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Ce manuscrit résume les travaux de recherche queffectués depuis ma thése, en incluant
cette derniére. Il est composé de deux grandesegsart

La premiere partie est intitulée notice individeelCette notice résume sous forme de listes le
déroulement de ma carriere de chercheur, les difftigs valorisations associées a mon
travail de recherche et les différentes activitadien. Les sections successives reprennent le
découpage suggéré dans le ‘formulaire HDR’ de I\émsité Paris Sud.

La seconde partie est une synthese scientifiquactestés que j'ai menées jusqu’a présent.
Elle est divisée en différents chapitres permettinimarquer et d’illustrer I'évolution de mes
activités. Elle présente également mon projet ddeeche pour les années a venir. Cette
synthese est rédigée en anglais.
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2008-2012: Doctorat en Sciences de I'Environnement, Cemagref, Antony
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Unité de Recherche HBAN (Hydrosystemes et Biopréséshtony)

Equipe BIOMIC (Bioprocédés et blOtechnologies MIGiemnes pour la
valorisation des déchets)

Février-Mai  Séjour scientifique auprés du Dr Déjeamttps://perso.math.univ-
2017 : toulouse.fr/dejeal/ Université de Toulouse, Toulouse

Institut de Mathématiques$ittps://www.math.univ-toulouse.jr/
Equipe de recherche Statistique et Probabilités

Aodt- Visitor scientist auprés du Dr Lé Cadifps://lecao-

Décembre lab.science.unimelb.edu.julniversité de Melbourne, Melbourne, Australie
2017 et Mars- Melbourne Integrated Genomics Research team

Mai 2019 (https://research.unimelb.edu.au/integrative-genstiits-home
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Responsable du péle analytiqL de I'équipe PROSE (7 agents : 1 TR, 1 Al,
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Chapleur O. Time-resolved Metabolomic fingerprint of
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Cardona L, Mazéas L,Chapleur O. Zeolite mitigates
the ammonia inhibition of anaerobic digestion |by
favouring the development of syntrophy for propiena
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2. Data papers

=)

Année Référence
Poirier S, Chapleur O. 2018. Influence of support media supplementatm
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Poirier S, Chapleur O. 2018. Inhibition of anaerobic digestion by pheaod
2018 | ammonia: Effect on degradation performances andaimial dynamics. Data i
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3. Chapitre d’'ouvrages scientifiques

Année Référence
« La méthanisation », éditions Lavoisier, 2015, &k#foletta coordonnateur. C
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methodology: a very accurate and quantitative teglento penetrate inside tk
functional networks of microorganisms in complexo®stems. Internationg
Symposium on Microbial Ecology (ISME 13), 22-27 Aigg 2010, Seattle, Unite
States of America.

2011

Chapleur O*, Mazéas L, Bouchez T2011.Towards an ecological engineeri
of anaerobic digesters: shaping structure of commlemmunities degradin
cellulose through substrate adaptation. Internatio@onference on Bioga
Microbiology (ICBM 1), 13-15 September 2011, Lepziermany.

2012

Chapleur O*, Mazeéas L, Bouchez T2012.Asymmetrical behavior of cellulos

anaerobic digestion towards temperature changegiger for managing anaerohic

communities in digesters? International Symposiumiviicrobial Ecology (ISME
14), 19-24 August 2012, Copenhagen, Denmark.

2017

Dabert P*, Buffet J, Le Roux S, Chapleur O, Bize A, Trémier A. 2017.
Stability of chemical and microbial composition dfgestates along time |
agricultural and urban full-scale anaerobic digsstenternational Ramira
conference, 4-6 September 2017, Wexford, Ireland.

2017

Poirier S, Madigou C, Déjean SChapleur O*. 2017. Towards the developme
of microbial indicators of anaerobic digestion imkibn. International confereng
on biogas microbiology (ICBM 3), 1-3 May 2017, Wagegen, Netherlands
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2017

Madigou C, Mazéas L., Bureau C, Déjean SChapleur O*. 2017. Identifying
the bottlenecks that limit temperature modificatiam anaerobic digester
International conference on biogas microbiology BMC 3), 1-3 May 2017
Wageningen, Netherlands

v

2017

Chapleur O*, Poirier S, Madigou C, Lé Cao Kk-A, Déjean & 2018.

Development of microbial indicators of anaerobigedition inhibition with omics

data integration. International workshop, Environtaé Omics, Integration an
Modelling, 18-20 October 2018, Barcelona, Spain

2017

Chapleur O*, Déjean S, Lé Cao KA. 2018. Identifying biomarkers b
integrating multiple-omics datasets to improve aobie digestion (flash

presentation). International workshop, Environmeranics, Integration an
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Modelling, 18-20 October 2018, Barcelona, Spain

2018

Chapleur O*, Poirier S, Madigou C, Lé Cao K-A, Déjean S. 2018.

Development of microbial indicators of anaerobigeadition inhibition with omics
data integration. Biostatistics workshop, Mathernatinstitute, Toulouse, France

6. Communications scientifigques nationales

Année

Référence

2009

Chapleur O*, Bouchez T. 2009. Ingénierie écologique des communad
microbiennes dans les bioprocédés de traitemendraini@a des déchets lign

cellulosiques, 2éme Journée Thématique Microbieldgivironnementale FIRE

14 janvier 2009, Paris, France.

2009

Chapleur O*, Mazéas L, Bouchez T.2009. Ingénierie écologique de
communautés microbiennes dans les bioprocédés admesrde traitement de
déchets. Colloque Groupe des Acteurs de l'Ingémi&cologique (GAIE), ¢
décembre 2009, Paris, France.

2012

Chapleur O*, Bize A, Serain T, Mazéas L, Bouchez T2012. Co-inoculation

tés

S
S

d’'un contenu ruminal et d’un digestat d’ordures ag&#res dans un réacteur batch

anaérobie dégradant de la cellulose : une carsatiém fonctionnelle, Conférenc¢

du réseau national biofilm, 24 janvier 2012, NarmrFrance

2013

Chapleur O*, Wu T-D, Guerquin-Kern J-L, Mazéas L, Bouchez T 2013. La
technique SIMSISH, une méthode précise et quamBtgpour décrypter le
réseaux multifonctionnels des communautés microl@gncomplexes. Journé
thématiques du Réseau National Biofilm, 20 noven2vE3, Pau, France.

2013

Chapleur O*, Bize A, Bouchez T, Bureau C, Madigou C, Mazéas.[2013.
Développement d’outils analytiques innovants pesridioprocedeés et
biotechnologies microbiennes de valorisation deheis. Colloque
BIOMINNOV, 9 décembre 2013, Romainville, France

2015

e

Y

Poirier S*, Bouchez T, Chapleur O. Les composés inhibiteurs de la digestion

anaérobie : état de l'art et stratégies d’acclit@ta Journées Recherche
Innovation biogaz méthanisation, 3 — 5 Février 20Rénnes, France

2016

Madigou C, Poirier S, Chapleur O*. 2016. Amélioration de la résistance
phénol d’'un microbiote anaérobie par une strat&jaeclimatation. Journée
thématiques de l'association francaise d’écologierabienne (AFEM), 31 mai -
juin 2016, Marseille, France

et

au

2016

Poirier S*, Chapleur O. 2016. Influence de l'azote ammoniacal sur
composition d’'un écosystéme anaérobie issu d'uestéyr industriel. Journés
thématiques de l'association francaise d’écologierabienne (AFEM), 31 mai -
juin 2016, Marseille, France

2018

Cardona L*, Mazéas L, Chapleur O. 2018.Improving waste valorisation: th

e

data omics integration intake. Journées de I'EBaletorale ABIES
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7. Communications internationales par affiche

Année

Référence

2010

Chapleur O*, Mazéas L, Bouchez T2010.Ecological engineering of microbia

communities through substrate adaptation: consegsern anaerobic digestion
cellulose in municipal solid waste. World CongressAnaerobic Digestion (AL
12), 31 October-4 November 2010, Guadalajara, Mexic

2011

Chapleur O*, Mazéas L, Bouchez TEcological engineering of microbial

communities through substrate adaptation: consegsern anaerobic digestion pf

cellulose. 2011. Microbes in Wastewater and Wastrhent conference -

Bioremediation and Energy Production (MWT 1), 2332hiuary 2011, Goa, India.

2011

Chapleur O*, Mazéas L, Bouchez T2011.Asymmetrical behavior of cellulos
anaerobic digestion towards temperature changedrigger for ecologica
engineering of anaerobic digesters? ConferenceiogaB Microbiology (ICBM
1), 13-15 September 2011, Leipzig, Germany.

2012

Chapleur O*, Bize A, Serain T, Mazéas L, Bouchez T2012. Dynamic of 13C
cellulose biodegradation in batch digesters coutaied with rumen content and
anaerobic sludge. International Symposium on MioBcology (ISME 14), 19t

24 August 2012, Copenhagen, Denmark.

2016

Poirier S*, Bouchez T, Chapleur O. 2016. Enhancing anaerobic digestion
biowaste under extreme ammonia concentration wipipsrt media : Identificatio
of key microbial phylotypes. International Sympasiion Microbial Ecology
(ISME 16), 21-26 August 2016, Montreal, Canada.

2016

Madigou C, Poirier S, Chapleur O*. 2016. Acclimation of an anaerob
microbiota subjected to inhibitory phenol concetitra International Symposiur
on Microbial Ecology (ISME 16), 21-26 August 20Montreal, Canada.

2017

Cardona L*, Poirier S, Madigou C, Bouchez T, Mazéa4., Chapleur O. 2017.
Understanding the effect of ammonia on anaerobicrahiota during biowast
anaerobic digestion. International conference ogds microbiology (ICBM 3), 1
3 May 2017, Wageningen, Netherlands

2017

Connan R*, Magri A, Chapleur O, Bridoux G, Béline F 2017. Impact of the
inoculum source and nitrite concentration on anaerammonium oxidatiof
bacteria enrichment. International Ramiran confeeend-6 September 201
Wexford, Ireland.
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2017

Chapleur O*, Déjean S, Lé Cao I-A. 2017. Identifying biomarkers b
integrating multiple-omics datasets to improve aobie digestion. Internationa
workshop, Environmental Omics, Integration and Mibog, 18-20 October 2018
Barcelona, Spain

10

2018

Chapleur O*, Poirier S, Lé Cao K-A. 2018. Effect of ammonia on the dynam
of anaerobic digestion microbiome: omics data irgggn in a time cours
context. International Symposium on Microbial Eg@pidISME 17), 12-17 Augus
2016, Leipzig, Germany.
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Cardona L*, Lé Cao K-A, Bureau C, Madigou C, Rouillac L, Lé Cao, Mazeas
L, Chapleur O. 2018. Multi-omics data integration to decipher thgact of
feeding composition on the microbiota of anaerodigestion. Internationa

11 2018 Symposium on Microbial Ecology (ISME 17), 12-17 Awsty 2016, Leipzig
Germany.
8. Actions de vulgarisation
Année Référence
Invité de I'émission « Pose ta question » diffusée« Terre d’infos tv » en 201
1 2010 |theme « Déchets et Recyclage ». Emission de vekgan réunissant un grouy
d’enfants, une journaliste et un expert sur destsuigs a I'environnement.
Rapport annuel 2011 Irstea « 30 questions pour pemdpe la recherch
2 2011 | environnementale », réponse a la question 17 :mn@ant travaille un chercheur
Participation a I'ouvrage « Quelle énergie durapteir demain ? », édité p
3 2012 Irstea, partie « optimiser les processus microbilendégradation des déchets »
Présentation « Recherche pour le développementild’@our améliorer la gestio|
des bioprocédés anaérobies. » lors des « rencardoegechnologiques 2013 »
4 2013 | raseau PEXE, éco-entreprises de France et desutas@arnot, 2 juillet 2013
Nanterre, France.
Présentation « Processus de dépollution grace easystémes microbiens » Ig
5 2014 | des «rencontres de [I'INRA », 28 février 2014, 8aldnternational de
I'Agriculture, Paris, France
2016- Encadrement d’un groupe d’étudiants de classe mtipge pour un proje
6 2017 collectif sur la méthanisation
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Collaborations et contrats de recherche

. Contrats de recherches obtenus

Coordination du projet METHARESIST (EC2CO INSU CNRS 42k€ 2015-2016):
“Approches méta-omiques pour établir des stratédiesrésistance des digesteurs
anaérobies aux micropolluants, cas du phénol”.

Co-coordination du projet DIGESTOMIC (ANR, 450k€, 2016-2020): “Elaboration
de nouvelles stratégies opératoires pour levevdeous de la digestion anaérobie et
élargir ses domaines d’'application a l'aide d’agpes méta-omiques”. Responsable
d’un des trois work-package du projet.

Coordination d'un projet d'échange scientifique biatéral avec [I'Australie
(financement PHC FASIC, IRSTEA, ED ABIES, AFRANTKE, 2017-2019).

Coordination du projet STABILICS (ANR, 220k€, 2019-2023): “Nouvelles
perspectives dans les déterminants de la stallb&® bioprocédés anaérobies en
couplant des approches multi-omiques et statissique

. Collaborations nationales ou internationales soutenues

Collaboration avec des chercheurs de 'UR OPAALE dtstea Rennes :un article
de revue, une présentation orale et une présemtafiichée cosignés (these R.
Connan 2013-2016) participation au comité theseSde@iveteau (encadrement ML
Daumer 2015-2018)

Collaboration avec le laboratoire LGPM de CentraleSupélec : co-encadrement
d’un stage avec le Dr. B. Taidi (A. AshDSouza) e

Collaboration avec Suez Environnement: partenaires du projet ANR
DIGESTOMIC (2016-2020)

Collaboration avec Pontificia Universidad Catolicade Valparaiso, Chili : accueil
et encadrement d’'un doctorant (O. Franchi) pen8anois en 2017.

Collaboration avec I'équipe I1AQA, AgroParisTech, UMR GENIAL : partenaire
des projets METHARESIST (2015-2016) et DIGESTOMERD16-2020).

Collaboration avec l'Institut de Mathématiques de Toulouse : s€jour scientifique
de plusieurs mois en 2017 auprés du Dr S. Déjeaersdarticles cosignés, partenaires
du projet ANR STABILICS.

Collaboration avec I'équipe du Dr K-A Lé Cao, Melbairne Integrative
Genomics, a I'Université de Melbourne, Australie séjour scientifique de plusieurs
mois en 2017 puis 2019, divers articles cosignéstepaires du projet ANR
STABILICS. Co-organisation d’'un workshop sur I'aye¢ des données omiques en
juin 2018 a l'université Paris Saclay (25 particifg. Co-organisation d’un workshop
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« Advancing environmental biotechnologies througivaaced microbiology and
cutting-edge computational statistics » a I'Uniwgrsle Melbourne en avril 2019 (35
participants).

Collaboration avec le laboratoire de chimie molécaire (LCM) de I'école
polytechnique: analyse métabolomique d’échantillons, la prépamati'un article co-
signé est en cours, partenaires du projet ANR STKES.
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Expériences d’encadrement

1. Tableau récapitulatif des expériences d’encadrement

Total

Encadrement de doctorants

2 (une thése soutenue en 2016 et un
thése en cours, soutenance janvier 20

e
D0)

Encadrement de stages de niveau M2

5

Encadrement de stages de niveau L3 ou M1

Encadrement autre

Stage ingénieur fin d’étude : 7

Doctorant en séjour court (3 mais) : 1

Postdoctorant: 1

2. Encadrement de stagiaires

Année| Nom Titre du stage Niveau Pourcentage
d’encadrement
2008 | An Shu Identification de groupes fonctionrals M2 100%
sein de communautés microbiennes
complexes dans les bioprocédés de
traitement anaérobie des déchets ligno-
cellulosiques
2009 | Charlotte | Influence de la température sur les groupedi2 100%
Richard microbiens fonctionnels responsables de |a
dégradation de la cellulose
2009 | Adeline Evaluation de I'Effet du Protocole de la | M2 100%
Desprez Technique NanoSIMS-ISH
2009 | Vincent Etude de I'effet d'un changement brutal de Stage 100%
Hébrall température (passage de 55°C a 35°C puisdngénieur
de 35°C a 55°C) sur la réponse des groupes
microbiens fonctionnels de dégradation de
la cellulose
2010 | Thibaut Influence of the introduction of an Stage 100%
Serain exogenous biomass on anaerobic Ingénieur

degradation of cellulose in municipal solid

waste digesters
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2010 | Florian Influence d'une biomasse exogene (sur lg Stage 100%
Almeras démarrage des fonctions microbiennes et/ lexgyénieur
potentialités de dégradation de la cellulose
dans les bioprocédés de méthanisation —|Cas
de la bactérie Fibrobacter succinogenes
2012 | Raphaél Impact du phénol sur la diversité et la M2 100%
Civade stabilité des communautés microbiennes de
dégradation de la cellulose dans les
bioprocédés anaérobies
2013 | Yohan Impact of growing concentrations of phenpieme 100%
Rodolphe | on microbial communities degrading annee
cellulose in anaerobic conditions ingénieur
2016 | Alexia Developing a method of measuring Cell | 4éme 80%
AshDSouza| quantity and vitality in a culture of annee
Arthrospira platensis ingénieur
2017 | Camille Effet de I'ajout de co-substrats sur les L3 75%
Levrard performances d’un digesteur anaérobie et les
dynamiques microbiennes associées
2018 | Delphine | Suivi des dynamiques microbiennes de la L3 75%
Cirederf digestion anaérobie a I'aide d’approche
ADN et ARN
2018 | Sophie Exploratory statistical analysis of multi- | 4éme 100%
Renault omics data to decipher the mechanisms ofannée
anaerobic digestion inhibition ingénieur
2018 | Pierre- Ammonia inhibition of anaerobic digestion:4eme 80%
Antoine A Research on the mitigation mechanismsannée
BAR of ammonia inhibition by zeolite ingénieur
2019 | Alexandra | Effet de la codigestion sur le processus deM2 80%
Claudin digestion anaérobie en termes de
performance des digesteurs et de dynamique
des populations microbiennes
3. Autres expériences d’encadrement

2017

Pourcentage d’encadrement lors de son séjour : 75%.

2014-2017 : accompagnement de Céline Madigoau cours d'un projet de montée en
compétence pour le passage du grade d’Assistaghiegr a Ingénieur d’Etude. Promotion
réalisée en 2017. Valorisation du travail sous e deux articles (2016 et 2019) pour

lesquels je suis dernier auteur.

2018-2020: postdoctorat de Francesc Puig-Castellgdans le cadre du projet DIGESTOMIC
(Accueil conjoint AgroParisTech-Irstea). Deux deg dont je suis dernier auteur sont en

cours de révision.
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. accuell d'Oscar Franchi(doctorant chilien) pendant trois mois au labadratpour un
travail collaboratif (un article en cours de rédact« Low temperature sewage sludge
anaerobic digestion: full-scale proof of interesidastudy of microbial adaptation. »).




. Encadrement de doctorants

4.1. Simon Poirier

Dates : 2013-2016

Titre de la thése : Exploration écologique des ph#&mes d’inhibition associés a la
digestion anaérobie pour le développement d’indioat microbiens et de stratégies de
résistance

Directeur de thése HDR : Théodore Bouchez
Pourcentage d’encadrement :
o Conception du dispositif expérimental : 90%
0 Suivi du travail expérimental : 90%
0 Analyse et interprétation des résultats : 80%
o Valorisation des résultats : 80%

Production scientifique : 4 articles de revue dafa paper, 1 article en cours de
révision (je suis dernier auteur de I'ensembleeatéeqroduction)

Devenir : contrat postdoctoral obtenu en sortighése (INRA Micalis, Jouy-en-
Josas) (2 ans). Pour suivre, Simon débutera uneaaupostdoctorat a 'EPLF, en
Suisse (septembre 2019).

4.2, Laétitia Cardona

Dates : 2017-2020

Titre de la thése : Exploration écologique des ph@&mnes d’inhibition associés a la
digestion anaérobie pour le développement d’indiaat microbiens et de stratégies de
résistance

Directeur de thése HDR : Laurent Mazéas
Pourcentage d’encadrement :
o Conception du dispositif expérimental : 80%

0 Suivi du travail expérimental : 90%
0 Analyse et interprétation des résultats : 80%
o Valorisation des résultats : 80%

Production scientifique : Au moins 4 articles sprévus pendant la these (1 est
accepté, 2 sont actuellement en révision et 1 Blugx)
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Activités administratives et d'intérét

collectif

1. Contribution a la vie et au fonctionnement du collectif de recherche

Depuis le 1er janvier 2018 je suis responsabledde analytique de I'équipe PROSE. Le péle
analytique de I'équipe regroupe les agents en ehdeg’analyse des échantillons produits au
cours des expérimentations. Il est composé d’'uhniemn de la recherche, un assistant
ingénieur et cing ingénieurs d’étude. Il concemé® compétences associees aux différentes
meéthodologies analytiques développées dans I'éguipamment la chimie analytique, la
microbiologie, la biologie moléculaire, la bioinfoatique et la biostatistique.

J'ai pour missions d’assurer I'animation et la dowation des activités du podle et de participer
au management de I'équipe en lien avec le Direaeufunité (en particulier gestion des
ressources humaines du pble analytique, conduite E®P, suivi des congés et des
missions,...).

2. Contribution a I'’enseignement ou aux formations

Depuis 2016 jai pris part a la construction d’uwsurel enseignement a I'Ecole Polytechnique
(Graduate Degree ECOSEM : « Ecotechnologies fortafwbility and Environment
Management Master »). Cette formation a accueshi gremiers éléves en septembre 2018.
Au sein de cet enseignement je suis responsabigegtiens dans le module « Exploration
and statistical analysis of complex datasets » )(20mterviens également dans le module
« Microbial ecology for environmental sciences 2H)L

J'interviens ou suis intervenu dans d'autres emssigents en écologie microbienne (master
2) (notamment Master 2 Microbiologie Appliqguée &n@& Biologique, AgroParisTech).

J'ai participé ou participe a différent comitéstdese (Diane Plouchart — INRA LBE, Tristan

Cerisy - Genoscope, Simon Piveteau — Irstea RerndeBy Badalato — Irstea Antony,
Gregory Marandat — Irstea Antony, Thomas JouestedrAntony).

3. Relecture d’articles

Relecture d’articles pour différents journaux : 8istems Engineering, Biotechnology for
Biofuels, Bioressource Technology, Journal of Eowmental Quality, Journal of
Microbiological Methods, Microorganisms, Plos Or&gience of the Total Environment,
Waste Management, Water Research, Water Sciencéemmhology.
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SCIENTIFIC
SYNTHESIS

From describing to managing environmental
biotechnologies, through a combination of
molecular ecology and biostatistics
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Preamble

As a research scientist, | was sometimes asked madteld of expertise was. Even though
my research is very multidisciplinary 1 would sdat | am a microbial ecologist, with a
strong focus on microbial bioprocesses and moreifspely anaerobic digestion using
molecular biology. In other words a molecular mimed ecologist in the service of
biodegradation bioprocesses. Not sure that malkethihgs clearer...

I've been exploring this field since | started miP Some people could find that it is
dramatic, but on the contrary | think that | waalielucky.

Since | started my PhD, methods used to analysentbebial communities have changed
and evolved a lot. It brought a constant renewalhi research | do. New techniques in
microbial ecology have been invented and deploy&sly perspectives have been opened.
New questions have been addressed. It requirechgathe new methodologies, adapting
them to our samples, formalising the new reseashes and learning how to make the most
of the data obtained. All of this mostly in the\see of one process, the anaerobic digestion.
From year to year, my activities evolved contindgus created new collaborations with
scientist from new fields, constantly renewing rajisfaction.

One of the first paper | read as a master studgibeng the world of microbial ecology, and
that probably influenced my work a lot, was a redanthat time) opinion letter by Curtis in
Nature Reviews Microbiology entitled “Microbial dogists: It's time to 'go large™ (Curtis,
2006). Curtis began his paper as followsvlicroorganisms are small, they are extremely
important and there is an awful lot of them —°i® be inexact. But we have only a vague
idea of the extent of microbial diversity, withiesttes differing by factors of 1,000 or more.
We have even less of an idea about the proportiabhahdance of microorganisms, and not
much of a clue how these patterns do and do nobhgdaThis is not simply a search for
trivial facts. These concepts underlie all explaas in, and exploitations of, the microbial
world”. That paper was really important to me. It made eaise that the exploration of the
microbial world was only in its infancy, despiteethkey importance of microorganisms in
most of the natural and anthropic biological preess It also made me understand that all
these processes constituted great ecosystems ati¢habial scale, with characteristics and
functioning very similar to the ‘macroscopic ecdsyss’ | had been studying during my
master: composed of multiple species, with comipest and interactions, dynamic and
changing, etc. | understood that focusing on omig or a few selected species was probably
not the best option for describing and improving pinocesses.

The interest of studying the system as a wholewaksknown from microbial ecologist who
tried to include it as much as possible in theidss.“So why are we still in the dark?”
asked Curtis‘There are many considerations, but the singledathat outweighs all others
is sample size — we are looking at vast systents pathetically small samples. A clone
library of 1,000 might sound fine but in a commymif 132 it is modest: one clone for every
10" individuals.” What to do then? Stop studying these systems? Fartyson the most
dominant microorganisms? Combine all strengthsamet only one selected microbial
ecosystem or process? Change methods? Responises! ajickly. The 13 years period
between now and that paper has indeed seen thataaiMeigh-throughput methodologies, in

33



particular new generation sequencing (NGS), and diep of sequencing cost and the
generalization of the use of omics technologieganglwith others, these new developments
allowed to take a giant step in the exploratiommidrobial ecosystems, and to start‘tace

up to the scale of the microbial world, retool aigd large™ as suggested by Curti§hey
enabled a spectacular progress in a wide variefiglof.

How to go further?To escape from the Captain Cook phase of ondrefbic explorations,
we must industrialize and automate sample procgsant analysis’said Curtis That's also
more or less what microbial ecologists have statteddo in the last years, once they
successfully managed the new techniques. More aré samples, time points, conditions,
replicates are processed. Of course, microbiatant®ns are still not crystal clear. Microbial
management is still at its infancy. Industrializiiggstill difficult for technical and financial
reasons. On a certain point of view we are stiltha dark, but the dark is not as dark as
before and | believe that the tremendous amourdatd we are now able to generate at a
‘reasonable’ cost will help us to bring more andrenlight to the fascinating microbial world.
However, according to me, a crucial aspect, whecinat detailed in Curtis’s article, is the
need to find methods to organise these data, anéysnm and extract essential information.
Curtis mentions mathematical modelling. How ex&ttlyo answer which questions? That
will probably be the challenge of the next 10 years

Of course, microbial bioprocesses and specificafigerobic digestion benefited a lot from
these developments. The microbial ecosystem ofrahmedigestion is both very complex
and dynamic. It is composed of an intricate netwadrknicroorganisms interacting together to
progressively degrade complex organic molecules Brhall one carbon molecules: the
methane and the carbon dioxide. It provides an answ strong environmental issues as it
enables valorisation of waste through the prodaatiobiogas, a renewable energy. However,
despite it has been used and empirically improwadaf century, the underlying microbial
processes are still not mastered. The processmsiies stability and management tools to be
fully exploited. Anaerobic digestion has therefprevided and still provides a highly relevant
field to apply previously mentioned methods to asswnexplored questions. The last
developments of microbial ecology enabled a beléscription of the degradation processes,
of the function at stake, of the role of the miegamisms... They enabled to understand that
the performances of the process are strongly demenaf the dynamics of the microbial
ecosystem. It is now time to organize these daid,t@ complete them in order to implement
new microbial management strategies to improvduhetioning of bioprocesses.

This document presents my contribution to enlightan the functioning of microbial
communities of anaerobic bioprocesses. It is doide 5 parts. The first part introduces
briefly the topic of my research. Three chaptenmirmarize the main works carried out and
results obtained. The last part presents the petrgps envisaged to extend and enhance the
work already carried out.
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General introduction

My research is at the crossroads of different gls@ry fields. Society issues (sustainable
waste management, production of renewable enetgy, ad various scientific disciplines
(microbial ecology, molecular biology, omics, betsitics, etc.) are mixed together. To put
my work into perspective, this introduction will ibily present the issues of waste
management and treatment in a global context, avftitus on anaerobic digestion. | will also
introduce several microbial ecology methods usefiliihver study and understand microbial
ecosystems. | will conclude by mentioning differemays of dealing with the increasing
amounts of data generated by these methods.

1. Microbial bioprocesses for waste treatment

1.1. Waste production and waste treatment in France

In 2015, waste production in France representedsS3@llion tonnes, of which 228 million
tonnes for the construction sector, 62.5 milliomrnes for economic activities outside
construction, 30.6 million tonnes for householdd amillion tonnes for communities.

If production of household waste (waste generatetdduseholds and collected by the public
service) had more than doubled in France betweé0 a8d 2000 (reaching more than one
kilo per inhabitant per day), it started to deceeims2002 thanks to incentive procedures. The
current production however still forms a very impot flow to manage. Four main
elimination channels have been developed in Fremdeal with this flow (Figure 1): sorting
for recycling, thermal treatments (incinerationplbgical treatments and landfilling.

Incineration without
energy recovery

0,2 Mt Recycling
1%

Landfilling

Valorisation

28,5 mt

75,3 %
treated e

Biological
valorisation

Incineration with
energy recovery

Figure 1: Treatment of household waste in Franceni2015 (from ADEME: déchets chiffres clés 2017).
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In 2014, the sorting centres absorbed 27% of haldelaste. Incineration treated 33%.
Biological treatments enabled to eliminate 16% s tmass. Finally, and thanks to the
concomitant development of three other techniqties, use of landfill storage remained
necessary to cope with only 24% of this flow of teas

A greater attention to environmental issues hasnpted decision-makers to reorient their
waste management policy. More stringent dischatgedsrds have been imposed. Waste is
now considered as a resource that can potentiallydbued physically, energetically and
economically. There has been a growing interedtiohogical waste treatment. Indeed, an
important fraction of household waste is compodearganic matter (Figure 2) and forms an
ideal substrate for biological treatment processes.total organic waste, excluding
agricultural waste, amounts for 46.4 million tonnaswhich 20.2 million tonnes are collected
by the public service every year in France.

Plastic

Figure 2: Household waste composition in France, i8017 (from ADEME. MODECOM 2017).

1.2. Biological treatment of waste

There are two types of biological waste treatmeotnposting and anaerobic digestion.

Composting is an aerobic process of transformatiofermentable matter, under controlled
conditions (aeration/mixing) in order to obtaintalbslized fertilizer rich in humic compounds,
the compostl will not describe it further in this document ia$s not the process | have been
working on.

Conversely, anaerobic digestion (or methanizatisnan anaerobic process that can be
implemented in anaerobic digesters, or biogas Pplahhis bioprocess is based on the
microbial degradation of the organic matter corgdim waste. It produces on the one hand

! Anaerobic digestion also occurs spontaneouslhatnmal ecosystems, where organic matter
Is present and oxygen is scarce, such as marstkes, Irice paddies, lacustrine and marine
sediments, soil, mammalian gut, intestinal traauofinants and termites, etc.
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biogas rich in methane that can be converted iatoable electrical and thermal energy; and
on the other hand the digestate, a stabilized westlat can be in some cases used as a
fertilizer (Figure 3). As it allows converting wasinto energy resource, anaerobic digestion
(AD) is highly relevant for environmental protecti@nd for our quest to increase energy
efficiency.

Almost any organic material can be processed witdtesobic digestion; however, the level of
biodegradability is the key factor in the succeksfoplication of anaerobic digestion. For
example, lignocellulosic material rich in celluloaad hemicellulose polymers as well as
recalcitrant lignin are not broken down easily Imp@robic microorganisms and do not always
provide a sufficient methane yield in anaerobicedigrs. On the contrary, biowaste, such as
leftover food, sewage sludge, animal waste, gre@stay etc. are very adapted as they enable
to achieve quickly high levels of degradation amsghs production. According to the type,
source and volume of feeding, anaerobic digesterdesigned and engineered using different
configurations. Their size can vary from a few doné litres up to several dozen of cubic
meters. They can be fed in batch or continuous mette waste containing a high or low
portion of solids. They can be operated under whffe temperature conditions and with
difference residence time of the waste in the dege3hey are sensitive to different inhibitors
and to the modification of the operational paramsetas well as the composition of waste.
The influence of some of these parameters is ddtailthe paragraph 1.4.

% %
&

microorganisms

Energy Fertilizer

Figure 3: Anaerobic digestion is the microbial congrsion of organic matter into valuable biogas and
digestate that can be used as fertilizer.

In France in 2016, more than 600 biogas plantslmgpearly 4 TWh of heat and electricity,
including methanization of household waste, mettatiton of sludge from wastewater
treatment plants, industrial and agricultural methation. Agricultural methanization
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currently accounts for more than 50% of the plamid 30% of the energy produced. They are
spread all over France (Figure 4). Biogas has beeognized as a renewable energy under
the EC Directive (2001/77 / EC) since Septemberl200
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Figure 4: French park of methanization centres in 16 (from ADEME: déchets chiffres clés 2017).

1.3. The anaerobic digestion

As illustrated on Figure 3, anaerobic digestionststs of the microbial degradation of the
organic matter contained in the waste into biogasposed mainly of carbon dioxide and
methane. This simplistic representation does nostrate the complexity of anaerobic
digestion. Indeed, organic residues are composea wide variety of different materials
meaning different types of molecules. Their degtiadagoes through many intermediates
between the initial organic matter and the finaldais. It is catalyzed by a wide variety of
microorganisms acting simultaneously, some of tifiesding only on a very specific type of
molecules, others being more ubiquitous. Becauseithdegradation products of a reaction
serve as substrates for the following reactiongyoirtant interactions between microbial
populations exist. They form a complex microbiab®estem within bioprocesses with an
intricate network of interactions. To describe ibne precisely, anaerobic digestion is often
divided into four main stages: the hydrolysis, #@dogenesis, the acetogenesis and the
methanogenesis (Figure 5).

1.3.1. The four main steps of anaerobic digestion
1.3.1.1. Hydrolysis

Hydrolysis consists of destructuring a substratelenaf complex organic matter into simpler
molecules that are easily assimilated by microasgas. In this step, macromolecules such as
nucleic acids as well as biopolymers (polysacclegridlipids, proteins) are degraded
(hydrolysed) into water-soluble fragments (monomsetgeh as monosaccharides, fatty acids,
amino acids and nitrogen bases (Batstone et &2;20irne et al., 2007). These reactions are
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catalyzed by exo-enzymes (Goel et al., 1998; Saneleal., 2000; Zhang et al., 2007). The
degradation rates depend on the nature of theratdsst This step is generally considered as
limiting for the entire degradation process andeegdly when the organic matter is
composed of complex molecules such as lignin dulosle.

1.3.1.2. Acidogenesis

During acidogenesis, the monomers resulting froenhtydrolysis step are mainly fermented
into organic acids and alcohols. Volatile fatty dsci(VFA) such as formate, acetate,
propionate, butyrate or valerate, alcohols (propabotanol, ethanol ...) as well as other
organic acids (caproic, succinic ...) are synthegsiBatstone et al., 2002). This step also leads
to the formation of dihydrogen and carbon dioxittecan be 30 to 40 times faster than
hydrolysis (Moletta, 1993).

1.3.1.3. Acetogenesis

Acetogenesis allows the transformation of the wewionetabolic intermediates from the
previous phases into acetate, dihydrogen and calloxide. Two metabolic pathways have
been identified:

* The heteroacetogenic pathway results in the pramtucf acetate, dihydrogen and
carbon dioxide. This pathway can also induce tredypection of VFA (propionate,
butyrate ...).

 The homoacetogenic pathway leads only to the ptamiucof acetate. It can be
synthesized either from organic molecules suchuamrs, or degradation products
such as formate, dihydrogen and carbon dioxide.

The reaction rates of acetogenesis are generallyahd subject to inhibition problems due to
the presence of dihydrogen which modifies the tlmelynamic equilibrium of the global
kinetics. A very low partial pressure of dihydrogen therefore necessary to make the
production of acetic acid thermodynamically possibthe accumulation of dihydrogen
leading to the interruption of acetogenesis (Singmingson et al., 2007).

This phase is one of the key steps in anaerobistan. Indeed, any dysfunction at this level
may result in an accumulation of hydrogen and VEsoaiated with a significant decrease in
pH, resulting in the inhibition of the next steproéthanogenesis (Stams, 1994).

1.3.1.4. Methanogenesis

Methanogenesis is the final step in the procesanaferobic digestion. It consists in the
conversion of the products of acetogenesis (manoBtate, dihydrogen, carbon dioxide and
formate) in methane. Two metabolic pathways arelired during this last transformation:

» Acetoclastic methanogenesis produces methane aboncdioxide from acetate.
* Hydrogenotrophic methanogenesis uses dihydrogencarabn dioxide to produce
methane

Other metabolites such as methanol or methylamare also be precursors of methane
(methylotrophic methanogenesis) (Lovley and KIugg3).
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Figure 5: Anaerobic digestion is usually divided ito four main steps It is performed by a complex microbial
community composed of interacting bacteria andagah

1.3.2. Multiples clades of microorganisms are involved

Key microorganisms driving the AD process form axtremely complex microbial
community, mainly composed of bacteria and archabie to degrade the organic matter
across multiple pathways, with lots of function@dundanci€s Those microorganisms
collectively constitute the AD microbiome. They agenerally specific of one of the
previously described steps. The next paragraphseptehe most important players of each
step, based on the current knowledge.

1.3.2.1. Hydrolytic microorganisms

Hydrolysis is mainly performed by hydrolytic bactefrom various phylogenetic groups. In
addition, some eukaryotic fungal groups found ie tlumen are also able to hydrolyse
complex organic matter (Nsereko et al., 2000). ldiydic bacteria are anaerobic, strict or
optional. Their growth rate is relatively fast atieir doubling time can reach a few hours
although this step is often limiting in the ovenaléthanization process. The extreme diversity

2 Ecological phenomena that multiple species reptéesg various taxonomic groups can share similégsrin
the ecosystem.
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of the microbial communities involved in this stepkes an exhaustive inventory impossible.
Nevertheless, among the many microbial genera wegblin hydrolysis, it is possible to
mention Acetivibrio, Anaerovibrio, Bacillus, Bacteroides,utirivibrio, Cillobacterium,
Clostridium, Lachnospira, Micrococcus, Mocrococcuseptococcus, Pseudomonas,
Ruminococcus, Succinomonas, Staphylocooc@yntrophomona@violetta, 2015).

1.3.2.2.  Acidogenic microorganisms

Acidogenic or fermentative microorganisms are #yrianaerobic. They have a rapid
metabolism and growth rate, and can survive extrghh@r temperature conditions (Bayard
and Gourdon, 2001; Moletta, 2015). The rapid mdisimoof this trophic group compared to
the later stages of anaerobic digestion (acetogeaes methanogenesis) can be a source of
inhibition. Indeed, an excess of acidogenic specmmpared to methanogens, caused for
example by an overload of organic compounds, cad te an accumulation of intermediate
compounds such as acetate and dihydrogen, unfadeuta the growth of methanogens
(Siegert and Banks, 2005; Moletta, 2015). Therefacedogenesis is a key step in anaerobic
digestion whose reaction products must be degradeextracted as quickly as possible.
Acidogens are mainly represented by the ge@lestridium However, the genera
Acetobacterium, Bacillus, Bacteroides, Pelobacéd Ulyobacter as well as the family
Enterobacteriaceaalso include acidogenic bacteria (Ali Shah et2014; Moletta, 2015).

1.3.2.3. Acetogenic microorganisms

Acetogenic bacteria are strictly anaerobic, venysgae to pH and have very slow growth
(Ali Shah et al., 2014). The two metabolic pathwayscetogenesis are carried out by two
distinct bacterial populations.

* The heteroacetogenic pathway is performed by sghico microorganisms that
necessarily produce dihydrogen (called OHPA for ligabe Hydrogen Producing
Acetogens”). The growth of OHPA requires a very loavtial pressure of dihydrogen
(<10* atm). Indeed, dihydrogen has an inhibitory actin microbial growth and
biochemical reactions (Moletta, 2015). It must #fere be constantly removed by a
second microorganism in order to make acetate copson possible (Schink, 1997,
Huilifir et al., 2008; Nie et al., 2008). OHPAs essarily grow with microorganisms
consuming dihydrogen. They have a rather slow drdidoubling time from 1 to 7.5
days) (Girguis et al.,, 2005) and are mainly foundthe generaSyntrophobacter,
Syntrophomonas, Syntrophus, Syntrophococcus ordpyraisphora(Ali Shah et al.,
2014).

* Homoacetogenic acetate-producing bacteria are elividto two groups according to
the origin of the acetate. The first group usesdan substrate (volatile fatty acids,
ethanol, etc.) and are found in genera sucBuagribacteriumandPeptococcus.The
second group reduces carbon dioxide with dihydrogjeese microorganisms allow in
particular the maintenance of non-inhibitory coricaions of dihydrogen. They are
found within the generacetoanaerobacterium, Acetobacterium, Acetofilanmant
Acetohalobium, Acetomicrobium, Acetothermus, Aitetoaculum, Clostridium,
Eubacterium, Sporomusar ThermoanaerobactefAli Shah et al., 2014; Moletta,
2015).

1.3.2.4. Methanogenic microorganisms

The production of methane is carried out by siriathaerobic archaea. Methanogenic archaea
belong to 7 phylogenetic order$lethanococcales, Methanopyrals, Methanobacteriales,
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Methanosarcinales, Methanomicrobiales, Methanotetland MethanoplasmataleSakai et
al., 2008; Paul et al., 2012; Borrel et al., 2013).

* Hydrogenotrophic methanogenic archaea live in spfitic association with the
hydrogen producing species (OPHA). They help tonta& a low pressure of
dihydrogen necessary for the good progress of abaedigestion. Apart from the
genus Methanosaeta all the methanogenic archaea are able of carrging this
reaction. The most represented genera Methanosarcina, Methanobacterium,
Methanobrevibacter, Methanospirillum, Methanogeniand Methanocorspusculum
(Ali Shah et al., 2014; Moletta, 2015).

» Acetoclastic methanogenic archaea are dominatedebgrdeMethanosarcinaleand
in particular by two generaMethanosaetaand Methanosarcina Methanosarcina
usually becomes dominant when acetate concentsagi@above 5mM.

* The main methylotrophic archaea belong to the géethanosarcinaAli Shah et
al.,, 2014; Moletta, 2015), to the ordekMethanobacteriales (in particular
Methanosphaera stadtmanaspecies) and to the orddviethanoplasmatalegin
particularMethanomassiliicoccus luminyengiad Candidatus Methanomethylophilus
alvusspecies) (Borrel et al., 2013).

1.4. Parameters influencing anaerobic digestion equilibrium

The stability and efficiency of biogas productionanaerobic digesters highly relies on the
stability of the complex microbial community deded above (Pap et al.,, 2015). This
equilibrium can be strongly influenced by the opieraal parameters of the AD. We describe
some of them below.

1.4.1. Redox potential

The first steps of anaerobic digestion are perfarimestrict or facultative anaerobic bacteria.

However, methanogenesis is performed by stricthaeapbic archaea. Oxygen has a

bacteriostatic or even bactericidal effect on trethmnogens. The redox potential represents
the state of reduction of the system and can djrbet related to the oxygen concentration of

the medium. For anaerobic digestion to take pl#ces, generally assumed that the redox

potential must be less than -300 mV.

1.4.2. The temperature

Despite the wide range of temperatures observedtural AD, industrial anaerobic digesters
are mostly operated at three levels of temperapsychrophilic (4-15 °C), mesophilic (20-40
°C) and thermophilic (45-70 °C) (Van Lier et al.99F), mesophilic and thermophilic
temperatures being the most frequent. The operatiragegies are chosen according to the
treatment objectives but also the environment incwhhe digester is implanted. The
advantages and disadvantages of thermophilic vengssphilic conditions were described in
many studies, e.g. (Kim et al., 2002; Labatut et2014). Mesophilic processes were shown
to be more stable and robust, requiring less enfengiieating and generating fewer odours.
They have less probability of inhibition by ammamiwr long chain fatty acids (Fernandez-
Rodriguez et al., 2015) . However, thermophilicgesses have the potential to produce
biogas with a higher methane yield, to increaseddngradation rate of organic solids (LU et
al., 2014) and to destroy more pathogenic organi@visset et al.,, 2015). For example
thermophilic sludge digestion can improve energhaf@e and nutrient recovery potential in
full-scale municipal wastewater treatment plant® (xieze et al., 2016a). Psychrophilic
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digestion can be performed more easily, as no fgpatf the digesters is required, but has
lower yields.

Temperature can affect the growth of microorganismd enzymatic activity. An important
part of the microorganisms can grow at only onepemature condition, and modifying the
temperature of the process can strongly affectrtfoeobiome and its functioning (Zhu et al.,
2018). Numerous examples of process failure afteyperature modification are available in
the literature. For example, in response to tentperahocks in reactor, a decrease in specific
anaerobic activity and reactor efficiency can ocaueluding lower organic carbon removal
efficiency, accumulation of volatile fatty acidsdadecrease in biogas yield (Lau and Fang,
1997; Chae et al., 2008; Lindorfer et al., 2008n#w et al., 2014; Zhu et al., 2017). In all
cases, authors observed strong modifications ofstiiys microbial communities and
ecological dynamics after changes in the operagngperature (Noll et al., 2010; Pap et al.,
2015; Chapleur et al., 20164a; Lin et al., 2016; ##d®Im et al., 2017) and after restoration of
temperature (Luo et al., 2015; Chapleur et al. 6201

1.4.3. pH and alkalinity

pH affects growth of microorganisms and enzymatiivdy (Boone and Xun, 1987; Veeken
et al., 2000). Methanogens are extremely senstbvehanges in this parameter. The pH
modifies in particular the physicochemical equilion of acids and bases such as volatile
fatty acids and ammonia nitrogen (Mata-Alvarezlgt2000) or the liquid / gas equilibrium
(for example carbonate/carbon dioxide). Optimumdittons for anaerobic digestion are
around neutrality, between 6.5 and 8.5.

1.4.4. Inhibitors

Anaerobic microorganisms are vulnerable to a wideety of inhibitory substances that can
be either contained in organic waste or formed rdutheir degradation within digesters
(Chen et al., 2008a). Most reported inhibitors arenonia, sulphides, heavy metals (Cu, Zn,
Cr, Cd, Ni, Pb...), different ions (NaK", C&*, Mg**...), long chain fatty acids, N-
substituted aromatics, halogenated aliphatics, gblenLiterature shows considerable
variations in the inhibition/toxicity levels reped for most substances. The major reason for
these variations is on the one hand the compl@fithe anaerobic digestion process where
mechanisms such as antagonism, synergism, acaimatnd complexing could significantly
affect the phenomenon of inhibition (Chen et abD0&a) ; and on the other hand the
specificity of the studies, using different typdseactors, different inocula, not always taking
into account the synergistic effect of multipleilnitors on the process...

1.5. What remains to be done

In a context of environmental protection and redeaior increasing energy efficiency,
methanization arouses a renewed interest becaakaws converting waste to both an energy
resource and an organic amendment. However, sostaabes still hamper its development
and prevent it to be commercialized as widely asiutld. AD is not fully controlled and still
has an important potential for improvement (Caeball al., 2015). A major limitation is the
important susceptibility of the microbial commuesito changes in operational conditions of
the digesters (some of them listed above) thatezhto unstable methane formation. Despite
the functional redundancy within digesters, thabiion of certain key sensitive populations
such as methanogenic archaea automatically resulidecreased production yields and
potentially in process failure leading to signifitaeconomic losses. Furthermore, the
dynamics of the populations and industries caustdesu and unpredictable changes of
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guantity and composition of waste to treat. Urgitantly, the methanization was considered
not being well enough mastered to face these clsaany: present the desired flexibility.

Controlling AD microbial community stability is net trivial task. Experience feedback from
industrial operators shows that digesters remtila Instrumented. Their successful operation
relies on the know-how of the developer rather thiambjective criteria. It strongly limits the
standardisation, transfer and broad use of suadesgérational strategies. Such situation is
mainly due to the limitation of microbial-based ragement of anaerobic reactors. Indeed,
the microbiome, which is the key player of the Aidgess, has remained largely unknown for
a long time and was a “Black box”. However, effratg and good functioning of AD totally
depend on the complex balance of AD microbiome. rdbi@l-based management of
anaerobic reactors is a major hurdle to betterrobahd improve AD.

To build such management strategies, a better lauyel of the functioning of AD
microbiome, of the influence of operational paraangton microbial equilibrium and of the
processes leading from microbial balance disruptionprocess macroscopic failure is
required. The rather recently developed microbtal@yy methodologies now allow to better
describe complex microbial communities. They preuide information necessary to perform
functional microbiome diagnostics (Vanwonterghenalet2014a) which could help to build
real microbial management strategies of anaerafgestion and to set microbial indicators of
optimal performance and warning indicators of psscéilure (Koch et al., 2014). Those
indicators could be key enzymes, inhibitors or keigrobial population for which on-line
abundance monitoring techniques are currently bdagloped, for instance based on flow
cytometry analyses or sequencing (Broger et alll2®BHammes et al., 2012; Koch et al.,
2013). Better consideration of the functioning bé& tmicrobial ecosystem would enable to
refine the management and control of microbial psses for waste degradation and biogas
production and to improve their stability.

My research work aims at this objective.

2. Microbial ecology

2.1. The first approaches

The first attempts to study microbial complex conmitigs (including microbiome from AD)
relied on conventional cultivation techniques, iympd the isolation of pure cultures. This
process was time-consuming. All isolated microorgianrequired numerous physiological
and biochemical tests for full characterization. rbtaver, it is now estimated that less than
1% of microbes are cultivable (Amann et al., 199bhe study of complex microbial
ecosystems was therefore biased. The advent of (pGIgmerase chain reaction) and the
identification of several genetic biomarkers hawes lshattered the methodological barriers
associated with culture-based methods, as micraagea can now be studied in-situ, without
isolation and cultivation.

The gene coding for the small 16S subunit of thesomal RNA (16S ribosomal RNA gene,
Figure 6) is one of the most used biomarker toyspkaryotes (bacteria and archaea). Its
sequence is used to identify microorganisms andretmnstruct phylogenies. Indeed,
ribosomal RNA is a highly conserved molecule, whitieans that it is present in all
prokaryotes. 16S rRNA gene also contains hyperigrigegions that can provide species-
specific signature sequences useful for identificalthey form a molecular identity map to
identify microorganisms). Highly conserved sequenoetween hypervariable regions can be

44



used to design universal PCR primers. It enablesliably produce the same sections of the
16S sequence across different taxa for comparisgrope.

Carl Woese and George E. Fox pioneered the us6®fBRNA in phylogenetics. Using this

tool, they demonstrated in 1987 that organisms whveded into three major domains

(Eubacteria, archaea, Eukarya), thus rejectingctassical dichotomy between prokaryotes
and eukaryotes.

Figure 6: Secondary structure of the 16S RNA molede (from rna.ucsc.edu/).

During the last thirty years, new techniques hasenbdeveloped, bringing together different
molecular tools to study the diversity and ecola@jymicrobial populations without going
through isolation petri dishes. All these techngugased on the genetic characterisation of
the microorganisms composing the medium, rely targe extent on the properties of the
ribosomal RNA molecule and make it possible to gs@lcomplex and natural samples
directly. | detail some of them in the next paragraphs, nyaihbse | had the opportunity to
use during my work.

2.1.1. Fingerprinting

Complex microbial ecosystems consist of a largeerdity of interdependent individuals
interacting with each other. It is important todstithe microorganisms of these systems in a
global way, especially their relative dynamics otrere. To this end, several techniques have
been developed to monitor the general evolutiomiafobial communities. They are grouped
under the name of fingerprinting techniques.
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These methods are generally based on the diffatexiéctrophoresis migration of ribosomal
DNA fragments previously amplified by PCR. The waaility of the microorganism within
the community leads to a variability of the PCRdurcts (size or sequence of the amplified
fragment) that enables to differentiate the membeéithe microbial community. Resolution
of the PCR product with electrophoresis producesmamunity profile, or genetic fingerprint,
a kind of barcode that characterizes the diversftya sample at a given moment. These
barcodes can be compared to evaluate the dynamiogbial diversity within a microbial
ecosystem, or the diversity of one sample relatovanother. They can be associated with
variations in operating conditions.

Numerous fingerprinting techniques were develogadh as for example:

» denaturing gradient gel electrophoresis (DGGE) (&éuyet al., 1993) which is based
on the migration of amplicons in an acrylamide gmltaining a denaturing gradient. It
separates amplicons of the same size based ordifierent denaturing ability which
is determined by their base pair sequence. Theltirgglbands can be cut and
sequenced to identify the corresponding microoigasi

* single strand conformation polymorphism (SSCP) tgOet al., 1989) which is based
on the denaturation of double stranded amplicorie Bingle strands of DNA.
Depending on their sequence, the single strandsdalpt different 3D conformations
and will have a differential migration in electraphsis.

» restriction fragment length polymorphism (RFLP) guarre et al., 1994; Moyer et al.,
1994) which is based on the variability in the sstegRNA fragments generated by a
restriction enzyme. After amplification of the 1Gf&ne of a complex microbial
sample, enzymatic digestion is performed by ones@reral restriction enzymes,
chosen for their cut-off frequency. The fragmertisamed can be analysed by gel or
capillary electrophoresis, thus giving the fingarpof the community.

* automated ribosomal intergenic spacer analysis $WRI(Garcia-Martinez et al.,
1999; Ranjard et al., 2000) which is based on thgervation of the size of the
intergenic transcribed spacer (ITS) present betweigenes encoding 16S rRNA and
23S rRNA. This region has a very high heterogeniaitgrms of size and composition
of nucleotide bases. After PCR amplification okthbne, the amplicons are separated
by electrophoresis. The heterogeneity of the lengththe ITS from one species of
microorganism to another makes it possible to regeaall modifications in the
genetic structure and thus to distinguish phylogeakty closely related species.

Even if they do not directly give information oretidentity of the microorganisms involved,
these techniques have been used for many yeatbdwrspeed and repeatability, but also
because they offered at a reasonable cost, anieweo¥ the community of a sample.

2.1.2. Fluorescent in-situ hybridization

Fluorescent in-situ hybridization (Amann et al. 9329 enables to visualize in-situ specific
populations. This technique is based on the hykatdhn of oligonucleotides, called probes,
on a complementary nucleotidic sequence direcidathe cell. The probes can be more or
less generalist, i.e. attach to a wider or morériotsd number of microorganisms (species,
orders, phyla ...). A fluorescent dye is attachethe probes. After hybridization, the samples
are observed using an epifluorescence microscopevithr a confocal laser scanning
microscope. Microorganisms hybridized within thenpée can thus be identified (Figure 7).
Different probes targeting different signature smwes and labelled with different
fluorescent molecules can be used in the same digation to study several types of
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microorganisms at the same time and observe, fample, colocalisation of syntrophic
microorganisms.

Fluorescent molecule
Probe

Targeted RNA GUCAAI GCAUUG
N\

‘\_CACCAGUUGCGUAACACCGUGU

l HYBRIDIZATION

GUCAACGCAUUG
CACCAGUUGCGUAACACCGUGU

FISH hybridization Confocal laser scanning microscpe. Identification of different
microorganisms in a complex
sample with FISH.

Figure 7: Fluorescentin situ hybridization.

2.1.3. 16S metabarcoding

The identification of members of microbial commuastwith sequencing techniques provides
access to a higher level of information than fipgerting techniques. For cost reasons,
sequencing used to be reserved to very specificsalatted samples. In recent years, it has
benefited from significant progresses that havetdrally reduced its cost while exponentially
increasing the amount of sequences produced. Highrghput sequencing (HTS) methods,
also called NGS (for next-generation sequencing)naore and more used as a standard, and
progressively replace fingerprinting approaches.

Targeted metabarcoding is the most widely used-tiighughput methodology to infer the
structure and composition of microbial communitiésr archaea and bacteria, it is based on
the amplification of a fraction the 16S gene (savé&undreds of base pairs), followed by
sequencing. Amplified region can vary accordinghi® type of microorganisms targeted. The
microbial 16S gene contains nine hypervariable argi (V1-V9) with a length of
approximately 30-100 base pairs each, as illustrateFigure 8.

I Bl conserved region [ Variable region (v) Il Hypervariable region (l-l)

Qx> 5T G EFrs;
N X vi 0, va @QG—EI V5 @ ) V6 w7 V8 ) va

H1 H2 ‘ H3 Ha HS | He H7 H8 H9
68 136 433 576 821 980 1117 1243 1435

Figure 8: Conserved, variable, hypervariable regioa within the 16S rRNA gene and the various primers
used for amplification. Conserved regions are represented in blue, variaglens in gray, and hypervariable
regions in red. (adapted from (Shabhi et al., 2017))
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The degree of conservation of these different megivaries widely. The most conserved
regions are common within high levels of taxonomiyilev the less conserved regions are
specific of genus or species. Although no hypealde region can accurately classify all
bacteria from Domain to Species, some can relipbdylict specific taxonomic levels. Many
community studies select semi-conserved hypervariggions like the V4 for this reason, as
it can provide resolution at the phylum level asumately as the full 16S gene (Yang et al.,
2016).

16S metabarcoding nowadays constitutes a standardor microbial ecologists. It still has
several limits. It struggles to differentiate betmeclosely related species gvwvsky and
Baldrian, 2013). For example, in the famili&nterobacteriaceae, Clostridiaceaand
Peptostreptococcaceaspecies can share up to 99% sequence similanoss the full 16S
gene (Jovel et al., 2016). As a result, the V4 sages can differ by only a few nucleotides,
leaving reference databases unable to reliablysifjashese bacteria at lower taxonomic
levels (Jovel et al., 2016). In these cases, tlee aisother markers such as DNA gyrase
subunit B @yrB) (Poirier et al., 2018b), RNA polymerase subunit(rBoB) (Case et al.,
2007), DNA recombinase proteime€A), protein synthesis elongation factor-G (fusA), or
dinitrogenase protein subunit DifD) (Holmes et al., 2004) could improve the assigmati
and abundance estimation for crucial taxonomic gsou

Metabarcoding is often based on DNA amplificati@6$ RNA gene) rather than 16S RNA.
It can lead to incorrect interpretation of the commity parameters, as microbial abundance
does not necessarily reflect activity (De Vriezalet 2016b). In different studies, | observed
that the difference between microbial communitypogse on 16S RNA (active community)
and 16S RNA gene (microbial diversity present ia thgester, even if not active) could be
important, the response time of RNA being muchefagtan that of DNA regarding both
increase and decrease of abundance, in particatkar stress conditions. In some case, RNA-
based approach can thus be preferred to obtaiablelinformation on actual community
parameters (De Vrieze et al., 2016b).

Finally, even if archaea and bacteria are oftearrefl as the most abundant microorganisms
in AD, authors evidenced that fungi can also playmaportant role in AD (Sun et al., 2015)
even if less investigated (Theuerl et al., 2019nil&r approaches using 18S RNA gene or
ribosomal ITS regions as biomarker instead of 1686 target their abundance (Sun et al.,
2015).

2.2. New developments linked to high-throughput omics

"Omics" approaches have recently been developethdease the level of information
obtained through conventional microbial ecologyhteques. They consist in apprehending
the complexity of the microbial ecosystem as a wholising the least restrictive
methodologies possible. They can target the difittayers’ of the biological systems: DNA,
RNA, proteins, metabolites. The four tools whicte aommonly encompassed under the
heading (meta)omics are metagenomics, metaprotepminetatranscriptomics and
metabolomics. The advent of these methodologidspnalvide microbiologists with the tools
to represent portraits of a community’s genes, gameession, and metabolite production in a
single sample, providing great insights into thelemstanding of microbial communities of
complex environments, in particular bioprocesses.example, Sales et al. reviewed different
application of metaomics to enhance the recovegadion and phosphorus as well as energy
from wastewater (Sales and Lee, 2015). Methododbdirameworks for linking bioreactor
function to microbial communities and environmentainditions are progressively being
proposed (De los Reyes et al., 2015; Sales and204&).
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2.2.1. Metagenomics

Metagenomics is the random sequencing of genomi& BBlgments extracted directly from
a microbial community inhabiting a natural or ereggred environment. It allows access to the
encoded functional traits and identities of the rhera of the community. It goes beyond 16S
rRNA gene based characterization by providing imsigto the physiological potential of the
community. It enables to recover new enzymes thrdugction-based analyses.

In AD systems, current studies aim at reconstrgcimportant metabolic pathways and
genomes (Badalato, 2014; Vanwonterghem et al., 20%4us et al., 2016). It does not only
reveals great phylogenetic and functional divergit\aus et al., 2016), but it can also help
understand the observations made with metabarcadintgow reactor set-up and operational
conditions influence the community composition &matction (Wong et al., 2013).

2.2.2. Metatranscriptomics

Metatranscriptomics involves the sequencing of ree@ranscribed mRNA extracted from a
microbial community, to measuli@ situ gene expression. Compared to metagenomics it
focusses only on community members inferred to beabolically active. Only a few studies
have been published so far in the field of AD. ADPWwas completed in our lab on the
“Development and implementation of metatranscriptoiools” and set-up the different steps
of the protocol (Dr Marandat, 2012-2015). In moezent work, Delforno et al. used a
bioinformatics pipeline developed at Irstea to campthe microbial active community in
anaerobic digesters treating anionic surfactantarnimated wastewater (Delforno et al.,
2019). Interestingly, Maus et al. observed thahlagundance of microorganisms as deduced
from metagenome analysis did not necessarily inelitagh transcriptional or metabolic
activity, and vice versa, stressing the compleméwtaf both approaches (Maus et al., 2016).

2.2.3. Metaproteomics

Metaproteomics is the characterization of the pnstextracted from a microbial community
under a given set of conditions at a specific tpoat. Metaproteomics can be used to detect
catalytic enzymes, entire metabolic pathways angeinfunctional proteins. Metaproteomics
can also be used to identify the distribution oftabelic activities among a community and
how populations cooperate or compete (LU et all428ize et al., 2015).

Identification of the proteins still relies on thpresence of their sequence in reference
databases but the exponential increase in dataeseahould reinforce the attractiveness of
this approach in the future. Moreover, metaprotesngan be used in combination with
metagenomics to complement or create databasezgimaic and other protein functions
(Hanreich et al., 2013).

2.2.4. Metabolomics

Metabolomics approaches provide a qualitative am@nttative measure of all low
molecular-weight molecules contained in a sampleesé€ molecules can be involved in
cellular metabolic reactions and required for th@ntenance, growth and normal function of
microbial community. In the case of AD, they camsarfrom the degradation of organic
matter by the microorganisms. Metabolomics givesess to informative details about key
metabolic pathways (Vanwonterghem et al., 2014g)plidation of whole community
metabolomics to anaerobic digesters is difficule da the very large range of metabolites
with limited a priori knowledge (Vanwonterghem ét 2014a). Until now, mainly specific
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metabolites or regulatory compounds were analyBedKok et al., 2013). Development of
new high-resolution instrumentation enables untadjapproaches.

The data generated by these broadband technolagess the way for new approaches no
longer based on an initial hypothesis that needsewerified (so-called "Hypothesis driven”)
but guided by the data generated ("Data Driven" myaeh). It is from the analysis of these
data generated without a priori that hypothesesuthtve taken into account and studied. The
probability of highlighting an operation that woutebt have been thought of as the hypothesis
is thus higher and opens the way to the developofatisruptive technologies.

3. Treating big data sets with biostatistics approaches

The decrease of the cost of sequencing and thenadizemics studies generate an increasing
amount of massive data obtained from different dital devices. Specific bioinformatics
tools are required to convert this raw data intacpssed data ready to be analysed. Databases
of sequences or proteins are also required toifgiehe microorganisms or functions at stake.
These tools are constantly evolving and improvingll not present them in this manuscript.

The data obtained after bioinformatics treatmergsugually high dimensional and extracting
information from them is challenging. Appropriat®ls are therefore needed to handle these
datasets suitably. Classical multivariate ordimatinethods have been widely used to treat
fingerprinting, 16S or omics data. They enabledduce the dimension of the data, and to
summarize hundreds of initial variables into a feasier to explore and visualize. They
highlight the level of similarity or dissimilaritgf individuals within a dataset. Among these
methods we can cite:

» The principal component analysis (PCA) which igraahsionality-reduction method.
It identifies the largest sources of variation idataset. It uses orthogonal linear
transformation of data to form principal componeritke first principal component
explains as much of the variability in the datgpassible, and each following principal
component explains as much of the remaining vaditwlas possible. The results of
the PCA enable to highlight the covariances whictistebetween the different
individuals by a simple observation of the Euclideéstance.

* Principal coordinates analysis (PCoA, also knowmasric multidimensional scaling
MDS) is a generalization of principal componentlgsia. It attempts to represent the
distances between samples in a low-dimensionaljd&an space. It first calculates a
distance matrix between the samples and then mazegmnthe linear correlation
between the distances in the distance matrix, aeddistances in a space of low
dimension, just as PCA. Any dissimilarity coefficieor distance measure may be
used to build the distance matrix used as input Beay-Curtis distance). When the
distance metric used is Euclidean, PCoA is equntate Principal Components
Analysis.

* The non-metric multidimensional scaling (NMDS) isaamking method. It also uses a
matrix of distances within samples to collapse rimfation from multiple dimensions.
Contrary to PCA and PCoA, NMDS is an iterative aldpon. NMDS routines often
begin by random placement of data objects in otinaspace. The algorithm then
begins to refine this placement by an iterativecpss, attempting to find an ordination
in which ordinated object distances closely matwhdrder of object dissimilarities in
the original distance matrix. The stress valueemfi how well the ordination
summarizes the observed distances among the samples
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Many other methods such as correspondence anal$is\), independent component
analysis (ACI) can also be used to address muititeadatasets from bioprocesses (Glassey,
2013).

However, above described methods are limited iir tiedings. For example they do not
permit to account for time or experimental effestfo treat several types of data at the same
time. New methods are being developed. Some of @ranthe possibility they offer will be
presented in chapter 3.

51



52



Chapter 1: Targeting specific degradation
processes with stable isotopes

One of the biggest challenges that microbial edstegface is to identify which

microorganisms are carrying out a specific set ddtabolic processes in the natural
environments; that is, who is doing what and unvdeaich conditions. Anaerobic digesters, as
many other microbial processes, rely on synergisiieractions of a huge variety of
microorganisms. In this complexity, understandirigoh functional guilds are involved in the
degradation processes of specific molecules is st@ightforward, and identifying the

members of these different guilds is even more dexap

At the end of the 1990s, the best way to addressgtiestion of the link between identity and
function remained culture. Microorganisms of a éaeg environment were first isolated and
cultivated in the laboratory, using growth mediattitontained a desired substrate. A
subsequent characterization of the isolated migausms was performed at the
physiological, biochemical and genetic levels. Thetabolic properties of these microbial
isolates could then be used to infer their poténtiesin situ in the environment as well as

the role of related microorganisms. An importamitation of this approach was that most
prokaryotic species that are present in the natemaironment are not cultivable in the

laboratory using traditional cultivation methodsdéed it was shown that only 0.1 to 10% of
the phylogenetic groups that are widely distributethe environment are cultivable (Amann
et al., 1995) and this fraction could not be rdflexcof microbial diversity as some microbial

families are less culturable than others (Johns988).

Advances in molecular techniques provided altevieasitrategies for microbial ecologists to
characterize organisms within particular habit&arjard et al., 2000). PCR-based methods
enable to get information on the microorganismspehdently of cultivation. In particular,
targeting of the 16S ribosomal RNA subunit or the&responding genes became an
established and robust mean to describe the phydtigediversity of microbial communities
and extended considerably the knowledge of comptegrobial environment such as
anaerobic digesters. However, the rRNA sequen@gdhiealed a remarkably vast microbial
diversity generally provided few direct clues refjag the interactions and metabolic
capabilities of the microorganisms that these secge represent. Thus, the fundamental
guestion remained as pertinent as ever. which iomet are attributable to which
microorganisms in the natural environment?

Use of stable isotopes enabled a giant step taateathe fate of specific compounds and to
probe functional microorganisms. Several methodsguhem were specifically developed to
target specific mechanisms within complex environtaeThe first part of my research work,
mainly during my PhD, was dedicated to the apghbeabf these methodologies to further
describe and understand anaerobic digestion, itficpkar after modifications of operating
parameters. This chapter presents the state dadrthef these methods, as well as the main
results | obtained.
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1. Stable isotope labelling to trace functionality

1.1. Principle and state of the art
1.1.1. Stable isotopes

Of the known chemical elements, 54 elements havee ian one stable nuclide, or stable
isotope (not radioactive). The stable isotopesnef element differ by the number of neutrons
they contain. Elements found in molecules of natsystems consist in a mixture of the
different isotopes in very reproducible proportiomme of them being generally more
abundant than the others. Main elements composmggn@ matter (carbon, hydrogen,
nitrogen, oxygen, sulfur...) have more than one stamtope. For example, carbon has two
stable isotopesi,C (natural abundance of 98.9%) apf (natural abundance of 1.1%).
Nitrogen has 2 stable isotopesN (natural abundance of 99.6%) a@N (natural abundance
of 0.4%). Oxygen has 3 stable isotopegd (natural abundance 99.7%)O (natural
abundance 0.2%) angO (natural abundance 0.037%). The property thatobribe isotopes
is predominant is of great interest, as it operibssibility to use the others as tracers.

Indeed, numerous molecules can be synthesizedréficialy enriched in one rare isotope.
Stable isotopes do not suffer from legal restritdicand health problems associated with
radioisotopes. A labelled molecule can thus be gulan the presence of a complex
community of microorganisms directly in their emmnment. Its assimilation or degradation
will result in the gradual enrichment of the micrganisms involved in its metabolism in
stable isotopes, and the production of degraddmyeproducts themselves enriched.

Different techniques were developed to trace the & the labelled molecules in microbial

ecosystems. Isotope-ratio mass spectrometry (IRMSYs the precise measurement of the
relative abundance of isotopes in molecules ofvergisample. It is a powerful analytical

technique to monitor the degradation of enrichedemdes and identify the degradation
products. Molecular biology methods, grouped urttier name of ‘Stable isotope probing’

(SIP), aim at identifying active microorganisms the selective recovery and analysis of
isotope-enriched cellular components. They aregmtesl in the next section.

1.1.2. Stable isotope probing

According to the cellular component targeted, défe approaches are used.

1.1.2.1. Different molecules, different methods

The SIP-DNA technique has been formalised by Radgdjeet al. in 2000. It is based on the
fact that carbon or nitrogen isotope labelling @ages the density of DNA (Meselson and
Stahl, 1958). Recovering denser DNA can thus gieeess to the identity of the active
microorganisms. For that purpose, after isolatibiNA is subjected to caesium chloride
(CsCl) buoyant density-gradient centrifugation (&adiski et al., 2002). The solution of
caesium chloride subjected to a strong centrifuigate has the property of forming
spontaneously an extremely resolving density gradiducleic acids placed in this gradient
will be distributed according to their density, whimakes it possible to separate the heavy
nucleic acids from the light. Labelled nucleic aidrom microorganisms involved in the
degradation of the labelled substrate, can thesejaenced. It is therefore possible to identify
microorganisms responsible for a particular proaesscomplex environment.
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Manefield et al. reasoned that RNA could serve asoge responsive biomarker than DNA
for use in SIP. Indeed RNA molecules are presentiglmer copy numbers, show higher
turnover rates, and are produced independentlyebitilar replication. (Manefield et al.,
2002). This increased sensitivity enables to redheeamount of (costly) labelled substrate
used or the length of the incubation required taioba link between metabolic function and
taxonomic identity. Native RNA having a higher baay density than DNA, caesium
trifluoroacetate (CsTFA) is preferred to createdbasity gradient.

Microbial populations responsible for sulphate-mthn coupled to acetate oxidation in
estuarine sediments were identified by targetirg*i6 enrichment of the polar lipid derived
fatty acids (PLFAs) with an isotope ratio mass Speceter after growth on°C labelled
acetate (Boschker et al., 1998).

SIP was also applied to proteins (Jehmlich et28108). The authors developed a method to
analyse the specific metabolic activity of a singlacterial species within a consortium
making use of fC]-toluene for metabolic labelling of proteins. ledled proteins were
subsequently analysed by 2D gel electrophoresisvaass spectrometry to characterize their
identity as well as theit°C content as an indicator for function and actiwifythe host
organism.

1.1.2.2. Limits

Despite these methods are really powerful to tasgetific processes, they present several
limits.

The principal consideration for determining whetB¢P will be suitable for investigating a
specific process is whether the nucleic acids (terobiological molecule) of the target
organisms will contain a sufficient proportion abklled atoms to permit the collection of the
heavy nucleic acid fraction. For example, microlmah-labelled DNA with a (& content of
35-70% ranges in density of approximately 1.69-1g78n° (Radajewski et al., 2003),
whereas the calculated buoyant density for the sBMA with a *C content of 100% is
approximately 1.75-1.79 g.6m The more enriched the DNA is, the more resolvee t
separation will be.

In this way, long incubation periods (>40 days) éndeen necessary before labelled DNA
extracted from soil samples can be correctly olexbim a CsCl gradient (Radajewski et al.,
2000). However, any such incubation results in fibenation of labelled products and

intermediates of substrate metabolism, which caen tlbe assimilated by non-target
microorganisms (cross-feeding) and bias the resutsorder to help circumvent these

weaknesses, careful experimental design with @iffemcubation times can help detect and
minimize cross-feeding (Radajewski et al., 2000).

Another risk is that target organisms grow on blatbelled and naturally occurring (non-
labelled) substrates, resulting in moderate stigbl®pe enrichment.

1.2. Examples of research outputs associated to these
methodologies

1.2.1. General objectives and methods

| mainly applied Stable Isotope Probing methodaegiuring my PhD. Research questions
targeted were associated to the methanization bfilage, used as a model substrate.
Lignocellulose is indeed a major component of thesghere (Lynd et al., 2002). An

important amount of this bioresource is availabid & is also the most voluminous type of
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waste produced by our societies (Bayer et al., ROe objective of my work was to better
describe the microbial communities responsibledeliulose degradation and to assess the
possibilities to modify these communities with eowmental levers. For example 1) |
evaluated the possibility to add specialized mi@abbflora in anaerobic digesters
(bioaugmentation) to improve cellulose degrada©hapleur et al., 2014) 2) | evaluated the
influence of temperature changes on the cellulolggimmunity (Chapleur et al., 2016a), 3) |
evaluated the possibility to model an initial intasu into different cellulolytic communities
through preliminary incubations with simple subtgsa(Chapleur, 2012).

In all these experiment§’C-labelled cellulose was used to probe microorgasigesponsible
for cellulose degradation. Experiments were perémrm laboratory batch digesters (50 mL
of liquid phase). | mainly used DNA-SIP protocol.sliccessfully applied the RNA-SIP
protocol on mixed*C-labelled pure cultures, but the amount of RNAowesed after the
processing of environmental samples was never cgeriti to perform the downstream
applications.*C-labeled cellulose degradation and reaction pathweere monitored over
time through Gas Chromatography—Combustion—Isotdpatio Mass Spectrometry
(GC-C-IRMS) of biogas (methane and carbon dioxiaed volatile fatty acids (acetic and
propionic acids). Analytical framework is summadaze Figure 9.

In this manuscript | will focus on one example ghigmentation experiment (Chapleur et al.,
2014) and illustrate the different contributionsiP to target>C cellulose degradation.

13C labelled
cellulose

Isotopic enrichment of
degradation products

Methane X% of 13C

Acetic acid Y% of 13C
o Propionic acid Z% of 13C
Analysis with GC-C-IRMS
Gas and liquid samples

DNA extraction Ultracentrifugation

Microorganisms on density gradient

Total DNA Functional DNA

Figure 9: Analytical framework employed for experiment targeting the degradation of°C labelled
cellulose.Cellulose was introduced in anaerobic diges®es and liquid samples were analysed with GC-C-
IRMS to monitor the fate of the cellulose (degrémaproducts). Functional microorganisms progresgiv
enriched in stable isotope (green). After DNA estii@n, labelled DNA was isolated with ultracentghition on
density gradient.
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1.2.2. Bioaugmentation of anaerobic digesters with ruminal content
1.2.2.1. Objectives of the research

Cellulose hydrolysis often limits the kinetics amfficiency of anaerobic degradation in
industrial digesters. In animal digestive systenrs farticular ruminants or termites),
specialized microorganisms enable cellulose bicatkgron at significantly higher rates
despite much lower residence times than in digegtteimer et al., 2009). Several studies
involving ruminal microorganisms in anaerobic diges have therefore been conducted to
enhance methane production and the rate of ceflidegradation (Gijzen et al., 1987; Blasig
et al.,, 1992; Barnes and Keller, 2003). They trmsatithat inoculating reactors with ruminal
content increased cellulose solubilisation ratesha digestion processes of lignocellulosic
waste. However, macroscopic observations suggastrtiminal microbiota may not easily
settle in industrial anaerobic digesters and oupmim native solid waste microorganisms
(O'Sullivan and Burrell, 2007). In this contextdrfprmed a study with the objective to assess
the potential of ruminal microbial communities tettke and to express their cellulolytic
properties in anaerobic digesters.

Replicated cellulose-degrading batch incubationseveet up and run in parallel. They were
co-inoculated with municipal digester sludge andhinal content (Figure 10). Microbial
synthesized>C cellulose was added in several digesters. Noelksb cellulose was used in
control experiments.

13C-cellulose

Figure 10: Experimental design of bioaugmentationxperiment.

1.2.2.2. Monitoring of the degradation performances after
bioaugmentation

Briefly, we observed that cellulose degradatiomarnoculated incubations was efficient but
not significantly improved compared to controls aalated with municipal digester sludge
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only. The main difference was the start of methanmoeluction, which occurred later in bottles
that had not been co-inoculated (not shown).

The isotopic composition of VFAs and gas was measacross time with GC-C-IRMS. It
enabled to estimate the amount of metabolites dedrdrom cellulose and from other
substrates (present in the inoculum). Results lkustrated on Figure 11 for VFAs. We
observed that an important fraction of the VFAs was'*C-enriched, which suggested that
they came from ruminal content degradation. Howewaer important accumulation &fC
enriched VFAs was observed from day 7. It confirntbdt cellulose was significantly
degraded in these incubations.

300 > ¢
| /‘ \ ~—4— 13C acetic acid
2 20 —e—acetic acid o 250 X
g 200 S ! \ _ ~—@— 13C propionic acid
w —-propionic acid S 200 Y -+ *\
E 150 g | B\ \ = #= 12C acetic acid
150 —F+ g
/ = 4= 12C propionic acid
100 100 4o+ prop

0 20 40 60 80 100

Number of days 0 10 20 30 40 50 60 70 80 90 100

Number of days

Figure 11: Volatile fatty acids accumulation: (A) ptal (B) according to the enrichment type.

Microbial populations were monitored to identifyoie responsible of cellulose degradation.

1.2.2.3.  Monitoring of the functional microbial dynamics after
bioaugmentation

Parallel incubations had been performed with ceflel that was eithet*C-labeled or
unlabelled (control incubation). Total DNA from baogets of incubations was extracted from
samples recovered at different incubation timesaamdrifuged in a CsCI gradient in specific
tubes. After buoyant density gradient ultracengdtion, content of each tube was divided in
24 fractions of different densities. DNA conceritiatdensity profiles from'C-labeled
experiments were compared over time (Figure 12)alTONAs extracted from the control
experiments with unlabelled cellulose were alsa@essed in parallel as negative controls.

Control DNAs extracted from all incubations perfeanwith unlabelled substrates exhibited a
density ranging from 1.68 to 1.71 g/mL. In DNA deyngprofiles obtained on Days 2, 7, 16

and 44, the peak of density profiles shifted to lighest values from Day 2 to Day 44,
indicating an increase in the proportion of heawAD At Day 44, this peak was significantly

shifted in labelled experiments when compared witht of the controls. These results
suggested a progressive assimilation of labelledoraby the microbial biomass. No clear
‘heavy peak’ could be distinguished from a ‘liglgal’, probably because the density of the
heavy DNA was not different enough. Moreover, debe is at the beginning of multiple

pathways and its degradation into biogas implieside number of microorganisms. DNA

recovered in our incubation probably originatednfranicroorganisms enriched at different
levels of*C resulting in a continuum of density.

58



Following these observations, the various DNA fiat in each sample were pooled, based
on their density, into three fractions designated_ght, Medium and Heavy, characterized
by a mean density of 1.69, 1.71 and 1.73 g/mL mspdy, as illustrated in Figure 12. Heavy
and light fractions were supposed to contain DNAnaéroorganism respectively involved or
not involved in the cellulose degradation procé4sdium was supposed to contain DNA of
microorganisms weakly enriched 1C, possibly involved in cellulose degradation bisba
involved in the last steps of the degradation aross-feeding.

12C Control

MI-Rumen, Day 2

/\Ml-Rumen, Day 7
/\MI-Rumen, Day 16

MI-Rumen, Day 44

16 1;7 1,8 1,9

Figure 12: CsCl density gradient profiles of DNA etracted from *3C-labeled cellulose incubations after 2,
7, 16 and 44 daysThe first graph depicts the CsCl density gradieofile of DNA extracted from a negative
control with unlabelled cellulose. Total DNA digtation into gradient fractions was quantified flooretrically.

To complement this data, and in order to check A had actually been separated
according to its isotopic enrichment through ukracifugation, ARISA was performed on
the different fractions of DNA recovered after StPone sample of an incubation witfC
and one sample of the unlabelled control incubatiigure 13 A and B shows the results
obtained at Day 16 for archaea and bacteria raspéct
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On archaeal profiles, bands A and B were recovareithe heavier DNA fractions of the
labelled sample, whereas they were recovered itighter DNA fractions of the unlabelled
control. It confirmed that a shift in archaeal DNMAnsity due td°C-labeling was observed in
this experiment and that labelled DNA could be wered in specific fractions. The same
observations were made on bacterial profiles (leigi8 B). Bands C, D, E and F were
recovered in the heavier DNA fractions of the l&dmbsample whereas they were recovered in
the lighter DNA fractions of the control. It theoeé appears that they corresponded to
microorganisms involved iffC-cellulose degradation and that ultracentrifugagmabled to
correctly resolve enriched and not enriched DNA.
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Figure 13: Archaeal(A) and bacterial (B) ARISA profiles of the different DNA fractions recovered after
ultracentrifugation for **C-labeled cellulose incubation and negative contrabith unlabeled cellulose after
16 days.
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To evaluate the involvement of ruminal microorgamssin cellulose degradation, DNA from
the heavy fraction was sequenced to target 16S rB&ie. Analysis was focused on the day
16. This date was selected because it correspandadtage at which approximately 1/3 of
the final cumulated methane had been produced;tediVFA were at their maximum level
(Figure 11), and it was associated with a cleait ghithe DNA density profiles (Figure 12)
and fractioned DNA ARISA profiles (Figure 13 A aB{L This sampling point thus seemed to
represent the best available compromise to cledentify the microbes involved in the
processes while at the same time minimizing possibbss-feeding biases. Ruminal content
and industrial mesophilic digester sludge usedhasula were also sequenced.

The analysis showed that none of the microorgaro$ithe ruminal content settled in the
digesters and was involved in cellulose degradati@o-inoculation did not enable the
expression of ruminal microbial community duringl@ese degradation in an anaerobic
digester. We hypothesized that the inocula comptgedhe carrying out of this functional
process. The industrial microbial community was enflexible than the natural one and
seemed to exhibit greater resistance to changesuation parameters. On the contrary, the
rumen’s highly specialized species did not adamt settle in the microcosms. Ruminal
microbiota was probably consumed by other microoisgas coming from the industrial
sludge. Our conclusion was that other specific ipatars were probably needed for ruminal
community to settle in the reactor. This study seduhat exploiting the rumen’s cellulolytic
properties in anaerobic digesters is not straightiod. Co-inoculation can only be successful
if ruminal microorganisms manage to thrive in timaerobic digester and out-compete native
microorganisms, which requires specific nutritiorzadd environmental parameters, and a
meticulous reproduction of the selection pressureoentered in the rumen. SIP was a
powerful method to really focus on the degradatdm specific substrate and obtain these
conclusions. In the same way | used these appredaohevidence an asymmetrical response
of anaerobic digestion microbiome to temperatuanges (Chapleur et al., 2016a).

1.3. Perspectives

The use of biomarkers in combination with stabtddpe analysis was a very new approach
in microbial ecology when | started my PhD. In 200heir paper entitled “Who eats what,
where and when? Isotope labelling experiments angirg of age”, Neufeld et al. wrote that
Isotope-labelling experiments would change the wagrobial ecologists investigate the
ecophysiology of microbial populations and cellghe environment. They anticipated a shift
from discovery-driven science to hypothesis-tesexgerimentation (Neufeld et al., 2007).
Since then, a great number of papers applyingtduBnique to a variety of subjects have
appeared (Ge et al.,, 2006; Chen et al.,, 2008b;ingingt al., 2009; Ito et al., 2012;
Kleinsteuber et al., 2012). Stable isotope prol{lil) techniques have become state-of-the-
art in microbial ecology over the last ten years.

Dumont and Murrell suggested to go further thany adéentify active microorganisms and
also clone*C-labelled DNA from a DNA-SIP experiment to generatmetagenomic library
of the microorganisms and get insights in the fiomst of a particular environmental process
(Dumont and Murrell, 2005). Development of sequega@and high-throughput omics enabled
to do so without the tedious process of cloningtipled DNA fragments. SIP has evolved
going from identification of active microorganismsith 16S sequencing to targeted
metagenomics of active microbial populations wittbte-isotope probing (Chen and Murrell,
2010; Coyotzi et al., 2016). For example, a restmdy combined both approaches to target
key long-chain fatty acid-degrading populationsaimaerobic digesters (Ziels et al., 2018).
Recent studies detecting labelled mRNA demonstrdtadlRNA-SIP was not limited to the
analysis of rRNA, but could enable targeted trapsmmics (Lueders et al., 2016).
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I’'m currently not using SIP in the research progettcoordinate, but I'm associated to the
VIRAME ANR project (coordination Dr Ariane Bizestga) which evaluates the possibility to
use SIP approaches to indirectly label viruses.

2. Associated methodologies for isotope incorporation visualisation and

quantification

Methods described in the previous section enabliédntify microorganisms involved in a
degradation process. However, they do not linktitheto a specific biochemical process and
do not enable to measure levels of isotope enriahniifferent methods coupling isotope-
labelling experiments andh situ hybridization have been developed to investigdie t
ecophysiology of microbial populations. They revéla¢ specific uptake of isotopically
labelled substrates within individual cells and pte/logenetic affiliation of the very same
cells.

Among them, MarFISH (Lee et al., 1999) combine®rscencen situ hybridization and
microautoradiography (mar) but is limited to radithe isotopes. Raman FISH (Huang et al.,
2007) allows the detection of isotopes incorporated cells using Raman microscopy but
has a lateral resolution of aboujuh and requires that the minimum amount of labehivit
cell is 10% to detect a spectral shift. Developmehtsecondary ion mass spectrometry
(SIMS) made possible to measure precisely the psotocomposition of microbes after
isotopic enrichment (Orphan et al.,, 2001). In galftdr, nanoSIMS instrument, with an
important resolution (down to 50 nm) and a greas#wity (less than 0.1% of difference in
the labelling can be detected) enables to measwdncorporation of stable isotopes in
individual cells.

When | arrived at Irstea, a very innovative methbdsed on the combined use of stable
isotopes labelling, FISH and nanoSIMS had just lmreloped (Li et al., 2008). It has been
called SIMSISH (Simultaneous analysis of microlmiaintity and function using NanoSIMS).

| had the opportunity to carry out a technical dalion of the accuracy of this method
(Chapleur et al., 2013). | also applied this tegheito measure the isotopic enrichment of
cells involved in methanol degradation. The method the results obtained are presented in
the next sections.

2.1. NanoSIMS and SIMSISH technique

NanoSIMS is a nanoscopic scale resolution chemimabing mass spectrometer based on
secondary ion mass spectrometry. Briefly, an ioanbés emitted inside the instrument. It

collides with the surface of the sample. The caollighat occurs causes atoms to sputter from
the sample surface. They become secondary ionghwdrie then detected after transfer
through a mass spectrometer (see Figure 14). Resolaf the instrument allows precise

isotopic and elemental measurements of the sudaearious types of samples (geological,

biological, etc.). Analysis can be realized in tdonensions to map the surface of the
samples.
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Figure 14: lllustration of the principle of nanoSIMS from (Wagner, 2009) Primary ion beam sputters the
sample. Secondary ions are emitted and will bectleden the mass spectrometer.

The concept of SIMSISH (Li et al., 2008) reliespmarforming FISH experiments on samples
containing microorganisms enriched in a stableopet (typically samples from a SIP
experiment). In the probes used for FISH, the f#soent dyes are replaced by molecules
containing elements rarely present in biomass, iagens. Analysis in the nanoSIMS of
samples hybridized this way allows on the one Hardletection of probes distribution in the
samples (halogens signal) and on the other hanth#pping of the isotopic composition on
the sample (for exampf€C and**C signal). Using a single instrument, it is thusgible to
simultaneously detect the hybridization of the atigcleotide probe revealing the
phylogenetic identity of the targeted microbe anghitor in sity, at the single-cell level, its
isotopic enrichment in various elements of biolagimterest. Concept of the method is
illustrated in Figure 15.

Measures of isotopic composition of microorganisoas be used in combination with

degradation models to get information on the rdighe different microorganisms in the

degradation chain (see Figure 16). Briefly, theaitethat, according to their function in the
digestion process, the microorganisms feeding belled substrates or on the degradation
products of the labelled substrates will incredsartisotopic composition in the atom of

interest. By comparing on the one hand the modeledretical isotopic composition of

microorganisms performing the different functiorsoss time, and on the other hand the
measures of the actual isotopic composition of rtheroorganisms suspected to carry out
these functions, it is possible to confirm or démgir role.
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Colocalisation of the signals to link identity and function

Figure 15: Schematic representation of the SIMSISHnethodology.After stable isotope labelling, samples
are spread on silicon wafers and hybridized witlodpenated probes targeting specific microorganiSasaples
are analysed in a nanoSIMS instrument. A caesiumb@am extracts secondary ions from the surfatieeof
samples. Analysis of the ions in a mass spectrameigbles to map the stable isotope enrichmenttend
halogens distribution. By comparing the differentiges, identified microorganisms can be assoctatad
specific isotope enrichment that can be used terdete the function of the microorganisms.

Degradation chain (**C%) Modeled 13C cellular composition
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Figure 16: How to link function and identity with SIMSISH? Degradation of a labelled molecule (A) can be

modelled to estimate the theoretical isotopic dmmient of its degradation products (B, C, D, E) #raisotopic

composition of the microorganisms that would beolaed in the different steps of the process (micgaaisms

1, 2, 3). Actual isotopic composition of the micrganisms identified in the samples (microorgani#mB, C)

can be measured with SIMSISH. The measured isotapigposition can be compared to the predictiorthef
model to hypothesize the role of the microorganisms
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2.2, Evaluation of the influence of the experimental procedure of
SIMSISH on enrichment measures with nanoSIMS

Treatment and preparation of samples prior to ni8Sanalysis with SIMSISH are factors
that can modify the initial composition of the nabral cells. Indeed, hybridization is
performed on PFA-fixed and ethanol-permeabilizelis célalogenated probes used have a
natural isotopic carbon composition. Even if onlynaited number of probes and exogenous
atoms are introduced (and endogenous atoms remaviedrells during the fixation and
hybridization procedures, the samples might be fremtiresulting in differences between the
original isotopic content and the apparent isotopamposition of cells measured by
nanoSIMS.

To evaluate the influence of these proceduresalized an experiment where the isotopic
enrichment of E. coli cells was measured beforeattnent, after fixation, and after
hybridization. Single cell level analyses, realizeadth nanoSIMS at Institut Curie, were
compared to reference analyses, at population lewelcells pellets, and realized with
elemental analyser-isotopic ratio mass spectronfE®&IRMS). Analyses were performed on
a set ofE. coli cells isotopically labelled at different levels'd€ enrichment (1.10%, 2.08%,
3.06%, 6.00%, 10.89%, 20.68%, 40.26%, 59.84%, P8.48d 99.00% of°C for EA-IRMS
and 10.9, 20.7, 40.3 and 79.4 % for nanoSIMS).

Results of the different measures are presentedrigmre 17. EA-IRMS and nanoSIMS
measurements showed independently that the fixaah hybridization procedures used in
SIMSISH technique had little influence on the carlgotopic composition dE. coli treated-
cells. This indicated that only a very small amoahexogenous carbon was introduced in
cells during SIMSISH procedure (a theoretical claton suggested that the amount of
carbon introduced with probes during SIMSISH pragedwas less than 0.22% of the total
amount of carbon i&.coli cells).
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Figure 17: Isotopic composition of untreated, fixedand fixed hybridized cells measured with EA-IRMS
and nanoSIMS.(a) *C isotopic composition of fixed, and fixed/hybridit E.coli cells measured with EA-
IRMS compared td°C isotopic composition of untreated cells — i) isotopic composition of fixed/hybridized
E.coli cells measured with nanoSIMS comparetf@isotopic composition of untreated cells.

Additionally, untreated and fixed/hybridized cellere analysed in mixture with nanoSIMS
for the enrichment values of 10.9, 20.7, 40.3 af@dt B6 of 1°C. A set of images showing
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sulfur and iodine emission as well as correspontfi@cabundance map is presented in Figure
18. Sulfur is an indication of the total biomassdihe signal enables an identification of
hybridized cells from the non-hybridized (untregtedes.

13C % in Sulfur signal (a) lodine signal (b) 13C abundance (c)
culture media

10.89%

20.68%

40.26%

79.42%

Figure 18: NanoSIMS images obtained for mixed untrated and fixed/hybridized cells grown in enriched

culture media with nominal **C abundance of 10.9, 20.7, 40.3 and 79.4®anel (a) shows the secondary ion

of **S image as an image of total biomass (scale barmp Panel (b) shows the secondary ioff6fimage as
an indication of hybridized cells. (£)C Isotopic abundance map of corresponding area.

We observed that nanoSIMS provided an efficientrdignation between lateral neighbour
cells. It revealed that incorporation of labelledtion was homogeneous in all the cells of the
same type, and within the cells. lodine signal &tlo clearly identify the labelled cells. We
concluded that isotopic composition of single ceallsuld be determined precisely with
SIMSISH.

We also observed that multiple labelling was pdssitp perform several isotopic
measurements and identification at the same tinte etudy specific syntrophic interactions
(Figure 22). Combined with stable isotope probiSgYISISH constitute an elegant tool to
decipher networks of biogeochemical processes ysa@l by uncultured microorganisms
within complex environments.
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2.3. Combination of SIMSISH with modelling to assess the function
of microorganisms

To illustrate the potential of SIMSISH, an expermhewas set up to identify the
microorganisms responsible of the different pathsvagtivated during mesophilic anaerobic
degradation of methanol. Methanol is a small mdkdout under anaerobic conditions, it has
a complex web of possible degradation routes, sumethin Figure 19.

H,/ CO,
v
b
CH,OH L
7
0, o
CH,COOH
Reactions Microorganisms involved
1 4CH,OH - 3CH, + HCO;~ + H* + H,0 Methylotrophic methanogen
2 CH,OH +H, - CH, +H,O Methylotrophic methanogen
3 4CH,0OH + 2HCO,~ = 3CH,COO~ + H* + 4H,0 Acetogenic bacteria
4 CH,OH +2H,0 = 3H,+ HCO,; + H* Acetogenic bacteria
5 4H,+ 2HCO;~ + H* = CH,COO- + 4H,0 Acetogenic bacteria
6 4H,+ HCO;~ + H* & CH, + 3H,0 Hydrogenotrophic methanogen
7 CH,COO~ +4H,0 = 2HCO,;~ + 4H, + H* Syntrophic bacteria
8 CH,COO~ +H,0 - CH, + HCO;~ Acetoclastic methanogen

Figure 19: Summary of the degradation pathways po#isle for the anaerobic digestion of methanol, and
main microorganisms involved.

Anaerobic batch digesters were set-up and fed Withlabeled methanol (PhD of Tianlun
Li). Concentration and isotopic enrichment of degtéon intermediates and products were
analysed. Based on the values measured, it was rdgrated that only a part of the
degradation routes shown in Figure 19 were aclitey are illustrated on Figure 20. Based
on this diagram, a mathematical model describirg ftmctioning of the ecosystem was
developed (by Pr Vassily Vavilin during a sciedtifstay in the lab). It was fitted on
macroscopic data (gas, VFA, methanol, dissolvedgamaic carbon). Mass balanced equations
were computed both fdfC and'®C. Equations describing the temporal isotopic dmient
pattern of microbial functional groups were desdjt@sed on hypothesis made on their
situ ecophysiology.
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Figure 20: Degradation pathways activated during tle mesophilic anaerobic digestion of methanol.

A SIP strategy allowed to identify the functionaicneorganisms. Specific FISH probes
labelled with halogens were designed to targettin@sroorganisms. For example, archaea of
Methanosarcinagenus can use the hydrogenotrophic or acetoclasticways to produce
methane (reactions 6 and 8 on Figure 20). Theiofso enrichment across time according to
the type of metabolism was modelled by V. Vavilndas presented on Figure 21.

13¢ enrichment of methanogens

Acetoclasts

0.5

% of 13C

Hydrogenotrophs j
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Number of days

Figure 21: Modelled**C enrichment of acetoclastic and hydrogenotrophic mhaea across time in the
conditions of the anaerobic digester degrading’C-methanol.

| prepared samples with the SIMSISH technique tgetaMethanosarcinacells with a
brominated probe and bacteria in general with a@inaied probe. Samples were analysed
with nanoSIMS at Institut Curie. Images of one skmpken after 25 days are presented on
Figure 22. Sulfur image showed a big round formm@aurded by smaller forms with a typical
shape of cell. We hypothesized that the round fevas a cluster of archaea that was
surrounded by bacteria. Indeed, clear bromine addteé signals, corresponding to probes
hybridization, were observed and enabled the ifleation of bothMethanosarcinaarchaea
and bacterial cells at the same time. NanoSIMS aisabled to measure the isotopic
enrichment of the archaeal cluster and of the ryelalterial cells. The medfC enrichment
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of archaeal cluster was 30.0% (standard error &},.and the mean enrichment of bacteria

was 24.4% (standard error = 2.5%), showing that bgies of microorganisms were involved
in methanol degradation at different levels.

Figure 22: NanoSIMS images of a sample taken at d&6 from an anaerobic digester fed with°C-labeled
methanol labelled with a generalist bacterial iodiated probe (EUBI) and aMethanosarcina genus specific
brominated probe (MS1414)Panel (a) shows the secondary ioff’8f image as an image of total biomass.
Panel (b) shows the secondary ioff"8f image as an indication Methanosarcinaells identity. Panel (c)
shows the secondary ion fl” image as an indication of total bacteria. Pangskdws thé>C Isotopic
abundance map.

Another measure performed later, at day 42, bt time with only an iodinated probe for
archaea, resulted in the images presented on Fig@ireAnother cluster of archaea was
evidenced with the iodine signal. This time thaapac enrichment of the cells of the cluster
was 39.7%. Modelling predictions were comparedstatdpic enrichment measured at the

single cell level (Figure 21). It showed that, Ime tconditions of this experiment, archaea of
Methanosarcinayenus behaved as acetoclasts.



Figure 23: NanoSIMS images of a sample taken at da&2 from an anaerobic digester fed with’C-labeled
methanol labelled with an archaeal iodinated probePanel (a) shows the secondary iofi’6f image as an
image of total biomass. Panel (b) shows the secegrida of /I of archaeal cells. Panel (c) shows f@

Isotopic abundance map.

Similarly, we questioned the identity of microorgams responsible for methanol oxidation
(reaction 4, Figure 20). Based on the sequencemiofoorganisms identified with SIP,
several FISH probes were designed. One of them, &9Mtargeted bacteria from the class
GammaproteobacteridNanoSIMS analysis showed that these cells exkilkate enrichment
similar to the one modelled for autotrophic methHamadizers (not shown here), suggesting
that they were involved in this reaction. SIMSISkgedure therefore provided meaningful
indication to understand the situ functional behaviour of uncultured microbes.

3. Conclusion

Methods making use of stable isotope showed u teelby performant to target specific and
complex questions, provided that they were usedcoletisly. According to me, their main
limitation is that they are very tedious and cqsdgpecially if the labelled molecule used
must be synthesized specifically. They require thatquestion targeted is very specific and
that the experimental set-up is properly designed.

For example, nanoSIMS instrument is powerful to soea the isotopic enrichment of single
cell. However, this technique requires a lot of dimf observation. Spotting specific
microorganisms, even if labelled, in an area of egeare millimetre is very complex. To
realise accurate measurement it is important tledls @are either deposited in single or
homogenous layers. Analysis requires a long imptaont of the ion beam to observe a
surface important enough. Sometimes successiveysatalat different resolution or with
different parameters are required to obtain imagewsg both halogens signal and an
accurate measure of the isotopic enrichment. Instnis are very costly, no automatization is
possible. Coupling this approach with modelling asmplex. A single carbon organic
molecule such as methanol is already at the orgimultiple reactions, carried out by
multiple microorganisms. With this in mind, nanoSMnabled to evidence various microbial
interactions that had never been proven beforép enderstand the fate of substrate in the
microbial community and to visualise food netwankmicrobial spatial organisation (Jiang et
al., 2016; Musat et al., 2016; Nufiez et al., 208 et al., 2019).

70



Finally, | think that stable isotope probing, used combination with high-throughput
untargeted methods, will probably enable to gairreancomplex information. They have
already been combined with metagenomics, as sdiokeb€Ziels et al., 2018). Use of
untargeted metabolomics to analyse sample from &tPeriments would open new
perspectives to decipher the pathways of degradatica specific compound in a complex
environment.
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Chapter 2: Screening of numerous
experimental conditions with molecular
tools to study the inhibition of anaerobic

digestion

After spending several years analysing in detarti@aar situations using SIP methods, |
decided to explore other approaches. | took adgentd the possibility to analyse multiple

samples in parallel with fingerprinting or metalmting (provided by the reduction of

analytical costs) to set-up experiments testingukameously multiple conditions. My new

research questions did not aim at deciphering peeiic mechanism anymore, but aimed at
comparing the dynamics of the microbial communigyaawhole under various conditions.

The objective was to get insight into the driverstloe bottlenecks of the process under
various conditions (1) to better understand howgehsonditions impact AD process and (2) to
propose management strategies to optimize theitumiegy of AD. | chose to explore the topic

of the inhibition of anaerobic digestion with thégproach. Indeed, anaerobic digestion
process still remains vulnerable to a wide varigtynhibitory substances that induce poor
operational stability, preventing AD wide commeliziation (see General Introduction, 1.4.4
page 43).

In a first series of experiments, | evaluated tfiece of different levels of inhibitors on AD
performance and microbial dynamics. In a seconiesesf experiments, | assessed the
potential of different operational strategies tdigaite the inhibition of AD. Testing multiple
experimental conditions required using approprmagthods to compare the effects, organise
the generated data and extract the relevant infowmarlhe results presented in this chapter
were produced by me or during the PhD of Simon i@oiand Laétitia Cardona that |
supervised, or during a joint work with Céline Mgali (assistant engineer) who wished to
develop new skills to become a study engineer {jposobtained in 2017).

1. Effect of different inhibitors of the anaerobic digestion

Exploring the literature related to AD inhibitiohpbserved that most of the time, the studies
assessed the effect of an inhibitor by testing omlg or a few levels of inhibitor (for example,
low and high concentration). | also observed tf@m one study to the other, adding the
same concentration of an inhibitor often resultedliiferent effects, both on the degradation
performances and on the microbial community, bezafishe specificity of the experimental
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set-up (type of inoculum, feeding, reactor etd.)inhited the possibilities to assess globally
the effect of one inhibitor on AD microbiome.

To overpass this limitation, | decided to assegbiwithe same experiment the effect of a
wide range of concentration of an inhibitor. Levefsinhibition were selected to obtain an
amplitude of inhibition going from no inhibition twtal inhibition of the process (i.e. no

methane production at extremely high level of itbif). The objective was to describe the
impact of the different levels of inhibitor on madrial communities’ dynamics and to identify
the key phylotypes involved into the resistancéhi inhibitor. Using different levels of the

same inhibitor enabled to evidence different ‘thidds’ of inhibition.

Three published papers are related to this res¢apat

* Increasing concentrations of phenol progressivigchanaerobic digestion of
cellulose and associated microbial communities pleha et al., 2016b)

* Anaerobic digestion of biowaste under extreme amalooncentration: identification
of key microbial phylotypes (Poirier et al., 2016b)

» Community shifts within anaerobic digestion micatii facing phenol inhibition:
Towards early warning microbial indicators? (Paigeal., 2016a)

The influence of two inhibitors (ammonia or phenof) the anaerobic degradation of two
types of substrate (cellulose or biowaste) wasetkesh batch reactors. The following
paragraphs present the reasons for selecting ihieibgtors, the effect of the inhibitors on the
degradation performances and on the microbial conmies based on a selection of the
results | obtained.

1.1. State of the art related to the studied inhibitors

Ammonia and phenol were selected from a wide wanépotential inhibitors. They are often
present in waste or can be produced during itsadiegion. They are therefore frequently
encountered in industrial digesters. As descrilmethe next paragraphs, even if they have
already been studied, there is still no consensughe levels of concentrations which are
inhibitory and no consensus on their effects onnterobial communities. These inhibitors
were complementary. They are of different natuner@anic and organic molecules). Phenol
can be degraded during the process while ammoniaotaBoth could be easily manipulated
and quantified in our lab.

1.1.1. Ammonia

Ammonia is regularly mentioned as the primary caabaligester failure (Yenigin and

Demirel, 2013), even though it is an essentialientrfor the growth of microorganisms at
low level. Many traditional AD substrates such agdtock manure, slaughterhouse by-
products and food industrial residues contain & mgrogen concentration. It is due to the
presence of organic nitrogen such as urea andipsodich readily release ammonia upon
digesters during their anaerobic degradation (Rggabet al., 2013).

In liquid media, ammonia can be found into two idive forms: the unionized free
ammonia nitrogen (FAN or Ngl and the ammonium ion (NJ. Total ammonia nitrogen,
abbreviated as TAN, is a combination of unionizezefammonia and ammonium ion. The
chemical equilibrium between FAN and TAN concemndrag mainly depends on pH and
temperature (Anthonisen et al., 1976). FAN is coeis@d more toxic to anaerobes than TAN.
The most widely accepted mechanism explaining FANibition is based on change of
intracellular pH due to its passive diffusion thgbucell walls, increasing the maintenance
energy requirement and inhibiting specific enzyrmeactions (Wittmann et al., 1995). TAN
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has been reported to induce 50% reduction in @idduction at a wide range concentrations
varying from 1.7 g/L to 14.0 g/L (Chen et al., 2@D8According to Sung and Liu (2003), total
inhibition occurs in the range of 8.0-13.0 g/L oAN depending on pH and inoculum.
Similarly, toxic effect of FAN was observed fromQLEg/L to 1200 mg/L (Rajagopal et al.,
2013; Yenigun and Demirel, 2013). The wide rangmbibiting FAN or TAN concentrations
can be ascribed to the differences in nature obtsates, environmental conditions (pH,
temperature, hydraulic retention time) and accliamabf inoculum (Van Velsen, 1979).

The inhibitory effect of ammonia is known to mainhfluence the methanogenesis (Calli et
al., 2005b). However there is no consensus onxasterole. For example, under ammonia
stress, acetoclastic methanogens are usually eesidto be more vulnerable than the
hydrogenotrophic ones (Koster and Lettinga, 1984gelidaki and Ahring, 1993). Thanks to

stable isotope-based analytical techniques, a mltabhift in methanogenesis from the

acetoclastic mechanism to the syntrophic pathwayvfiich hydrogenotrophic methanogens
are involved) was pointed out when ammonia coneéptr is increased (Schnirer and
Nordberg, 2008). Other studies also showed thate@asing concentrations of ammonia
induced a growth of Syntrophic Acetate OxidatiolA(§ Bacteria and hydrogenotrophic

methanogens (Karakashev et al., 2006; Westerholal.,eP012). However, in these latter
studies, acetoclastic methanogens were still dedeciConflicting results tended to

demonstrate that acetoclastic methanogenesis wdsminant under ammonia stress (Calli et
al., 2005a; Fotidis et al., 2014). Furthermore, Haal., (2015) indicated that besides the
SAO pathway, acetoclastic methanogenesis catalygédethanosarcinasppwas still active

at high ammonia levels.

1.1.2. Phenol

Phenols can be produced from the biodegradatiamatfrally occurring aromatic polymers
such as humic acids and tannins or from degradaiforenobiotic compounds such as
pesticides (Fang et al., 2006). Different pre-treaits applied to increase biogas production
efficiency from lignocellulosic materials are al&mown to result in the production of
phenolic compounds (Monlau et al.,, 2014). They rgularly detected at concentrations
reaching up to several grams per litre in differes of effluents from petrochemical or
paper industry (Veeresh et al., 2005; Rosenkranal.e?2013) or in contaminated sewage
sludge or municipal solid waste (Hoyos-Hernandeal.e2014). Phenol concentrations up to
4288 mg/kg were measured in digestion sludge otrahéc digesters degrading different
types of organic waste such as pig manure, biovasdeplant materials (Levén et al., 2012).
Although phenol can be biodegraded to harmless ocamgis under methanogenic conditions,
high concentrations are toxic to different grougsnocroorganisms involved in methane
production (Olguin-Lora et al., 2003; Rosenkranalet 2013). Their detrimental effects on
anaerobic micro-organisms have been observed iraloia systems treating municipal solid
waste, olive mill wastes and wine distillery waséder (Busca et al., 2008). Phenol is indeed
a membrane-damaging microbiocide that affect mengaroteins and alter the cell wall
permeability, inducing progressive leakage of iceflar constituents (McDonnell and
Russell, 1999). In particular, it was observed tragxpected phenol shock loadings within
not acclimated anaerobic digesters can induce ndigouptions in AD bioprocess, leading to
the decrease of biogas production rate and lomgatmbent durations (Veeresh et al., 2005).
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1.2. Effect of phenol and ammonia on the degradation
performances

1.2.1. Screening of multiple inhibitory levels: experimental design

To test the influence of different levels of inhibn, a similar experimental design was used
in (Chapleur et al., 2016b; Poirier et al., 201Bairier et al., 2016b), as illustrated in Figure
24. In these three experiments, batch anaerobestigs of 1L were set-up, inoculated with a
sludge coming from an anaerobic digester, fed wither biowaste or cellulose (chosen as
two representative substrates for AD) in biocheimiceethane potential buffer (BMP).
Ammonia or phenol was added in order to reach ffe@rdnt concentrations. The different
concentrations were chosen based on the literaduge from non-inhibited reactors to totally
inhibited reactors. All incubations were performiedtriplicates. Time zero samples were
collected before starting incubation of the reactond one sample was taken every week until
biogas production was completed. Degradation pedoces were monitored (biogas
production and composition, VFA, total organic carp

el T
- =11

10 inhibition levels

Figure 24: Typical experimental design used in my»@eriments to assess the influence of one inhibitam
AD.

1.2.2. Effect of the inhibitors on the degradation performances

The average cumulated methane production of tHerdift triplicate reactors of the different
experiments are presented in Figure 25A, Figure &6 Figure 27A. In all the experiments,
as inhibitor concentration increased, rates andl¢euof total methane production decreased
progressively. For both experiments with phenafj(ifé 25A and Figure 26A), independently
of the type of substrate (cellulose or biowastegruh concentrations under 1.00 g/L resulted
in a moderate inhibition of methane production. h&togenesis occurred up to 2.00 g/L of
initial phenol concentration, despite importantipibited. At higher phenol concentration, no
CH, was produced. For the experiment with ammoniapdarate effect was observed under
10.0 g/L of TAN, corresponding in this experimemt242 mg/L of FAN. Digesters were only
importantly inhibited at concentrations higher ti2&n0 g/L of TAN (387 mg/L of FAN).

The experimental design used gave us access togaepsive gradient of effects. No sharp
inhibitory threshold was observed.

76



In general, in all the experiments, methane pradnaas more affected than carbon dioxide
production (not illustrated in this document), presbly because archaeal activity was more
sensitive to inhibition than bacterial activity.

We noted that ammonia levels remained stable atigathe experiment in (Poirier et al.,
2016b). On the contrary, the biogas data revediadl tbtal biogas production in all the
bioreactors containing less than 1.25 g/L of phenaeeded that in the control, suggesting
that phenol degradation to biogas occurred as dredserved by (Fedorak and Hrudey,
1984; Wang et al., 1991). It was confirmed by mdaguthe concentration of phenol in the
reactors across time (see figures 3 and 2 in theefkts of (Chapleur et al., 2016b; Poirier et
al., 2016a)). Phenol was converted to biogas omeelégradation of the main substrate was
completed, suggesting that its degradation was feegsurable or required the growth of
specific microorganisms.

In all these experiments, performance of degradatias also assessed by monitoring the
VFA accumulation dynamics. These data are nottréisd in this manuscript, but, in general,
we observed that as the level of inhibitors incesad/FA consumption was progressively
delayed, resulting in a bigger accumulation.
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Figure 25: (A) Cumulated CH, production (mg of C) over time (number of days) ad (B) specific
methanogenic activity for the different initial concentrations of phenol in reactors degrading cellulse
(Chapleur et al., 2016b)Mean values of triplicate bioreactors are preseatetierror bars represent standard
deviation within triplicates. All experimental spc methanogenic activities (SMA) values are shdamneach
triplicate. Calculated fitting of experimental vaklito the Hill model is shown as well as IC50.
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1.2.3. Modelling of the gas production and comparison of the half
maximal inhibitory concentrations

To facilitate the comparison of the different cdiadis tested, cumulative production curves
were analytically compared by fitting experimentiata with a modified Gompertz three-
parameter model (Equation 1) where M(t) is the datiee methane production (mL) at time
t (days); P is the ultimate methane yield (mL); iR the maximum methane production rate
(mL/days);A is the lag phase (days); e is the exponentialtaohs

M(t) =P Xexp {—exp [% XxX@A—-t)+ 1]}
Equation 1: Gompertz three-parameter model

It provided three quantitative indicators to congpaccurately the different parameters of gas
production, as illustrated Figure 28. This metr@dammonly used to analyse gas production
data (Ware and Power, 2017). Logistic regressian alao be used for the same purpose
(Ware and Power, 2017).

For example, it confirmed that in both experimentth phenol, the inhibitory effect of the
inhibitor on ultimate biogas production was venyitied up to initial concentrations of 1.00
g/L. However, at these concentrations, maximum gecbdn rate values (R gradually
decreased along with increasing phenol levels. dralfel lag times X) increased. The
detrimental effect of phenol, at these concentnatiovas therefore a slowdown in the
degradation.

Growth parameter
plot

1

Growth parameter
e.g. gas production rate

Figure 28: Gompertz equation enables to summarizeag production curves with 3 parameters.

In order to compare the inhibitory effect of amn®mir phenol in our studies with other
studies, AD inhibition was more precisely quantfigy calculating a half maximal inhibitory
concentration value (Kg). ICso is a quantitative measure that indicates how moicka

particular inhibitory substance is needed to irthépigiven biological process by 50%.
Specific methanogenic activity (slope of the methamoduction curve during maximum
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production, Rm parameter of Gompertz model) wascsetl as an indicator of AD efficiency.
ICso was determined from the correlation plot between &d the level of inhibitor. The
experimental values were fitted to the Hill modglrimn-linear regression using Marquard’s
algorithm and a non-linear regression program (Recket al., 2010). The concentration of
inhibitor required for a 50% reduction of the metbgroduction rate was estimated (Figure
25B, Figure 26B and Figure 27B).

In experiments using phenol as an inhibitorisglQf respectively 1.40 g/L phenol (Chapleur et
al., 2016b) and 1.25 g/L of phenol (Poirier et 2016a) were determined (see Figure 25B and
Figure 26B). They were in keeping with values régadrby other authors for different
substrates: (Wang et al., 1991) observed ap ¢€ 1.25 g/L during experiments on acetate
degradation, (Sierra-Alvarez and Lettinga, 1991¢ueined that acetoclastic methanogenesis
in granular sludge was half-inhibited at 1.10 gf_pbenol etc. Various inhibiting phenol
concentrations can be attributed to the differencesature of substrates, environmental
conditions (pH, temperature) and acclimation of cidlam. Interestingly, we noticed
important standard deviations for the methane ol of bioreactor inhibited with 1.50
g/L of phenol in (Chapleur et al., 2016b) whiletak other triplicates behaved very similarly.
As this value was close to theslz microbiome may have evolved stochastically toward
strong inhibition or moderate inhibition.

ICso for experiment with ammonia was 19.0 g/L of TANorGidering inhibiting TAN
concentrations reported in literature, it was ssipgly high (Chen et al., 2008a). For
example, similar batch toxicity assays showed a 8@&sease in SMA at TAN range of 8.0 -
13.0 g/L with acclimated biomass (Sung and Liu,308lowever FAN corresponding to this
ICs0 in our experiment was calculated and was circg 888 mg/L, due to the high buffering
capacity of BMP solution. It was comparable to Wadues of the literature (Rajagopal et al.,
2013). This observation confirmed previous resullsch demonstrated that FAN is more
toxic to methanogenesis than TAN (Kayhanian, 1994).

1.3. Effect of phenol and ammonia on the microbial dynamics
1.3.1. Thresholds of inhibition determined with fingerprinting

ARISA was initially selected to study the dynammfs microbial communities because it
made it possible to process a large number of sssrgfficiently in order to obtain a well-
replicated dataset. This large dataset was app@tepid correctly identify ecological patterns
and correlate environmental variables with micrbbtanmunity structure (Prosser, 2010).

For (Chapleur et al., 2016b) (cellulose digestinhibited by phenol), 324 samples were
processed for both archaaad bacteria. They correspond to 12 different samgpdates for
all triplicates of bioreactors (between Days 0 883 As it was impossible to compare all of
them visually, they were compared statisticallyhatPCA (Figure 29).

For both archaea and bacteria, it was observeduihad 0.10 g/L, the effect of phenol on
microbial diversity in general was not significam, accordance with performance data
(diversity profiles were similar to diversity prtEs of non-inhibited digesters). The dispersion
of profiles at each level of phenol was mainly etated to the date of sampling (not shown).
At higher concentrations (0.50 to 1.00 g/L), pmfdistribution shifted for both archaea and
bacteria. Phenol induced structural modificatiomghe community’s composition. Several
microorganisms were inhibited by phenol and weptaied by more tolerant ones. However,
at 0.50 g/L, no decrease of the degradation pedno@s had been observed, indicating that,
at this concentration, performance stability waskdid to a structural modification of
microbial communities, revealing a process of aakiq to the inhibitorThe possibility to
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acclimate the microbiome of AD to the presencehainpl was subsequently tested, see 2.3
and (Madigou et al., 20164t still higher concentrations, the same commaesitiemained
dominant but performances decreased, meaning tl@baonganisms were progressively
inhibited, especially archaed@rom 1.00 g/L upwards). Digesters reached theitd of
adaptability to the inhibitor and progressivelytlefficiency. Beyond 1.50 g/L, rather similar
profiles were observed for bacteria for all theaantrations. They were close to the profile of
the inoculum, suggesting that even if bacteria reeth active, none of them gained a
significant advantage over the others comparet@igartitial inoculum (as the community did
not change drastically, based on ARISA data). Fohaea, we observed that profiles of
reactors with 2.00 and 4.00 g/L of phenol were vdifferent from profiles of lower
concentrations. It was linked to the strong archaetvity decrease observed with methane
production.

A Archaea B Bacteria
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Figure 29: Principal Component Analysis (PCA) of achaeal (A) and bacterial (B) microbial diversity
profiles generated by ARISA in (Chapleur et al., 206b). The colour scale represents the initial phenol

concentration in the bioreactors. For archaeafitbieand second axes of the PCA provided the ekar
separation of ARISA profiles, with resp. 36.9% &1d5% of the total variance, while for bacteria finst and
third axes provided the clearest separation of AR&files, with resp. 40.8% and 13.0% of the tot@liance.

Same approach was applied to the other studiesil{nsirated in this document). Briefly,
ARISA analysis in (Poirier et al., 2016a) (biowasigestion inhibited by phenol) indicated
that phenol induced microbial reorganizations fi@®0 g/L for archaea (gradual influence of
phenol up to 2.00 g/L), and from 0.75 g/L for baetevhereas AD final performances were
not impaired up to 1.00 g/L of phenol. Above 1.25,@ll bacterial ARISA profiles were
rather similar. These results were in complianceh WChapleur et al., 2016b) despite the
differences between the experiences (inoculum tsatb}.

In (Poirier et al., 2016b) (biowaste digestion bited by ammonia), ARISA evidenced that
from 0.0 g/L to 10.0 g/L of TAN, both archaeal dvatterial populations were progressively
affected by ammonia. It seems that they were ableapidly and gradually modify their
composition to resist to increasing levels of TAN.O g/L appeared as a threshold beyond
which bacterial communities were strongly modifi@d.0 and 50.0 g/L of TAN) and archaea
could not adapt.
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Even if they cannot yield the specific phylogenetientities of key phenol-tolerant or
ammonia-sensitive microorganisms, ARISA fingerpngt profiles provided qualitative

information on the response of archaeal and batteommunities to different levels of
inhibitors. Used at different time points, theyaa|srovided a powerful tool to evidence the
dynamics of microbial communities in my work.

1.3.2. Identification of the key phylotypes at stake

The purchase of a benchtop sequencer in our lale ga the opportunity to use 16S
metabarcoding on samples from (Poirier et al., 201Boirier et al., 2016b) (biowaste
inhibition by phenol or ammonia). We were able tofgrther than the analysis of ARISA
fingerprinting profiles that had initially been piaed and in particular we identified the key
phylotypes at stake during the inhibition. For bettperiment, 44 samples were sequenced
with 16S metabarcoding of DNA for each conditiostéel (different time points within one
replicate).

In this document | illustrate the approach with thsults of (Poirier et al., 2016a) (biowaste
inhibition by phenol). Relative abundances of theéhaeal and bacterial OTUs are presented
in Figure 30 and Figure 31. This data was processtdPCA to identify the key phylotypes
and their threshold of inhibition (not illustratedthis document).
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Figure 30: Relative abundances of the archaeal gemegenerated by 16S rRNA gene sequencing in
(Poirier et al., 2016a).Samples were clustered by initial phenol conceiatngg/L) and by collection date
(number of days). Different shades of the sameuwroleere used to represent archaeal OTUs belongitiget
same genus.

Up to 0.50 g/L, phenol did not influenced archaaahposition much. Then a gradual shift
between one OTU fromMethanosarcinagenus (MS2 in red) and one OTU from
Methanoculleus genus (MC1 in blue) was observed along with imgirep phenol
concentrations from 0.50 g/L up to 2.00 gille hypothesized théflethanoculleugplayed a
key role in the maintenance of active methanogsnbsough the establishment of specific
syntrophic interactions probably with bacterial sgphic acetate oxidizerddethanoculleus
was indeed shown to be the predominant group ohanetgens in digesters with syntrophic
acetate oxidation (SAO) (Schnurer et al., 1999)weleer, when inhibitory pressure became
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too important, Methanoculleuswas in turn inhibited. Archaeal community was then
dominated byMethanolineaMLL1 in green) probably not much active but highlyundant in

the inoculum.

Figure 31: Relative abundances of the bacterial faities generated by 16S rRNA gene sequencing in

(Poirier et al., 2016a).Samples were clustered by initial phenol conceiotngg/L) and by collection date

(number of days). Different shades of the sameuwol@re used to represent bacterial OTUs belonigirige
same family.
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Similarly to archaea, from 0.00 g/L up to 0.50 ghacterial composition dynamics was not
influenced by phenol. From 0.75 g/L up to 1.50 gficreasing phenol concentrations caused
important modifications within dominant communitieRelative abundance of family
Synergistacea¢SYNE in red) increased along with increasingiahiphenol concentrations
until reaching 24%-33%. Bacteria affiliated to tfgsnily have been described as anaerobic
amino-acid degraders and syntrophic acetate oxmliable to cooperate witlethanosaeta
(Ito et al., 2011). We hypothesized that they hadt@ntial role in SAO wittMethanoculleus
(not described yet), which was the predominant eratlgen at high inhibitory concentrations.
In the meantime abundance &yntrophomonadaceaéSYNT in dark blue)dropped.
Syntrophomonadaced®ave also already been associated with SAO (Sehriral., 1999;
Carballa et al., 2015).We hypothesized that theeaming levels of phenol lead to a shift of
syntrophic interaction and that SAO could be mamgd due to a possible functional
redundancy betweedyntrophomonadaceasdSynergistaceaéAt 2.00 g/L, we also noticed
that the relative abundance of families belongmgriderClostridialesdropped (in particular
families Lachnospiracea€LACN in cyan) andRuminococcacealRMNC in blue)), leading

to the predominance of populations assigned tordB@eteroidales(in particular families
Bacteroidaceag(BCDA in light green) andPorphyromonadacea¢PORP in green). We
suggested that they could be part of the bacteeyablayers at high phenol concentrations.

Same approach was applied to ammonia inhibitiodys(Roirier et al., 2016b). We observed
a gradual methanogenic shift between two OTUs fgenusMethanosarcinavhen TAN
concentration increased up to 25.0 g/L. Proportbmotential syntrophic microorganisms
such asMethanoculleusand Treponemgprogressively rose with increasing TAN up to 10.0
and 25.0 g/L respectively, whigyntrophomonaandRuminococcugiroups declined. In 25.0
g/L assaysCaldicoprobactemwere dominant.
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Among other things, both studies presented inghragraph emphasized the key importance
of establishing or maintaining syntrophic interans to resist to the inhibitors and maintain
methane production.

1.4. To be continued

To carry on with this topic, new experiments haeerbset-up by Laétitia Cardona during her
PhD. In particular, as the inhibition involves mamgarrangements of the microbial
community that are limited by the growth of micrganisms, we questioned the effect of
adding ammonia at different speeds in the reacilidrese experiments were performed in 6
semi-continuous reactors, more complex to operadenzonitor than batch reactors but closer
from industrial systems. Microbial dynamics weregaed with both 16S RNA gene
metabarcoding, and 16S RNA metabarcoding, thatebattflects the activity of the
microorganisms. Patterns of waste degradation sdioge and under the different types of
inhibition were monitored with metabolomics. Dafalos experiment are still being analysed
(see also chapter 3, section 3.2) but the new ewpatal design and the new analytical
methods that have been used will enable to gdtdurhsights in the fate of AD microbiome
under inhibitory pressure.

2. Mitigation of the inhibition

In parallel to the work presented in the first sactof this chapter, | also evaluated the
possibility to mitigate the inhibition of AD by phel and ammonia. Based on the
observations made in the experiments presentedealio\particular that (1) establishing or
maintaining syntrophic interactions was essenbatesist to the inhibitors and that (2) the
microbiome could adapt to resist to the inhibitprto a certain concentration, | designed 3
experiments.

Two of them evaluated the possibility to use d#fdr support media to facilitate the
resistance of the microbiome to ammonia and phenol.

* Improving anaerobic digestion with support mediatidation of ammonia inhibition
and effect on microbial communities (Poirier ef 2017)

» Support media can steer methanogenesis in thenmeesé phenol through biotic and
abiotic effects (Poirier et al., 2018a)

One of them evaluated the possibility to acclintheemicrobiome to the presence of phenol.

» Acclimation strategy to increase phenol tolerarfc@ncanaerobic microbiota
(Madigou et al., 2016)

The next paragraphs present a brief review of thedegjies used to mitigate inhibition by
ammonia and phenol, with a focus on the use of atippedia. The main findings of my
work related to this topic are then presented.

2.1. State of the art related to the strategies used to overcome
inhibition

2.1.1. Multiple strategies have been considered

Different strategies were studied to mitigate themenia or phenol inhibition at different
steps of the process.
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Some of them consist in reducing the level of th@hitors in the reactors, for example by
dilution (Yun et al., 2016). In the case of livesteeffluents, many studies use an air stripping
process to remove excess ammonia nitrogen (Lei, &0®7; Abouelenien et al., 2010; Serna-
Maza et al., 2015). Desalination cells (Zhang antgeélidaki, 2015) or electrochemical
systems are used to remove ammonia from recyclbeeef or digestate (Desloover et al.,
2015).

Some of them consist in modifying the operatingdibons to reduce the inhibition pressure
or facilitate the action of the microorganisms. Eaample, trace elements necessary for the
growth of the microorganism can be added (Uludagiider et al., 2008; Westerholm et al.,
2015). In order to counteract ammonia inhibitorigef, pH and temperature adjustment have
also been implemented (Strik et al., 2006; Wanal.e2014). Anaerobic co-digestion allows
to balance the C/N ratio by mixing at least two Stdies, one with a low protein content
(Zhang et al., 2013), resulting in a lower levehaimonia in the reactors.

Some of them consist in modifying the microbial coumity so that it becomes more
resistant. It includes microbial acclimation (Abtareen et al., 2009; Gao et al., 2015) and
bioaugmentation to enhance the resistance of tloeolmal community by the addition of

adapted preground cultures (Hajji et al., 2000; \ahkboIm et al., 2012; Fotidis et al., 2014).

More recently, many studies underlined that thatemtdof different materials or polymers to
AD process led to significant increase in organiatter degradation, as well as in biogas
production, in particular under inhibitory condiim They are detailed in the next paragraph.

2.1.2. Use of active support media

Recent studies highlighted that adding support enedanaerobic digesters could result in an
increased biogas production despite the presendehdiitors by specifically shaping the
microbial ecosystem (Milan et al., 2010; Mumme let2014). One of the hypotheses is that
microbial colonization of these supports could eweaproximity of microorganisms in
aggregates and favour cross-feeding, metabolic gnodiucts of one species becoming
substrates for nearby species until the final enodyrcts. In particular, syntrophic associations
of anaerobic digestion could benefit a lot fronmsttype of structures as they require that the
pool size of the shuttling intermediate is kept lawallow efficient cooperation. However,
even if the positive effect of these supports waglenced, clear explanations on the
underlying mechanisms are still missing. In patacuo go further in the optimization of this
operating strategy in industrial processes, a batiderstanding of the influence of supports
on key phylotypes steering the microbial commurtityvards enhanced biodegradation
performance is needed.

Among these materials, zeolite is a natural roadvkmfor its natural ion-exchange properties,
absorptive capacity and to be a support for thenass (Montalvo et al., 2012). It has been
proven to be an effective way to mitigate ammomhibition due to its high adsorption
capacity and selectivity for ammonium (Ho and H812, Montalvo et al., 2014). It was also
proven to favour biomass growth due to microorgagismmobilization on the surface of
zeolite particles (Weiss et al., 2013). Authorsoalgported that zeolites, presenting a high
local conductivity, could facilitate the interaat® between microorganism (Montalvo et al.,
2012).

Electrically conductive materials such as biochaactivated carbon are known to promote
interspecies electron exchange and to enhance fispetectro-active microorganisms

improving AD performance (Lee et al., 2016; Lu ket 2016). They were proven to promote
Direct Interspecies Electron Transfer (DIET) betw&=obacterandMethanosarcinale$Liu
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et al.,, 2012). DIET is particularly interesting iasnay be a more effective mechanism for
interspecies electron exchange than indirect teansé the production of reduced molecules
such as K and formate (Subramanyam, 2013). Biochars denaiestr significant
improvements within AD process facing ammonia iittobh (Mumme et al., 2014; Lu et al.,
2016). Finally activated carbon is known to adsandgmnic molecules such as phenol.

The supplementation of the reactors with biopolynguch as chitosan can also enhance
granulation (Hudayah et al., 2016) and specifichaebtgenic activity (Lertsittichai et al.,
2007).

2.2. Effect of active support media to mitigate the inhibition of AD
2.2.1. Experimental design

To evaluate the effect of support media on anaerdlgestion under inhibitory conditions,
three experiments were set-up in parallel, in baligesters as described in 1.2.1. In the first
series, no inhibitor was added. In the second seti& g/L of phenol was added. In the third
series, 19 g/L of TAN was added. These values sporded to the IC50 values determined
in the experiment described in 1.2.3. The objectvas to bring a high, but not too important
inhibitory pressure.

For each series, 6 conditions were tested in ¢apd. Five support media were separately
added within batch digesters (2 zeolites, 2 actyatarbons and 1 chitosan). One control
without support media was also set-up.

Experimental design is presented in Figure 32.

Addition of:

-activated carbon (*2)

-zeolite (*2)

-chitosan No addition (control)

———— "
e®C & o

— N\

1.3 g/L Phenol 19 g/L Ammonia No inhibitor

B55555 Sassis ssssis

Poirier et al. 2018 Poirier et al. 2017

Figure 32: Experimental design used to test the ihfence of support media to mitigate the inhibition.
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2.2.2. Effect of the support media on biogas production

First observation was that, in the experiment withmhibitor, CH, and CQ production
kinetics remained relatively similar and were nfieeed by the addition of support media
(not illustrated).

On the contrary, when the digesters were inhibigadimportant effect of the support media
on gas production was observed (Figure 33 and €ig4dy, especially for methane.

For digesters inhibited by phenol (Figure 33), iih @ases, addition of support media
considerably reduced the lag phase observed fonanetproduction in digesters inhibited
without support media. It also increased the marmproduction rate of biogas in general.
Digesters with activated carbon exhibited a biggasluction close to the production of non-
inhibited digesters. It was explained by the ragadorption of phenol on the activated carbon
(abiotic effect). The other support media (zeol#aed chitosan) also improved the
performances despite they had no influence on hemg@ concentration in the reactor. We
hypothesized that they had a direct effect on therahial communities (biotic effect).
Ultimate gas production was increased comparedhé¢ocontrol without inhibitor as phenol
was degraded and metabolized into biogas.
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Figure 33: Cumulated CH, and CO, production (mL) over time (number of days) for thedifferent
support media initially added in the presence of B.g/L of phenol. (Poirier et al., 2018a)Mean values of
each triplicate of bioreactors are presented fos &idl CQ production and error bars represent standard
deviation within triplicates. The black line repeass the mean values of all bioreactors for,@rd CQ
production under non-inhibiting conditions.

87



For digesters inhibited by ammonia (Figure 34)hbotolites mitigated ammonia inhibition
and enhanced anaerobic digestion compared to fiadibdigesters without support.
Surprisingly, the distinct additions of activatedrlmons revealed contrasted results. In
presence of activated carbon 1, lag time was retlbgel0 days while activated carbon 2 led
to an increase of 21 days of the lag time compé#veithhibited digesters without support.
Similarly, the addition of chitosan also led to extra inhibitory effect while no effect of
chitosan was observed during the control experimeihout ammonia. The additional
inhibitory effect brought by chitosan and activat@ibon 2 was not clear but was probably
due to a synergistic effect between a moleculeainet! in these media and ammonia. Indeed
no adverse effect had been observed in bioreastqgmslemented with these support media in
reactors not inhibited.
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Figure 34: Cumulated CH, and CO, production (mL) over time (humber of days) for thedifferent
support media initially added in the presence of 19/L of TAN. (Poirier et al., 2017).Mean values of each
triplicate of bioreactors are presented for,@GiHd CQ production and error bars represent standard tigvia
within triplicates. The black line represents theam values of all bioreactors for ¢ahd CQ production under
non-inhibiting conditions.

Once the positive effect of the support media togaie inhibition of AD was confirmed, we
focused on understanding their effect on AD miocoate.

2.2.3. Effect of active support media on the microbial community

For the different experiments, microbial dynamicsrevinvestigated with 16S RNA gene
metabarcoding. Several samples were analysed foh eandition. Consistently with
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performance results, we observed that archaeal lzaxderial compositions were not
significantly influenced by supports media additiomot inhibited reactors. On the contrary,
in presence of inhibitors, support media had aluémice. Two different approaches were used
to analyse the data and highlight the key playensrgy the important number of OTUs
identified in each experiment.

For the experiment with phenol (Poirier et al., 28}l effect of the support media was mainly
observed on the bacterial population. A partiaslesquares-discriminant analysis (PLSDA)
was performed to identify the OTUs characteristitghe different support media. PLSDA is
a discriminant analysis used to sharpen the separddetween groups. It enables to
understand which variables (OTUs in our case) bestribe the differences between the
groups. This method is particularly useful to treagh-dimensional data (Lee et al., 2018).
Sparse version of the PLSDA (Sparse-PLSDA) (Lé €gal., 2011) was used to perform
variable selection into the large data set in otdedentify the most discriminant OTUS.

Color key

I ]

T ,—'—T‘—\_[?——\EE_FH ‘ ’
Activated carbon 2
Day 31
Activated carbon 2

Day 16

Porphyromonadaceae (POR

Cloacimonetes -In
Cloacimonetes -

Figure 35: Heatmap of the most discriminant bacteial OTUs (in column) determined after sparse Partial
Least Squares Discriminant Analysis (sparse-PLSDA)f all OTUs generated by 16 S rRNA gene
sequencing for the different support media initially added in the presence of 1.3 g/L of phenol. (Pder et
al., 2018a).Type of support and date of sampling is indicatedhe right. Name of the OTUs is indicated at the
bottom. The colour scale on the left representgthaping of samples used to compute the sparseEFA.S
(type of support media). The colour key of the hegi shows the abundance of the OTUs (from blue=low
abundance to brown red=high abundance).
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Heatmap of the most discriminant bacterial OTUsidied with Sparse-PLSDA is presented
in Figure 35 (for technical reasons, samples frogesters with chitosan were not included in
the analysis). In the lines, the samples were etadt based on the similarity of their
abundance in the selected OTUs. The different sssn@brresponding to the same support
media were clustered together, and characterizespbygific OTUs. For example, digesters
with the two types of activated carbon were rathienilar. They were associated to the
presence of OTUs assigned to gen&aminofilibacter (MRNL3) and Ruminococcus
(RMNC4 and RMNCS5) but also to gene@yptanaerobacter(PPTC1) andSpirochaeta
(SPIR3). Gener&uminofilibacterand Ruminococcugontains rumerspecies related to the
degradation of xylan (Nissila et al., 2012) whilryptanaerobacterconsists of species
involved in phenol degradation into benzoate viaydroxybenzoate (Juteau et al., 2005).
This figure also highlighted that activated carbbrcould specifically be related to the
presence of an unassigned OTU belonging to faRetyotogaceadPETG) that is known to
be involved in phenol degradation (Na et al., 208#nilar types of conclusions were drawn
for the digesters incubated with zeolites and witlsupport. SPLSDA enabled to focus on the
most discriminant OTUs of each condition. Speaificrobial populations could be related to
all types of support evidencing their biotic infhee on the microbiome.

For the experience with ammonia (Poirier et al170a different approach was used. Ratios
of abundances were calculated to assess the dvepsasentation of the different archaeal
OTUs and bacterial families in presence of theed#ht support media compared to a
‘control’ situation. ‘TAN ratio’ compared the inhitied digesters to the non-inhibited
digesters. ‘Support ratio’ compared the inhibitégkdters with support media to the inhibited
digesters without support media. As the sPLSDAs thethod enabled to highlight the taxons
differentially expressed between the conditions.

More precisely, for each sample, the relative abood of the main archaeal OTUs or
bacterial families was divided by the correspondieigtive abundance in samples from the
control. These ratios are presented in Figure 3bFagure 37 for bacterial families, taking
respectively non-inhibited digesters and inhibitdijesters without support media as
‘controls’. Colour scale corresponds to the typsugport media and a size corresponds to the
number of days of incubation.

Figure 36 showed that TAN mainly inhibited bacterfamilies affiliated to orders
Bacteroidales, Spirochaetales, Anaerolinal@sd Synergistales By contrast, most of the
families assigned to ord@lostridialesandThermotogaleseemed to be more resistant to this
inhibitor. Syntrophomonadaceasnd Clostridiaceae 1lwere the two only principal families
belonging to orderClostridiales which were also impaired by TAN. Therefore it was
hypothesized that TAN induced strong reorganizatiavithin bacterial community by
favouring the presence of ord@ostridiales and Thermotogalesat the expense of other
orders. An influence of the type of support mediaswobserved and was assessed more
precisely by calculating other ratios (Figure.37
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Figure 36: “TAN ratios” calculated for main bacterial OTUs. “TAN Ratio” was obtained by dividing, for
each sampling date, the relative abundance of #ie bacterial OTUs in the inhibited experiment bgit
corresponding relative abundance in the non-inkibéxperiment. The size of the symbols is corrdladehe
collection dates: the more advanced the bigger.

Figure 37 showed the specific effect of the suppwatia on the bacterial community, under
inhibitory conditions, in comparison to an inhilgitsituation without support media. The
effect of support media addition was minimal on tbaal order Anaerolinales,
Spirochaetales, Thermotogalasad SynergistalesHowever, insideClostridiales order, both
zeolites and activated carbons favoured the dem&op of Ruminococcaceadamily, at
different levels. Activated carbon 1 favoured thevelopment ofCaldicoprobacteraceae
family while this family was underrepresented irgefiters containing zeolites. Zeolites
seemed to lead to the emergence of families belgngd orderBacteroidalessuch as
Marinilabiaceae Activated carbons also favoured this family buslesportantly.

Similar approaches were applied to archaea. Theweth that under ammonia inhibition
zeolite preservedViethanosarcinagenus and enhancedlethanobacteriumgenus while
activated carbon enhancktéthanoculleugienus emergence.

The adverse effect of activated carbon 2 and duitasn biogas production could not be
explained clearly based on microbial communitygrat.
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Figure 37: “Support ratios” calculated for main bacterial OTUs. “Support Ratio” was obtained by dividing,
for each sampling date, the relative abundanckeofrtain bacterial OTUs in the inhibited experimeith
support media by their corresponding relative alamcd in the inhibited experiment without supportimeThe
size of the symbols is correlated to the collectiates: the more advanced the bigger.

These results highlighted potentialities to usepsuis to enhance the process stability of
anaerobic digesters subjected to phenol or ammiohidition. Microorganisms positively
correlated with the presence of the support medigewdentified. However, the exact role of
the support media was not clear. The structure ted microbial colonization of the
supporting materials after AD operation was asseaseng fluorescenn situ hybridization.
However, observations did not evidence clear cakion patterns. We also planned to
isolate support media from the samples taken indigesters to sequence specifically the
DNA of the possibly ‘attached’ microorganisms bugrevnot able to obtain enough material.

| recently set up an experiment (PhD of Laétitiadoaa) to test different assumptions about
the mechanisms of action of the zeolite during ammhibition. Analysis of the data is still
in progress. In addition to the characterisation tllé microbial dynamics with 16S,
methanogenic pathway was monitored by measuringstitepic fractionation of the methane
(Grossin-Debattista, 2011). Patterns of waste diagi@ under the different conditions will
be monitored with metabolomics. It will provide #@tlthal information to decipher the role of
support media in mitigating the inhibition. Withethdata obtained so far, the schematic
pathways presented in the preliminary Figure 38wkawn for digesters without ammonia,
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or with ammonia and with or without zeolite. Figus8 highlights the main differences
between the three conditions, in particular dedgradaproducts which accumulate more,
methanogenic pathways which is dominant, and Speuitroorganisms.

Without ammonia With ammonia
Without zeolite With zeolite
Complex Complex Complex
biopolymers biopolymers biopolymers
l l ?Mari?
Cloa /- v
Rk [ propionate |l | propionate propionate

[/ L] N\ VRN / [ro]

acetate — > CO,, H,| acetate ———— CO, H, | acetate ————— CO,, H,
/

/ @ays <15 days \
co, CH; o, CH;

CO,, CH,

\

Figure 38: Summary of the hypothetical pathways fothe degradation of biowaste, without ammonia and
in presence of ammonia, with or without zeoliteThe molecules which accumulated the more and darhina
methanogenesis pathway are highlighted in blueciSpenicroorganisms identified by the sparse PLS-&re
represented by grey rectangles that were plact qtosition where we hypothesize they are aclihe.role of
the microorganisms between question marks is noivkn Genus Mbac: Methanobacterium; Orders Spi:
Spirochaetaceae; Cloa: Cloacimonadaceae; Rik: Rilemeae; Pal: Paludibacteraceae; Pep: Peptoc@egace
Mari: Marinilabiliaceae; Family Izi: 1zimaplasmagsl

2.3. Is the acclimation to the inhibitor possible?

| tested another strategy to mitigate the effedhefinhibitors that | summarize briefly in this
section.

To confront future disturbances, McMahon suggdsas the best approach could consist in
provoking a preliminary adaptation of the microb@mmunities to stressful conditions
(McMahon et al., 2004). | noticed that my batchdegith multiple concentrations of inhibitor
suggested that a process of adaptation of the mare was possible (see 1.3.1). Based on
these observations, | set up an experiment to igmeshe possibility to acclimate AD
microbiome to phenol (Madigou et al., 2016).

Our work was based on the presupposition that @dlaegtep-wise adaptation of the microbial
community to stressful conditions could strengttiba microbial ecosystem against the
disturbance. Based on this presupposition, the eénpé increasing phenol levels on the
performances of a semi-continuous anaerobic bitwedegrading cellulose was analysed.

This experimental device was not used in our teathitwas an opportunity to initiate a work
in these more dynamics systems. It allowed gettimgditions closer to industrial situations
than the batch digesters used in the other expetgne
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Degradation performances were monitored througtiogitexperiment and molecular tools
(16S sequencing and ARISA fingerprinting technigu&re used to track changes in the
microbial community. We observed that the accliorastrategy progressively minimized the
effect of phenol on degradation performances. Tp@i@ation of 3 successive disturbance
episodes enabled a considerable improvement ahttmbiota resistance to phenol and total
inhibition thresholds were significantly augmentdchm 895 to 1942 mg/L of phenol.
Microbiota adaptation was characterized by thecsiele of the most resistant archaea OTU
from Methanobacteriumgenus and an important elasticity of bacteria, @sfig within
ClostridialesandBacteroidalesorders, that probably enabled the adaptation tieerand more
stressful conditions.

The acclimation strategy minimized the effect oépbl on AD performances. It showed that
adaptation of AD microbiota to increase the resistawas possible. Further studies should
aim at investigating the mechanisms of this acdimmawith other techniques, such as

metabolomics and metagenomics or metatranscripsorttisvould enable to see for example
if the microbial community adapted thanks to a fiormal redundancy, or through an

evolution of the pathways of degradation.

3. Conclusion

Inhibition of the anaerobic digestion is a broagid¢o My research activities are still strongly
linked to this subject. DIGESTOMIC ANR project amthD of Laétitia Cardona focus in
particular on the effect of ammonia, variation obstrates and modifications of temperature
on the performances of anaerobic digestion. STAB& Iproject that | recently submitted to
the ANR (see last chapter of this manuscript) aingetting new insights in the determinants
of AD stability).

My new experiments are now mainly performed in seamtinuous digesters that were

acquired after | performed the experiments detailedhis chapter. They better mimic

industrial digesters. Regular input of waste ermlite reach steady states, while digestate
outlet progressively removes non active microorgiasi. New methodologies are now

available to explore other ‘layers’ of informati@n particular the suite of omics methods) to
enrich the information already obtained. They w#kepen the understanding of the inhibition
process. Indeed, due to the high functional redmeyavithin bacterial populations, 16S

characterization only does not enable to assess thspective role during anaerobic

digestion.

So far | explored metabolomics in several experisieand | just obtained new metagenomics
data. Analysing and integrating these differentefayof data is complex and requires
appropriate statistical methods. | spent 8 month&G(17 in two institutions (Université de
Toulouse and University of Melbourne) to acquire tiecessary analytical and computational
skills to apply these methods. The first resultmied are presented in the next chapter.
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Chapter 3: Advancing environmental
biotechnologies through combined use of
advanced molecular ecology and cutting-

edge computational statistics

To face the increasing quantities of data | wasegeing through experiments of the kind

presented in chapter 2, | started to include differstatistical analytical approaches in my
research. The objectives were both to extract tbst mccurate and relevant information from
the important datasets already produced, but alsmticipate the use of omics methodologies
in my future studies.

In 2017, | had the opportunity to make scientifisitg¢ of several months in two laboratories
specialist of the analysis of high-throughput bgital data (Institut de Mathématiques de
Toulouse at the University of Toulouse and Melbeuimegrated Genomics at the University
of Melbourne). During these stays I've been througi data with different methods, to
answer different questions. | benefited a lot fritra help of the scientists | was visiting, but
also from the others statisticians or users of agatpnal methods | met during my stay.
Some of the results obtained are presented ircki@pter, which is divided in three sections.

» The first section presents a method of integratibdifferent types of data measured
on the same samples, illustrated with an analyhierev we draw links between
microbial activity and molecules degradation rateirth a co-digestion experiment
(manuscript submitted to Chemical Engineering Jaluf@ardona et al., submitted)).

» The second section presents an integration of H8& generated during different and
independent studies, to identify ubiquitous biotadors signatures of AD inhibition
(independent of the studies) and build predictivets of AD inhibition (manuscript
submitted to the ISME Journal (Poirier et al., suited)).

* The third section presents different examples aflyans of longitudinal data using
time course modelling: the effect of an abrupt terapure increase on the dynamics of
the microbiome of AD (ongoing project), the effeot different intensities of
inhibition on the microbial dynamics (ongoing prdje and a new analytical
framework to integrate different types of longitoali data (manuscript under revision
in Frontiers in Genetics (Bodein et al., submitted)
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1. Integration of different types of data

1.1. Objectives

As no single analytical technique is sufficientiecipher complex microbial relationships, the

combination of information from several data soarhas become a decisive issue. However,
current statistical methods mainly enable the amlpf single microbiome dataset, and

generally do not allow for the analysis of sevéypks of data simultaneously. Consequently,
data derived from each omics technique are typicalidied in isolation, and disregard the

correlation structure that may be present betwhemitultiple data types. Appropriate tools

are needed to handle these datasets more suitably.

The coupling of data with inherently very differesttuctures, such as chemical analyses and
metaomic responses is particularly challenging. ¢hallenge is how to organize, analyse,
gain insight from, and use the data for predictoesign, and operational purposes, such as
improving the function of specific engineered bmgesses. This is not an easy challenge,
given the complexity of microbial communities ofr@dynic environments such as anaerobic
reactors. However different integrative methodsehlagen developed to treat such multi-table
data. For example Common Components and Specifigghtge Analysis (CCSWA or
'‘ComDim’) has proven to be a powerful tool to takéo account the common and
complementary information contained in differenttneas (Boccard and Rutledge, 2013). It
has also been used for the joint treatment of ctanand sensory data (Blackman et al.,
2010). DIABLO (Singh et al., 2016) based on spa&neralised Canonical Correlation
Analysis (Tenenhaus et al., 2014) is availabletli@ integration of multiple data sets in a
supervised analysis. The methods aim to extractptementary information from several
data sets to gain a better understanding of trexplaty between the levels of information
measured. For example, it enables to identify ¢ated (or coexpressed) biological features
measured from the different omics while also ingeding and modelling the relationship
between meta-omics and performance stability ofdigester. An equivalent method based
on Projection to Latent Structures (PLS) enablastigrate different data in an unsupervised
framework (Lé Cao et al., 2008). More precisely, SPkegression is a multivariate
methodology which relates (integrates) two datariced to evidence correlations. To go
further, Sparse PLS performs simultaneously vaemldelection to identify the variables
explaining the most the correlation between thaskis (Lé Cao et al., 2008).

These methods have so far not been used to treafrden AD. The next paragraph presents
an example of the use of sparse PLS (or sPLS)}egrate two types of data. An example of
the integration of three types of data is presemesction 3.3.

1.2. Linking microbial activity and molecules degradation during
codigestion

We used a sPLS to integrate 16S and metabolomiesiman unsupervised framework. The
objective was to investigate the link between nbab activity and molecules degradation
during AD. This work was submitted to Chemical Engineering@®na et al., submitted).

Data were taken from a co-digestion experimentd@aa et al., 2019). In this experiment the
influence of different mixtures of sewage sludgéhwiish waste or green waste (grass) on the
microbiome dynamics was investigated in batch degss Digesters were fed with nine
different mixtures of waste as illustrated FiguBe Bor all the digesters, samples were taken
at two different dates during the active methar&pction.
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RNA from the samples was extracted. CorrespondiidNA was used for 16S
metabarcoding, to target the active microorganigmerobial activity dataset). The same
samples were also analysed with an untargeted L@MfBoach to target the degradation of
molecules from the feeding. The rate of moleculegradation in the bioreactors was
estimated by dividing the molecules intensity ay @aby their intensity at days of interest
(molecule degradation rate dataset). It resultad/indatasets describing the same samples.

F75 F50 F25 G50 G75

G25 G100

> Grass.

Figure 39: Experimental design used in the co-digéen study. S100 stands for wastewater sludge alone, F25,
F50, F75, F100 stands for respectively 25, 50,r7B)0% of fish (F) in co-digestion with sludge, GZ5H0,
G75, G100 stands for respectively 25, 50, 75 oPA0D Grass (G) in co-digestion with sludge.

F100

(Fish €
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A sparse PLS analysis was performed to integraed#ia relative to the microbial activity
with the data of the molecules degradation. Thénattn plots from sparse PLS (Figure 40
A and B) showed similar dispersion patterns fortthe datasets. It suggested the existence of
an underlying correlation structure between the thdasets. The correlation circle plot
(Figure 40 C) allowed visualizing at the same tiime variables responsible for the ordination
of the samples in the two datasets, hamely thebi@s correlated between both datasets. It
corresponded to the groups of active microorganisonelated to the molecules degradation
rate. To further identify the microorganisms poight responsible of the molecules
degradation, a hierarchical clustering based onldadings of the microbial and metabolic
from the PLS was performed. Five groups of coreslahicroorganisms and molecules were
identified. The dynamics of their abundance wast@ib(Figure 41).
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Figure 40: sPLS data integration of the microbial ativity and molecules degradation rateSample
ordination plots according to the microbial actvif) and molecules degradation dataset (B) sheuniar
influence of the feeding composition on the micgamisms and on the degradation of the molecules. Th
correlation circle plot (C) shows the microorganssamd the molecules with similar dynamics across th
different samples.

More specifically, Figure 41 depicts the mean valard standard deviation of the microbial
activity and molecule degradation rate accordintheofeeding types for the 5 groups. Group
1 included microorganisms and molecules with a lgbrobial activity and high molecule
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degradation rate during the digestion of sludge adss. Groups 2-4 included
microorganisms and molecules that were specifieitbier sludge, grass, or fish, respectively.
Finally, group 5 included the microorganisms andlengles that were highly active and
highly degraded, respectively, in fish and sludgedactors.

2-

Group 2 - High activity in Sludge

Group 3 - High activity in Grass

Group 4 - High activity in Fish

Group 5 - High activity in Sludge and Fish
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Figure 41: Dynamics of the active microorganisms ecelated to the molecules degradation among the
samples at day 21Duplicates were carried out on the bioreactorsaiomtg only fish, grass or sludge. Lines
represent the mean values of the microbial act{@dfid blue line) or molecules degradation ratisshed red

line) within each cluster, the shadowing tracesesgnt their standard deviation.

Correlations between microbial activity and molesuldegradation within the different
digesters suggested that within each group theomiganisms were potentially responsible of
the molecules degradation. Based on this hypothesisought for biological interpretation.

For example, group 1 included two genera of archaktethanosarcina and
Methanospirullumand the molecules diethylthiophosphate and N-€Bagibutyl)acetamide.
Diethylthiophosphate is a pesticide degradatiordpcd and a urine metabolite (Ueyama et
al., 2014). Conversely, N-(3-methylbutyl)acetamige a metabolite found in alcoholic
beverages obtained by fermentation such as beewaral One hypothesis explaining the
correlation of these archaea and molecules coulthéendirect role of the archaea in the
molecules degradation through a syntrophic inteyaatith bacteria.
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In group 4,Methanosarcinaand 2 OTUs from the ordeClostridiales were correlated to
molecules that can be classified as amino acidsadagon products. Cadaverine and 5-
aminopentanoic acid are obtained from L-lysine ddgtion, histamine from L-histidine
degradation, and phenylpyruvic acid from L-pherai@he degradation. The presumed role of
these microorganisms in the degradation of cadaeeand L-histidine was supported by
previous studies. Roeder and Schink described a s&ain close toClostridium
aminobutyricumable to degrade cadaverine, in co-culture wighaithaedlethanospirullum
(Roeder and Schink, 2009). On the other hand, $lostridiumwere also identified to be
involved in the histamine degradation (Pugin et2017).

The statistical method developed in this studyvedid to posit hypotheses on the degradation
of molecules by different microorganisms. Thesedtlgpses were consistent in regards with
the literature Another example of multiple types of data integmatis presented in section
3.3.

2. Integration of data from independent studies

2.1. Context

In the biomedical field, high-throughput technoksi based on DNA or RNA-sequencing or
omics approaches, are now being used to identimarkers or gene signatures that
distinguish disease subgroups, predict cell phgrastyr classify responses to treatments (Lee
et al., 2019; Sun et al., 2019). Same types of agghres could be applied to microbial
ecology of bioprocess to identify biomarkers signes (based on a 16S or omic data) that
could for example characterize a type of inhibifiope used to forecast digesters
performances, to evidence that a specific pathugagstive etc.

To be robust, these biomarkers should be reprobufribm a study to another. However, it is
observed that few of the findings are reproduce@rwhssessed in subsequent studies in
general (Rohart et al., 2017b). The poor reprodlitgilof identified signatures is most likely
a consequence of high-dimensional data, in whiehnimber of OTUs, genes or transcripts
being analysed is very high (often several thouspmélative to the comparatively small
sample size being used (generally less than 2@halncase, identified signatures are likely to
be very specific of the samples and of the studgpréMubiquitous biomarkers could be
identified by increasing the number of samples. @agy way to increase sample size is to
combine raw data from independent experiments im@&grative analysis. This can improve
both the statistical power of the analysis and riq@oducibility of the signatures that are
identified.

However, integrating studies with the aim of clgssg biological samples based on an
outcome of interest has a number of challenges.c®m metabarcoding studies often differ
from each other in a number of ways, such as teeperimental protocols or the
technological platform used. These differences ad to so-called ‘batch-effects’, or
systematic variation across studies, which is apomant source of confounding factors
(Gagnon-Bartsch and Speed, 2012). They must beuatsm for when combining
independent studies to enable genuine biologicalavan to be identified. Different
approaches have been developed for that, includimgvariate INTegrative method, MINT
in mixOmics R package (Rohart et al., 2017b). tegnates independent data sets while
simultaneously accounting for unwanted study vemmtclassifying samples and identifying
key discriminant variables. It also enables to jmteithe class of new samples from external
studies. More precisely, MINT seeks for a commoojgution space for all studies that is
defined on a small subset of discriminative vagabland that display an analogous
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discrimination of the samples across studies. Tdhentified variables share common
information across all studies and therefore repres reproducible signature that helps
characterising biological systems.

| applied this tool to identify biomarkers of ADhibition and build predictive models of AD
inhibition by ammonia and phenol.

2.2, Integration of independent studies to identify microbial
bioindicators

2.2.1. Description of the data

| selected four studies assessing the influen@whonia or phenol on anaerobic digestion to
identify biomarkers, build predictive models andess their performance.

e Study 1 (Poirier and Chapleur, 2018a) correspondthé experiments testing the
influence of different ammonia and phenol levelgligesters described in chapter 2
(papers: (Poirier et al., 2016a; Poirier et al16Gi)).

e Study 2 (Poirier and Chapleur, 2018b) correspomdshé experiments testing the
influence of different support media to mitigate thhibition by ammonia and phenol
described in chapter 2 (papers:(Poirier et al.72@Dirier et al., 2018a)).

e Study 3 (Lu et al., 2016) was an external studiirtgghe influence of support media
(biochar) to reduce the inhibition of ammonia igelters fed with glucose.

* Study 4 (Peng et al., 2018) was an external steslynig the influence of ammonia on
the AD of food waste.

In all the studies, samples were taken across énteunder different inhibitory conditions.
All studies included non-inhibited controls or meti Based on the performance data (biogas
production, VFA accumulation), and conclusionshaf &uthors, we determined if the samples
had been collected in bioreactors inhibited by amio phenol, or in non-inhibited
bioreactors.

In all these studies, DNA was extracted from thegas and 16S rRNA gene was sequenced
providing datasets of raw sequences associatedifteretit inhibitory conditions. As
described in Table 1, the four studies differeddifferent parameters. Different types of
substrates and inoculum were used, 16S targetéshrespquencing platform and technology
also differed. We analysed the raw sequences frioiies 1 and 2, study 3 and study 4
independently with the same bioinformatics approasing FROGS pipeline (Find, Rapidly,
OTUs with Galaxy Solution) (Escudié et al., 2018).

Table 1: Summary of the main characteristics of thalifferent studies used in the analysis, to illustite the
possible confounding factorsSame colour was used when the characteristics simikar.

media region,
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2.2.2. Accounting for study effect

Our first objective was to identify biomarkers ahm@onia and phenol inhibition and was
focused on studies 1 and 2, as studies 3 and dodlicontain samples inhibited by phenol.

A PCA was performed (Figure 42A) for a first ex@lton of the major sources of variation in
the data. Sample distribution highlighted a strengly effect. Samples on the left part of the
factorial plane were related to study 1 conductél the inoculum A while samples collected
during study 2 conducted with inoculum B were oe tight side of the factorial plane.
However, a clear influence of the type of inhihition microbial community could still be
observed within the samples of each study.

A PCA B sPLSDA | € MINT sPLSDA

Inhibitor

o . @ Ammonia
; No inhibition

Phenol

PC2: 22% expl. var

Experiment

o
X-variate 2: 14% expl. var
X-variate 2: 14% expl. var

® Study1
A study 2

2 0 3 i i 3 0 1 2 5 0
PC1: 32% expl. var X-variate 1: 17% expl. var X-variate 1: 27% expl. var

Figure 42: (A) Principal Component Analyses (PCA)(B) Sparse Partial Least Squares Discriminant
Analysis, (C) Multivariate Integrative Sparse Partial Least Squares Discriminant Analysis of OTUs
distribution in samples from studies 1 and 2, inhilied by phenol, ammonia or not inhibited.
On the factorial maps each sample is representidandoloured marker. The colour scale represéetsype of
inhibitor. The type of marker represents the st@fU data was generated by 16S rRNA gene sequencing

A supervised PLS-DA model was then fitted on thead&parse version of the method was
applied to select features and identify discrimweOTUs that best described the difference
between the groups of samples (Lé Cao et al., 2@&ples distribution based on the first
two components is presented on Figure 42B. sPLSaiallel enabled to mitigate the study
effect compared to the unsupervised PCA. Howevéhinveach condition, the study effect

was still present: each sample collected in Studwak clearly separated from the ones
collected in Study 2.

In order to counteract this bias, we applied MINRokart et al., 2017b). Tuning of MINT
indicated that an optimal number of 45 OTUs shoodd selected to achieve the lowest
classification error rate. Samples representatiomfMINT is presented in Figure 42C. It
evidenced that the study effect was accountedwith the strongest separation observed
according to inhibiting condition rather than stsli

2.2.3. Identification of microbial bioindicators of inhibition

Microbial signatures identified with MINT were ouwfipin a clustered image maps (81
samples and 45 OTUSs) in Figure 43. This representatonfirmed that, based on their
microbial community composition, samples could beuged by inhibition type (non-
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inhibited samples, samples inhibited by ammonia sardples inhibited by phenol), and that
this classification was independent of the studige B5 OTUs selected by MINT were

clustered into five different groups (A to E).

E Ammonia
[ No inhibition
E Phenol

Samples

1
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Figure 43: Heatmap of the most discriminant OTUsHeatmap was built after selection of the most
discriminant OTUs with Multivariate Integrative Spa Partial Least Squares Discriminant Analysiallo©TUs
generated by 16S rRNA gene sequencing for therdiffesamples of studies 1 and 2, inhibited by pheno
ammonia or not inhibited. Name of the OTUs is iatléd] at the bottom. The colour scale on the Igitagents
the type of inhibitor. The colour key of the heamshows the abundance of the OTUs after CLR tramsfton
(from blue = low abundance to brown red = high atante).

Groups A to E were composed of microorganisms iciady:

a) Highly abundant in digesters inhibited by phenol.

b) Lowly abundant in digesters inhibited by ammonia
c) Lowly abundant in inhibited digesters in general.

d) Highly abundant in inhibited digesters in general.
e) Highly abundant in digesters inhibited by ammonia.

These microorganisms constituted a first seriggeokral biomarkers of ammonia and phenol
inhibition, identified despite the strong initialudy effect observed in Figure 42A. Their
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specific identity was checked and made sense wattpriented information of the literature.
They can be considered as valuable early warnmgats announcing the dysfunction of the
process in anaerobic digesters. These first resultsencouraging because they suggest
potential applications for a wide diversity of ADhibitors and or other questions related to
biotechnologies in general.

2.2.4. Building of a predictive model for ammonia inhibition

Our second objective was to evaluate the possiltditouild models predicting the inhibitory
status of digesters based on 16S metabarcoding \d&daselected from the literature two
studies analysing digesters inhibited by ammortizd{ss 3 and 4). Our criteria for selecting
the studies were: recent studies, raw 16S sequgdaita easily accessible, digesters inhibited
by phenol or ammonia, inhibition status of the diges clearly defined, possibility to assign
with no doubt the raw sequences to the samplesidedan the paperdVe were not able to
find studies meeting these criteria for phenol.

Our aim was to build a predictive model with stisdieand 2 and test it with studies 3 and 4.
Based on the original papers, samples from studyeB categorized into four groups
depending on the sampling time and on the inhipifmessure: “No inhibition”, “Ammonia
moderate concentration”, “Ammonia inhibition, earlays”, “Ammonia inhibition, final
days”. Similarly, samples from study 4 were categgat into four groups: “No inhibition”,
“Ammonia inhibition start”, “Ammonia inhibition”, Ammonia inhibition decrease”.

As samples of the different studies had been aedlysth distinct sequencing techniques,
different bioinformatics treatments had to be agaplio the raw sequences. It was therefore
not possible to compare directly OTU tables. Da@enfirst aggregated at the genus level
before merging the different datasets. Since ssufi@and 4 were focused on inhibition by
ammonia only, we trained a new MINT model with $&sdl and 2 where we removed the
phenol condition. Seventeen genera were selectddIHy to discriminate samples inhibited
by ammonia from samples not inhibited in studiesd 2. The biomarkers highlighted by this
second model were consistent with those evidencgdthe model integrating phenol
inhibition (not illustrated here). Data from stusli®8 and 4 were predicted by the model
(namely, based on their abundance in the 17 selg@eteus biomarkers, their inhibitory status
was predicted). In order to visualize external sasglistribution in the model, Figure 44
presents the test samples from studies 3 and 4qgbeoj on the two first components of the
trained model, as well as prediction areas thaewalculated (Rohart et al., 2017a).

As expected, inhibited samples were separated stgdi@ non-inhibited samples on the first
component. Two samples (11 and 39) were miscladsds ‘inhibited’. Samples of reactors
that just started inhibition (“early days” in Lu @&t and ‘start of the inhibition’ in Peng et al.)
were mostly classified at an intermediary positeord classified as either inhibited or non-
inhibited. We hypothesize that microbial commuriiad started to change but was not yet
totally characteristic of inhibited reactors. Imstingly, sample 45 (Peng et al., day 223, just
after inhibitory pressure was lowered) was clasdifas inhibited while sample 46 (Peng et al.
day 232, several days after inhibitory pressure wagred) was classified as non-inhibited.
This result illustrated the progressive resilierafe the microbial community after the
inhibition. Sample 14 (moderate ammonia, final dans addition of activated charcoal) was
classified as inhibited while samples 13, 15, l@derate ammonia, but early days or
addition of activated charcoal) were predicted as-imhibited, in agreement with the
conclusions of the authors.
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Taking into account all the samples from diges@esarly non-inhibited (15) or clearly
inhibited by ammonia (13) we estimated that the ehqaredicted the inhibitory status of
external samples with an accuracy of 93% as ontydmmples were incorrectly classified.

Study & inhibition

2 - m, B Lu, Noinhibition

Lu, Ammonia moderate concentration
o Lu, Ammonia inhibition, early days

] -" 14 ] B Lu, Ammonia inhibition, final days

-* 2 Peng, No inhibition
0 R ot
| | % Peng, Ammonia inhibition start

Hi3 > Peng, Ammonia inhibition

Component 2
o
[

15 Peng, Ammonia inhibition decrease

a ‘ Prediction
-2 Ammonia

u No inhibition

2 0 2
Component 1
Figure 44: Projection of samples from studies 3 and in the factorial plan determined after Multivari ate
Integrative Sparse Partial Least Squares Discriminat Analysis of samples from studies 1 and 2.
Each sample from studies 3 and 4 is representednbgrker. Type of marker indicates the study. Qotduhe
marker indicates the inhibition status in the reaethere the sample was taken. A prediction arased on
studies 1 and 2 was calculated and is plotted egtaph. The different figures indicate remarkaalmples.

Our results evidenced that multivariate integrativethods could be efficiently implemented

to predict the inhibitory status of samples cokelctrom two independent studies focusing on
ammonia inhibition, and despite differences in seqing primers and targeted regions. It
enables data sharing across research communitteseamse of existing data deposited in
public databases while identifying a reproducibientarker signature. It can be useful

notably to pave the way for digester microbial ngamaent, as in the meantime miniaturized
sequencers are being developed and could be ifutilme implemented in biogas plants at a
reasonable cost. Combination of both approacheddwenable to establish a functional

diagnosis of the digesters provided that other rsodee developed to target other inhibitors
of parameters characterising the functioning ofdlgesters. Other types of biomarkers than
16S could also be used with the same approach.

This work is not published yet but is currently endeview in the ISME Journal (Poirier et
al., submitted).

3. Time-course modelling to take into account the temporal variability

Microbial communities are highly dynamic biologicistems. Snapshot analyses only focus
on one time point and are not always sufficientharacterize microbial communities and

reflect the ongoing processes. The decreasingatd3NA sequencing and samples analysis
in general has enabled to address that problengitumhnal and time-course studies to record
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the temporal variation of microbial communities aasbociated processes are now possible
(Knight et al., 2012; Faust et al., 2015). Thesgliss can inform us about the stability and
dynamics of microbial communities in response tdysbations or different conditions. They
can capture the dynamics of microbial interacti@scci et al., 2016; Ridenhour et al., 2017)
or associate changes of microbial features, sudaxasiomies or genes, to a ‘phenotypic’
group (Metwally et al., 2018) such as degradatieriggmances in the case of AD.

The overall aim of such studies is to investigaiatronships between longitudinal measures
in a holistic manner to further decipher the lirdtdeeen molecular mechanisms and microbial
community structure. However, comparing at the sime multiple conditions and multiple
time points characterized with one or several tygfdsgh-dimensional data is challenging. In
particular, analytical frameworks enabling an imékgd analysis between microbial
communities and other types of biological, chemimalperformance data are still at their
infancy.

My collaboration with Dr Lé Cao at the UniversitiyMelbourne enabled me to pave the way
for the analysis and integration of longitudinatadeneasured within anaerobic digesters. We
used a combination of different statistical methtwdlanalyse complex longitudinal data sets.
Our approach includes modelling of profiles of therent datasets across time with spline
smoothing (Déjean et al., 2007) and use of clasgin or multivariate ordination methods to
identify correlated sets of variables across the dgpes, and across time. It enables us to
visualize patterns of time course evolution, corapwiem across different conditions, infer
relationships between different microorganisms iffeent types of data. The fitted splines
enable us to predict or interpolate time pointg thaght be missing within the time interval
(e.g. inconsistent time points between differepesy/of data or covariates).

| have applied these time-course modelling appresdn different types of data, to answer
different types of questions:

* To evaluate the effect of an abrupt temperatureeage on the abundance and activity
of AD microbiome. Experimental set-up is presentedMadigou et al., 2019) but
analysis is based on additional data not presentttus paper.

« To compare the influence of different inhibitionespls on the activity of AD
microbiome and identify biomarkers of inhibition mmonia (PhD of Laétitia
Cardona, writing in progress).

* To draw links between microbial dynamics measurégd %6S sequencing, patterns of
waste degradation measured with a GCMS metabolappcoach and performances
of the process (Bodein et al., submitted).

3.1. Effect of an abrupt temperature increase on the dynamics of
AD microbiome

In this study, the influence of a rapid increas¢enfiperature (35°C to 55°C) on the dynamics
of AD microbiome was assessed in a semi-continubgsster. After stable functioning in
mesophilic conditions for several hydraulic retentitimes, the digester was submitted to
sudden temperature increase. Our objective wasetterbdocument the consequences of
temperature modifications on the microbiome of ADhive clues to limit their detrimental
effect on the process.

Samples were taken regularly in the digesters. BRWA and DNA of the samples was
extracted, and used for 16S metabarcoding to taeg#ivity and abundance of the
microorganisms. Treatment of the data obtain ismsarized on Figure 45.
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Focus was first given to RNA data. 545 OTUs wernected. This dataset was preprocessed.
Low abundant OTUs were filtered, data were norredliand transformed with centered log
ratio (CLR) (Tsilimigras and Fodor, 2016). A secofifler, based on the differential
expression across time was applied, to keep omyGfUs influenced by the temperature
modification (Straube et al., 2015). After thesmatments only 30 OTUs were kept. However,
in all the samples they accounted for approxima®%o of the total number of sequences.
The time-course profile of each OTU was modellethwiinear mixed model splines (R
Imms package, ImmSpline() function) (Déjean et200Q7).

In order to group together the microorganisms sigaa similar temporal evolution of their
activity just after temperature increase, a cluistewas carried out on the first derivative of
the predicted fitted curves. We focussed the arsatys a period of 20 days (going from -2 to
18, day 0 being the day where temperature wasase, represented in white on Figure 45
(abundance in samples taken before and after @aloes of the graphs) was not used for the
clustering). Hierarchical clustering, with Euclidealistance and ward aggregation was
applied for the clustering. We decided to sepathée profiles in 4 clusters. Time course
profiles of the OTUs of the different clusters presented on Figure 45.

* Cluster A grouped 5 OTUs. Their activity increasidportantly just after
temperature shock. They were the key players tle$jped to sustain biogas
production just after the perturbation.

» Cluster B grouped the 6 most sensitive OTUs. Taetivity decreased importantly
just after temperature shock. High temperature fiagal consequences on their
activity.

* Cluster C grouped 14 OTUs. Their activity decreasmaothly after temperature
increased. They were probably not the most efftdiethermophilic conditions.

» Cluster D grouped 5 OTUs. Their activity increasaedly after several days under
thermophilic conditions. It could be due to thdove growth rate or because they
benefited from the progressive disappearance @i atlicroorganisms.

OTUs of the different clusters were identified. Eaample, OTUs of cluster A seemed to
be mainly ‘mesophilic microorganisms’ that adaptatl least temporarily) to the new
conditions (for exampleMethanobacterium beijingens€®©TU from Mesotogagenus,
various OTUs fronBacteroidalesorder). These thermotolerant OTUs probably enataded
maintain bacterial activity just after temperatwteange. On the contrary some of the
OTUs of cluster D were ‘thermophilic microorganisrttsat developed progressively to
take advantage of the ecological ‘niches’ freedr (fexample Methanoculleus
thermophilus.).

The employed method was very powerful to collapgedimension of the data and group
together the OTUs sharing similar patterns acrnoss and in response to the temperature
increase.
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Figure 45: Time-course data analytical framework ued to analyse AD microbiome data after an abrupt
temperature increase Dashed line represents the increase of temperatul@y 0Raw RNA data (OTU table)
was pre-processed and filtered. Kept OTUs were itemti@ith spline smoothing and clustered into 4up®
with similar time course evolution between daysr@ 18 (represented in white on the figure). The tcourse

evolutions of the OTUs seen through DNA analysithimieach cluster were also plotted.

For each cluster, time course profiles of the s&@iéJs modelled from 16S RNA gene
(DNA) metabarcoding data were also plotted (FigiBg It enabled to see if abundance and
activity of the microorganisms were strongly retate not. For example, for cluster A, we
observed that the increase of the activity of 2haf OTUs was not linked to an increase of
their relative abundance in the digester (purpld arange curves), while the increase of
activity of the three others OTUs was associateth vai growth of the microorganisms
(increase of the relative abundance).

For respectively clusters B and C and cluster D olserved that the relative activity of the
microorganisms respectively decreased or increasede rapidly than their relative
abundance, confirming that 16S RNA was more aceurateflect the AD process evolution
after a shock than 16S RNA gene (De Vrieze eR@all8). We used an approach based on fast
Fourier transform (Straube et al., 2017) to estthe delays between the evolution of the
activity and the evolution of microbial abundanceased on the modelled curves. The
concept is illustrated in Figure 46 (first colunfo) a few OTUs. Briefly, by combining the
fast Fourier transform angular difference betweeigrence (RNA in our case) and query
trajectories (DNA in our case) with lagged Pearsomelation, the method characterises the
magnitude and direction of delay (hnumber of day$yea late). Delays were calculated for
all OTUs and are summarized in the second columtheofigure with box-plots. They were
of a few days.

107



Cluster 1

—DNA

- =RNA

Cluster 2

|

Cluster 3

|

Cluster 4

o 5 10 15 3 0
Number of days after shock delay

Figure 46: Delays between RNA and DNA time coursergfiles can be observed and calculated with an
approach based on Fourier transform.They are summarized with boxplots for the differelnsters.

More generally, the approach described in thisi@ectan be useful to highlight the
connections and interdependency between the apptiaditions, and different ‘levels’ of

biological information such as ‘DNA’, ‘RNA’, ‘proias’, ‘metabolites’ and performance data
(macroscopic output). Calculating delays betweendifferent types of information can be
used to realign the trajectories and identify thedgch show a high degree of correlation
despite a shift in time.

3.2. Influence of the addition of ammonia at different speeds on the
dynamics of the microbiome

To evaluate the possibility to acclimate AD miciaibe to the presence of ammonia, and
identify potential bioindicators of inhibition, anamia level was increased at different speeds
in 6 semi-continuous digesters (Figure 47).

More precisely, after a stabilisation phase of ntbhesn 3 HRT without ammonia, N8I was
added in order to reach a final Rlldoncentration of 183 mg/L, estimated to be paytial
inhibiting thanks to previous batch experimentstgdaot shown). This concentration was
reached at different dates in the different reactBO reactor was not perturbed (control). In
P1 the target ammonia concentration was reachedsaldirectly (2 days), in P2 it was
reached after 0.5 HRT (14 days), in P3 after 1 HBS days), in P4 after 2 HRT (50 days)
and in P5 after 3 HRT (75 days). For all the biotees, once reached, the inhibitory stress
was maintained during 3 HRT.
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Figure 47: Experimental design used to evaluate thefluence of inhibition speed in semi-continuous

Process parameters were measured across time tpamdnthe effect of the different

inhibition speeds on the performances of the po¢egure 48). It showed that in all case the
level of VFA (acetate and propionate) increasedrdftie perturbation. A decrease of biogas
production was also observed, but its intensityreleged from P1 to P5. Proportion of
methane in the biogas diminished only in P1 andltP@uggested that an acclimation of the

bioreactors.

microbiome was possible provided that the inhibitspeed was not too important.
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Figure 48: Main performances indicators measured irthe different reactors across timeBlack line shows

Samples were taken regularly for RNA extraction andsequent 16S metabarcoding of the
corresponding cDNA was performed. Time course [@®fiof the different OTUs in the

different reactors were modelled as described ptsly. Focus was given to the period
between days 70 and 154 corresponding to the etie aftabilisation phase and the inhibition

phase.

when the inhibition was started.
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Data of reactor P1 was analysed first. Data waerétl to remove microorganisms whose
activity did not evolved over time. In order to gmtogether the variables sharing a similar
temporal evolution a clustering was carried outtmnfirst derivatives of the predicted fitted
curves (Déjean et al., 2007). The kml method (ksmsefar longitudinal data, (Genolini and
Falissard, 2011)) was applied for the clusteringlugters of profiles were obtained (see line
P1 in Figure 49) corresponding to OTUs whose dgtidecreased or increased more or less
rapidly after the addition of ammonia.

The evolutions of the time-course profiles in PIraveompared to the evolution of the time
course profiles in the other reactors. For thappse, the time course profiles of these clusters
of OTUs in the other reactors was also plotted?@n(not inhibited) profiles remained rather
constant, showing that their evolution in P1 w&elii linked to the addition of ammonia.
From P2 to P5 contrasted results were observedeXample, several OTUs from cluster 2
that were strongly inhibited in P1 were not or ledsbited when ammonia addition was more
progressive. Most of the OTUs from cluster 5 thadesared in P1 just after the inhibition also
appeared in P2, but less and less appeared indPa)dPP5. It confirmed that an acclimation
of the digesters to the ammonia seemed to be peskihiting the consequences on microbial
community. On the contrary activity of other micrganisms evolved in all the cases
meaning that several OTUs were very sensitive tmania, independently of the inhibition
speed. These results are currently analysed modepth to identify which microorganism
acclimatized to the inhibitor and which did not Phaétitia Cardona).
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Figure 49: Time course profiles of the different OUs in the different bioreactors (lines)OTUs were
grouped in clusters (column) based on their sin@laution in P1 digester. Red lines corresponithéoday
when inhibition was started.
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For example, bioindicators of the presence of amaavere sought by identifying the
microorganisms whose activity evolved in all theaaters where ammonia was added,
independently of the inhibition speed. For thatpmse, for each OTU, time delays were
estimated between the time profiles in P1 and ie dthers inhibited reactors. The
microorganisms with a similar time profile evolutibetween the different inhibited reactors,
showing a delay in accordance with the ammoniat&ddspeed, were considered as potential
bioindicators of ammonia inhibition. For exampleu¥e 50 illustrates the time course profile
of two OTUs in the 6 digesters. Their activity rensal stable in PO but gradually decreased
across time, in accordance with the level of ammoni the digesters P2 to P5 and
independently of the inhibition speed.

OTU_.68 Number of days to reach target ammonia level

= PO0: No addition
- P1:2 days
— P2: 14 days

B f— - \//.e--'—‘—-’—j_ — P3: 25 days
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,\6 \QQ \,\fo \"Q

Number of days

Figure 50: Time course profiles of two OTUs in thalifferent bioreactors. OTU 68 is from the family
Syntrophaceaand OTU 176 from family.eptospiraceae.

Finally, with the same samples we are also culyemskessing the effect of the ammonia
perturbation on the pathways of degradation. Uetaxd) metabolomics analyses were
performed with FTICR (Fourier-transform ion cyclmtr resonance). Several thousands of
metabolites were detected. A similar treatment agdied and is illustrated in Figure 51. In
this case only four groups of profiles were evidgahcthat reacted more or less quickly to
ammonia inhibition in P1. As observed with micraamgms, contrasted results were
observed in the other reactors. This data was mddavery recently (collaboration with the
Ecole Polytechnique) but will undoubtedly providether insights in the inhibition of AD by
ammonia.
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Figure 51: Time course profiles of the different me&bolites in the different bioreactors (lines) Metabolites
were grouped in clusters (column) based on theiilai evolution in P1 digester. Red line correspotalthe
day when inhibition was started.

3.3. Integration of different types of data in a time-course context

The approaches presented in the two previous pgragrdid not seek for correlation between
data of different types. However, as illustratedparticular in section 1 of this chapter, the
same samples are sometimes analysed with diffezehhiques. During a collaborative work
with Kim-Anh Lé Cao, we set-up a specific analytifemework for the integration of
microbiome longitudinal studies with other datadygBodein et al., submitted) (preprint was
deposited on biorxiv (10.1101/585802v2.full)).

The general workflow of the method is presentedufechb2. In brief, the different types of
data measured on the same samples are first pcegsed (filtering, normalisation etc.). For
each type of data, the ‘variables’ (for example @Tlhetabolites, performance measures...)
are modelled with spline smoothing. Modelled data ftered (noisy variables are often
modelled as straight lines that do not represertiicdogical reality and are therefore
discarded). Resulting time course profiles aregraged with different methods according to
the number of types of data to integrate. Spars& BQised to treat single datasets. Sparse
Projection to Latent Structures (sPLS) method (a® €t al., 2008) was described in section
1. Multiblock sPLS is a generalisation of sPLS torenthan 2 blocks of data (Singh et al.,
2016). In all the cases, the objective is to idgntiorrelated (or co-expressed) variables
measured on one or several heterogeneous data sets.
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Figure 52: Workflow diagram for longitudinal integr ation of microbiome studiesWe consider studies for
the analysis of the microbiome through OTU (16S laoop) or gene (whole genome shotgun) counts. This
information can be complemented by additional infation at the microbiome level, such as metabolic
pathways measured with metabolomics, or informati@asured at a macroscopic level resulting from the
aggregated actions of the microbiome.

More precisely, after computing the sPCA, the sRirSthe multiblock sPLS, a set of
correlated variables is selected on each compofaemt) of the analysis. This set can be
divided into two groups of variables: variablestthave a positive loading on the component
and variables that have a negative loading. Theynagatively correlated. Each component
thus enables to evidence two groups of correlatefilgs, as illustrated on Figure 53.

This method was assessed on different types of dathuding a digester study which is
presented below.
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Figure 53: Identification of the correlated variables with sPCA, sPLS or multiblock sPLS on the
correlation circle plot. After computing a SPCA, sPLS or multiblock sPLSoarelation circle plot is obtained.
It shows the loadings of the different variablesréwariables are presented with orange and blukens on
the different components of the analysis (here aorapts 1 and 2). Variables with a negative loadimg
component 1 can be grouped together. They areyhigintelated. Variables with a positive loading on
component 1 are also correlated with each othernagatively correlated to the variables with aativg
loading on component 1. They form a second grougpoklated variables. Process can be iterated on
component 2 and subsequent components if necassavidence groups of correlated variables.

To evaluate this method, we used the data fromxaeranent where three anaerobic batch
digesters fed with biowaste had been monitoredsactione. Degradation performance was
monitored through 4 parameters: methane and catiode production (16 time points) and
accumulation of acetic and propionic acid in ther&actors (5 time points). Microbial
dynamics were profiled with 16S RNA gene metabarapdnd included 4 time points and 90
OTUs. A metabolomic assay was conducted on the sémhmgical samples on 4 time points
with gas chromatography coupled to mass spectrgni@-MS) after solid phase extraction
to monitor substrates degradation. The differepesyof data were pre-processed, modelled
with smoothing splines and filtered as describeBigure 52.

The three datasets were first analysed one by adetwo by two (not illustrated here).
Finally, the three types of data (16S, metabolaes performance data) were integrated
together with multiblock sPLS as described abowereélation between the different variables
was correctly described by two components. On eaamponent, variables with respectively
negative and positive loadings were grouped togetitneform 4 cluster. The time course
evolution of the variables of the 4 clusters igsttated on Figure 54.
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Figure 54: Integration of OTUs, metabolites and peiormance measures with block sPLSEach line
represents the scaled abundance of selected OTafiabatites and performance measures across timdsOT
metabolites and performance measures were clusteeiiding to their contribution on each comporient
block sPLS. The clusters were further separatedgrifiles with a positive or negative correlation.

The first cluster (denoted ‘component 1 negativeluded 10 OTUs, 4 metabolites and 2
performance variables. The variables showed incrgdevel until a plateau was reached at
approximately 40 days. The OTUs were microorganisifiten recovered during anaerobic
digestion of biowaste, such as methanogenic arcbiEkthanosarcinagenus or bacteria of
Clostridiales, Acholeplasmatalesand Anaerolinealesorders. Their abundance increased
while biowaste was degraded, until there was noenfmbowaste available in the bioreactor.
Their abundance was correlated to the intensityasfous metabolites produced during the
AD process, such as benzoic acid that is formednduthe degradation of phenolic
compounds (Hoyos-Hernandez et al., 2014), or piytacid, known to be produced during
the fermentation of plant materials in the rumingat (Watkins et al., 2010), as well as
indole-2-carboxylic acid. Two performance variablésiethane and carbon dioxide
production) were assigned to cluster 1. This resultiologically relevant, as biogas is the
final output of the AD reaction and is known to &gsociated with microbial activity and
growth. Moreover, it is produced by archaea, su’cMathanosarcinaalso selected in this
cluster.

Cluster 2 (component 1 positive) included 10 OTWsmetabolites and 1 performance
variable. These profiles were negatively correlatedCluster 1, and their abundance
decreased with time. OTUs mainly belonged toBheteroidalesorder. They were present in
the initial inoculum but did not survive in thisgeriment, as the operating conditions or the
substrate were not optimal for their growth, aseobsd in other studies (Madigou et al.,
2019). Metabolites identified in Cluster 2 were gamet in the biowaste and were degraded
during the experiment. They included fatty acidec@hoic and tetradecanoic acids) that can
be found in oil, or 3-(3-Hydroxyphenyl)propionicidcarising from digestion of aromatic
amino-acids or breakdown product of lignin or otplmt-derived phenylpropanoids (Torres
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et al., 2003). As their profile was negatively etated to those from cluster 1, it is likely that
these metabolites were consumed by OTUs assignelddter 1. Acetate was also associated
to this cluster.

Cluster 3 (component 2 negative) included 11 OTh$ & metabolites with slow abundance
increase. OTUs of this group were very varied vdtlorders represented. They may have
slower growth rates than OTUs of cluster 1 or wameolved in the last steps of the
degradation. Metabolites included N-Acetylanthraraicid and Dehydroabietic acid that were
likely produced by microorganisms and accumulaigthg the anaerobic digestion process.

Finally, Cluster 4 (component 2 positive) includédOTU and 5 metabolites. Profiles
decreased slowly with time. One OTU of ordelostridiales appears to have been out-
competed by other OTUs during the first days ofdbgradation. Among the metabolites of
this cluster, Hydrocinnamic and 3,4-Dihydroxyhydro@mic acids are commonly found in
plant biomass and its residues (Boerjan et al.3R00heir molecular structure may have
contributed to their slower degradation comparegti@r molecules. Propionate was assigned
to this cluster, which made sense as its degradatnty starts when all acetate is degraded
(Chapleur et al., 2014).

Multiblock PLS enabled to identify microorganismsdametabolites with correlated time
course profiles. The computational framework we ehgroposed is one of the first to
integrate longitudinal microbiome data with othenics data or other variables generated on
the same biological samples or material. The ifieation of highly-correlated key omics
features can help generate novel hypotheses terheattlerstand the dynamics of biological
and biosystem interactions. Thus, our data-driveor@ach will open new avenues for the
exploration and analyses of multi-omics studies.

4. Conclusion

Advances in technology and reduced sequencing basts resulted in the emergence of new
and more complex experimental designs that combinéiple omic datasets and several
sampling times from the same biological materiahug, the challenge is to integrate
longitudinal, multi-omic data to capture the comxpieteractions between these omic layers
and obtain a holistic view of biological system$ie$e approaches enable to propose data-
driven analytical frameworks.

The data | have been working on so far come fropearments that were not designed on
purpose for this type of analysis. Working withtistiécians opened new perspectives and will
help me to improve the experimental design to angutere research questions. | now also
plan to include other types of omics data in thasalyses. These objectives are presented
with more details in the next and last part of thenuscript.
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Future research project

As said in the preamble and described in this mamits during the first decade of my
research career, | had the opportunity to use pieltechniques to target different questions
related to the topic of AD. The concomitant devel@nt of microbial ecology significantly
boosted the possibilities. I'm now also generatioigics data. So far it was mostly
metabolomics, at Irstea and at the Ecole polyteglethrough collaboration | started in 2018.
In the framework of the Digestomic project, | gaated in 2019 a first set of metagenomics
data. Metatranscriptomics data will also be produseon for this project. These data put
back into perspective the analysis that can be dbn&crobial ecosystems of AD digesters.

To face the growing volume of data | was generatingitiated in 2017 collaboration with
statisticians. This collaboration was decisive. dtirse, it provided me with the different
tools | needed to treat my data. | learnt how ahémto use the methods. But it also opened
new perspectives. The close link with the staiistis, greatly facilitated by different stays of
several months within their research team, allowesl to both learn how to explain my
research questions so that they can be associatsthtistical methods, and discover the
potential of the field through the results obtaifgdmy collaborators on other types of data.
Based on these exchanges, we started to assenddgicsgnalytical frameworks for the
treatment of my data (for example for the analgéiwngitudinal data).

As a future research project, | want to carry oe thork engaged to improve the
environmental bioprocesses. | want to combine togethe new methodological strengths
mentioned above and also mix them with the metHodsed earlier in my research. The
following pages describe these objectives. Sontherh are illustrated with examples of the
work planned in the STABILICS project submitted ttte ANR call in 2019 (“Coupling
statistics and multi-omics to gain new insightstle determinants of anaerobic microbial
bioprocess stability”, in collaboration with theffdrent partners mentioned above) and that
has just been accepted.

1. Intended research focus for the next vears

1.1. Toward the development of anaerobic digestion

Despite it has been studied for a long time, ARtk not fully mastered and has a potential
for improvement. In particular, it still lacks sthtty and flexibility. In the next paragraph |
present different topics that could be targetefdiinre projects to favour AD development.

1.1.1. Optimizing the stability of the anaerobic digestion

Key microorganisms driving the AD process form axtremely complex microbial
community or microbiome, able to degrade the orgamatter across multiple pathways, with
lots of functional redundancies. One of the majonithtions of AD is the important
susceptibility of this microbiome to changes in m@enal conditions of the digesters,
including inhibitors (see introduction, section)1.4 can lead to unstable methane formation
and have important economic and environmental cpresees.
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Controlling AD microbial community stability, thobigis not a trivial task. Its exact role in
terms of “elasticity” of the digesters, i.e., ithustness or ability to rapidly adapt to changing
conditions, is unclear (De Vrieze et al.,, 2013).nmduwous studies were attempted to
understand the influence of inhibitors and idenkiéy operational parameters playing a role
in the stability of AD microbiome (Carballa et &0Q11; Poirier et al., 2016b). However, they
were often limited to a ‘before’ and ‘after’ comam. No consensus on the underlying effect
of perturbation was obtained. Moreover, experiefeedback shows that instability is
encountered even when the operating conditions hef digester seem highly regular
(Fernandez et al., 1999; Zumstein et al., 200Q@r&$ and Raskin, 2003; Riviére et al., 2009).

Therefore, to facilitate sustainability and AD deygment, | think that it is essential to deepen
our understanding of the determinants of bioprostakility over a long time period. They
consist in the conditions and the succession ofrahial events that allow maintaining a
balance after a disruption or, on the contraryt emerate a domino effect leading to total
failure. That's one of the objectives of the STABILICS ptaj@escribed with more details in
1.2). Once the causal chain leading to the disruptionABf digesters will be better
understood, it will be easier to propose adequateisens to improve AD stability.

1.1.2. Broaden the fields of application of AD

To address the increasing need for energy, indepgniom the use of fossil fuels, AD
appears as a promising process. Increasing the erunfbbiogas plant requires that the
organic matter resource is widen and that as mabgtsates as possible can be used for
methane generation. In the last years, both muali@pd industrial production of organic
waste has shown increased metrics in productioncaadity of the organic waste (higher
collect efficiency, improved source separation).nidwous new substrates are showing
interesting potential as for example fats and al§adore they can be used routinely, several
aspects need to be better understood, such as urbecdheir impact on the process
performances, but also the changes they induce iorolonal dynamics in digesters (Mata-
Alvarez et al., 2014). | think it will be anothertéresting area of research in the following
years.

In the same way, processes need to be as adapmlpessible to the volume and organic
content of waste. Indeed, the production of seuymds of waste is highly seasonal. Among
others, temperature could be an operational leweadjust the efficiency of bioreactors

according to the fluxes of waste. It was shown tkatrease in temperature results in a
decrease of the metabolic rate of the microorgasiignd in the substrate utilization (Bowen
et al., 2014), which can be useful in digesterating low or irregular volumes of waste.

However, works are still needed to better undedstamd control this lever. For example,

temperature decrease usually causes an accumudditiotermediate products, such as VFA,

which may in turn inhibit microbial members, evealty reducing the process efficiency

(Regueiro et al., 2014). Temperature modificatian also result in important changes in the
community structure (McKeown et al., 2009; Chapleual., 2016a; Madigou et al., 2019).

Links between the operational parameters and tlgeadation pathways employed by the
microbial community could also be sought. It cofdd example enable to define possible
microbial management strategies to orientate tmetioning of the ecosystem toward the
production of molecules with high added value sashbiofuels or synthons usable in green
chemistry.

1.2. Example of the STABILICS project to address these topics

As an illustration of my approach to address thesearch focuses, this section describes
more precisely the experimental set-up of the STABS$ project. The aim of the project is to
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gain new insights in the determinants of anaerohicrobial bioprocess stability. For that

purpose, the microbial dynamics in semi-continu@mserobic digesters under constant
environmental parameters or subject to different@h@erturbations created by the addition
of NaCl will be monitored in the long run (more thane year).

1.2.1. Influence of different patterns of perturbation

Perturbation can greatly influence the evennessamijcs and diversity of AD microbial
community and associated functions. The microbi@nmunity can maintain a stable
composition (resistance), temporarily change in position (resilience) or shift to a new
composition (redundancy) in response to a distuudadepending on the type of perturbation
(Theuerl et al., 2019). To explore diverse scemsartifferent model disturbances will be
created in STABILICS (abrupt, gradual, repeatedckhoThey are depicted in schematic
format in Figure 55. It will enable to induce vargecological responses of the microbiome,
cascades of effects at the taxonomic or functiéeadls and evidence mechanisms such as
adaptation, resistance, resilience or functiondlinelancy (Theuerl et al., 2019). Dynamics of
the microbiome under disturbance will be comparedtie baseline level under stable
conditions.

Abrupt addition of salt (1) will immediately creas® important stress, giving no opportunity
to the microorganisms to adapt. It will evidenceatly the microorganisms and the functions
or metabolic pathways most sensitive to the stoessost eager to take over freed ecological
niches. Recovery after inhibition may require npiéi microbial, functional and metabolic
changes (Madigou et al., 2019).

On the contrary, progressive addition of salt (@)uld enable a smoother adaptation of the
microbial community. Main functions and degradatpathways could be maintained through
functional redundancy despite microbial changes.dxample, acclimation of methanogens
to high concentrations of sodium over prolongedigusr of time was already described
(Mottet et al., 2014).

Pulse increasing addition of salt (3) will alscoallan adaptation of AD microbiome. In that
case, inhibiting pressure release between eack putnt will ensure the total recovery of the
microbiome and functions between each stress.llltawoid drift toward a simplified and less

robust community (De Vrieze et al., 2013).

A control condition (0) will be of crucial interegi measure the dynamics of the performance
and of the microbiome when all the parameters ap¢ &onstant.

0) Stable conditions 1) Abrupt inhibition 2) Progressive inhibition 3) Pulse inhibition

o o) o) o

n wn wn wn
c L o e O o
2 - S~
k= £
£ =
= =
£ £
S S
° °
> >
3 2

0 0 0 0

02 4 6 81012141618 0 2 4 6 8 10 0 2 4 6 8 10 12 0 2 4 6 8 1012 14 16 18
Time (HRT) Time (HRT) Time (HRT) Time (HRT)

Figure 55: Perturbations that will be applied in the digesters.

Specific focus will be given to the transitionahtsts and to the regeneration phase after
perturbation as we assume they are highly dynamic.
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For each condition tested, triplicate reactors W@l set-up. It is essential to assess the
reproducibility of the observations, too seldom eamthe literature (Prosser, 2010).

1.2.1. Salt as a model inhibitor

Stress will be created by the addition of salt (Na@gularly mentioned as an AD inhibitor.
NaCl was selected because it is found in variopegdyof waste treated with AD (Lefebvre et
al., 2007). It is found in various residues frone tlood processing industry (Chen et al.,
2008a), in aquaculture sludge, molasses or vinagastewaters, kitchen waste (De Vrieze et
al., 2017), microalgae (Mottet et al., 2014). Whileoderate concentrations stimulate
microbial growth, excessive amounts slow it downg @ause severe inhibition or toxicity
(Mottet et al., 2014; De Vrieze et al., 2017).

Salt is also very easy to manipulate and cont®lit & soluble, non-degradable, non-toxic
(contrary for example to micropollutants), not imfe by other changes in the reactor
(contrary for example to ammonia whose effect ddpein the pH). Its concentration can be
easily assessed with conductivity and measurediwastic chromatography.

2. Methodologies

The methodologies | plan to use in my future prigjeely on the combination of different
innovative methods to study complex microbial comies. In line with the first results

presented in Chapter 3, | want to apply high-thhgug methodologies more widely in
combination with statistics. | would also like tongbine stable isotope probing with omics
methodologies in future projects.

2.1. Application of omics in combination with statistics

Emerging omics high-throughput approaches can maa to unprecedented data to portray
AD microbiome at different levels (Vanwonterghem ak, 2014a). Metagenomics,
metatranscriptomics, metaproteomics and metabokpriavide the information necessary to
represent portraits of a community’s genes, gepeession, and metabolite production. They
reveal the potential and the activated functionshef microbiome and the outcome of their
expression. They can allow to unravel the intricagéévorks of functional processes of AD
(LG et al., 2014; Vanwonterghem et al., 2014b; @dabet al., 2015; De Vrieze et al., 2016b),
provided that appropriate analytical methods angliegh to decipher these big datasets. In
particular, combining omics information with data ceactor performance during different
operational conditions (especially transitionatesa could help elucidate the mechanisms of
process instability (Li et al., 2018). Computatibmaalytical methods have a promising
potential to capitalise on this rich data. Howetrezy are still at their infancy and were not
broadly used for this type of problems.

STABILICS project totally fits in this category. lvas specifically designed to produce
repeated longitudinal omics data to be analyseld @atnputational statistics to generate more
information on the reasons leading to a disruptibdigesters.

2.1.1. Illustration of the approach with STABILICS project
2.1.1.1. Research hypotheses

To build the project and imagine the different expents of STABILICS, | formulated the
hypotheses that:
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 AD is managed by an intricate microbial communhighly diverse and functionally
redundant, resulting in an important dynamism acrsie in general and elasticity
under perturbation.

» Perturbation results from a succession of eventiffgrent omics levels leading to a
disruption of the digesters if microbiome equilibri cannot be maintained despite its
important elasticity.

* The different levels of omics provide different &goof information that describe more
or less accurately the state of the digesters dagapperational stability or dysfunction.
For example, despite stable performances of thesthg, one or several levels of omics
can be highly variable.

» Different types of stress (abrupt, progressivegaded...) can result in different types of
effects on the microbiome, the different levels arhics, and ultimately on the
performances of the digesters.

* Deciphering the determinants of AD stability reggirlongitudinal studies across
multiple time points, at several levels of omicsl amder stable and stress conditions.

2.1.1.2. Extensive use of omics methodologies

To test these hypotheses, and get insights in ¢éberrdinant of AD stability, | proposed to

conduct sets of high-throughput multi-omics londital analyses, with an unprecedented
sampling depth, in anaerobic digesters describedeiction 1.2. Obtained data will be

analysed with innovative computational methods. éMprecisely, the objective will be to

evaluate at different omics levels the dynamicabfmicrobiome in long term and replicated

time course experiments, under stable conditionsubject to different types of stress. Two
levels of analysis will be applied.

A first level of analysis will consist in a highelquency monitoring (weekly) of different
descriptors of microbiome activity, easily accelesisit the lab. Non-targeted metabolomics
will characterise the degradation pathways. Assediaicrobial dynamics will be monitored
with metabarcoding. Both RNA and DNA methods wid bsed, to target both active and
present microorganisms (De Vrieze et al., 2016M), actual and potential actors of the
process. Links between the conditions applied, obiad dynamics, stability of the
degradation pathways and digester's performancesactime will be sought to get new
insights in the determinants of AD stability. Tiequency of analysis is high and will be a
strength of the project. It will enable to follow details the time course evolution of the
different ‘variables’. Our previous results showbdt this sampling time step was necessary
in order not to lose precious information as mianaie evolution can be very quick (Poirier
et al., 2016b). Reproducibility of the observatwill be assessed.

A second level of analysis will consist in an imptte monitoring of microbiome functioning
with both shotgun metagenomics and metatranscriponthat give complementary
information (Maus et al., 2016). Selected sampléishe analysed, as these methods are more
expensive and time consuming. Focus will be giverre disturbed condition and to the
stable condition. A deeper access to digesters oim@r functioning will be gained.
Information on the expressed and potential funstioiil be integrated to the other levels of
information with statistical methods. First hypathe on microbial dynamics will be validated
and new hypotheses on the association with funatidgnamics will be posit, still with the
view to getting insights in the determinant of Afalslity across time. These approaches will
provide precious information on the expressionhef different functions during time and in
response to the stress. Analytical strategy (selecf samples) will be based on the results of
high-frequency monitoring. Four time points will la@alysed in triplicates: before stress,
during stress establishment, during stress maintenand after recovery. Control analysis in
stable conditions will also be performed (2 timenp® analysed in triplicates) to evaluate the
evolution of the functions despite stability.
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2.1.1.3. Integrative  statistical analyses and novel
computational developments

A methodological challenge will be to integrate th#erent types of data and the temporal
information. Data will be analysed independentlfthwmultivariate methods to assess the
influence of the stress on the stability of thefedd#nt parameters measured. Supervised
statistical approaches will be used to identifycdminant features across time, between the
conditions or the replicates. It will provide usthvia subset of bioindicators of process
stability/forthcoming instability, helping us to mgrate novel hypothesis. Longitudinal
analytical frameworks will compare the time couesmlution of the variables within each
data set and cluster them into groups of simildralb®ur. This novel approach will help us
identify features with similar patterns of activignd link microorganisms with degradation
pathways. It will enable to gain a better undemitagn of the dynamics and the interplay
between the different levels of information meadure

2.1.1.4. Questions targeted

The following question may typically be addressed:

* How dynamic is the microbiome under stable open&tio

» What are the consequences of microbial communigngbes on the degradation
pathways?

* Is the stability of the digesters more dependentstability of present or active
microorganisms?

* What is the succession of events that, under stiegds to microbiome equilibrium
unbalance and digester disruption or on the contraicrobiome equilibrium
preservation and maintenance of stability?

* Which level of omics data is the more appropriatélentify bioindicators of optimal
performance or stress?

It will give insights on the respective role of potial and really expressed functions on
microbiome equilibrium. The combination of all teesata will enable us to identify precisely

the limiting stages of the processes at the orggithe varying performances (for example

instability of one specific pathway, one type ofcmorganlsms one function or one

microbial functional group etc.). The project wikliver generic knowledge to understand the
determinants of perturbations. It will enable togmwse microbial management strategies to
improve the stability of anaerobic digesters.

2.2. Use of omics and isotope labelling in combination

Experiments done during my PhD revealed that stigbl®pe probing was very powerful to
targeted specific functional information. Howevirey were limited by the volume of data
generated. The news omics methodologies give adcessore information and can be
advantageously combined to SIP.

Only a few examples of research targeting the délabelled substrates in AD systems with
metagenomics were published (Ziels et al., 2018)wéVer, as a limitation of metagenomic
studies is that sequencing of bulk DNA focuses pgrilm on genomic sequences from
relatively abundant microorganisms, coupling bopipraaches can give access to a more
resolved information (Coyotzi et al., 2016).

With the development of metabolomics and fluxon{iceetabolomic approach that seek to
determine the rates of metabolic reactions withimadogical entity), a new perspective could
be to monitor the degradation of a complex labeBabstrate in a totally untargeted way
(Llufrio et al., 2019). So far, | could not find yampublished results on the combination of
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isotope labelling and metabolomics in the AD cohtéx combination with metagenomics it
would enable to resolve complex pathways and gdhdu information to improve the

understanding of anaerobic digesters and proposehbial management methods. Similarly,
in a perspective of biorefinery, the functioning lmbelectrochemical systems relying on
microbial electrosynthesis could also be targetedenthoughtfully with a combined SIP —
omic approach, by feeding the microbial communityttee cathode with labelled carbon
dioxide (Batlle-Vilanova et al., 2019; Jiang et 2019).

3. Conclusion

Curtis concluded the paper | mentioned in the plkdan{Curtis, 2006) as follows: “A
‘Microbial Survey’ could run, or subcontract, segamg factories for the community at large,
and explore the microbial world systematically litsesing a judicious mix of deep-
sequencing and mathematical modelling”. That's nufress where we are arriving now. All
the ingredients are available “to start thinking’band address pending issues related to
various microbial environments. The challenge isvnto combine these ingredients
adequately.

In parallel to the increased description of micabl@Ecosystems, which is under way, further
development and miniaturization of analytical temlbgies coupled to deep-learning
methodologies will undoubtedly favour the developmef rapid microbial diagnosis
solutions. They will enable to establish real mitab management strategies of
environmental bioprocesses and more generally geawiols to evaluate the good functioning
of microbial ecosystems. A new dimension of infotimawill be accessed and will open new
possibilities.

| hope my future research will participate to tlevelopment of such microbial management
strategies for AD, and more generally provide fraumiks for the analysis of microbial
communities. It is now difficult to forecast whatlibbe my research in ten years. Techniques
evolve quickly and will open further possibilitigdther fields than AD could be targeted with
the methods I'm using. Lines of research are higihdypendent on funding but also on
collaborations. My future research will depend dre tcombination of these different
parameters.
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Résumé

La digestion anaérobie (DA) est un processus miglofique de dégradation de la matiére organique qu
produit du biogaz. Ce biogaz est riche en méthanpeayt étre converti en énergie électrique etntiigue. La

DA est couramment utilisée pour traiter différetytses de déchets organiques a I'échelle industiilelhs des
digesteurs anaérobies. Dans un contexte de pantedé I'environnement et d'accroissement de I'effité
énergétique, elle suscite un regain d'intérét dé& permet de transformer les déchets en ressource
énergétique. Cependant, ce bioprocédé n'est paplé&mment maitrisé et présente encore un potentiel
d'amélioration important. Cette situation est duegpalement & I'absence de méthodes de gestiemapt
explicitement en compte le microbiome de la DA. @sroorganismes clés responsables du processlas de
DA restent en effet méconnus. lls forment une comamté microbienne extrémement complexe, composée
principalement de bactéries et d’archées, capabldégrader la matiére organique par de multipléssvo
L'une des principales limites de la DA est la gendlinérabilité de cette communauté microbienne aux
modifications des conditions de fonctionnement degesteurs. Cela peut avoir pour conséguence une
production de méthane instable. Ce manuscrit ptésaa contribution pour améliorer les connaissasces

le fonctionnement des communautés microbiennegittie lsiotechnologie environnementale. Il est digséd
parties. La premiere partie présente brievemergujet et les enjeux de ma recherche, qui fait agpel
différentes techniques d’écologie moléculaire epuds peu, aux biostatistiques. Trois chapitresmésit les
principaux travaux réalisés et les résultats olstebe premier chapitre porte sur l'utilisation atapes stables
pour tracer la dégradation de substrats spécifigigdentifier les microorganismes fonctionnels sldes
digesteurs anaérobies. Le deuxieme chapitre peesegd contributions pour une meilleure compréhende
I'effet d’'inhibiteurs sur la dynamique et les perf@ances du microbiome de la DA, ainsi que diverses
stratégies de gestion permettant d’atténuer litibitn. Le troisieme chapitre décrit des travauxerds
associant des statistiques a des méthodologiesitadiait afin de tirer le meilleur parti des infations
générées et de développer des approdatsdriven La derniere partie présente les perspectivesagees
pour étendre et améliorer le travail déja effectué.

Summary

Anaerobic digestion (AD) is a microbiological preseof degradation of the organic matter which pcegu
biogas rich in methane that can be converted iatoable electrical and thermal energy. It is cominaoised

to manage different types of organic waste at itriisscale using anaerobic digesters. In a conoéxt
environmental protection and research for increpgnergy efficiency, AD arouses a renewed interest
because it allows converting waste into an enezggurce. However, this bioprocess is not fully mest and
still has an important potential for improvementcB situation is mainly due to the limitation ofardbial-
based management of anaerobic reactors as thelmoior®, which is the key player of the AD proces#, s
remains largely unknown. Indeed, key microorganisimging the AD process form an extremely complex
microbial community, mainly composed of bacterial @amchaea, able to degrade the organic mattersacros
multiple pathways. One of the major limitations AD is the important susceptibility of the microbial
community to changes in operational conditionshef digesters. It can lead to unstable methane tama
This manuscript presents my contribution to enighon the functioning of microbial communities bfst
environmental biotechnology. It is divided in 5 saiThe first part introduces briefly the topic a&hé issues

of my research, which calls on the use of differemilecular ecology techniques and, more recently,
biostatistics. Three chapters summarize the manksvearried out and the results obtained. The €insipter
focuses on the use of stable isotopes to desdribddgradation of specific substrates and idefifigtional
microorganisms in anaerobic digesters. The secdmapter presents my contributions to the better
understanding of the effect of different inhibitans AD microbiome dynamics and performances, a$ agl
management strategies tested to mitigate the tidnibiThe third chapter describes recent works éoimg
computational statistics with high-throughput metblogies to make the most of the generated infoomat
and develop data-driven approaches. The last pasepts the perspectives envisaged to extend drathen
the work already carried out.
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