identified in each experiment.  

For the experiment with phenol (Poirier et al., 2018a), effect of the support media was mainly 
observed on the bacterial population. A partial least squares-discriminant analysis (PLSDA) 
was performed to identify the OTUs characteristics of the different support media. PLSDA is 
a discriminant analysis used to sharpen the separation between groups. It enables to 
understand which variables (OTUs in our case) best describe the differences between the 
groups. This method is particularly useful to treat high-dimensional data (Lee et al., 2018). 
Sparse version of the PLSDA (Sparse-PLSDA) (Lê Cao et al., 2011) was used to perform 
variable selection into the large data set in order to identify the most discriminant OTUs. 

 

Figure 35: Heatmap of the most discriminant bacterial OTUs (in column) determined after sparse Partial 
Least Squares Discriminant Analysis (sparse-PLSDA) of all OTUs generated by 16 S rRNA gene 

sequencing for the different support media initially added in the presence of 1.3 g/L of phenol. (Poirier et 
al., 2018a). Type of support and date of sampling is indicated on the right. Name of the OTUs is indicated at the 

bottom. The colour scale on the left represents the grouping of samples used to compute the sparse-PLS-DA 
(type of support media). The colour key of the heatmap shows the abundance of the OTUs (from blue=low 

abundance to brown red=high abundance). 
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Heatmap of the most discriminant bacterial OTUs identified with Sparse-PLSDA is presented 
in Figure 35 (for technical reasons, samples from digesters with chitosan were not included in 
the analysis). In the lines, the samples were clustered based on the similarity of their 
abundance in the selected OTUs. The different samples corresponding to the same support 
media were clustered together, and characterized by specific OTUs. For example, digesters 
with the two types of activated carbon were rather similar. They were associated to the 
presence of OTUs assigned to genera Ruminofilibacter (MRNL3) and Ruminococcus 
(RMNC4 and RMNC5) but also to genera Cryptanaerobacter (PPTC1) and Spirochaeta 
(SPIR3). Genera Ruminofilibacter and Ruminococcus contains rumen species related to the 
degradation of xylan (Nissilä et al., 2012) while Cryptanaerobacter consists of species 
involved in phenol degradation into benzoate via 4-hydroxybenzoate (Juteau et al., 2005). 
This figure also highlighted that activated carbon 1 could specifically be related to the 
presence of an unassigned OTU belonging to family Petrotogaceae (PETG) that is known to 
be involved in phenol degradation (Na et al., 2016). Similar types of conclusions were drawn 
for the digesters incubated with zeolites and without support. sPLSDA enabled to focus on the 
most discriminant OTUs of each condition. Specific microbial populations could be related to 
all types of support evidencing their biotic influence on the microbiome. 

For the experience with ammonia (Poirier et al., 2017) a different approach was used. Ratios 
of abundances were calculated to assess the over/subrepresentation of the different archaeal 
OTUs and bacterial families in presence of the different support media compared to a 
‘control’ situation. ‘TAN ratio’ compared the inhibited digesters to the non-inhibited 
digesters. ‘Support ratio’ compared the inhibited digesters with support media to the inhibited 
digesters without support media. As the sPLSDA, this method enabled to highlight the taxons 
differentially expressed between the conditions.  

More precisely, for each sample, the relative abundance of the main archaeal OTUs or 
bacterial families was divided by the corresponding relative abundance in samples from the 
control. These ratios are presented in Figure 36 and Figure 37 for bacterial families, taking 
respectively non-inhibited digesters and inhibited digesters without support media as 
‘controls’. Colour scale corresponds to the type of support media and a size corresponds to the 
number of days of incubation.  

Figure 36 showed that TAN mainly inhibited bacterial families affiliated to orders 
Bacteroidales, Spirochaetales, Anaerolinales and Synergistales. By contrast, most of the 
families assigned to order Clostridiales and Thermotogales seemed to be more resistant to this 
inhibitor. Syntrophomonadaceae and Clostridiaceae 1 were the two only principal families 
belonging to order Clostridiales which were also impaired by TAN. Therefore it was 
hypothesized that TAN induced strong reorganizations within bacterial community by 
favouring the presence of order Clostridiales and Thermotogales at the expense of other 
orders. An influence of the type of support media was observed and was assessed more 
precisely by calculating other ratios (Figure 37).  
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Figure 36: ‘‘TAN ratios” calculated for main bacter ial OTUs. ‘‘TAN Ratio” was obtained by dividing, for 
each sampling date, the relative abundance of the main bacterial OTUs in the inhibited experiment by their 

corresponding relative abundance in the non-inhibited experiment. The size of the symbols is correlated to the 
collection dates: the more advanced the bigger. 

Figure 37 showed the specific effect of the support media on the bacterial community, under 
inhibitory conditions, in comparison to an inhibited situation without support media. The 
effect of support media addition was minimal on bacterial order Anaerolinales, 
Spirochaetales, Thermotogales and Synergistales. However, inside Clostridiales order, both 
zeolites and activated carbons favoured the development of Ruminococcaceae family, at 
different levels. Activated carbon 1 favoured the development of Caldicoprobacteraceae 
family while this family was underrepresented in digesters containing zeolites. Zeolites 
seemed to lead to the emergence of families belonging to order Bacteroidales such as 
Marinilabiaceae. Activated carbons also favoured this family but less importantly.  

Similar approaches were applied to archaea. They showed that under ammonia inhibition 
zeolite preserved Methanosarcina genus and enhanced Methanobacterium genus while 
activated carbon enhanced Methanoculleus genus emergence. 

The adverse effect of activated carbon 2 and chitosan on biogas production could not be 
explained clearly based on microbial community patterns.  
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Figure 37: ‘‘Support ratios” calculated for main bacterial OTUs. ‘‘Support Ratio” was obtained by dividing, 
for each sampling date, the relative abundance of the main bacterial OTUs in the inhibited experiment with 

support media by their corresponding relative abundance in the inhibited experiment without support media. The 
size of the symbols is correlated to the collection dates: the more advanced the bigger. 

These results highlighted potentialities to use supports to enhance the process stability of 
anaerobic digesters subjected to phenol or ammonia inhibition. Microorganisms positively 
correlated with the presence of the support media were identified. However, the exact role of 
the support media was not clear. The structure and the microbial colonization of the 
supporting materials after AD operation was assessed using fluorescent in situ hybridization. 
However, observations did not evidence clear colonization patterns. We also planned to 
isolate support media from the samples taken in the digesters to sequence specifically the 
DNA of the possibly ‘attached’ microorganisms but were not able to obtain enough material.  

I recently set up an experiment (PhD of Laëtitia Cardona) to test different assumptions about 
the mechanisms of action of the zeolite during ammonia inhibition. Analysis of the data is still 
in progress. In addition to the characterisation of the microbial dynamics with 16S, 
methanogenic pathway was monitored by measuring the isotopic fractionation of the methane 
(Grossin-Debattista, 2011). Patterns of waste degradation under the different conditions will 
be monitored with metabolomics. It will provide additional information to decipher the role of 
support media in mitigating the inhibition. With the data obtained so far, the schematic 
pathways presented in the preliminary Figure 38 were drawn for digesters without ammonia, 
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or with ammonia and with or without zeolite. Figure 38 highlights the main differences 
between the three conditions, in particular degradation products which accumulate more, 
methanogenic pathways which is dominant, and specific microorganisms.  

 

Figure 38: Summary of the hypothetical pathways for the degradation of biowaste, without ammonia and 
in presence of ammonia, with or without zeolite. The molecules which accumulated the more and dominant 
methanogenesis pathway are highlighted in blue. Specific microorganisms identified by the sparse PLS-DA are 
represented by grey rectangles that were placed at the position where we hypothesize they are active. The role of 

the microorganisms between question marks is not known. Genus Mbac: Methanobacterium; Orders Spi: 
Spirochaetaceae; Cloa: Cloacimonadaceae; Rik: Rikenellaceae; Pal: Paludibacteraceae; Pep: Peptococcaceae; 

Mari: Marinilabiliaceae; Family Izi: Izimaplasmatales. 

2.3. Is the acclimation to the inhibitor possible? 

I tested another strategy to mitigate the effect of the inhibitors that I summarize briefly in this 
section.  

To confront future disturbances, McMahon suggests that the best approach could consist in 
provoking a preliminary adaptation of the microbial communities to stressful conditions 
(McMahon et al., 2004). I noticed that my batch tests with multiple concentrations of inhibitor 
suggested that a process of adaptation of the microbiome was possible (see 1.3.1). Based on 
these observations, I set up an experiment to question the possibility to acclimate AD 
microbiome to phenol (Madigou et al., 2016).  

Our work was based on the presupposition that a regular step-wise adaptation of the microbial 
community to stressful conditions could strengthen the microbial ecosystem against the 
disturbance. Based on this presupposition, the impact of increasing phenol levels on the 
performances of a semi-continuous anaerobic bioreactor degrading cellulose was analysed.  

This experimental device was not used in our team and it was an opportunity to initiate a work 
in these more dynamics systems. It allowed getting conditions closer to industrial situations 
than the batch digesters used in the other experiments.  
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Degradation performances were monitored throughout the experiment and molecular tools 
(16S sequencing and ARISA fingerprinting technique) were used to track changes in the 
microbial community. We observed that the acclimation strategy progressively minimized the 
effect of phenol on degradation performances. The application of 3 successive disturbance 
episodes enabled a considerable improvement of the microbiota resistance to phenol and total 
inhibition thresholds were significantly augmented, from 895 to 1942 mg/L of phenol. 
Microbiota adaptation was characterized by the selection of the most resistant archaea OTU 
from Methanobacterium genus and an important elasticity of bacteria, especially within 
Clostridiales and Bacteroidales orders, that probably enabled the adaptation to more and more 
stressful conditions.  

The acclimation strategy minimized the effect of phenol on AD performances. It showed that 
adaptation of AD microbiota to increase the resistance was possible. Further studies should 
aim at investigating the mechanisms of this acclimation with other techniques, such as 
metabolomics and metagenomics or metatranscriptomics. It would enable to see for example 
if the microbial community adapted thanks to a functional redundancy, or through an 
evolution of the pathways of degradation.  

3. Conclusion  

Inhibition of the anaerobic digestion is a broad topic. My research activities are still strongly 
linked to this subject. DIGESTOMIC ANR project and PhD of Laëtitia Cardona focus in 
particular on the effect of ammonia, variation of substrates and modifications of temperature 
on the performances of anaerobic digestion. STABILICS project that I recently submitted to 
the ANR (see last chapter of this manuscript) aims at getting new insights in the determinants 
of AD stability).  

My new experiments are now mainly performed in semi-continuous digesters that were 
acquired after I performed the experiments detailed in this chapter. They better mimic 
industrial digesters. Regular input of waste enables to reach steady states, while digestate 
outlet progressively removes non active microorganisms. New methodologies are now 
available to explore other ‘layers’ of information (in particular the suite of omics methods) to 
enrich the information already obtained. They will deepen the understanding of the inhibition 
process. Indeed, due to the high functional redundancy within bacterial populations, 16S 
characterization only does not enable to assess their respective role during anaerobic 
digestion.  

So far I explored metabolomics in several experiments, and I just obtained new metagenomics 
data. Analysing and integrating these different layers of data is complex and requires 
appropriate statistical methods. I spent 8 months in 2017 in two institutions (Université de 
Toulouse and University of Melbourne) to acquire the necessary analytical and computational 
skills to apply these methods. The first results obtained are presented in the next chapter.  
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Chapter 3: Advancing environmental 

biotechnologies through combined use of 

advanced molecular ecology and cutting-

edge computational statistics 

To face the increasing quantities of data I was generating through experiments of the kind 
presented in chapter 2, I started to include different statistical analytical approaches in my 
research. The objectives were both to extract the most accurate and relevant information from 
the important datasets already produced, but also to anticipate the use of omics methodologies 
in my future studies.  

In 2017, I had the opportunity to make scientific visits of several months in two laboratories 
specialist of the analysis of high-throughput biological data (Institut de Mathématiques de 
Toulouse at the University of Toulouse and Melbourne Integrated Genomics at the University 
of Melbourne). During these stays I’ve been through my data with different methods, to 
answer different questions. I benefited a lot from the help of the scientists I was visiting, but 
also from the others statisticians or users of computational methods I met during my stay. 
Some of the results obtained are presented in this chapter, which is divided in three sections.  

• The first section presents a method of integration of different types of data measured 
on the same samples, illustrated with an analysis where we draw links between 
microbial activity and molecules degradation rate during a co-digestion experiment 
(manuscript submitted to Chemical Engineering Journal (Cardona et al., submitted)).  

• The second section presents an integration of 16S data generated during different and 
independent studies, to identify ubiquitous bioindicators signatures of AD inhibition 
(independent of the studies) and build predictive models of AD inhibition (manuscript 
submitted to the ISME Journal (Poirier et al., submitted)).  

• The third section presents different examples of analysis of longitudinal data using 
time course modelling: the effect of an abrupt temperature increase on the dynamics of 
the microbiome of AD (ongoing project), the effect of different intensities of 
inhibition on the microbial dynamics (ongoing project) and a new analytical 
framework to integrate different types of longitudinal data (manuscript under revision 
in Frontiers in Genetics (Bodein et al., submitted)).  
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1. Integration of different types of data 

1.1. Objectives  

As no single analytical technique is sufficient to decipher complex microbial relationships, the 
combination of information from several data sources has become a decisive issue. However, 
current statistical methods mainly enable the analysis of single microbiome dataset, and 
generally do not allow for the analysis of several types of data simultaneously. Consequently, 
data derived from each omics technique are typically studied in isolation, and disregard the 
correlation structure that may be present between the multiple data types. Appropriate tools 
are needed to handle these datasets more suitably.  

The coupling of data with inherently very different structures, such as chemical analyses and 
metaomic responses is particularly challenging. The challenge is how to organize, analyse, 
gain insight from, and use the data for predictive, design, and operational purposes, such as 
improving the function of specific engineered bioprocesses. This is not an easy challenge, 
given the complexity of microbial communities of dynamic environments such as anaerobic 
reactors. However different integrative methods have been developed to treat such multi-table 
data. For example Common Components and Specific Weights Analysis (CCSWA or 
'ComDim') has proven to be a powerful tool to take into account the common and 
complementary information contained in different matrices (Boccard and Rutledge, 2013). It 
has also been used for the joint treatment of chemical and sensory data (Blackman et al., 
2010). DIABLO (Singh et al., 2016) based on sparse Generalised Canonical Correlation 
Analysis (Tenenhaus et al., 2014) is available for the integration of multiple data sets in a 
supervised analysis. The methods aim to extract complementary information from several 
data sets to gain a better understanding of the interplay between the levels of information 
measured. For example, it enables to identify correlated (or coexpressed) biological features 
measured from the different omics while also investigating and modelling the relationship 
between meta-omics and performance stability of the digester. An equivalent method based 
on Projection to Latent Structures (PLS) enables to integrate different data in an unsupervised 
framework (Lê Cao et al., 2008). More precisely, PLS regression is a multivariate 
methodology which relates (integrates) two data matrices to evidence correlations. To go 
further, Sparse PLS performs simultaneously variables selection to identify the variables 
explaining the most the correlation between the datasets (Lê Cao et al., 2008).  

These methods have so far not been used to treat data from AD. The next paragraph presents 
an example of the use of sparse PLS (or sPLS) to integrate two types of data. An example of 
the integration of three types of data is presented in section 3.3. 

1.2. Linking microbial activity and molecules degradation during 
codigestion 

We used a sPLS to integrate 16S and metabolomics data in an unsupervised framework. The 
objective was to investigate the link between microbial activity and molecules degradation 
during AD. This work was submitted to Chemical Engineering (Cardona et al., submitted).  

Data were taken from a co-digestion experiment (Cardona et al., 2019). In this experiment the 
influence of different mixtures of sewage sludge with fish waste or green waste (grass) on the 
microbiome dynamics was investigated in batch digesters. Digesters were fed with nine 
different mixtures of waste as illustrated Figure 39. For all the digesters, samples were taken 
at two different dates during the active methane production.  
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RNA from the samples was extracted. Corresponding cDNA was used for 16S 
metabarcoding, to target the active microorganisms (microbial activity dataset). The same 
samples were also analysed with an untargeted LCMS approach to target the degradation of 
molecules from the feeding. The rate of molecules degradation in the bioreactors was 
estimated by dividing the molecules intensity at day 0 by their intensity at days of interest 
(molecule degradation rate dataset). It resulted in two datasets describing the same samples.  

 

Figure 39: Experimental design used in the co-digestion study. S100 stands for wastewater sludge alone, F25, 
F50, F75, F100 stands for respectively 25, 50, 75 or 100% of fish (F) in co-digestion with sludge, G25, G50, 

G75, G100 stands for respectively 25, 50, 75 or 100% of Grass (G) in co-digestion with sludge. 

A sparse PLS analysis was performed to integrate the data relative to the microbial activity 
with the data of the molecules degradation. The ordination plots from sparse PLS (Figure 40 
A and B) showed similar dispersion patterns for the two datasets. It suggested the existence of 
an underlying correlation structure between the two datasets. The correlation circle plot 
(Figure 40 C) allowed visualizing at the same time the variables responsible for the ordination 
of the samples in the two datasets, namely the variables correlated between both datasets. It 
corresponded to the groups of active microorganisms correlated to the molecules degradation 
rate. To further identify the microorganisms potentially responsible of the molecules 
degradation, a hierarchical clustering based on the loadings of the microbial and metabolic 
from the PLS was performed. Five groups of correlated microorganisms and molecules were 
identified. The dynamics of their abundance was plotted (Figure 41).  

 
Figure 40: sPLS data integration of the microbial activity and molecules degradation rate. Sample 

ordination plots according to the microbial activity (A) and molecules degradation dataset (B) show a similar 
influence of the feeding composition on the microorganisms and on the degradation of the molecules. The 
correlation circle plot (C) shows the microorganisms and the molecules with similar dynamics across the 

different samples. 

More specifically, Figure 41 depicts the mean values and standard deviation of the microbial 
activity and molecule degradation rate according to the feeding types for the 5 groups. Group 
1 included microorganisms and molecules with a high microbial activity and high molecule 
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degradation rate during the digestion of sludge and grass. Groups 2-4 included 
microorganisms and molecules that were specific of either sludge, grass, or fish, respectively. 
Finally, group 5 included the microorganisms and molecules that were highly active and 
highly degraded, respectively, in fish and sludge bioreactors. 

 

Figure 41: Dynamics of the active microorganisms correlated to the molecules degradation among the 
samples at day 21. Duplicates were carried out on the bioreactors containing only fish, grass or sludge. Lines 
represent the mean values of the microbial activity (solid blue line) or molecules degradation rates (dashed red 

line) within each cluster, the shadowing traces represent their standard deviation. 

Correlations between microbial activity and molecules degradation within the different 
digesters suggested that within each group the microorganisms were potentially responsible of 
the molecules degradation. Based on this hypothesis, we sought for biological interpretation.  

For example, group 1 included two genera of archaea, Methanosarcina and 
Methanospirullum, and the molecules diethylthiophosphate and N-(3-methylbutyl)acetamide. 
Diethylthiophosphate is a pesticide degradation product and a urine metabolite (Ueyama et 
al., 2014). Conversely, N-(3-methylbutyl)acetamide is a metabolite found in alcoholic 
beverages obtained by fermentation such as beer and wine. One hypothesis explaining the 
correlation of these archaea and molecules could be the indirect role of the archaea in the 
molecules degradation through a syntrophic interaction with bacteria.  
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In group 4, Methanosarcina and 2 OTUs from the order Clostridiales were correlated to 
molecules that can be classified as amino acids degradation products. Cadaverine and 5-
aminopentanoic acid are obtained from L-lysine degradation, histamine from L-histidine 
degradation, and phenylpyruvic acid from L-phenylalanine degradation. The presumed role of 
these microorganisms in the degradation of cadaverine and L-histidine was supported by 
previous studies. Roeder and Schink described a new strain close to Clostridium 
aminobutyricum, able to degrade cadaverine, in co-culture with the archaea Methanospirullum 
(Roeder and Schink, 2009). On the other hand, some Clostridium were also identified to be 
involved in the histamine degradation (Pugin et al., 2017). 

The statistical method developed in this study allowed to posit hypotheses on the degradation 
of molecules by different microorganisms. These hypotheses were consistent in regards with 
the literature. Another example of multiple types of data integration is presented in section 
3.3.  

2. Integration of data from independent studies 

2.1. Context 

In the biomedical field, high-throughput technologies, based on DNA or RNA-sequencing or 
omics approaches, are now being used to identify biomarkers or gene signatures that 
distinguish disease subgroups, predict cell phenotypes or classify responses to treatments (Lee 
et al., 2019; Sun et al., 2019). Same types of approaches could be applied to microbial 
ecology of bioprocess to identify biomarkers signatures (based on a 16S or omic data) that 
could for example characterize a type of inhibition, be used to forecast digesters 
performances, to evidence that a specific pathways is active etc.  

To be robust, these biomarkers should be reproducible from a study to another. However, it is 
observed that few of the findings are reproduced when assessed in subsequent studies in 
general (Rohart et al., 2017b). The poor reproducibility of identified signatures is most likely 
a consequence of high-dimensional data, in which the number of OTUs, genes or transcripts 
being analysed is very high (often several thousands) relative to the comparatively small 
sample size being used (generally less than 20). In that case, identified signatures are likely to 
be very specific of the samples and of the study. More ubiquitous biomarkers could be 
identified by increasing the number of samples. One easy way to increase sample size is to 
combine raw data from independent experiments in an integrative analysis. This can improve 
both the statistical power of the analysis and the reproducibility of the signatures that are 
identified.  

However, integrating studies with the aim of classifying biological samples based on an 
outcome of interest has a number of challenges. Omics or metabarcoding studies often differ 
from each other in a number of ways, such as their experimental protocols or the 
technological platform used. These differences can lead to so-called ‘batch-effects’, or 
systematic variation across studies, which is an important source of confounding factors 
(Gagnon-Bartsch and Speed, 2012). They must be accounted for when combining 
independent studies to enable genuine biological variation to be identified. Different 
approaches have been developed for that, including Multivariate INTegrative method, MINT 
in mixOmics R package (Rohart et al., 2017b). It integrates independent data sets while 
simultaneously accounting for unwanted study variation, classifying samples and identifying 
key discriminant variables. It also enables to predict the class of new samples from external 
studies. More precisely, MINT seeks for a common projection space for all studies that is 
defined on a small subset of discriminative variables and that display an analogous 
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discrimination of the samples across studies. The identified variables share common 
information across all studies and therefore represent a reproducible signature that helps 
characterising biological systems. 

I applied this tool to identify biomarkers of AD inhibition and build predictive models of AD 
inhibition by ammonia and phenol.  

2.2. Integration of independent studies to identify microbial 

bioindicators 

2.2.1. Description of the data 

I selected four studies assessing the influence of ammonia or phenol on anaerobic digestion to 
identify biomarkers, build predictive models and assess their performance.  

• Study 1 (Poirier and Chapleur, 2018a) corresponds to the experiments testing the 
influence of different ammonia and phenol levels in digesters described in chapter 2 
(papers: (Poirier et al., 2016a; Poirier et al., 2016b)). 

• Study 2 (Poirier and Chapleur, 2018b) corresponds to the experiments testing the 
influence of different support media to mitigate the inhibition by ammonia and phenol 
described in chapter 2 (papers:(Poirier et al., 2017; Poirier et al., 2018a)). 

• Study 3 (Lu et al., 2016) was an external study testing the influence of support media 
(biochar) to reduce the inhibition of ammonia in digesters fed with glucose.  

• Study 4 (Peng et al., 2018) was an external study testing the influence of ammonia on 
the AD of food waste.  

In all the studies, samples were taken across time and under different inhibitory conditions. 
All studies included non-inhibited controls or period. Based on the performance data (biogas 
production, VFA accumulation), and conclusions of the authors, we determined if the samples 
had been collected in bioreactors inhibited by ammonia, phenol, or in non-inhibited 
bioreactors. 

In all these studies, DNA was extracted from the samples and 16S rRNA gene was sequenced 
providing datasets of raw sequences associated to different inhibitory conditions. As 
described in Table 1, the four studies differed by different parameters. Different types of 
substrates and inoculum were used, 16S targeted region, sequencing platform and technology 
also differed. We analysed the raw sequences from studies 1 and 2, study 3 and study 4 
independently with the same bioinformatics approach, using FROGS pipeline (Find, Rapidly, 
OTUs with Galaxy Solution) (Escudié et al., 2018).  

Table 1: Summary of the main characteristics of the different studies used in the analysis, to illustrate the 
possible confounding factors. Same colour was used when the characteristics were similar.  
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2.2.2. Accounting for study effect 

Our first objective was to identify biomarkers of ammonia and phenol inhibition and was 
focused on studies 1 and 2, as studies 3 and 4 did not contain samples inhibited by phenol.  

A PCA was performed (Figure 42A) for a first exploration of the major sources of variation in 
the data. Sample distribution highlighted a strong study effect. Samples on the left part of the 
factorial plane were related to study 1 conducted with the inoculum A while samples collected 
during study 2 conducted with inoculum B were on the right side of the factorial plane. 
However, a clear influence of the type of inhibition on microbial community could still be 
observed within the samples of each study. 

 

Figure 42: (A) Principal Component Analyses (PCA), (B) Sparse Partial Least Squares Discriminant 
Analysis, (C) Multivariate Integrative Sparse Partial Least Squares Discriminant Analysis of OTUs 

distribution in samples from studies 1 and 2, inhibited by phenol, ammonia or not inhibited.  
On the factorial maps each sample is represented with a coloured marker. The colour scale represents the type of 

inhibitor. The type of marker represents the study. OTU data was generated by 16S rRNA gene sequencing. 

A supervised PLS-DA model was then fitted on the data. Sparse version of the method was 
applied to select features and identify discriminative OTUs that best described the difference 
between the groups of samples (Lê Cao et al., 2011). Samples distribution based on the first 
two components is presented on Figure 42B. sPLS-DA model enabled to mitigate the study 
effect compared to the unsupervised PCA. However, within each condition, the study effect 
was still present: each sample collected in Study 1 was clearly separated from the ones 
collected in Study 2. 

In order to counteract this bias, we applied MINT (Rohart et al., 2017b). Tuning of MINT 
indicated that an optimal number of 45 OTUs should be selected to achieve the lowest 
classification error rate. Samples representation from MINT is presented in Figure 42C. It 
evidenced that the study effect was accounted for, with the strongest separation observed 
according to inhibiting condition rather than studies. 

2.2.3. Identification of microbial bioindicators of inhibition 

Microbial signatures identified with MINT were output in a clustered image maps (81 
samples and 45 OTUs) in Figure 43. This representation confirmed that, based on their 
microbial community composition, samples could be grouped by inhibition type (non-
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inhibited samples, samples inhibited by ammonia and samples inhibited by phenol), and that 
this classification was independent of the study. The 45 OTUs selected by MINT were 
clustered into five different groups (A to E).  

 
Figure 43: Heatmap of the most discriminant OTUs. Heatmap was built after selection of the most 

discriminant OTUs with Multivariate Integrative Sparse Partial Least Squares Discriminant Analysis of all OTUs 
generated by 16S rRNA gene sequencing for the different samples of studies 1 and 2, inhibited by phenol, 

ammonia or not inhibited. Name of the OTUs is indicated at the bottom. The colour scale on the left represents 
the type of inhibitor. The colour key of the heatmap shows the abundance of the OTUs after CLR transformation 

(from blue = low abundance to brown red = high abundance). 

Groups A to E were composed of microorganisms respectively:  

a) Highly abundant in digesters inhibited by phenol.  
b) Lowly abundant in digesters inhibited by ammonia 
c) Lowly abundant in inhibited digesters in general. 
d) Highly abundant in inhibited digesters in general.  
e) Highly abundant in digesters inhibited by ammonia.  

These microorganisms constituted a first series of general biomarkers of ammonia and phenol 
inhibition, identified despite the strong initial study effect observed in Figure 42A. Their 



 

 103 

specific identity was checked and made sense with fragmented information of the literature. 
They can be considered as valuable early warning signals announcing the dysfunction of the 
process in anaerobic digesters. These first results are encouraging because they suggest 
potential applications for a wide diversity of AD inhibitors and or other questions related to 
biotechnologies in general. 

2.2.4. Building of a predictive model for ammonia inhibition 

Our second objective was to evaluate the possibility to build models predicting the inhibitory 
status of digesters based on 16S metabarcoding data. We selected from the literature two 
studies analysing digesters inhibited by ammonia (studies 3 and 4). Our criteria for selecting 
the studies were: recent studies, raw 16S sequencing data easily accessible, digesters inhibited 
by phenol or ammonia, inhibition status of the digesters clearly defined, possibility to assign 
with no doubt the raw sequences to the samples described in the papers. We were not able to 
find studies meeting these criteria for phenol.  

Our aim was to build a predictive model with studies 1 and 2 and test it with studies 3 and 4. 
Based on the original papers, samples from study 3 were categorized into four groups 
depending on the sampling time and on the inhibitory pressure: “No inhibition”, “Ammonia 
moderate concentration”, “Ammonia inhibition, early days”, “Ammonia inhibition, final 
days”. Similarly, samples from study 4 were categorized into four groups: “No inhibition”, 
“Ammonia inhibition start”, “Ammonia inhibition”, “Ammonia inhibition decrease”. 

As samples of the different studies had been analysed with distinct sequencing techniques, 
different bioinformatics treatments had to be applied to the raw sequences. It was therefore 
not possible to compare directly OTU tables. Data were first aggregated at the genus level 
before merging the different datasets. Since studies 3 and 4 were focused on inhibition by 
ammonia only, we trained a new MINT model with studies 1 and 2 where we removed the 
phenol condition. Seventeen genera were selected by MINT to discriminate samples inhibited 
by ammonia from samples not inhibited in studies 1 and 2. The biomarkers highlighted by this 
second model were consistent with those evidenced by the model integrating phenol 
inhibition (not illustrated here). Data from studies 3 and 4 were predicted by the model 
(namely, based on their abundance in the 17 selected genus biomarkers, their inhibitory status 
was predicted). In order to visualize external samples distribution in the model, Figure 44 
presents the test samples from studies 3 and 4 projected on the two first components of the 
trained model, as well as prediction areas that were calculated (Rohart et al., 2017a). 

As expected, inhibited samples were separated against the non-inhibited samples on the first 
component. Two samples (11 and 39) were misclassified as ‘inhibited’. Samples of reactors 
that just started inhibition (“early days” in Lü et al. and ‘start of the inhibition’ in Peng et al.) 
were mostly classified at an intermediary position and classified as either inhibited or non-
inhibited. We hypothesize that microbial community had started to change but was not yet 
totally characteristic of inhibited reactors. Interestingly, sample 45 (Peng et al., day 223, just 
after inhibitory pressure was lowered) was classified as inhibited while sample 46 (Peng et al. 
day 232, several days after inhibitory pressure was lowered) was classified as non-inhibited. 
This result illustrated the progressive resilience of the microbial community after the 
inhibition. Sample 14 (moderate ammonia, final days, no addition of activated charcoal) was 
classified as inhibited while samples 13, 15, 16 (moderate ammonia, but early days or 
addition of activated charcoal) were predicted as non-inhibited, in agreement with the 
conclusions of the authors.  



 

 104 

Taking into account all the samples from digesters clearly non-inhibited (15) or clearly 
inhibited by ammonia (13) we estimated that the model predicted the inhibitory status of 
external samples with an accuracy of 93% as only two samples were incorrectly classified. 

 
Figure 44: Projection of samples from studies 3 and 4 in the factorial plan determined after Multivari ate 

Integrative Sparse Partial Least Squares Discriminant Analysis of samples from studies 1 and 2.  
Each sample from studies 3 and 4 is represented by a marker. Type of marker indicates the study. Colour of the 

marker indicates the inhibition status in the reactor where the sample was taken. A prediction area, based on 
studies 1 and 2 was calculated and is plotted on the graph. The different figures indicate remarkable samples. 

Our results evidenced that multivariate integrative methods could be efficiently implemented 
to predict the inhibitory status of samples collected from two independent studies focusing on 
ammonia inhibition, and despite differences in sequencing primers and targeted regions. It 
enables data sharing across research communities and re-use of existing data deposited in 
public databases while identifying a reproducible biomarker signature. It can be useful 
notably to pave the way for digester microbial management, as in the meantime miniaturized 
sequencers are being developed and could be in the future implemented in biogas plants at a 
reasonable cost. Combination of both approaches would enable to establish a functional 
diagnosis of the digesters provided that other models are developed to target other inhibitors 
of parameters characterising the functioning of the digesters. Other types of biomarkers than 
16S could also be used with the same approach. 

This work is not published yet but is currently under review in the ISME Journal (Poirier et 
al., submitted). 

3. Time-course modelling to take into account the temporal variability  

Microbial communities are highly dynamic biological systems. Snapshot analyses only focus 
on one time point and are not always sufficient to characterize microbial communities and 
reflect the ongoing processes. The decreasing cost of DNA sequencing and samples analysis 
in general has enabled to address that problem. Longitudinal and time-course studies to record 
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the temporal variation of microbial communities and associated processes are now possible 
(Knight et al., 2012; Faust et al., 2015). These studies can inform us about the stability and 
dynamics of microbial communities in response to perturbations or different conditions. They 
can capture the dynamics of microbial interactions (Bucci et al., 2016; Ridenhour et al., 2017) 
or associate changes of microbial features, such as taxonomies or genes, to a ‘phenotypic’ 
group (Metwally et al., 2018) such as degradation performances in the case of AD.  

The overall aim of such studies is to investigate relationships between longitudinal measures 
in a holistic manner to further decipher the link between molecular mechanisms and microbial 
community structure. However, comparing at the same time multiple conditions and multiple 
time points characterized with one or several types of high-dimensional data is challenging. In 
particular, analytical frameworks enabling an integrated analysis between microbial 
communities and other types of biological, chemical or performance data are still at their 
infancy. 

My collaboration with Dr Lê Cao at the University of Melbourne enabled me to pave the way 
for the analysis and integration of longitudinal data measured within anaerobic digesters. We 
used a combination of different statistical methods to analyse complex longitudinal data sets. 
Our approach includes modelling of profiles of the different datasets across time with spline 
smoothing (Déjean et al., 2007) and use of classification or multivariate ordination methods to 
identify correlated sets of variables across the data types, and across time. It enables us to 
visualize patterns of time course evolution, compare them across different conditions, infer 
relationships between different microorganisms or different types of data. The fitted splines 
enable us to predict or interpolate time points that might be missing within the time interval 
(e.g. inconsistent time points between different types of data or covariates). 

I have applied these time-course modelling approaches on different types of data, to answer 
different types of questions:  

• To evaluate the effect of an abrupt temperature increase on the abundance and activity 
of AD microbiome. Experimental set-up is presented in (Madigou et al., 2019) but 
analysis is based on additional data not presented in this paper.  

• To compare the influence of different inhibition speeds on the activity of AD 
microbiome and identify biomarkers of inhibition by ammonia (PhD of Laëtitia 
Cardona, writing in progress).  

• To draw links between microbial dynamics measured with 16S sequencing, patterns of 
waste degradation measured with a GCMS metabolomic approach and performances 
of the process (Bodein et al., submitted). 

3.1. Effect of an abrupt temperature increase on the dynamics of 
AD microbiome 

In this study, the influence of a rapid increase of temperature (35°C to 55°C) on the dynamics 
of AD microbiome was assessed in a semi-continuous digester. After stable functioning in 
mesophilic conditions for several hydraulic retention times, the digester was submitted to 
sudden temperature increase. Our objective was to better document the consequences of 
temperature modifications on the microbiome of AD to have clues to limit their detrimental 
effect on the process.  

Samples were taken regularly in the digesters. Both RNA and DNA of the samples was 
extracted, and used for 16S metabarcoding to target activity and abundance of the 
microorganisms. Treatment of the data obtain is summarized on Figure 45. 
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Focus was first given to RNA data. 545 OTUs were detected. This dataset was preprocessed. 
Low abundant OTUs were filtered, data were normalised and transformed with centered log 
ratio (CLR) (Tsilimigras and Fodor, 2016). A second filter, based on the differential 
expression across time was applied, to keep only the OTUs influenced by the temperature 
modification (Straube et al., 2015). After these treatments only 30 OTUs were kept. However, 
in all the samples they accounted for approximately 90% of the total number of sequences. 
The time-course profile of each OTU was modelled with Linear mixed model splines (R 
lmms package, lmmSpline() function) (Déjean et al., 2007).  

In order to group together the microorganisms sharing a similar temporal evolution of their 
activity just after temperature increase, a clustering was carried out on the first derivative of 
the predicted fitted curves. We focussed the analysis on a period of 20 days (going from -2 to 
18, day 0 being the day where temperature was increased), represented in white on Figure 45 
(abundance in samples taken before and after (blue zones of the graphs) was not used for the 
clustering). Hierarchical clustering, with Euclidean distance and ward aggregation was 
applied for the clustering. We decided to separate the profiles in 4 clusters. Time course 
profiles of the OTUs of the different clusters are presented on Figure 45. 

• Cluster A grouped 5 OTUs. Their activity increased importantly just after 
temperature shock. They were the key players that helped to sustain biogas 
production just after the perturbation.  

• Cluster B grouped the 6 most sensitive OTUs. Their activity decreased importantly 
just after temperature shock. High temperature had fatal consequences on their 
activity.  

• Cluster C grouped 14 OTUs. Their activity decreased smoothly after temperature 
increased. They were probably not the most efficient in thermophilic conditions.   

• Cluster D grouped 5 OTUs. Their activity increased only after several days under 
thermophilic conditions. It could be due to their slow growth rate or because they 
benefited from the progressive disappearance of other microorganisms.   

OTUs of the different clusters were identified. For example, OTUs of cluster A seemed to 
be mainly ‘mesophilic microorganisms’ that adapted (at least temporarily) to the new 
conditions (for example Methanobacterium beijingense, OTU from Mesotoga genus, 
various OTUs from Bacteroidales order). These thermotolerant OTUs probably enabled to 
maintain bacterial activity just after temperature change. On the contrary some of the 
OTUs of cluster D were ‘thermophilic microorganisms’ that developed progressively to 
take advantage of the ecological ‘niches’ freed (for example Methanoculleus 
thermophilus…).  

The employed method was very powerful to collapse the dimension of the data and group 
together the OTUs sharing similar patterns across time and in response to the temperature 
increase.  
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Figure 45: Time-course data analytical framework used to analyse AD microbiome data after an abrupt 
temperature increase. Dashed line represents the increase of temperature at day 0. Raw RNA data (OTU table) 

was pre-processed and filtered. Kept OTUs were modelled with spline smoothing and clustered into 4 groups 
with similar time course evolution between days -2 and 18 (represented in white on the figure). The time course 

evolutions of the OTUs seen through DNA analysis within each cluster were also plotted.  

For each cluster, time course profiles of the same OTUs modelled from 16S RNA gene 
(DNA) metabarcoding data were also plotted (Figure 45). It enabled to see if abundance and 
activity of the microorganisms were strongly related or not. For example, for cluster A, we 
observed that the increase of the activity of 2 of the OTUs was not linked to an increase of 
their relative abundance in the digester (purple and orange curves), while the increase of 
activity of the three others OTUs was associated with a growth of the microorganisms 
(increase of the relative abundance).  

For respectively clusters B and C and cluster D, we observed that the relative activity of the 
microorganisms respectively decreased or increased more rapidly than their relative 
abundance, confirming that 16S RNA was more accurate to reflect the AD process evolution 
after a shock than 16S RNA gene (De Vrieze et al., 2018). We used an approach based on fast 
Fourier transform (Straube et al., 2017) to estimate the delays between the evolution of the 
activity and the evolution of microbial abundances, based on the modelled curves. The 
concept is illustrated in Figure 46 (first column) for a few OTUs. Briefly, by combining the 
fast Fourier transform angular difference between reference (RNA in our case) and query 
trajectories (DNA in our case) with lagged Pearson correlation, the method characterises the 
magnitude and direction of delay (number of days early or late). Delays were calculated for 
all OTUs and are summarized in the second column of the figure with box-plots. They were 
of a few days.  
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Figure 46: Delays between RNA and DNA time course profiles can be observed and calculated with an 
approach based on Fourier transform. They are summarized with boxplots for the different clusters.  

More generally, the approach described in this section can be useful to highlight the 
connections and interdependency between the applied conditions, and different ‘levels’ of 
biological information such as ‘DNA’, ‘RNA’, ‘proteins’, ‘metabolites’ and performance data 
(macroscopic output). Calculating delays between the different types of information can be 
used to realign the trajectories and identify those which show a high degree of correlation 
despite a shift in time. 

3.2. Influence of the addition of ammonia at different speeds on the 
dynamics of the microbiome 

To evaluate the possibility to acclimate AD microbiome to the presence of ammonia, and 
identify potential bioindicators of inhibition, ammonia level was increased at different speeds 
in 6 semi-continuous digesters (Figure 47).  

More precisely, after a stabilisation phase of more than 3 HRT without ammonia, NH4Cl was 
added in order to reach a final NH3 concentration of 183 mg/L, estimated to be partially 
inhibiting thanks to previous batch experiments (data not shown). This concentration was 
reached at different dates in the different reactors. P0 reactor was not perturbed (control). In 
P1 the target ammonia concentration was reached almost directly (2 days), in P2 it was 
reached after 0.5 HRT (14 days), in P3 after 1 HRT (25 days), in P4 after 2 HRT (50 days) 
and in P5 after 3 HRT (75 days). For all the bioreactors, once reached, the inhibitory stress 
was maintained during 3 HRT.  



 

 109 

 

Figure 47: Experimental design used to evaluate the influence of inhibition speed in semi-continuous 
bioreactors.  

Process parameters were measured across time to compare the effect of the different 
inhibition speeds on the performances of the process (Figure 48). It showed that in all case the 
level of VFA (acetate and propionate) increased after the perturbation. A decrease of biogas 
production was also observed, but its intensity decreased from P1 to P5. Proportion of 
methane in the biogas diminished only in P1 and P2. It suggested that an acclimation of the 
microbiome was possible provided that the inhibition speed was not too important. 

 

Figure 48: Main performances indicators measured in the different reactors across time. Black line shows 
when the inhibition was started.  

Samples were taken regularly for RNA extraction and subsequent 16S metabarcoding of the 
corresponding cDNA was performed. Time course profiles of the different OTUs in the 
different reactors were modelled as described previously. Focus was given to the period 
between days 70 and 154 corresponding to the end of the stabilisation phase and the inhibition 
phase. 
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Data of reactor P1 was analysed first. Data was filtered to remove microorganisms whose 
activity did not evolved over time. In order to group together the variables sharing a similar 
temporal evolution a clustering was carried out on the first derivatives of the predicted fitted 
curves (Déjean et al., 2007). The kml method (k-means for longitudinal data, (Genolini and 
Falissard, 2011)) was applied for the clustering. 8 clusters of profiles were obtained (see line 
P1 in Figure 49) corresponding to OTUs whose activity decreased or increased more or less 
rapidly after the addition of ammonia. 

The evolutions of the time-course profiles in P1 were compared to the evolution of the time 
course profiles in the other reactors. For that purpose, the time course profiles of these clusters 
of OTUs in the other reactors was also plotted. In P0 (not inhibited) profiles remained rather 
constant, showing that their evolution in P1 was likely linked to the addition of ammonia. 
From P2 to P5 contrasted results were observed. For example, several OTUs from cluster 2 
that were strongly inhibited in P1 were not or less inhibited when ammonia addition was more 
progressive. Most of the OTUs from cluster 5 that appeared in P1 just after the inhibition also 
appeared in P2, but less and less appeared in P3, P4 and P5. It confirmed that an acclimation 
of the digesters to the ammonia seemed to be possible, limiting the consequences on microbial 
community. On the contrary activity of other microorganisms evolved in all the cases 
meaning that several OTUs were very sensitive to ammonia, independently of the inhibition 
speed. These results are currently analysed more in depth to identify which microorganism 
acclimatized to the inhibitor and which did not (PhD Laëtitia Cardona).  

 

Figure 49: Time course profiles of the different OTUs in the different bioreactors (lines). OTUs were 
grouped in clusters (column) based on their similar evolution in P1 digester. Red lines correspond to the day 

when inhibition was started.  
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For example, bioindicators of the presence of ammonia were sought by identifying the 
microorganisms whose activity evolved in all the reactors where ammonia was added, 
independently of the inhibition speed. For that purpose, for each OTU, time delays were 
estimated between the time profiles in P1 and in the others inhibited reactors. The 
microorganisms with a similar time profile evolution between the different inhibited reactors, 
showing a delay in accordance with the ammonia addition speed, were considered as potential 
bioindicators of ammonia inhibition. For example, Figure 50 illustrates the time course profile 
of two OTUs in the 6 digesters. Their activity remained stable in P0 but gradually decreased 
across time, in accordance with the level of ammonia in the digesters P2 to P5 and 
independently of the inhibition speed.  

 

Figure 50: Time course profiles of two OTUs in the different bioreactors. OTU 68 is from the family 
Syntrophaceae and OTU 176 from family Leptospiraceae. 

Finally, with the same samples we are also currently assessing the effect of the ammonia 
perturbation on the pathways of degradation. Untargeted metabolomics analyses were 
performed with FTICR (Fourier-transform ion cyclotron resonance). Several thousands of 
metabolites were detected. A similar treatment was applied and is illustrated in Figure 51. In 
this case only four groups of profiles were evidenced, that reacted more or less quickly to 
ammonia inhibition in P1. As observed with microorganisms, contrasted results were 
observed in the other reactors. This data was obtained very recently (collaboration with the 
Ecole Polytechnique) but will undoubtedly provide further insights in the inhibition of AD by 
ammonia.  
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Figure 51: Time course profiles of the different metabolites in the different bioreactors (lines). Metabolites 
were grouped in clusters (column) based on their similar evolution in P1 digester. Red line corresponds to the 

day when inhibition was started. 

3.3. Integration of different types of data in a time-course context 

The approaches presented in the two previous paragraphs did not seek for correlation between 
data of different types. However, as illustrated in particular in section 1 of this chapter, the 
same samples are sometimes analysed with different techniques. During a collaborative work 
with Kim-Anh Lê Cao, we set-up a specific analytical framework for the integration of 
microbiome longitudinal studies with other data types (Bodein et al., submitted) (preprint was 
deposited on biorxiv (10.1101/585802v2.full)).  

The general workflow of the method is presented Figure 52. In brief, the different types of 
data measured on the same samples are first pre-processed (filtering, normalisation etc.). For 
each type of data, the ‘variables’ (for example OTUs, metabolites, performance measures…) 
are modelled with spline smoothing. Modelled data are filtered (noisy variables are often 
modelled as straight lines that do not represent a biological reality and are therefore 
discarded). Resulting time course profiles are integrated with different methods according to 
the number of types of data to integrate. Sparse PCA is used to treat single datasets. Sparse 
Projection to Latent Structures (sPLS) method (Lê Cao et al., 2008) was described in section 
1. Multiblock sPLS is a generalisation of sPLS to more than 2 blocks of data (Singh et al., 
2016). In all the cases, the objective is to identify correlated (or co-expressed) variables 
measured on one or several heterogeneous data sets.  
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Figure 52: Workflow diagram for longitudinal integr ation of microbiome studies. We consider studies for 
the analysis of the microbiome through OTU (16S amplicon) or gene (whole genome shotgun) counts. This 

information can be complemented by additional information at the microbiome level, such as metabolic 
pathways measured with metabolomics, or information measured at a macroscopic level resulting from the 

aggregated actions of the microbiome. 

More precisely, after computing the sPCA, the sPLS or the multiblock sPLS, a set of 
correlated variables is selected on each component (axis) of the analysis. This set can be 
divided into two groups of variables: variables that have a positive loading on the component 
and variables that have a negative loading. They are negatively correlated. Each component 
thus enables to evidence two groups of correlated profiles, as illustrated on Figure 53. 

This method was assessed on different types of data, including a digester study which is 
presented below. 
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Figure 53: Identification of the correlated variables with sPCA, sPLS or multiblock sPLS on the 
correlation circle plot. After computing a sPCA, sPLS or multiblock sPLS a correlation circle plot is obtained. 
It shows the loadings of the different variables (here variables are presented with orange and blue markers) on 

the different components of the analysis (here components 1 and 2). Variables with a negative loading on 
component 1 can be grouped together. They are highly correlated. Variables with a positive loading on 

component 1 are also correlated with each other, and negatively correlated to the variables with a negative 
loading on component 1. They form a second group of correlated variables. Process can be iterated on 

component 2 and subsequent components if necessary to evidence groups of correlated variables.  

To evaluate this method, we used the data from an experiment where three anaerobic batch 
digesters fed with biowaste had been monitored across time. Degradation performance was 
monitored through 4 parameters: methane and carbon dioxide production (16 time points) and 
accumulation of acetic and propionic acid in the bioreactors (5 time points). Microbial 
dynamics were profiled with 16S RNA gene metabarcoding and included 4 time points and 90 
OTUs. A metabolomic assay was conducted on the same biological samples on 4 time points 
with gas chromatography coupled to mass spectrometry (GC-MS) after solid phase extraction 
to monitor substrates degradation. The different types of data were pre-processed, modelled 
with smoothing splines and filtered as described in Figure 52.  

The three datasets were first analysed one by one and two by two (not illustrated here). 
Finally, the three types of data (16S, metabolites and performance data) were integrated 
together with multiblock sPLS as described above. Correlation between the different variables 
was correctly described by two components. On each component, variables with respectively 
negative and positive loadings were grouped together to form 4 cluster. The time course 
evolution of the variables of the 4 clusters is illustrated on Figure 54.  
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Figure 54: Integration of OTUs, metabolites and performance measures with block sPLS. Each line 
represents the scaled abundance of selected OTUs, metabolites and performance measures across time. OTUs, 
metabolites and performance measures were clustered according to their contribution on each component for 

block sPLS. The clusters were further separated into profiles with a positive or negative correlation. 

The first cluster (denoted `component 1 negative') included 10 OTUs, 4 metabolites and 2 
performance variables. The variables showed increasing level until a plateau was reached at 
approximately 40 days. The OTUs were microorganisms often recovered during anaerobic 
digestion of biowaste, such as methanogenic archaea of Methanosarcina genus or bacteria of 
Clostridiales, Acholeplasmatales, and Anaerolineales orders. Their abundance increased 
while biowaste was degraded, until there was no more biowaste available in the bioreactor. 
Their abundance was correlated to the intensity of various metabolites produced during the 
AD process, such as benzoic acid that is formed during the degradation of phenolic 
compounds (Hoyos-Hernandez et al., 2014), or phytanic acid, known to be produced during 
the fermentation of plant materials in the ruminant gut (Watkins et al., 2010), as well as 
indole-2-carboxylic acid. Two performance variables (methane and carbon dioxide 
production) were assigned to cluster 1. This result is biologically relevant, as biogas is the 
final output of the AD reaction and is known to be associated with microbial activity and 
growth. Moreover, it is produced by archaea, such as Methanosarcina, also selected in this 
cluster. 

Cluster 2 (component 1 positive) included 10 OTUs, 4 metabolites and 1 performance 
variable. These profiles were negatively correlated to Cluster 1, and their abundance 
decreased with time. OTUs mainly belonged to the Bacteroidales order. They were present in 
the initial inoculum but did not survive in this experiment, as the operating conditions or the 
substrate were not optimal for their growth, as observed in other studies (Madigou et al., 
2019). Metabolites identified in Cluster 2 were present in the biowaste and were degraded 
during the experiment. They included fatty acids (decanoic and tetradecanoic acids) that can 
be found in oil, or 3-(3-Hydroxyphenyl)propionic acid, arising from digestion of aromatic 
amino-acids or breakdown product of lignin or other plant-derived phenylpropanoids (Torres 
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et al., 2003). As their profile was negatively correlated to those from cluster 1, it is likely that 
these metabolites were consumed by OTUs assigned to cluster 1. Acetate was also associated 
to this cluster.  

Cluster 3 (component 2 negative) included 11 OTUs and 3 metabolites with slow abundance 
increase. OTUs of this group were very varied with 8 orders represented. They may have 
slower growth rates than OTUs of cluster 1 or were involved in the last steps of the 
degradation. Metabolites included N-Acetylanthranilic acid and Dehydroabietic acid that were 
likely produced by microorganisms and accumulated during the anaerobic digestion process.  

Finally, Cluster 4 (component 2 positive) included 1 OTU and 5 metabolites. Profiles 
decreased slowly with time. One OTU of order Clostridiales appears to have been out-
competed by other OTUs during the first days of the degradation. Among the metabolites of 
this cluster, Hydrocinnamic and 3,4-Dihydroxyhydrocinnamic acids are commonly found in 
plant biomass and its residues (Boerjan et al., 2003). Their molecular structure may have 
contributed to their slower degradation compared to other molecules. Propionate was assigned 
to this cluster, which made sense as its degradation only starts when all acetate is degraded 
(Chapleur et al., 2014).  

Multiblock PLS enabled to identify microorganisms and metabolites with correlated time 
course profiles. The computational framework we have proposed is one of the first to 
integrate longitudinal microbiome data with other omics data or other variables generated on 
the same biological samples or material. The identification of highly-correlated key omics 
features can help generate novel hypotheses to better understand the dynamics of biological 
and biosystem interactions. Thus, our data-driven approach will open new avenues for the 
exploration and analyses of multi-omics studies. 

4. Conclusion  

Advances in technology and reduced sequencing costs have resulted in the emergence of new 
and more complex experimental designs that combine multiple omic datasets and several 
sampling times from the same biological material. Thus, the challenge is to integrate 
longitudinal, multi-omic data to capture the complex interactions between these omic layers 
and obtain a holistic view of biological systems. These approaches enable to propose data-
driven analytical frameworks. 

The data I have been working on so far come from experiments that were not designed on 
purpose for this type of analysis. Working with statisticians opened new perspectives and will 
help me to improve the experimental design to answer future research questions. I now also 
plan to include other types of omics data in these analyses. These objectives are presented 
with more details in the next and last part of this manuscript.  
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Future research project 

As said in the preamble and described in this manuscript, during the first decade of my 
research career, I had the opportunity to use multiple techniques to target different questions 
related to the topic of AD. The concomitant development of microbial ecology significantly 
boosted the possibilities. I’m now also generating omics data. So far it was mostly 
metabolomics, at Irstea and at the Ecole polytechnique through collaboration I started in 2018. 
In the framework of the Digestomic project, I generated in 2019 a first set of metagenomics 
data. Metatranscriptomics data will also be produced soon for this project. These data put 
back into perspective the analysis that can be done of microbial ecosystems of AD digesters.  

To face the growing volume of data I was generating, I initiated in 2017 collaboration with 
statisticians. This collaboration was decisive. Of course, it provided me with the different 
tools I needed to treat my data. I learnt how and when to use the methods. But it also opened 
new perspectives. The close link with the statisticians, greatly facilitated by different stays of 
several months within their research team, allowed me to both learn how to explain my 
research questions so that they can be associated to statistical methods, and discover the 
potential of the field through the results obtained by my collaborators on other types of data. 
Based on these exchanges, we started to assemble specific analytical frameworks for the 
treatment of my data (for example for the analysis of longitudinal data).  

As a future research project, I want to carry on the work engaged to improve the 
environmental bioprocesses. I want to combine together the new methodological strengths 
mentioned above and also mix them with the methods I used earlier in my research. The 
following pages describe these objectives. Some of them are illustrated with examples of the 
work planned in the STABILICS project submitted to the ANR call in 2019 (“Coupling 
statistics and multi-omics to gain new insights in the determinants of anaerobic microbial 
bioprocess stability”, in collaboration with the different partners mentioned above) and that 
has just been accepted.  

1. Intended research focus for the next years 

1.1. Toward the development of anaerobic digestion  

Despite it has been studied for a long time, AD is still not fully mastered and has a potential 
for improvement. In particular, it still lacks stability and flexibility. In the next paragraph I 
present different topics that could be targeted in future projects to favour AD development.  

1.1.1. Optimizing the stability of the anaerobic digestion 

Key microorganisms driving the AD process form an extremely complex microbial 
community or microbiome, able to degrade the organic matter across multiple pathways, with 
lots of functional redundancies. One of the major limitations of AD is the important 
susceptibility of this microbiome to changes in operational conditions of the digesters, 
including inhibitors (see introduction, section 1.4). It can lead to unstable methane formation 
and have important economic and environmental consequences.  
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Controlling AD microbial community stability, though, is not a trivial task. Its exact role in 
terms of “elasticity” of the digesters, i.e., its robustness or ability to rapidly adapt to changing 
conditions, is unclear (De Vrieze et al., 2013). Numerous studies were attempted to 
understand the influence of inhibitors and identify key operational parameters playing a role 
in the stability of AD microbiome (Carballa et al., 2011; Poirier et al., 2016b). However, they 
were often limited to a ‘before’ and ‘after’ comparison. No consensus on the underlying effect 
of perturbation was obtained. Moreover, experience feedback shows that instability is 
encountered even when the operating conditions of the digester seem highly regular 
(Fernandez et al., 1999; Zumstein et al., 2000; Briones and Raskin, 2003; Rivière et al., 2009).  

Therefore, to facilitate sustainability and AD development, I think that it is essential to deepen 
our understanding of the determinants of bioprocess stability over a long time period. They 
consist in the conditions and the succession of microbial events that allow maintaining a 
balance after a disruption or, on the contrary, that generate a domino effect leading to total 
failure. That’s one of the objectives of the STABILICS project (described with more details in 
1.2). Once the causal chain leading to the disruption of AD digesters will be better 
understood, it will be easier to propose adequate solutions to improve AD stability. 

1.1.2. Broaden the fields of application of AD 

To address the increasing need for energy, independent from the use of fossil fuels, AD 
appears as a promising process. Increasing the number of biogas plant requires that the 
organic matter resource is widen and that as many substrates as possible can be used for 
methane generation. In the last years, both municipal and industrial production of organic 
waste has shown increased metrics in production and quality of the organic waste (higher 
collect efficiency, improved source separation). Numerous new substrates are showing 
interesting potential as for example fats and algae. Before they can be used routinely, several 
aspects need to be better understood, such as of course their impact on the process 
performances, but also the changes they induce on microbial dynamics in digesters (Mata-
Alvarez et al., 2014). I think it will be another interesting area of research in the following 
years.  

In the same way, processes need to be as adaptable as possible to the volume and organic 
content of waste. Indeed, the production of several types of waste is highly seasonal. Among 
others, temperature could be an operational lever to adjust the efficiency of bioreactors 
according to the fluxes of waste. It was shown that decrease in temperature results in a 
decrease of the metabolic rate of the microorganisms, and in the substrate utilization (Bowen 
et al., 2014), which can be useful in digesters treating low or irregular volumes of waste. 
However, works are still needed to better understand and control this lever. For example, 
temperature decrease usually causes an accumulation of intermediate products, such as VFA, 
which may in turn inhibit microbial members, eventually reducing the process efficiency 
(Regueiro et al., 2014). Temperature modification can also result in important changes in the 
community structure (McKeown et al., 2009; Chapleur et al., 2016a; Madigou et al., 2019). 

Links between the operational parameters and the degradation pathways employed by the 
microbial community could also be sought. It could for example enable to define possible 
microbial management strategies to orientate the functioning of the ecosystem toward the 
production of molecules with high added value such as biofuels or synthons usable in green 
chemistry.  

1.2. Example of the STABILICS project to address these topics 

As an illustration of my approach to address these research focuses, this section describes 
more precisely the experimental set-up of the STABILICS project. The aim of the project is to 



 

 119 

gain new insights in the determinants of anaerobic microbial bioprocess stability. For that 
purpose, the microbial dynamics in semi-continuous anaerobic digesters under constant 
environmental parameters or subject to different model perturbations created by the addition 
of NaCl will be monitored in the long run (more than one year).  

1.2.1. Influence of different patterns of perturbation  

Perturbation can greatly influence the evenness, dynamics and diversity of AD microbial 
community and associated functions. The microbial community can maintain a stable 
composition (resistance), temporarily change in composition (resilience) or shift to a new 
composition (redundancy) in response to a disturbance, depending on the type of perturbation 
(Theuerl et al., 2019). To explore diverse scenarios, different model disturbances will be 
created in STABILICS (abrupt, gradual, repeated shock). They are depicted in schematic 
format in Figure 55. It will enable to induce various ecological responses of the microbiome, 
cascades of effects at the taxonomic or functional levels and evidence mechanisms such as 
adaptation, resistance, resilience or functional redundancy (Theuerl et al., 2019). Dynamics of 
the microbiome under disturbance will be compared to the baseline level under stable 
conditions.  

Abrupt addition of salt (1) will immediately create an important stress, giving no opportunity 
to the microorganisms to adapt. It will evidence clearly the microorganisms and the functions 
or metabolic pathways most sensitive to the stress or most eager to take over freed ecological 
niches. Recovery after inhibition may require multiple microbial, functional and metabolic 
changes (Madigou et al., 2019).  

On the contrary, progressive addition of salt (2) could enable a smoother adaptation of the 
microbial community. Main functions and degradation pathways could be maintained through 
functional redundancy despite microbial changes. For example, acclimation of methanogens 
to high concentrations of sodium over prolonged periods of time was already described 
(Mottet et al., 2014). 

Pulse increasing addition of salt (3) will also allow an adaptation of AD microbiome. In that 
case, inhibiting pressure release between each pulse event will ensure the total recovery of the 
microbiome and functions between each stress. It will avoid drift toward a simplified and less 
robust community (De Vrieze et al., 2013). 

A control condition (0) will be of crucial interest to measure the dynamics of the performance 
and of the microbiome when all the parameters are kept constant.  

 

Figure 55: Perturbations that will be applied in the digesters. 

Specific focus will be given to the transitional states and to the regeneration phase after 
perturbation as we assume they are highly dynamic. 
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For each condition tested, triplicate reactors will be set-up. It is essential to assess the 
reproducibility of the observations, too seldom done in the literature (Prosser, 2010).  

1.2.1. Salt as a model inhibitor 

Stress will be created by the addition of salt (NaCl), regularly mentioned as an AD inhibitor. 
NaCl was selected because it is found in various types of waste treated with AD (Lefebvre et 
al., 2007). It is found in various residues from the food processing industry (Chen et al., 
2008a), in aquaculture sludge, molasses or vinasses wastewaters, kitchen waste (De Vrieze et 
al., 2017), microalgae (Mottet et al., 2014). While moderate concentrations stimulate 
microbial growth, excessive amounts slow it down, and cause severe inhibition or toxicity 
(Mottet et al., 2014; De Vrieze et al., 2017). 

Salt is also very easy to manipulate and control, as it is soluble, non-degradable, non-toxic 
(contrary for example to micropollutants), not impacted by other changes in the reactor 
(contrary for example to ammonia whose effect depends on the pH). Its concentration can be 
easily assessed with conductivity and measured with ionic chromatography. 

2. Methodologies 

The methodologies I plan to use in my future projects rely on the combination of different 
innovative methods to study complex microbial communities. In line with the first results 
presented in Chapter 3, I want to apply high-throughput methodologies more widely in 
combination with statistics. I would also like to combine stable isotope probing with omics 
methodologies in future projects.  

2.1. Application of omics in combination with statistics 

Emerging omics high-throughput approaches can now lead to unprecedented data to portray 
AD microbiome at different levels (Vanwonterghem et al., 2014a). Metagenomics, 
metatranscriptomics, metaproteomics and metabolomics provide the information necessary to 
represent portraits of a community’s genes, gene expression, and metabolite production. They 
reveal the potential and the activated functions of the microbiome and the outcome of their 
expression. They can allow to unravel the intricate networks of functional processes of AD 
(Lü et al., 2014; Vanwonterghem et al., 2014b; Carballa et al., 2015; De Vrieze et al., 2016b), 
provided that appropriate analytical methods are applied to decipher these big datasets. In 
particular, combining omics information with data on reactor performance during different 
operational conditions (especially transitional states) could help elucidate the mechanisms of 
process instability (Li et al., 2018). Computational analytical methods have a promising 
potential to capitalise on this rich data. However they are still at their infancy and were not 
broadly used for this type of problems.  

STABILICS project totally fits in this category. It was specifically designed to produce 
repeated longitudinal omics data to be analysed with computational statistics to generate more 
information on the reasons leading to a disruption of digesters. 

2.1.1. Illustration of the approach with STABILICS project 

2.1.1.1. Research hypotheses 

To build the project and imagine the different experiments of STABILICS, I formulated the 
hypotheses that:  
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• AD is managed by an intricate microbial community, highly diverse and functionally 
redundant, resulting in an important dynamism across time in general and elasticity 
under perturbation.  

• Perturbation results from a succession of events at different omics levels leading to a 
disruption of the digesters if microbiome equilibrium cannot be maintained despite its 
important elasticity.  

• The different levels of omics provide different types of information that describe more 
or less accurately the state of the digesters regarding operational stability or dysfunction. 
For example, despite stable performances of the digester, one or several levels of omics 
can be highly variable. 

• Different types of stress (abrupt, progressive, repeated…) can result in different types of 
effects on the microbiome, the different levels of omics, and ultimately on the 
performances of the digesters. 

• Deciphering the determinants of AD stability requires longitudinal studies across 
multiple time points, at several levels of omics and under stable and stress conditions.  

2.1.1.2. Extensive use of omics methodologies 

To test these hypotheses, and get insights in the determinant of AD stability, I proposed to 
conduct sets of high-throughput multi-omics longitudinal analyses, with an unprecedented 
sampling depth, in anaerobic digesters described in section 1.2. Obtained data will be 
analysed with innovative computational methods. More precisely, the objective will be to 
evaluate at different omics levels the dynamics of AD microbiome in long term and replicated 
time course experiments, under stable conditions or subject to different types of stress. Two 
levels of analysis will be applied.  

A first level of analysis will consist in a high-frequency monitoring (weekly) of different 
descriptors of microbiome activity, easily accessible at the lab. Non-targeted metabolomics 
will characterise the degradation pathways. Associated microbial dynamics will be monitored 
with metabarcoding. Both RNA and DNA methods will be used, to target both active and 
present microorganisms (De Vrieze et al., 2016b), i.e. actual and potential actors of the 
process. Links between the conditions applied, microbial dynamics, stability of the 
degradation pathways and digester’s performance across time will be sought to get new 
insights in the determinants of AD stability. This frequency of analysis is high and will be a 
strength of the project. It will enable to follow in details the time course evolution of the 
different ‘variables’. Our previous results showed that this sampling time step was necessary 
in order not to lose precious information as microbiome evolution can be very quick (Poirier 
et al., 2016b). Reproducibility of the observation will be assessed.  

A second level of analysis will consist in an in-depth monitoring of microbiome functioning 
with both shotgun metagenomics and metatranscriptomics that give complementary 
information (Maus et al., 2016). Selected samples will be analysed, as these methods are more 
expensive and time consuming. Focus will be given to one disturbed condition and to the 
stable condition. A deeper access to digesters microbial functioning will be gained. 
Information on the expressed and potential functions will be integrated to the other levels of 
information with statistical methods. First hypotheses on microbial dynamics will be validated 
and new hypotheses on the association with functional dynamics will be posit, still with the 
view to getting insights in the determinant of AD stability across time. These approaches will 
provide precious information on the expression of the different functions during time and in 
response to the stress. Analytical strategy (selection of samples) will be based on the results of 
high-frequency monitoring. Four time points will be analysed in triplicates: before stress, 
during stress establishment, during stress maintenance and after recovery. Control analysis in 
stable conditions will also be performed (2 time points analysed in triplicates) to evaluate the 
evolution of the functions despite stability. 
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2.1.1.3. Integrative statistical analyses and novel 

computational developments 

A methodological challenge will be to integrate the different types of data and the temporal 
information. Data will be analysed independently with multivariate methods to assess the 
influence of the stress on the stability of the different parameters measured. Supervised 
statistical approaches will be used to identify discriminant features across time, between the 
conditions or the replicates. It will provide us with a subset of bioindicators of process 
stability/forthcoming instability, helping us to generate novel hypothesis. Longitudinal 
analytical frameworks will compare the time course evolution of the variables within each 
data set and cluster them into groups of similar behaviour. This novel approach will help us 
identify features with similar patterns of activity, and link microorganisms with degradation 
pathways. It will enable to gain a better understanding of the dynamics and the interplay 
between the different levels of information measured.  

2.1.1.4. Questions targeted  

The following question may typically be addressed:  

• How dynamic is the microbiome under stable operation?  
• What are the consequences of microbial community changes on the degradation 

pathways?  
• Is the stability of the digesters more dependent on stability of present or active 

microorganisms?  
• What is the succession of events that, under stress, leads to microbiome equilibrium 

unbalance and digester disruption or on the contrary microbiome equilibrium 
preservation and maintenance of stability?  

• Which level of omics data is the more appropriate to identify bioindicators of optimal 
performance or stress?  

It will give insights on the respective role of potential and really expressed functions on 
microbiome equilibrium. The combination of all these data will enable us to identify precisely 
the limiting stages of the processes at the origin of the varying performances (for example 
instability of one specific pathway, one type of microorganisms, one function or one 
microbial functional group etc.). The project will deliver generic knowledge to understand the 
determinants of perturbations. It will enable to propose microbial management strategies to 
improve the stability of anaerobic digesters.  

2.2. Use of omics and isotope labelling in combination 

Experiments done during my PhD revealed that stable isotope probing was very powerful to 
targeted specific functional information. However, they were limited by the volume of data 
generated. The news omics methodologies give access to more information and can be 
advantageously combined to SIP.  

Only a few examples of research targeting the fate of labelled substrates in AD systems with 
metagenomics were published (Ziels et al., 2018). However, as a limitation of metagenomic 
studies is that sequencing of bulk DNA focuses primarily on genomic sequences from 
relatively abundant microorganisms, coupling both approaches can give access to a more 
resolved information (Coyotzi et al., 2016).  

With the development of metabolomics and fluxomics (metabolomic approach that seek to 
determine the rates of metabolic reactions within a biological entity), a new perspective could 
be to monitor the degradation of a complex labelled substrate in a totally untargeted way 
(Llufrio et al., 2019). So far, I could not find any published results on the combination of 
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isotope labelling and metabolomics in the AD context. In combination with metagenomics it 
would enable to resolve complex pathways and get further information to improve the 
understanding of anaerobic digesters and propose microbial management methods. Similarly, 
in a perspective of biorefinery, the functioning of bioelectrochemical systems relying on 
microbial electrosynthesis could also be targeted more thoughtfully with a combined SIP – 
omic approach, by feeding the microbial community of the cathode with labelled carbon 
dioxide (Batlle-Vilanova et al., 2019; Jiang et al., 2019).  

3. Conclusion 

Curtis concluded the paper I mentioned in the preamble (Curtis, 2006) as follows: “A 
‘Microbial Survey’ could run, or subcontract, sequencing factories for the community at large, 
and explore the microbial world systematically itself using a judicious mix of deep-
sequencing and mathematical modelling”. That’s more of less where we are arriving now. All 
the ingredients are available “to start thinking big” and address pending issues related to 
various microbial environments. The challenge is now to combine these ingredients 
adequately. 

In parallel to the increased description of microbial ecosystems, which is under way, further 
development and miniaturization of analytical technologies coupled to deep-learning 
methodologies will undoubtedly favour the development of rapid microbial diagnosis 
solutions. They will enable to establish real microbial management strategies of 
environmental bioprocesses and more generally provide tools to evaluate the good functioning 
of microbial ecosystems. A new dimension of information will be accessed and will open new 
possibilities.  

I hope my future research will participate to the development of such microbial management 
strategies for AD, and more generally provide frameworks for the analysis of microbial 
communities. It is now difficult to forecast what will be my research in ten years. Techniques 
evolve quickly and will open further possibilities. Other fields than AD could be targeted with 
the methods I’m using. Lines of research are highly dependent on funding but also on 
collaborations. My future research will depend on the combination of these different 
parameters.  
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Résumé 
La digestion anaérobie (DA) est un processus microbiologique de dégradation de la matière organique qui 
produit du biogaz. Ce biogaz est riche en méthane qui peut être converti en énergie électrique et thermique. La 
DA est couramment utilisée pour traiter différents types de déchets organiques à l'échelle industrielle dans des 
digesteurs anaérobies. Dans un contexte de protection de l’environnement et d’accroissement de l’efficacité 
énergétique, elle suscite un regain d’intérêt car elle permet de transformer les déchets en ressource 
énergétique. Cependant, ce bioprocédé n'est pas complètement maîtrisé et présente encore un potentiel 
d'amélioration important. Cette situation est due principalement à l’absence de méthodes de gestion prenant 
explicitement en compte le microbiome de la DA. Les microorganismes clés responsables du processus de la 
DA restent en effet méconnus. Ils forment une communauté microbienne extrêmement complexe, composée 
principalement de bactéries et d’archées, capable de dégrader la matière organique par de multiples voies. 
L'une des principales limites de la DA est la grande vulnérabilité de cette communauté microbienne aux 
modifications des conditions de fonctionnement des digesteurs. Cela peut avoir pour conséquence une 
production de méthane instable. Ce manuscrit présente ma contribution pour améliorer les connaissances sur 
le fonctionnement des communautés microbiennes de cette biotechnologie environnementale. Il est divisé en 5 
parties. La première partie présente brièvement le sujet et les enjeux de ma recherche, qui fait appel à 
différentes techniques d’écologie moléculaire et, depuis peu, aux biostatistiques. Trois chapitres résument les 
principaux travaux réalisés et les résultats obtenus. Le premier chapitre porte sur l'utilisation d'isotopes stables 
pour tracer la dégradation de substrats spécifiques et identifier les microorganismes fonctionnels dans les 
digesteurs anaérobies. Le deuxième chapitre présente mes contributions pour une meilleure compréhension de 
l’effet d’inhibiteurs sur la dynamique et les performances du microbiome de la DA, ainsi que diverses 
stratégies de gestion permettant d’atténuer l’inhibition. Le troisième chapitre décrit des travaux récents 
associant des statistiques à des méthodologies à haut débit afin de tirer le meilleur parti des informations 
générées et de développer des approches data-driven. La dernière partie présente les perspectives envisagées 
pour étendre et améliorer le travail déjà effectué. 

Summary 
Anaerobic digestion (AD) is a microbiological process of degradation of the organic matter which produces 
biogas rich in methane that can be converted into valuable electrical and thermal energy. It is commonly used 
to manage different types of organic waste at industrial scale using anaerobic digesters. In a context of 
environmental protection and research for increasing energy efficiency, AD arouses a renewed interest 
because it allows converting waste into an energy resource. However, this bioprocess is not fully mastered and 
still has an important potential for improvement. Such situation is mainly due to the limitation of microbial-
based management of anaerobic reactors as the microbiome, which is the key player of the AD process, still 
remains largely unknown. Indeed, key microorganisms driving the AD process form an extremely complex 
microbial community, mainly composed of bacteria and archaea, able to degrade the organic matter across 
multiple pathways. One of the major limitations of AD is the important susceptibility of the microbial 
community to changes in operational conditions of the digesters. It can lead to unstable methane formation. 
This manuscript presents my contribution to enlighten on the functioning of microbial communities of this 
environmental biotechnology. It is divided in 5 parts. The first part introduces briefly the topic and the issues 
of my research, which calls on the use of different molecular ecology techniques and, more recently, 
biostatistics. Three chapters summarize the main works carried out and the results obtained. The first chapter 
focuses on the use of stable isotopes to describe the degradation of specific substrates and identify functional 
microorganisms in anaerobic digesters. The second chapter presents my contributions to the better 
understanding of the effect of different inhibitors on AD microbiome dynamics and performances, as well as 
management strategies tested to mitigate the inhibition. The third chapter describes recent works combining 
computational statistics with high-throughput methodologies to make the most of the generated information, 
and develop data-driven approaches. The last part presents the perspectives envisaged to extend and enhance 
the work already carried out.  


