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ABSTRACT 

The climate change and the increase in the global population are putting more pressure on 

natural resources in order to satisfy the global food requirement. To fulfill the increasing food 

demand, the global agricultural intensification is mainly based on increasing the resource use 

especially water. Irrigation is the primary source of freshwater consumption. Knowing the 

extent of irrigated areas and the irrigation frequency could help decision makers adapt to future 

water policies in the agricultural sector. The aim of this research work is to develop approaches 

capable of mapping the spatial extent of irrigated areas and detecting the irrigation episodes at 

plot scale using optical and radar remote sensing. 

The first part of this thesis concentrates on the evaluation of the soil moisture estimation at 

plot scale S2MP (Sentinel-1/2 Soil Moisture Product) recently developed at INRAE-TETIS. 

The S2MP was evaluated by comparing it to precipitation records, in situ soil moisture 

measurements and the newly derived Copernicus surface soil moisture product on a large region 

of south France (Occitanie region). The results showed good accuracy of the S2MP at plot scale 

(RMSE = 4.0 vol.%). Furthermore, the S2MP showed better accuracy for soil moisture 

estimation than the Copernicus product. In addition, the results showed high consistency 

between the S2MP soil moisture estimates at grid scale of 10 km x 10 km and the precipitation 

records. The S2MP product at grid scale (10 km x 10 km) was used next in mapping irrigated 

areas in order to distinguish between irrigation events and precipitation events. 

The second part of the thesis presents supervised classification approaches for irrigation 

mapping at plot scale. The classification approaches are based on the use of radar Sentinel-1 

(S1) and optical Sentinel-2 (S2) temporal series. Over a semi-arid region in Catalonia (Spain), 

the results showed that irrigated areas are accurately mapped using S1 and S2 data with a 

classification accuracy between 89% and 94% depending on the used machine-learning model. 

Then, I proposed a transfer-learning framework capable of transferring the model built on 

Catalonia to map irrigated areas in Adour-Amont watershed of southwest France (humid zone). 

The final part of the thesis shows the potential of Sentinel-1, Sentinel-2 and S2MP for 

detecting irrigation events at plot scale. It presents also an operational methodology for mapping 

irrigated areas. In this context, I developed first a near-real time irrigation event detection model 

(IEDM) at plot scale, capable of identifying the existing irrigation events at the agricultural 

plots. The validation of the IEDM with in situ data showed that irrigation events are detected 
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with an accuracy reaching 75%. Finally, I proposed an operational methodology for mapping 

irrigated areas at plot scale without using terrain data since the approach collects automatically 

the training data for classification without the help of in situ data. The operational method was 

tested over a study site located in Orléans (northcentral France) for four different years. The 

main results showed that the proposed operational framework provides very good accuracy for 

irrigation mapping (between 72% and 94%). 

Keywords: Irrigation extent, Irrigation events, Sentinel-1, Sentinel-2, Soil Moisture, S2MP, 

Supervised Classification, Unsupervised Classification  
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RÉSUMÉ 

Cartographie des zones irriguées à l’aide de données de 

télédétection radar et optique 

Le changement climatique et l'augmentation de la population mondiale exercent une 

pression sur les ressources naturelles afin de satisfaire les besoins alimentaires mondiaux. Pour 

répondre à la demande alimentaire croissante, l'intensification de l'agriculture est 

principalement basée sur l'augmentation de l'utilisation des ressources, en particulier de l'eau.  

L'irrigation est la principale source de consommation d'eau douce. Connaitre l'étendue des 

zones irriguées et la fréquence d'irrigation permettra d’aider les principaux acteurs à adapter les 

futures politiques concernant la gestion des ressources en eau. L'objectif de ce travail de 

recherche est de développer des approches capables de cartographier l'étendue spatiale des 

zones irriguées et de détecter les épisodes d'irrigation à l'échelle de la parcelle en utilisant la 

télédétection optique et radar. 

La première partie de cette thèse se concentre sur l'évaluation du produit d'estimation de 

l'humidité du sol S2MP (Sentinel-1/2 Soil Moisture Product) récemment développé à l'INRAE-

TETIS. Le produit S2MP a été évalué en comparant l’humidité estimée aux enregistrements de 

précipitations, aux mesures in situ de l'humidité du sol et au nouveau produit de l’estimation 

d’humidité du sol fournit par Copernicus sur une large région du sud de la France (région 

Occitanie). Les résultats ont montré une bonne précision du produit S2MP à l'échelle de la 

parcelle (RMSE = 4.0 vol.%). De plus, le S2MP montrait une meilleure précision que le produit 

Copernicus. En outre, les résultats ont montré une grande cohérence entre les estimations de 

l'humidité du sol du S2MP à l'échelle d’une grille de 10 km x 10 km et les précipitations 

enregistrées. Le produit S2MP sur des grilles de 10 km x 10 km a été utilisé par la suite dans la 

cartographie de l'irrigation pour distinguer les événements d'irrigation des événements de 

précipitation. 

La deuxième partie de la thèse présente des approches de classification supervisée pour la 

cartographie de l'irrigation à l'échelle de la parcelle. Les approches de classification sont basées 

sur l'utilisation des séries temporelles d’images radar Sentinel-1 (S1) et optique Sentinel-2 (S2). 

Sur une région semi-aride en Catalogne (Espagne), les résultats montrent que les zones irriguées 

sont cartographiées en utilisant les données S1 et S2 avec une précision de classification entre 
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89% et 94% selon le modèle d'apprentissage automatique utilisé. Ensuite, j’ai proposé un cadre 

d'apprentissage profond capable d'adapter le modèle d'irrigation construit sur le site de la 

Catalogne pour cartographier l'irrigation sur le bassin Adour-Amont de l'Occitanie (zone 

humide). 

La dernière partie de la thèse montre le potentiel de Sentinel-1, Sentinel-2 et S2MP pour la 

détection des événements d'irrigation à l'échelle de la parcelle. Elle présente également une 

méthodologie opérationnelle pour cartographier des zones irriguées. Dans ce contexte, j’ai 

développé en premier temps un modèle de détection d'événements d'irrigation (IEDM) en temps 

quasi-réel à l'échelle de la parcelle, capable d'identifier les événements d'irrigation existants sur 

les parcelles agricoles. La validation de l'IEDM avec des données in situ a montré que les 

événements d'irrigation sont détectés avec une précision de 75%. Enfin, j’ai proposé une 

méthodologie opérationnelle pour cartographier les zones irriguées à l'échelle de la parcelle 

sans l’utilisation de données de terrain car l’approche est basée sur une collecte automatique 

des données d’entrainement sans l’aide de données in situ. Elle était testée sur un site d'étude 

situé à Orléans (centre-nord de la France) pendant quatre années différentes. Les principaux 

résultats montrent que le cadre opérationnel proposé offre une très bonne précision pour la 

cartographie de l'irrigation (entre 72% et 94%). 

Mots-clés : Étendue de l'irrigation, Événements d'irrigation, Sentinel-1, Sentinel-2, 

humidité du sol, S2MP, classification supervisée, classification non supervisée. 
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CHAPTER I: INTRODUCTION 

1. General Context 

In the 2030 Agenda of Sustainable Development of the United Nations (UN), several 

challenges have been recognized concerning the growing human population (Hambrey, 2017). 

With an estimated population of 9 billion in 2050, higher food demands are expected along with 

changing consumption patterns and agricultural cultivation regimes (Tilman and Clark, 2015; 

Tilman et al., 2011). Moreover, the human and natural systems are already stressed by the 

climate change, which is threatening both natural resources and food production (Schaldach et 

al., 2012; White et al., 2011).   

As more risk is present on food security, several actions around food security and agriculture 

are to be considered to avoid unsatisfactory destinations in the future. In 2011 and under the 

French presidency of the Group of 20 (G20), the G20’s Agricultural Ministers requested a full 

proposal for agricultural monitoring as a part of their actions to reach sustainable agriculture 

(Whitcraft et al., 2019). Moreover, reaching the sustainability in the agricultural sector and 

protecting food security through agricultural monitoring are part of the Sustainable 

Development Goals (SDGs) defined by the UN for the year 2030 (UN Water, 2018). In 2015, 

17 SDGs have been fixed by the UN including hundreds of targets spanning on multiple science 

domains including the agricultural sector (Hambrey, 2017). At national, regional and global 

scales, the success of the policy decisions related to the SDGs, especially in the agricultural 

sector, requires moving to a quantitative domain spatially and temporally (Griggs et al., 2013). 

In this context, several international communities such as GEOGLAM (Group on Earth 

Observation Global Agricultural Monitoring) are working on enhancing the utilization of Earth 

Observations to produce and distribute accurate and reliable information on food production 

(Whitcraft et al., 2015, 2019). With the advanced space technologies and remote sensing 

techniques, monitoring of the earth surface including the agricultural areas has been made 

available. In the mission of the GEOGLAM for agricultural monitoring, they first defined a set 

of Essential Agricultural Variables (EAVs) and fundamental products considered mandatory 

for agricultural monitoring. Among the fundamental products for agricultural monitoring the 

GEOGLAM mentions the vital need of cropland mask, crop type maps and irrigated vs non-

irrigated cropland maps. While the cropland mask and the crop type map can help decision 

makers develop land use policies, the irrigated vs non-irrigated cropland information is essential 
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for the water resource management and monitoring. Indeed, water resource management is 

currently the main concern of several international and national groups aiming to save and 

protect natural water resources (UN Water, 2018). For example, the G20 held in Hamburg-

Germany in 2017 clearly declared that in order to achieve food security, the agricultural 

production should increase in a sustainable and resilient manner with the aim to protect, manage 

and efficiently use water resources (FAO, 2017).  

Currently, global agricultural intensification, required to fulfill the increasing food demand, 

is mainly based on ever-increasing resource use especially water (García-Tejero et al., 2011; 

Jägermeyr et al., 2017; Tilman et al., 2011). However, the over exploitation of the freshwater 

resources for irrigation is causing a rapid degrading of water resources in several regions 

especially arid and semi-arid areas (Vörösmarty et al., 2010). At both local and global scales, 

irrigation is the human activity introducing the largest imbalances in the natural water cycle. 

Irrigation accounts to more than 70% of the water withdrawals, which is considered thus the 

main consumer of water resources (Ozdogan et al., 2010; Siebert and Döll, 2010). This 

percentage reaches 95% in some developing countries. Today’s human water withdrawals 

reaches 2,409 km3 for irrigation and harm many river stretches around the world (Jägermeyr et 

al., 2017). Due to the crop intensification based on the extensive use of water resources, 

cropland only increased by 12% whereas, the agricultural food production has increased by 

more than 100% in the last 30 years (Hunter et al., 2017). Even though only 17% of the cropland 

are irrigated, the irrigated agriculture accounts to more than 40% of the global food production. 

According to the Food and Agricultural Organization of the United Nations (FAO), 60% more 

food are needed by 2050 to meet the food requirements of a the global population. Indeed, the 

irrigated food production is estimated to increase by more than 50% by 2050 as estimated by 

the FAO (FAO, 2017, 2018). To boost the agricultural production with the expected global 

population increase, irrigation rates are expected to increase in the coming decades. In fact, 

current regional and national policies are pushing toward the increase of the water available for 

irrigation for farmers in order to achieve higher food production. Meanwhile, FAO estimates 

that freshwater resources could be sufficient to meet the future requirements by 2050 if and 

only if appropriate technologies and investments are considered (FAO, 2017). However, 

significant inconsistency in the water availability is expected between countries and extensive 

water scarcity will persist in arid and semi-arid areas (Jägermeyr et al., 2017). Besides the 

challenging scenario described for water use in the agricultural sector, climate change is found 

also to add a significant impact over the water cycle. With the changing climatic conditions, 
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altering rainfall patterns are witnessed affecting thus the availability and quality of water 

resources, agricultural production and associated ecosystems (Ferguson et al., 2018; 

Vörösmarty et al., 2000). 

The continuing expansion of irrigated areas in an unsustainable manner has necessitated the 

implementation of different management strategies to mobilize water resources with the aim to 

reach the sustainable water management and water saving (García-Tejero et al., 2011; Griggs 

et al., 2013). These strategies have been primarily based on actions to reduce water losses 

through the establishment of facilities and conservation structures. Referring to the EAVs 

defined by the GEOGLAM (Whitcraft et al., 2019), the most important step towards better 

water management and water saving is the spatial quantification of irrigated areas at large scale 

using earth observation techniques. Delineating the extent of irrigation is crucial for several 

aspects including, and not limited to, the analysis of the impact of climate change (Vörösmarty 

et al., 2000), the water management affecting the global food security (Tilman et al., 2011)  and 

the land-atmosphere water exchange modeling (Boucher et al., 2004). Concerning the aspects 

of food security, water resources and agricultural intensification, accurate information about 

irrigated areas could help assess the food production, estimate crop yields, evaluate water 

consumption and accurately measure the water discharge from rivers and ground aquifers.  

Unfortunately, the extent of irrigated areas at global and national scales is still uncertain and 

mostly rely on national statistical data derived from farmer’s declaration, which could be not 

reliable. In the last decade, the FAO developed a map for areas equipped for irrigation called 

the Global Map of Irrigated Area (GMIA). GMIA is primarily based on combining sub-national 

irrigation statistics with geospatial information to compute the fraction of five arc minute cells 

(5’ x 5’) that are equipped for irrigation hence called the irrigation density (Siebert et al., 2005, 

2015). However, the irrigation infrastructure (irrigation equipment) provided by GMIA does 

not necessarily reflect actual irrigation activities. The same limitation is observed with the 

MIRCA2000 product also available at five arc-minute spatial resolutions (Portmann et al., 

2010). These global datasets could be suitable for large-scale studies (Pokhrel et al., 2016; 

Wada et al., 2014) but are generally inadequate for local-scale studies. At local scales, detailed 

information with relatively fine spatial resolution are required. In addition, given that irrigation 

may change between years, such global datasets may not accurately represent the real irrigation. 

In these presented contexts, my thesis will therefore be structured around one main axes, 

which is analyzing the potential and capability of remote sensing data to map and monitor the 
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irrigation activity at high spatial resolution. The arrival of Sentinel-1 radar satellite and 

Sentinel-2 optical satellite, offering both high spatial and temporal resolutions, opened the way 

toward precise agricultural monitoring including irrigation activities at high spatial resolution. 

The output including the accurate detection of irrigated areas and the irrigation events at plot 

scale will reply to the local, national and international end-users who are urgently demanding 

accurate quantification of irrigation spatial extent and the irrigation frequency for better 

resource water management. 

2. State of Art 

2.1 Remote sensing data for monitoring soil water conditions 

Soil moisture is a key variable in the water cycle parameter since it varies as a function of 

precipitation, irrigation and soil evaporation rates. When the aim is to detect the irrigation 

signal, surface soil moisture (SSM) is a significant indicator of the existence or absence of 

irrigation. Since irrigation principally increases the surface soil moisture, the latter can play an 

important role in irrigation detection. 

The monitoring of the water status of the soil using in situ sensors helps optimizing the 

management of water resources to obtain an optimal yield. However, such techniques are very 

expensive and limited to local scales. Thus, it is important to move towards global scale to 

monitor soil water status (soil moisture) which can later allow wide monitoring irrigated areas. 

Now, satellite imageries are capable of providing spatial information on soil water status and 

vegetation parameters in near-real time and mostly in a free of charge cost. Among spatial 

imageries, the synthetic aperture radar (SAR) data have been extensively used to estimate and 

map the soil physical parameters particularly the SSM and the surface roughness (Aubert et al., 

2013; Baghdadi et al., 2011a, 2018a; El Hajj et al., 2016a) 

Through literature, soil moisture estimation based on SAR data has been realized using 

either physical models such as the integral equation model (IEM) (Fung et al., 1992) or 

empirical models such as the Dubois and Oh model (Dubois et al., 1995). Contrary to physical 

models, empirical models require in situ terrain data for calibration. In the case of bare soil, the 

SAR backscattering coefficient σ0 depends on the dielectric constant of the soil, the surface 

roughness and the SAR configuration such as the frequency (f), the incidence angle (θ) and the 

polarization. Several studies have been carried out to estimate surface soil moisture on bare soil 

mainly using the X band for the top 3 cm of soil (f ~ 9.6 GHz) and the C band for the top 6 cm 
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of the soil (f ~5.6 GHz) and showed an estimation precision on soil moisture between 3 and 6 

Vol.% (Aubert et al., 2011; Baghdadi et al., 2011a, 2011b, 2016b). However, in the presence 

of vegetation the soil moisture estimation from SAR data is more complicated. In this case, the 

radar backscattering signal is also attenuated by the existing vegetation cover. For the soil 

moisture estimation with vegetation cover using SAR data, the water cloud model (WCM) 

(Attema and Ulaby, 1978) is mostly used. In the WCM the σ0 is modelled as a sum of the 

vegetation contribution 𝜎𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛
0  and the soil contribution 𝜎𝑠𝑜𝑖𝑙

0  multiplied by an attenuation 

factor. The vegetation contribution is principally calculated using a vegetation biophysical 

parameter such as the biomass, the vegetation height or the vegetation water content. However, 

recent studies have started exploiting the effectiveness of using vegetation indices such as the 

Normalized Difference Vegetation Index (NDVI) easily derived from optical remote sensing 

data to describe the vegetation contribution in the WCM (Bousbih et al., 2018; El Hajj et al., 

2017). In the presence of vegetation, several studies have reported a good accuracy for 

estimating surface soil moisture using the C-band SAR data and the WCM (Baghdadi et al., 

2016b; Gherboudj et al., 2011; Mattia et al., 2003).  

With the advancement in the satellite technologies and the availability of the several SAR 

and optical sensors in free and open access mode, several soil moisture products have been 

recently available for users. In 2009, the European Space Agency (ESA) launched the SMOS 

mission (Soil Moisture Ocean Salinity) with an objective to measure surface soil moisture and 

the ocean salinity (Kerr et al., 2001, 2010). SMOS is the first mission dedicated to provide 

global observation of soil moisture using the L-band interferometric radiometer operating at a 

frequency of 1.4 GHz. After processing of the level-0 product, the level-2 product of the SMOS 

provides soil moisture estimation, vegetation optical depth and other ancillary data such as the 

surface temperature and roughness parameter with their corresponding uncertainties. With a 

revisit time of 3 days at the equator, the SMOS provides soil moisture estimation at 25 km 

spatial resolution. Similarly, the National Aeronautics and Space Administration (NASA) 

launched the Soil Moisture Active Passive mission (SMAP) in January 2015 with a revisit 

period of 2 to 3 days (Entekhabi et al., 2010). SMAP provides soil moisture estimation at 9 km 

and 36 km using L-band radiometer at 1.4 GHz. Recently, SMAP product has been merged 

with Sentinel-1 and Sentinel-2 data to deliver a new soil moisture estimation product at 3 km 

spatial resolution. In addition, Advanced Scatterometer (ASCAT) provides SSM estimates at 

coarse spatial resolution and very high revisit time (up to 1 day) (Wagner et al., 2013). ASCAT 

SSM products are developed by the Department of Geodesy and Geo-information of the Vienna 
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University of Technology and the data service is provided in partnership with the 

EUMETSAT’s Satellite Application Facility (SAF). ASCAT operates using the C-band radar 

data at a frequency of 5.3 GHz in vertical-vertical polarization (VV). The surface soil moisture 

of ASCAT is retrieved from the radar backscattering coefficients by using the change detection 

method developed in the Institute of Photogrammetry and Remote Sensing (IPF) at Vienna 

University of Technology (TU Wien) (Naeimi et al., 2009; Wagner et al., 1999). 

Regardless of the great contribution in the field of soil water monitoring insured by the 

numerous soil moisture satellite missions, the spatial resolution offered by the mentioned 

products remained under investigation. In coarse resolution SSM products, the SSM estimations 

are retrieved from radar signals averaged at grid scales which itself could be affected by the 

heterogeneous land cover (such as forests). This heterogeneity in the land cover at grid scales 

can lead to inaccurate SSM estimation when used for agricultural applications. Moreover, 

considering irrigation application, soil moisture needs to be accurately estimated on one hand, 

and spatially refine on the other hand. Indeed, the distribution of the irrigated plots in an 

agricultural basin is heterogeneous. This heterogeneity can affect the accurate detection of 

irrigated extent when using coarse resolution soil moisture product at several km2. For this 

reason, accurate and detailed (higher resolution) surface soil moisture product is required to 

reach satisfactory results in irrigation mapping at plot scale.  

Recently, a new algorithm for soil moisture retrieval at the agricultural plot scale has been 

developed at the National Research Institute for Agriculture, Food and Environment (INRAE) 

particularly with the “Territories, environment, remote sensing and spatial information research 

unit” (TETIS) in Montpellier France. The developed algorithm for soil moisture mapping is 

based on the inversion of the WCM using artificial neural networks (NN). As described El Hajj 

et al. (2017a), the soil contribution 𝜎𝑠𝑜𝑖𝑙
0  has been simulated using the IEM model modified by 

Baghdadi et al. (2011b) for C-band SAR data. Then, using a parametrized WCM for cereals 

and grassland (Baghdadi et al., 2017), the total backscattering coefficient σ0 has been simulated 

by considering the NDVI as a vegetation descriptor. Therefore, a synthetic database of σ0 has 

been created covering a wide range of radar incidence angle θ (20° to 45°), SSM (2 to 40 vol. 

%), surface roughness (0.5 to 3.8 cm), and NDVI (0 to 0.75) values. To estimate SSM, neural 

networks (NN) have been trained using a simulated dataset including σ0, the radar incidence 

angle (θ) and NDVI. In their study, they validated the proposed NN using SAR data from 

Sentinel-1 sensor, NDVI data from Sentinel-2 sensor and in situ SSM measurements collected 

over a study site near Montpellier France. The comparison between the estimated SSM and the 
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in situ real SSM values showed a significant accuracy for soil moisture estimation with a root 

mean square difference (RMSD) reaching approximately 5 vol.% at plot scale. Following this 

study, the TETIS research unit started delivering soil moisture product called the “Sentinel-

1/Sentinel-2 Soil Moisture Product” S2MP at plot scale for different regions across the world. 

To extract the σ0 in VV polarization and the SAR incidence angle (θ), the S2MP mainly uses 

Sentinel-1 data. To calculate the NDVI values also required by the NN for SSM estimation, the 

Sentinel-2 images are used. With the availability of the Sentinel-1 and Sentinel-2 data, the 

operational mapping of SSM has been achieved and the S2MP products are available in free 

open access mode via the Theia French Land Data Center (http://www.theia-

land.fr/en/thematic-products).  

In addition to the validation of the S2MP with in situ data, the S2MP has been also compared 

with the previously mentioned SSM products including SMOS, SMAP and ASCAT. In a study 

conducted by El Hajj et al. (2018), the S2MP, SMOS, SMAP and ASCAT were compared to 

with in situ data derived from terrain measurements and weather station networks 

(SMOSMANIA). They concluded that the S2MP showed the best accuracy compared to other 

products when evaluated against in situ data (RMSD about 5 vol.%). 

Since the Sentinel-1 satellite has opened the way towards the operational mapping of soil 

moisture, the Copernicus Global Land Service (CGLS) has also started delivering soil moisture 

estimation at 1 km x 1 km grid scale (C-SSM) (Bernhard Bauer Marschallinger and Christoph 

Paulik, 2018). Similar to the ASCAT data, the SSM retrieval algorithm of the C-SSM is based 

on the TU Wien Change Detection Model. The C-SSM product is derived from the VV 

polarization of the S1 SAR signal mainly over the European continent. In a recent validation 

developed by the CGLS, the C-SSM provided an average accuracy of 10 vol.% in terms of 

RMSD when compared to several in situ SSM networks over Europe (Bauer-Marschallinger 

and Pfeil, 2021). 

2.2 Remote sensing data for irrigation mapping 

The importance of irrigation for crop production along with water scarcity caused by the 

unsustainable use of water in the agricultural sector encouraged several studies to quantify the 

irrigated area extent. Before the huge advancement of remote sensing technologies and the 

availability of massive remotely sensed datasets, large scale irrigation quantification have been 

initially based on the use of national statistical data rather than remote sensing data. For 
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example, the FAO GMIA map (Siebert et al., 2005, 2015) and the MICRA map (Portmann et 

al., 2010) provided only census irrigation data derived from the national declaration resampled 

at 5 arc-minute spatial resolution. However, the low spatial resolution and the lack of credibility 

of these products remain an obstacle for irrigation management especially in small and medium 

agricultural areas. 

Currently, the advanced technologies in remote sensing allowed the monitoring of irrigated 

areas at large scales. Large scale monitoring of irrigated areas using satellite remote sensing 

can offer a global view with less time and money resources compared to terrain surveys. Several 

studies have concentrated on the potential of remote sensing data for mapping irrigated areas at 

different spatial resolutions at and at both local and global scales. Through literature, three main 

satellite data sources have been exploited for irrigation mapping including optical data, radar 

(SAR) data and satellite soil moisture data. The following subsections provides a sufficient 

overview about several studies dealing with irrigation mapping using the three mentioned data 

source (optical, radar and satellite SSM). 

2.2.1 Optical remote sensing for mapping irrigated areas 

 Using remote sensing, optical data has been firstly manipulated to perform irrigation 

mapping at different scales. Fundamentals of optical remote sensing in irrigation mapping are 

based on the difference of the optical spectral signature between irrigated and non-irrigated 

cropland. Most studies that use optical data demonstrates that irrigated/non-irrigated areas can 

be distinguished based on the difference in temporal signals of the spectral signature or the 

difference in the optical derived vegetation indices, such as the NDVI and Greenness index 

(GI), between irrigated and non-irrigated areas. The NDVI, which represents a proxy measure 

for absorbed photosynthetic active radiation, is a commonly used vegetation index to map 

irrigated and non-irrigated crops. In fact, prior studies assessing the effect of water abundancy 

on the NDVI values showed that increasing available soil moisture for vegetation increases the 

NDVI value over different crops (Ji and Peters, 2003; Kawabata et al., 2001; Potter and Brooks, 

1998; Wulder et al., 2004). When the crop benefits from additional amounts of water through 

irrigation, highest levels of photosynthesis could be achieved along with highest biomass and 

densest vegetation cover. These three mentioned biophysical properties induces high NDVI 

values for irrigated crops. Indeed, several studies have demonstrated that irrigated crops, 

especially maize and wheat, show higher NDVI than non-irrigated crops (Wardlow and Egbert, 

2008). To perform irrigation mapping using satellite data, digital image classification 
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approaches have been deployed. Previously, traditional image classification techniques such as 

image segmentation, spectral matching and maximum likelihood classifiers have been 

employed for mapping irrigated and non-irrigated cropland using optical spectral data 

(Dheeravath et al., 2010; Thenkabail et al., 2009b). With the advancement of machine learning 

techniques, studies started to use several machine-learning approaches for image classification. 

Machine learning models such as the Random Forest (RF), support vector machine (SVM) and 

neural networks (NN) have been recently used for irrigation mapping using satellite data 

(Bousbih et al., 2018; Demarez et al., 2019; Gao et al., 2018; Pageot et al., 2020). 

The Global irrigated area map (GIAM) (Thenkabail et al., 2009b) was produced for the last 

millennium using several optical remote sensing products. To map irrigated areas globally at 

10 km scale, Thenkabail et al. (2009) used the Advanced Very High Resolution Radiometer 

(AVHRR) data and SPOT (Satellite Pour l’Observation de la Terre) data in addition to 

secondary data including rainfall records at 50 km spatial resolution and elevation data from 

the GTOPO30 (digital elevation model) product at 30 arc-second resolution. The proposed 

methodology relies on image segmentation applied on both the satellite data bands and the 

auxiliary data followed by unsupervised decision tree clustering to group the irrigated/non-

irrigated classes using the spectral matching technique (SMT). The GIAM had an accuracy 

ranging between 79% and 91% when compared to ground truth data. Dheeravath et al. (2010) 

used the same protocol for mapping irrigated areas using MODIS data at 500 m spatial 

resolution in India between 2001 and 2003. In their study, they used 7 optical reflectance bands 

of MODIS at 8 days temporal resolution combined with precipitation data, elevation data and 

national boundaries declared for irrigated areas. The correlation coefficient (R2) between their 

annual irrigation map over India and the national data reached 0.84. Finally, they report that the 

uncertainty of the produced map is mainly linked to the limitation of the spatial resolution 

(500m), the irrigated area fraction in remote sensing and the lack of robust irrigation declaration 

in the national surveys.  

Merging MODIS data with statistical data has been also used by Pervez and Brown, (2010) 

to map irrigated agricultural areas over the US continent in 2002. In their study, they used 

MODIS satellite data with the country statistics derived from the agricultural departments. The 

classification model was based on the difference in the NDVI time series between irrigated and 

non-irrigated crops. They rely on the assumption that irrigated crops have higher annual NDVI 

peaks than non-irrigated crops especially in dry areas with low precipitation records. Thus, 

irrigated and non-irrigated crops have been classified using the maximum NDVI value attained 
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during the growing season in addition to statistical and land cover data. The spatial resolution 

of the produced map was 250 m and accurately identified irrigated lands with reasonable 

accuracy between 75% and 92% across several sites in the US continent. Brown and Pervez, 

(2014) followed the same methodology of Pervez and Brown, (2010) to map irrigated areas in 

the US continent in 2002 and 2007 in order to extract the temporal change in irrigated areas. 

They achieved similar accuracy in irrigation identification as Pervez and Brown, (2010). 

Always using MODIS data, the Global Rain-fed Irrigated and Paddy Croplands (GRIPC) 

provided irrigated area extent at 500 m spatial resolution (Salmon et al., 2015). To perform 

irrigation mapping, Salmon et al. (2015) used the enhanced vegetation index (EVI), the 

normalized differential water index (NDWI), the land surface temperature (LST) and the NDVI 

derived from MODIS data conjointly with auxiliary data related to climate (climate moisture 

index, annual moisture index) and agro-ecological zoning. Using terrain-training data, a 

univariate decision tree classification algorithm was applied on both MODIS satellite data and 

auxiliary data to obtain the irrigation classification map. In the assessment of the GRIPC map 

against other products, the results showed that the GRIPC irrigated cropland agrees closely with 

national inventory statistics from FAO (FAOSTAT) but had 24% less surface area of irrigated 

cropland than GIAM map (Salmon et al., 2015). Recent studies continued exploring MODIS 

data for irrigation mapping. Xiang et al. (2019) mapped irrigated areas of northeast China by 

comparing the MODIS derived Land Surface Water Index (LSWI ) of the agricultural areas to 

the surrounding natural vegetation such as forests. They assumed that for irrigated crops, the 

canopy moisture indicated by the LSWI should be higher than that of adjacent forest. Following 

this logic, they fixed a threshold value for the difference between the LSWI of the irrigated 

crops and that of the forest. However, their approach produced an overall accuracy not 

exceeding 77.2%. 

For finer spatial resolution than MODIS, studies dealing with irrigation mapping have also 

exploited the potential of Landsat imageries at 30 m spatial resolution to map irrigated areas 

(Chen et al., 2018; Deines et al., 2017, 2019; Demarez et al., 2019; Ren et al., 2021). Chen et 

al. (2018) used Landsat 8 image combined with MODIS (250 m) and ancillary data 

(precipitation) to detect the irrigation extent. In their study, they used the GI to detect irrigation 

events during the first half of the growing season. The overall accuracy for detecting irrigation 

water supplements reached 87%. Combining Landsat 8 and MODIS data for irrigation mapping 

has been the also employed in a recent study by Ren et al. (2021) to map irrigated maize (corn) 

using multi-temporal image classification. In their study, they tested three image classification 
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algorithms including the neural network, random forest and support vector machine to map 

irrigated and rain-fed corn at 30 m spatial resolution in Nebraska. First, they performed a 

MODIS based classification of irrigated and non-irrigated areas, which was then used to support 

the Landsat irrigation classification. The overall accuracy for irrigation mapping in 2012 over 

Nebraska reached 89.6% using the NN classifier. (Demarez et al., 2019) tested the potential of 

Landsat 8 images combined with elevation data to map irrigated summer crops in the south of 

France. They showed that the combined use of optical imagery with elevation data produces an 

irrigation classification accuracy of 89%.  

With the arrival of the S2 data of the Sentinel satellite constellation, optical data are 

available in free and open access at 10 m spatial resolution and 5 days revisit time (in Europe). 

Giving the high spatial resolution offered by S2, several studies started recently exploiting the 

potential of S2 data for mapping irrigated areas and reported good accuracies for irrigation 

mapping (Maselli et al., 2020a; Pageot et al., 2020). Pageot et al., 2020 tested the use of S2 

derived vegetation indices (NDWI and NDVI) time series to map irrigated and rain-fed crops 

in a temperate area in south-west France. However, they only achieved an accuracy of 49%. 

In conclusion, mapping irrigated areas using optical data have been extensively exploited 

through literature. Several image classification approaches for irrigation mapping have been 

proposed using different satellite sensors. Coarse resolution satellite data such as MODIS and 

AVHRR have been firstly used. With the arrival of Landsat 8 and S2 satellites, maps at finer 

spatial resolution have been proposed. Using either coarse or fine spatial resolution, optical 

imagery for irrigation mapping is primary based on the difference in the spectral signature 

between irrigated and non-irrigated croplands usually expressed using vegetation indices such 

as the NDVI, NDWI and GI. The main restriction for using optical data for irrigation mapping 

is the cloud cover that limits the number of exploitable images. When the revisit time of the 

optical sensor is moderate (such as the Landsat at 16 days revisit time), the availability of high 

number of cloud free images decreases.  

2.2.2 Radar remote sensing for mapping irrigated areas 

To overcome the limitation of cloud cover present in optical images, microwave data (SAR) 

presents new perspectives in irrigation mapping. Microwave data are not limited to weather 

conditions and can be available during day and night. SAR data has been recently exploited for 

irrigation mapping in few studies. The key point that links SAR data to irrigation detection is 
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the soil moisture. As discussed previously in section 2.1, microwave remote sensing is sensitive 

to the water content of soil due to the increase in the dielectric constant with the increase of the 

soil water content (Aubert et al., 2013; Baghdadi et al., 2011a, 2011b, 2016a; El Hajj et al., 

2017; Hajj et al., 2014). Following this logic, Hajj et al. (2014) analyzed the sensitivity of the 

TerraSAR X-band SAR data over irrigated grassland plots in the Crau plain of southeast France. 

They reported that SAR signal could be used to identify three-day-old irrigation event. In the 

study, they showed that after an irrigation event, the X-band SAR signal increased by 

approximately 1.4 dB due to an irrigation occurring one day before the satellite acquisition.  

Unlike optical data, very few studies have reported the use of SAR data for irrigation 

mapping. The lack of studies using SAR data for irrigation mapping is primarily due to the lack 

of operational satellites providing SAR data in free and open access. Sharma et al., (2019) 

evaluated the use of Radarasat-2 quad pol SAR (C-band) time series to monitor groundwater 

irrigation in the Berambadi watershed in India. From the quad polarization of Radarsat-2 (HH, 

HV, VH and VV) 15 polarimetry variables and 11 polarimetry indices were extracted and used 

with ground-collected data to perform a SVM classification for irrigated and non-irrigated 

crops. They report a classification accuracy of 91.4% and 90.4% for winter and summer 

irrigated crops respectively. The arrival of the free and open access Sentinel-1 SAR data (C-

band) at 6 days temporal resolution enabled researchers to explore deeply the potential of SAR 

images for irrigation mapping. Gao et al. (2018) first reported the use of statistical derived 

metrics from S1 temporal series to map irrigated areas in a semi-arid region in Catalonia, Spain. 

They assume that due to high persisting soil moisture values in irrigated plots during the year 

(compared to non-irrigated plots) the SAR temporal signal over irrigated plot must have high 

mean value, low variance value and high signal correlation length. Thus, they used these three 

statistical metrics (mean, variance and correlation length) in a RF classifier with collected in 

situ data to map irrigated areas at plot scale. They achieved an overall accuracy of 81%. Bousbih 

et al. (2018) followed the same methodology to map irrigated wheat crops in an arid area of 

Tunisia. The validation of the irrigation mapping showed an overall accuracy up to 77%. 

Demarez et al. (2019) also reported the importance of joining S1 data and Landsat data for 

irrigated summer crop mapping in south France. The study showed that the joint use of SAR 

and Optical data provided the best accuracy for irrigation classification.  

Moreover, some studies have focused on the use of microwave satellite soil moisture 

products for irrigation mapping and estimation. Lawston et al. (2017) reported the potential use 

of SMAP data at 9 km spatial resolution to map irrigated areas over three semi-arid regions of 
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the US. In a study performed over Catalonia-Spain, Escorihuela and Quintana-Seguí (2016) 

reported an inconsistency between satellite soil moisture estimations (ASCAT, SMOS) and 

simulated surface soil moisture from land surface model over irrigated areas. On the other hand, 

higher consistency was found over non-irrigated areas. This low correlation between satellite 

soil moisture and modelled land surface soil moisture over irrigated areas was mainly attributed 

to the existence of irrigation activities. Particularly, irrigation caused several variation in the 

satellite estimated soil moisture not accounted in the land surface model leading thus to low 

correlation values between both SSM estimations. They concluded thus the efficiency of using 

satellite soil moisture and land surface models for irrigation mapping. Dari et al. (2021) 

followed the same assumption as Escorihuela and Quintana-Seguí (2016) to map irrigated areas 

in a watershed in Catalonia. In their study, they assessed the potential of five different satellite 

soil moisture (SMOS 1km, SMAP 1 and 9 km, Sentinel-1 1 km, and ASCAT 12.5 km) for 

irrigation mapping by comparing the satellite soil moisture estimation to land surface modelled 

soil moisture. The method was able distinguish irrigated areas from rain-fed areas with an 

accuracy up to 78% using SMAP 1km product. 

In conclusion, studies using microwave data for irrigation mapping are mainly based on the 

soil moisture variation as a key variable. Using either raw SAR data (SAR images) or 

microwave remote sensing soil moisture, recent studies have started reporting good accuracies 

for irrigation mapping. However, the low spatial resolution of soil moisture products remains 

an obstacle for a precise quantification of the irrigation extent. Moreover, recent studies dealing 

with irrigation mapping using S1 data are restricted to the studied zones and lack for the 

generalization in order to use operationally over several study sites and across several years. 

3. Problematic 

Based on the previous studies dealing with irrigation mapping and monitoring using remote 

sensing data, several controversial questions could be addressed in this context. First, the spatial 

resolution of the maps offered in previous irrigation mapping studies are considered moderately 

low for irrigation monitoring and agricultural management. The low spatial resolution is mainly 

due to the use of coarse resolution satellite data (such as MODIS) or soil moisture satellite data 

such as SMAP and SMOS. Although the low spatial resolution could offer global coverage, it 

remains an obstacle for irrigation management at local scales in small to medium irrigated 

agricultural areas. Next, the accurate identification of the irrigation frequency (irrigation events) 

has not yet received great attention despite its great importance in the field of irrigation 
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management and water consumption estimation. Given the vital need of the detection of 

irrigation events and the rare studies focusing on this aspect, the detection of irrigation events 

at plot scale using remote sensing data is a challenge to address. Finally, we can observe through 

almost all the studies addressing irrigation mapping that the developed approaches for irrigation 

mapping heavily rely on supervised image classification models. Although supervised 

classification approaches such as the RF, the SVM or the NN can provide very good accuracy 

for irrigation mapping, there exists two important issues to discuss. On one hand, supervised 

classification models highly rely on the studied geographical contexts and the studied year. 

Thus, the application of a supervised model (built on one area at a given year) on another 

geographic area or on another year in the same area is extremely difficult and mostly provide 

unsatisfactory results. For this reason, previous studies are providing irrigation mapping in a 

limited geographical area and lack for the generalization over other areas. On the other hand, 

supervised classification models require the continuous availability of terrain. Thus, the 

application of any proposed supervised approach requires extensive terrain data measurements 

especially when using neural networks. However, it is well known that irrigation is a time 

dynamic activity and may vary from one year to another. Therefore, terrain data (irrigated vs. 

non-irrigated or irrigation timing) is required yearly or even seasonally in order to perform 

yearly basis irrigation mapping. Nonetheless, obtaining yearly terrain data at large scales is 

costly and time consuming. Moreover, the collection of irrigation terrain data could be difficult 

especially when farmers tend to hide information about the irrigation existence or the irrigation 

frequency.  

In conclusion, this thesis will reply to several controversial points exposed in irrigation 

monitoring using remote sensing data. The first question concerns the potential of the Sentinel-

1 (SAR) and Sentinel-2 (Optical) data for irrigation mapping at high spatial resolution. In 

particular, what is the potential of the S1 and/or S2 data for mapping irrigated areas at 

agricultural plot scale? Second, how can we apply a supervised irrigation classification model 

developed on one area on other regions? Third, the thesis will analyze the capability of detecting 

the irrigation events at each agricultural plot using remote sensing data. In other words, can we 

detect the irrigation events occurring at plot scale using Sentinel-1 and Sentinel-2 data in a near 

real time scenario? Finally, the thesis will analyze the capability of obtaining a semi-supervised 

classification model for irrigation mapping that overcomes the limitation of the terrain data 

availability. Expressly, can we build an operational model for irrigation mapping, which 

requires no in situ terrain data and is easily transferable between geographic regions? 
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4. Scientific Approach 

4.1 General overview 

This thesis is fundamentally constructed on the potential of Sentinel-1 and Sentinel-2 

images as well as S2MP (soil moisture at plot scale) data for the monitoring of irrigation 

activities. Sentinel-1 and Sentinel-2 offers a high spatial resolution at 10 m each, which is 

appropriate for agricultural applications at plot scale. The use of Sentinel-1 and Sentinel-2 data 

allows obtaining irrigation mapping at high spatial resolution (up to plot scale). Moreover, 

Sentinel-1 and Sentinel-2 offers exceptional revisit time among other satellites (6 days and 5 

days respectively over Europe) which helps tracking temporal changes in the agricultural field 

during short periods. The high revisit period of the used satellites is essential for the detection 

of irrigation events since irrigation is a time dynamic activity. In addition, the plot scale surface 

soil moisture estimation delivered from the S2MP product could be an additional data entry for 

irrigation monitoring tasks thanks to the direct relation between soil moisture and irrigation. 

Therefore, the complementary between SAR data (Sentinel-1), optical data (Sentinel-2) and 

accurate surface soil moisture estimation (S2MP) opens the way towards accurate quantification 

of irrigated areas and precise detection of irrigation events. 

Three important tasks are to be addressed in this thesis. First, it is important to assess the 

accuracy of the S2MP product that offers soil moisture estimation at plot scale. As discussed 

previously, the addition of soil moisture estimation as auxiliary data helps improve the irrigation 

detection. Thus, an assessment of the S2MP against in situ data, other SSM products and water 

cycle parameters (precisely rainfall) has been performed. Second, the thesis focus on 

discovering the potential of Sentinel-1 and/or Sentinel-2 data for irrigation mapping at plot 

scale. In this context, supervised classification approaches are investigated with the additional 

opportunity to transfer the irrigation-mapping model from one region to another. Finally, 

operational approaches for irrigation event detection and irrigation mapping are to be 

investigated. In this perspective, a model capable of detecting irrigation events using S1, S2 

and S2MP is proposed. Then, an operational irrigation-mapping framework is constructed. 

Our research work replies for these three aspects through different chapters. The second 

chapter investigates the accuracy of the S2MP product by comparing it to precipitation data 

from the Global Precipitation Mission (GPM) and the new Copernicus Global Land Service 

Soil Moisture product (C-SSM). In the third chapter, we present an irrigation mapping 
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methodology at plot scale using supervised classification approaches. Moreover, we highlight 

a transfer-learning approach that permits the use of the developed irrigation-mapping model 

over different regions. Then, in the fourth chapter, we present a near-real time irrigation event 

detection approach followed by an operational methodology for mapping irrigated areas, which 

does not require in situ terrain data. Finally, we finish by a conclusion and a perspective of this 

work. 

4.2 Assessment of the S2MP product 

This chapter presents an evaluation of the S2MP product against in situ data, Copernicus 

SSM product and rainfall data.  Before integrating the surface soil moisture estimation provided 

by the S2MP into the irrigation classification approaches, it is important first to study the 

correlation of this product with other water cycle parameters (precisely rainfall) in order to 

understand the interaction between rainfall and soil moisture estimations derived from SAR 

data. Moreover, it is essential to compare this product with terrain data in addition to the newest 

surface soil moisture products. This chapter summarizes the principal results detailed in a first 

paper published in IEEE JSTARS Journal “A Comparison of Two Soil Moisture Products 

S2MP and Copernicus-SSM over Southern France (Bazzi et al., 2019a) and a second paper 

published in published in Sensors Journal “Potential of Sentinel-1 Surface Soil Moisture 

Product for Detecting Heavy Rainfall in the South of France (Bazzi et al., 2019b)”. 

In the first paper, (Bazzi et al., 2019a), we present a detailed comparison between the S2MP 

and the C-SSM over the Occitanie region of south France. Both products are derived from the 

S1 data with different soil moisture retrieval methodology. In this comparison, both products 

were first evaluated versus in situ terrain measurements. Then, an inter-comparison was made 

between both products in order to determine the correlation between both products. In the 

second paper (Bazzi et al., 2019b) we present a comparison between the surface soil moisture 

of the S2MP and the rainfall data of the GPM over the Occitanie region of south France. This 

comparison allows us to show the consistency between rainfall data and S2MP surface soil 

moisture at grid scale (10 km x 10 km). This proved consistency was used later in irrigation 

mapping to discriminate between irrigation and rainfall events. In the second paper  
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4.3 Supervised classification approaches for mapping irrigated areas using 

Sentinel-1 and Sentinel-2 data 

This chapter focuses on the potential of S1 and S2 data for mapping irrigated areas at plot 

scale. This chapter presents the results detailed in a first paper published in Remote Sensing 

Journal: “Mapping Irrigated Areas Using Sentinel-1 Time Series in Catalonia, Spain (Bazzi 

et al., 2019c) and a second paper published in IEEE GRSL journal “Distilling before Refine: 

Spatio-Temporal Transfer Learning for Mapping Irrigated Areas using Sentinel-1 Time 

Series (Bazzi et al., 2020a)”. 

In the first paper (Bazzi et al., 2019c), we present a supervised classification approach for 

irrigation mapping at plot scale based on the use of S1 and/or S2 temporal series using random 

forest classifier and the convolutional neural network. The approach is based on integrating gird 

scale SAR backscattering coefficient (10 km x 10 km) as a rainfall indicator (findings of chapter 

2) in order to accurately differentiate between irrigation and rainfall using SAR data. The 

proposed approach was tested over Catalonia region in northeast Spain (semi-arid conditions). 

Then in the second paper (Bazzi et al., 2020a), we propose a framework capable of transferring 

the model built on Catalonia to map irrigated maize plots in Adour-Amont basin of southwest 

France (humid conditions). 

4.4 Towards operational mapping and monitoring of irrigated areas 

In this chapter, we discuss first the capability to detect irrigation events at plot scale in a 

near real-time scenario through a decision tree algorithm using S1, S2 and the S2MP data. 

Irrigated and non-irrigated plots were investigated over three different study sites in Catalonia 

(Spain), Montpellier (southeast France) and Tarbes (southwest France) were examined. The 

findings are summarized in the paper published in Remote Sensing Journal “Near Real-Time 

Irrigation Detection at Plot Scale Using Sentinel-1 Data (Bazzi et al., 2020b)”.  

The proposed decision tree algorithm for irrigation event detection was then validated 

against in situ recorded irrigation events over intensively irrigated grassland plots in the Crau 

plain of southeast France. The findings of this study are summarized in the paper published in 

Remote Sensing Journal “Irrigation Events Detection over Intensively Irrigated Grassland 

Plots Using Sentinel-1 Data (Bazzi et al., 2020c)”. 
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In order to obtain an operational methodology for irrigation mapping at plot scale we 

proposed to merge both the supervised classifiers and the decision tree algorithm in a new semi-

supervised framework capable of mapping irrigated areas with no need for in situ terrain data. 

In the proposed approach, the decision tree is first used to select a training dataset of irrigated 

and non-irrigated plots. Then a random forest classifier is constructed using S1 and S2 temporal 

series and selected training dataset. The framework was tested over a new study site located in 

Orleans (northcentral France) for four different years. The main results are reported in the paper 

published in Remote Sensing Journal “An Operational Framework for Mapping Irrigated 

Areas at Plot Scale using Sentinel-1 and Sentinel-2 Data”. 

4.5 Conclusions and perspectives 

This chapter details the main conclusions and presents the limitations of the remote sensing 

data (particularly Sentinel-1 and Sentinel-2) for irrigation mapping and irrigation event 

detection. Prospects for further research are thus proposed.
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CHAPTER II: ASSESSMENT OF THE S2MP 

SURFACE SOIL MOISTURE PRODUCT 

1. Analytical Summary  

1.1 Overview 

Soil moisture is a key variable in irrigation mapping. The artificial application of water by 

irrigation causes an increase of the soil moisture values. Currently, several satellites deliver soil 

moisture products at coarse spatial resolution (several km²). Recently, the TETIS research unit 

at INRAE developed an algorithm for surface soil moisture (SSM) retrieval at plot scale called 

the S2MP (Sentinel-1/2 soil moisture product). This algorithm uses radar Sentinel-1 and optical 

Sentinel-2 images to estimate surface soil moisture. The product is available in free and open 

access via the THEIA French land data center for several regions across the world.  

The objective of this part is to assess the accuracy of the S2MP product in order to use it 

next in the irrigation mapping approaches. The assessment of the S2MP was performed in three 

different approaches. First, the S2MP was evaluated against in situ surface soil moisture 

measurements to find the accuracy of the S2MP estimations. Next, the S2MP was compared to 

the recent Copernicus surface soil moisture (C-SSM) product at 1 km x 1 km grid scale 

developed by the European Space Agency. In order to understand the relation between 

estimated surface soil moisture and rainfall data, the S2MP was compared finally to 

precipitation records derived from the Global Precipitation Mission (GPM) at 10 km x 10 km 

grid scale. The S2MP assessment was performed over the Occitanie region in southern France. 
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Figure A. Graphical abstract for the S2MP assessment using in situ data, Copernicus SSM 

product and GPM rainfall data. 

1.2 Materials and Methods 

1.2.1 Study site 

The study site examined for the S2MP assessment is the Occitanie region of south France. 

It covers an area of 72,724 km2. The region has a variety of landscape and is mainly covered 

by agricultural areas in the middle and western parts. In the eastern part of the region, the 

climate is Mediterranean (average annual precipitation 700 mm), whereas in the western part 

the climate is humid and oceanic (average annual precipitation 1200 mm). 

1.2.2 In situ soil moisture measurements 

The SSM values were measured for 23 reference plots (grassland and wheat) at each 

Sentinel-1 acquisition date (same as S2MP and C-SSM dates) over an agricultural area near 

Montpellier city (southeast France) for the period between January 2017 and June 2018. For 

each reference plot, twenty-five to thirty measurements of volumetric soil moisture were 
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acquired in the top 5 cm of soil by means of a well-calibrated TDR (Time Domain 

Reflectometry). All soil moisture measurements within each plot were averaged to provide a 

mean value for each plot at each S1 acquisition date (S2MP date). 

1.2.3 S2MP product 

The S2MP provides SSM estimations at plot scale for agricultural areas. The SSM 

estimation is based on coupling S1 and S2 data as proposed by El Hajj et al. (2017). The 

approach is based on the inversion of the S1 backscattering coefficient using the Neural 

Network (NN) technique. To estimate SSM values by NN inversion, the S2MP uses the C-band 

SAR signal in VV polarization derived from the S1 satellite, the S1 incidence angle (θ) and the 

NDVI value derived from the S2 optical images. The S2MP provides soil moisture estimations 

in absolute volumetric units (vol.%). S2MP products acquired with the same dates of in situ 

measurements were used to compare S2MP to terrain SSM measurements. To compare S2MP 

to C-SSM, all the S2MP maps available, between October 2016 and October 2017, with the 

same acquisition time of C-SSM were used.  

1.2.4 Copernicus Surface Soil Moisture Product 

Copernicus Global Land Service delivers the first soil moisture estimations over the 

European continent at a 1-km spatial resolution using C-band S1 data (C-SSM). The SSM 

retrieval in the C-SSM is based on the Wein Change Detection Model developed by the TU 

(University of Technology) of Vienna, Netherlands. The product delivers relative SSM values 

in percentages ranging between 0% (extremely dry soil conditions) and 100% (very wet soil 

conditions). C-SSM provides soil moisture estimations in all the S1 overpasses (ascending and 

descending). Since C-SSM provides soil moisture estimations in relative unit (%), the C-SSM 

product values were converted to a volumetric unit (vol.%) in order to compare the C-SSM 

estimations with measured soil moisture in absolute volumetric unit (vol.%). 

1.2.5 GPM rainfall data 

The GPM (Global Precipitation Mission) provides rainfall measurements globally between 

60°N and 60°S at 0.1° × 0.1° (~10 km x 10 km) spatial resolution. From GPM data, the Late 

IMERG (Integrated Multi-satellite Retrievals for GPM) rainfall maps at 30 minutes temporal 
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resolution were downloaded.  The comparison between the S2MP and the rainfall data of the 

GPM was performed on one year between 1 September 2016 and 31 August 2017. 

1.2.6 Comparison with in situ measurements 

S2MP and C-SSM were first evaluated by comparing SSM values from each product with 

the in situ soil moisture. The comparison of each product with in situ measurements was 

performed at 1 km grid scale (same grid as C-SSM). For this reason, at each in situ measurement 

date, the in situ SSM measurements and the S2MP soil moisture estimations at plot scale were 

averaged at to 1 km grid scale. The accuracy of the  products against in situ data was determined 

using the statistical metrics including the Pearson correlation coefficient (R), the root mean 

square difference (RMSD), the bias (estimated SSM – measured SSM) and the unbiased root 

mean square difference. 

1.2.6 S2MP vs C-SSM 

Over the entire Occitanie region, an inter-comparison was performed between the S2MP and 

the C-SSM products for the period between 1 October 2016 and 1 October 2017. The 

comparison was performed using the statistical metrics R, RMSD, bias, and ubRMSD. The 

comparison was achieved at each grid cell of the C-SSM (1 km x 1 km) using SSM estimates 

of only common dates between the S2MP and C-SSM. At each common date, the S²MP 

estimations (of several plots) existing within each C-SSM grid cell (1 km x 1 km) were averaged 

to obtain a 1km x 1km S²MP value. 

1.2.7 S2MP vs GPM rainfall 

For each S2MP map date, one cumulative rainfall map for the 6 days prior to the S2MP  map 

date (revisit of S2MP is 6 days)  was computed by  summing  the  30  minutes  time  interval  

of  the  Late  IMERG GPM product. Then, each S2MP map was overlaid with the corresponding 

6 days of cumulative GPM rainfall. A temporal analysis was performed between the variation 

of the SSM values estimated by the S2MP and the GPM rainfall registrations. 

1.3 Main results 

The comparison between the soil moisture estimation of S2MP and in situ measurements 

collected over agricultural areas and grasslands showed that the S2MP provides very good 
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accuracy for soil moisture estimation (RMSD = 4.0 vol.%, ubRMSD = 3.9 vol.% and R=0.77). 

However, the C-SSM is less accurate than the S2MP but still provides satisfactory soil moisture 

estimations (RMSD = 6.0 vol.%, ubRMSD = 6.0 vol.% and R=0.48). The comparison between 

the two SSM products over one year shows very high correlation between the S2MP and the C-

SSM over agricultural areas mainly used for cereals (R value between 0.5 and 0.9 and RMSE 

between 4 vol.% and 6 vol.%). However, over agricultural areas mixed with forests and 

vineyards, the C-SSM values tend to overestimate the S2MP values (bias > 5 vol.%). 

The comparison between the S2MP SSM and the GPM rainfall data showed that a global 

consistency exists between the SSM values and precipitation records at 10 km spatial resolution. 

Very high soil moisture values are estimated after rainfall events, whereas with the absence of 

precipitation over a period, the soil dries due to evaporation, and the SSM values of the S2MP 

generally decrease. For example, between two consecutive S2MP maps acquired in 15 

November 2016 and 21 November 2016 (6 days difference), the SSM values increases by more 

than 9 vol.% due to 40-mm cumulative precipitation recorded between the two S2MP dates. 

Moreover, the absence of precipitation along with evaporation (temperature between 22 °C and 

25 °C) for a period of 25 days between 01 April 2017 and 25 April 2017 caused soil moisture 

values to drop down from 25 vol.% to less than 15 vol.%. The temporal  analysis  of the S2MP 

derived  SSM  values  over  a period of time shows the direct effect of raining episodes or dry 

conditions on the SSM values at grid scale (10 km x 10 km). 

1.4 Conclusions 

The S2MP product was compared to both in situ data and C-SSM product. The S2MP shows 

very good accuracy for soil moisture estimations and provides SSM estimations better than the 

C-SSM product. However, for both products, the soil moisture estimations are less accurate and 

sometimes impossible in the presence of very dense vegetation cover due to the limited 

penetration of the SAR signal in C-band. In the case of well-developed vegetation cover, the 

S2MP does not provide SSM estimations (NDVI > 0.7) while the C-SSM provides unreliable 

estimations. Over dense vegetation (the case of the wheat with NDVI > 0.7), the soil 

contribution in the C-band SAR signal becomes negligible, and the estimation of soil moisture 

could not be obtained using C-band SAR data (El Hajj et al., 2018b).  

The comparison between the S2MP SSM estimations and the GPM rainfall data showed 

high correlation between presence/absence of rainfall and SSM values at grid scale (10 km x 
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10 km). The increase/decrease of the SSM values at grid scale could be an indicator of the 

presence/absence of rainfall events. Thus, to separate the increase in soil moisture (at plot scale) 

due to rainfall from the increase due to irrigation, the S2MP SSM estimations at grid scale were 

subsequently used in the mapping of irrigated areas at plot scale in our irrigation event detection 

algorithm.  
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Abstract 

This paper presents a comparison between the Sentinel-1/Sentinel-2-derived Soil Moisture 

Product at plot scale (S2MP) and the new Copernicus Surface Soil Moisture “C-SSM” product 

at 1-km scale over a wide region in southern France. In this study, both products were first 

evaluated using in situ measurements obtained by the calibrated TDR (Time Delay 

Reflectometer) in field campaigns. The accuracy against the in situ measurements was defined 

by the correlation coefficient R, the RMSD (Root Mean Square Difference), the bias and the 

ubRMSD (unbiased Root Mean Square Difference). Then, the soil moisture estimations from 

both SSM products were intercompared over one year (October 2016 - October 2017). Both 

products show generally good agreement with in situ measurements. The results show that using 

in situ measurements collected over agricultural areas and grasslands the accuracy of the C-

SSM is good (RMSD = 6.0 vol.%, ubRMSD = 6.0 vol.% and R=0.48) but less accurate than 

the S2MP (RMSD = 4.0 vol.%, ubRMSD = 3.9 vol.% and R=0.77). The intercomparison 

between the two SSM products over one year shows that both products are highly correlated 

over agricultural areas that are mainly used for cereals (R value between 0.5 and 0.9 and RMSE 

between 4 vol.% and 6 vol.%). Over areas containing forests and vineyards, the C-SSM values 

tend to overestimate the S2MP values (bias > 5 vol.%). In the case of well-developed vegetation 
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cover, the S2MP does not provide SSM estimations while C-SSM sometimes provides 

underestimated SSM values. 

Index Terms: Soil Moisture, S2MP, Copernicus SSM, Sentinel-1, South France 

1. Introduction 

Understanding the water cycle and climate change requires the spatial and temporal 

monitoring of the Surface Soil Moisture (SSM) (Tebbs et al., 2016). The spatiotemporal 

monitoring of soil moisture is important in the fields of hydrology, climatology, and agronomy 

(Herrmann et al., 2016; Sellami et al., 2014). For example, monitoring natural phenomena, such 

as drought and floods, requires continuous soil moisture data because soil moisture is a key 

variable in the global water cycle. Moreover, soil moisture data at high spatial resolution is 

essential for agricultural management, such as monitoring of irrigation practices and water 

requirements of agricultural areas (Baghdadi et al., 2016b; Bousbih et al., 2018; El Hajj et al., 

2016a; Gao et al., 2018). Therefore, continuous soil moisture data at both high spatial and 

temporal resolutions are important for many hydrological and agricultural models.  

To estimate soil moisture, Synthetic Aperture Radar (SAR) data are widely used in both C 

and X-bands. Soil moisture values are mainly obtained through the inversion of either physical 

(Chen et al., 2003; Fung, 1994) or statistical models (Baghdadi et al., 2016a; Dubois et al., 

1995; Paloscia et al., 2013). While statistical models require site calibration, physical models 

can always be used to simulate the radar backscattering from radar configuration. Among the 

physical models, the Integral Equation Model (IEM) (Fung, 1994) is the most commonly used 

to estimate soil moisture over bare soil or soil with little vegetation cover. Baghdadi et al. 

(Baghdadi et al., 2006a, 2011b) proposed a semi-empirical calibration of the IEM to 

compensate between the large difference observed between IEM simulation and real SAR data. 

To estimate soil moisture over vegetated areas, the Water Cloud Model (WCM) developed by 

Attema and Ulaby, (1978a) is commonly used. In the WCM the radar backscattering signal is 

modeled as a sum of the direct vegetation contribution and the soil contribution multiplied by 

the attenuation factor. Several studies have parametrized the WCM for different SAR band 

configurations and for several crop types (El Hajj et al., 2016a; He et al., 2014). In addition to 

the inversion of statistical or physical models for soil moisture retrieval, recent studies have 

started reporting the estimation of soil moisture using the change detection method. In this 

method, the change in backscattering coefficients between two successive dates is linked to the 
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change in soil moisture values where vegetation and roughness are considered stable (Gao et 

al., 2017; Mattia et al., 2017; Van doninck et al., 2012). Currently, several satellite missions 

provide surface soil moisture estimations at different spatial resolutions: the Soil Moisture 

Active Passive “SMAP” (level 3: 36 km x 36 km, level 3 enhanced: 9 km x 9 km, and Level 2 

SMAP/Sentinel-1: 1 km x 1 km) (Entekhabi et al., 2010), the Advanced Scatterometer 

“ASCAT” (level 2 with three spatial resolution 25 km x 25 km, 12.5 km x 12.5 km, and 1 km 

x 1 km) (Wagner et al., 2013), and the Soil Moisture and Ocean Salinity “SMOS” (SMOS 

INRA-CESBIO level 3: 25 km x 25 km) (Kerr et al., 2001). However, the low spatial resolution 

could not be adequate for water cycle monitoring and for agricultural management at plot scale.  

Recently, the arrival of the Sentinel-1 (S1) SAR satellite provided users with free open 

access SAR data at a high spatial resolution (10 m x 10 m) and high revisit time (six days over 

Europe). The S1 mission from the European Space Agency (ESA) is a constellation of two 

polar orbiting SAR satellites (Sentinel-1A and Sentinel-1B) operating in the C-band (~5.4 

GHz). The S1A and S1B SAR sensors operate in four acquisition modes: Strip Map (SM), 

Interferometric Wide Swath (IW), Extra-Wide Swath (EW), and Wave (WV). Among the four 

modes, the IW mode provides images with a spatial resolution of 10 m x 10 m. The SAR data 

of the S1 mission at high spatial and temporal resolutions have encouraged mapping soil 

moisture in an operational mode. Paloscia et al. (2013) used the neural network technique to 

invert the Sentinel-1 SAR C-band and estimate the SSM values. Mattia et al. (Mattia et al., 

2017) estimated soil moisture at 1 km x 1 km spatial resolution using the change detection 

technique applied to Sentinel-1 SAR time series. Recently, El Hajj et al. (2017) developed an 

operational method to map soil moisture at the plot scale over agricultural areas based on 

coupling S1-SAR data and Sentinel-2 (S2) optical data using the neural network technique. The 

synergic use of S1 and S2 data allowed the provision of soil moisture product at the plot scale 

(S2MP) for several sites over the world (south France, Lebanon, etc.) Most recently, the 

Copernicus Global Land Service has started providing SSM of the soil’s topmost 5 cm over the 

European continent from Sentinel-1 sensors at 1 km x 1 km spatial resolution using the change 

detection method (Bauer-Marschallinger et al., 2019). 

The objective of this study is to evaluate the performance of the Copernicus SSM product 

and S2MP product over a wide region in south France. In this study, both products are first 

evaluated against in situ measurements of soil moisture. The new Copernicus SSM product was 

then intercompared with the SSM estimations from the S2MP. The correlation between the 

products was analyzed as a function of the land cover. Section 2 presents the SSM products 
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used, the in situ SSM measurements, and the applied methods. The results and discussions are 

presented in Section 3. Finally, Section 4 presents the main conclusions. 

2. Materials and Methods 

2.1 Study Site 

The study site examined is the Occitanie region of southern France (centered on 

2°30′ E and 43°30′ N, Figure 1), with an area of 72,724 km2 (Figure 1a). Figure 1b presents 

the land cover of the studied region derived from the land cover map produced by Inglada et al. 

(Inglada et al., 2017) and available via the Theia French Land Data Center (http://www.theia-

land.fr/en/thematic-products). The region has a variety of landscape and is mainly covered by 

agricultural areas in the middle and western parts. The northern regions are generally covered 

with a mix of forests, grassland and agricultural crop land. The eastern region is generally 

covered with a mix of agricultural crop land, grassland and vineyards. Figure 1c shows the 

elevations derived from the digital elevation model (DEM) of the Shuttle Radar Topography 

Mission (SRTM) at a 1 arc-second spatial resolution (~30 m). The climate in the eastern part 

of the region is considered Mediterranean (approximately 700 mm average annual 

precipitation), whereas that of the western part is more humid and oceanic (approximately 1200 

mm average annual precipitation) (http://www.meteofrance.com/climat/france/). 

http://www.meteofrance.com/climat/france/
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Figure 1 : (a) Location of the Occitanie region, south France, with the in situ reference plots. (b) Land 

cover map of Occitanie produced by Theia (http://www.theia-land.fr/en/thematic-products) (c) 

Elevation derived from the SRTM DEM of 30 m spatial resolution 

2.2 In situ Soil Moisture Measurements 

Over an area near Montpellier, France (Figure 1a), the SSM values were measured on 23 

reference plots (10 grassland and 13 wheat) during the period between 1 January 2017 and 31 

May 2017 (El Hajj et al., 2017). The SSM values were measured within 2 hours of the S1 

acquisition time in 22 different campaigns at different dates of S1 acquisition. For each plot, 25 

to 30 volumetric soil moisture measurements were taken from the top 5 cm layer using a 

calibrated TDR (Time Delay Reflectometer). Then, within each plot, the SSM measurements 

were averaged to obtain a mean value for each plot. The measured soil moisture values varied 

between 7.0 vol.% and 36.3 vol.%. 

2.3 S2MP Product 

The S2MP product is obtained by coupling Sentinel-1 SAR data and Sentinel-2 optical data. 

The S2MP product provides SSM estimates over the agricultural areas at plot scale with 6 days 

revisit time (El Hajj et al., 2017). To estimate the SSM values, El hajj et al. (El Hajj et al., 2017) 
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inverted the WCM parameterized by Baghdadi et al. (Baghdadi et al., 2017) for C-band 

combined with the IEM, as modified by Baghdadi et al. (Baghdadi et al., 2006a) . The inversion 

approach uses the neural network (NN) technique to invert the radar signal into SSM value. To 

operationally map the soil moisture, the developed NN uses the C-band SAR signal in VV 

polarization, SAR incidence angle, and the Normalized Differential Vegetation Index “NDVI” 

as the inputs. While the SAR signal and incidence angle are derived from the S1 data, the NDVI 

value is derived from Sentinel-2 images. To overcome the cloud limit usually present in optical 

images, one NDVI image each month is usually used to obtain the NDVI value required for the 

inversion. The S2MP maps are produced for agricultural areas (it is not applied to vineyards and 

orchards). Forest and urban areas are masked using the land cover map of Inglada et al. (Inglada 

et al., 2017). Additionally, areas with slope greater than 20% are masked in the soil moisture 

product (calculated from SRTM DEM at 30 m spatial resolution). The S2MP are available in 

free open access mode via the Theia French Land Data Center (http://www.theia-

land.fr/en/thematic-products). In this study only the S²MP maps for images in ascending mode 

were produced and compared to in situ and C-SSM data for two main reasons. First S1 images 

in descending mode are acquired at 05:40 UT with a high probability of freeze in winter causing 

an under-estimation of SSM (Baghdadi et al., 2018b). Second, in situ measurements were 

acquired within two hours of the ascending S1 acquisitions. Thus, our in situ measurements 

could be not applicable to SSM estimations obtained from S1 images in descending mode. 

2.4 Copernicus SSM product 

Recently, Copernicus Global Land Service began to distribute the first soil moisture 

estimations over the European continent at a 1-km spatial resolution using S1 data in C-band 

(Bauer-Marschallinger et al., 2019). The SSM retrieval algorithm is based on the TU 

(University of Technology) Wien Change Detection Model already applied for the ASCAT data 

and adapted for Sentinel-1 data. In the applied model, the changes observed in the SAR 

backscattered coefficient (σ0) are interpreted as changes in the soil moisture values, whereas 

other surface properties such as the geometry, the surface roughness and the vegetation cover 

are interpreted as static parameters. To estimate relative surface soil moisture at time t (SSMt) 

in percent (%), the backscattered coefficient σ0(θ, t) observed at time t with a given SAR 

incidence angle θ is normalized to a reference angle Θ and linearly scaled between dry and wet 

reference values: 
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SSMt =
∆σ0(Θ, t)

S(Θ)
 [%] (1) 

where ∆σ0(Θ, t) is the change in the normalized backscatter (relative to dry conditions), and 

S(Θ) is the sensitivity to the SSM changes at reference angle Θ = 40° expressed as follows: 

S(Θ) = σ0
wet(Θ) −  σ0

dry(Θ) [dB] (2) 

where σ0
wet(Θ) and σ0

dry(Θ) are the highest and lowest backscattered values at the individual 

location respectively. 

The C-SSM products at 1-km spatial resolution are retrieved from the Sentinel-1 radar 

backscattering images acquired in IW mode and VV polarization. The product delivers relative 

SSM values in percentages ranging between 0% and 100%. In the case of extremely dry 

conditions, frozen soil, snow-covered soil and flooding, the C-SSM retrieval is ill posed. In 

these cases, the C-SSM does not provide estimation, and it encodes values of 241 and 242 in 

the product. Moreover, the product masks water surfaces (sea, lakes, rivers…), urban areas and 

dense forests with values equal to 252. High undulating terrains with slopes greater than 30% 

are also masked in the product and encoded as 253.  

The C-SSM product values were converted to a volumetric unit (vol.%) in order to compare 

the C-SSM estimations produced in relative units (%), with measured soil moisture being given 

in absolute volumetric unit (vol.%). Thus, the C-SSM values were converted to vol.% unit 

(SSMα) by using the 90% confidence interval of a Gaussian distribution (Amri et al., 2012) 

equal to μ + 1.65σ, where μ and σ are the mean and the standard deviation of the TDR ground 

data: 

SSMα(t) = SSM(t) × (SSMmax − SSMmin) + SSMmin (3) 

where SSMα(t) is the volumetric surface soil moisture at a time t (in vol.%), SSM(t) is the 

relative C-SSM soil moisture content (in %), SSMmax is the maximum measured wetness value 

(in vol.%) equal to μ + 1.65σ, and SSMminis the minimum measured wetness value (in vol.%) 

equal to μ − 1.65σ. Using the in-situ measured soil moisture values, SSMmax = 39.7 vol. % 

and SSMmin = 7.5 vol. %. 

Figure 2 shows an example of the C-SSM product covering a part of southern France on 

25/03/2017. The physical soil moisture values of the C-SSM product are converted to 

volumetric units (vol.%). Strong discontinuities are observed in the C-SMM product between 
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the different sub-swaths of Sentinel-1 SAR data (black arrows). As an example, the statistical 

mean calculated for the two magenta polygons in Figure 2 (at both sides of the two sub-swaths) 

shows that the difference in SSM estimates is 11 vol.% 

 

Figure 2 :  C-SSM product over south France. White areas represent the mask applied in the C-SSM 

product. Arrows are used to highlight the discontinuity observed between the sub-swaths with the C-

SSM product. Magenta polygons are used to calculate the C-SSM mean value at the sub-swath limits. 

2.5 Methods 

Since the C-SSM product is produced at a 1 km spatial resolution, and the S2MP product is 

produced at the plot scale, the evaluation was carried out at a 1 km × 1 km spatial resolution 

(same grid of the C-SSM product). For each field campaign, the in situ soil moisture 

measurements carried out on all plots within the same 1 km × 1 km of the C-SSM grid cell 

were averaged. Moreover, the S2MP product was also aggregated by averaging the high-

resolution soil moisture pixels of S2MP within each C-SSM cell of 1 km × 1 km. This means 

that, at a given date, for each C-SSM cell (1 km × 1 km ) the values of the S2MP estimations 

within the cell were averaged to obtain a 1 km × 1 km S2MP value. Therefore, for each 

available S2MP map, the mean soil moisture values were calculated for the corresponding C-

SSM grid. 

First, S2MP and C-SSM were evaluated by comparing SSM values from each product (at 1 

km spatial resolution) with the in situ soil moisture, which were also averaged at 1 km C-SSM 

grid cell. Since both SSM products have been produced at different temporal resolution (in this 

study S²MP was applied only on S1 acquisitions in ascending mode whereas that C-SSM was 

generated for all S1 overpasses), only those SSM maps with common dates between S2MP, C-

SSM and in situ campaigns were considered in the comparison. Thus, the sample size used for 
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the comparison is the same for both SSM products. The accuracy of the  products was determined 

using the statistical metrics including the Pearson correlation coefficient (R), the root mean square 

difference (RMSD), the bias (estimated SSM – measured SSM) and the unbiased root mean 

square difference. These metrics are calculated as follows: 

R =
∑ [(Oi − O̅)(Pi − P̅)]n

i=1

√∑ (Oi − O̅)n
i=1

2 √∑ (Pi − P̅)n
i=1

2

 
(4) 

RMSD =  √
1

n
 ∑(Oi − Pi)

n

i=1

2

 (5) 

Bias =
1

𝑛
∑( 𝑂𝑖 − 𝑃𝑖) (6) 

ubRMSD = √RMSD2 − Bias2 (7) 

 

where 𝑃𝑖 is the in situ measurement at grid cell 𝑖, 𝑂𝑖 is the SSM product estimation at grid cell 

𝑖, �̅� is the average value of the in situ measurements at all compared grid cells, and �̅� is the 

average value of the SSM product estimation at all grid cells. The four statistical metrics were 

calculated for each product. The obtained results are presented in Section 3.1. 

Then, an intercomparison was performed between the S2MP and the C-SSM products over 

the entire Occitanie region for the period between 1 October 2016 and 1 October 2017 using the 

statistical metrics R, RMSD, bias, and ubRMSD. The intercomparison was performed at each 

grid cell using SSM estimates over one year. Since the two products have a different temporal 

resolution, only those SSM values with common dates between the S2MP and C-SSM were 

considered in the intercomparison. The same grid of C-SSM was used for the re-gridding of 

S²MP. For each C-SSM cell (1km x 1km), the S²MP SSM estimations existing within the C-SSM 

cell were averaged to obtain a 1km x 1km S²MP value. The statistical metrics were not calculated 

for those cells where the S2MP product or the C-SSM product does not provide soil moisture 

estimation over the entire year due to the applied masks. Four maps, each representing one of the 

statistical metrics, are presented and discussed in Section 3.2. 

Finally, the temporal evolution of the soil moisture estimations derived from both SSM 

products was investigated. This temporal evolution was performed for one wheat and one maize 
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grid cell (the cell is predominantly covered by wheat and maize, respectively). Temporal profiles 

are further presented in Section 3.3. 

3. Results and Discussion 

3.1 Comparison between SSM products and in situ SSM 

The SSM values of each product were evaluated using the in situ SSM measurements during 

the period between January 2017 and May 2017. Figure 3 shows the comparison between the 

SSM products and the in situ SSM measurements, whereas Table 1 summarizes the statistical 

metrics obtained from the comparison of each product with the in situ measurements. In general, 

the accuracy of the S2MP product is higher than that of the Copernicus SSM. The S2MP shows 

a higher R value than that of the Copernicus SSM. Additionally, the RMSD is lower for the 

S2MP than for the Copernicus SSM. Both products show approximate unbiased estimations. 

However, the bias between in situ and satellite soil moisture could be driven from the soil 

texture maps used for converting dielectric constant in volumetric soil moisture as well as from 

the accuracy of inversion approaches. Nevertheless, the Copernicus SSM product performs well 

with an RMSD of approximately 6 vol.%. Notably, the p-value of the comparison for both 

products is lower than 0.01, which indicates that the correlation is significant. 

 

Figure 3 :  SSM products against in situ measurements. (a) S2MP-1 km, (b) Copernicus SSM-1 km. 
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Table 1 : Statistics of the comparison between SSM products and in situ SSM measurements 

Product R 
RMSD 

(vol.%) 
Bias (vol.%) 

ubRMSD 

(vol.%) 
Sample size 

S2MP 0.78 4.0 0.52 3.9 122 

C-SSM 0.48 6.0 -0.32 6.0 122 

 

3.2 Comparison between S2MP and C-SSM Products 

Figure 4 represents the maps of statistical metrics calculated from the comparison between 

the SSM from the S2MP and C-SSM products during the period between October 2016 and 

October 2017. Figure 4a represents the correlation coefficient R between the two products, 

Figure 4b represents the RMSD values, Figure 4c shows the bias values (C-SSM - S2MP), and 

Figure 4d shows the ubRMSD values over the Occitanie region. Moderate to high correlation 

values between the compared products are observed, mainly in the western, middle and eastern 

part of Occitanie (R between 0.5 and 0.9). Figure 4b shows that the RMSD values for these 

parts are approximately homogeneous and ranging between 4 and 6 vol.%. The ubRMSD 

(Figure 4d) for these parts show also low values. Between these parts, only the eastern part 

shows high positive bias values (between 2 and 4 vol.%). The correlation map (Figure 4a) 

shows low values mainly in the northern part of Occitanie, with moderate RMSD values 

(between 6 and 8 vol.%). High RMSD values (more than 8 vol.%) are observed for the 

northeastern part. The bias map for the northern area shows high positive values (Figure 4c). 

The ubRMSD is generally homogeneous over the Occitanie, with values ranging between 3 and 

7 vol.%. Notably, the fringes observed in the maps are due to the heterogeneity of the SSM 

estimates in the C-SSM product at the borders of the sub-swath, as illustrated in Section II.4. 

The great difference in SSM-values observed at the limit of the sub-swath induces a difference 

of bias values between two adjacent areas at the limit of the sub-swath (case of far western part 

in R, bias and ubRMSD maps).  

For some Copernicus cells (1km x 1km) only a small number of S2MP pixels are sometimes 

used for calculating the average soil moisture estimation from S2MP. For example, only 8.5% 

of 1 km x 1 km cells contain between 20 and 200 S²MP pixels (the minimum was fixed to 20 

pixels) whereas 75% of the 1 km x 1 km cells contain more than 1000 S²MP pixels. The 

correlation between the two products for the cells with low number of S²MP pixels was 

analyzed mainly for the cells containing between 20 and 200 S²MP pixels. Results showed that 
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there are as many low values as high values of the correlation coefficient (R) between both 

products at these cells (same number of cells with R less than 0.3, between 0.3 and 0.5 and with 

R higher than 0.5). 

The statistical metrics obtained from the comparison of both SSM products are analyzed as 

a function of the land cover (Figure 1b). The S2MP product provides soil moisture estimation 

over agricultural crop land only grown in summer and winter (urban, forest, grassland and 

vineyards are masked), which should be considered before analyzing the effect of the land 

cover. Thus, we suppose that the soil moisture calculated from the S²MP product is the same 

for the whole cell of 1 km × 1 km (not composed only of crops). The results reveal that the 

western and middle parts show the highest R values with smallest bias and RMSD values. In 

the land cover map, this area shows a majority of summer and winter crops (more than 65% of 

the area). The eastern part that shows high correlation values but moderate to high bias values 

is composed of a mix of vineyards (30%), grassland (30%) and summer-winter crops (14%). The 

northern part, with the lowest R and moderate RMSD and bias values, is generally occupied with 

a mix of grassland (60% of the area) and forests (23% of the area). This part comprises no more 

than 9% agricultural areas. Finally, the northeastern part (high RMSD and bias values) is mostly 

covered by a mix of forests (40%) and grassland (40%). 

  

Figure 4 : Statistical metrics maps at 1-km grid generated from the comparison between the C-SSM 

and S2MP over the Occitanie region. (a) Correlation coefficient R map, (b) RMSD map, (c) Bias map, 

and (d) ubRMSD map 
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Figure 5 shows the scatter plots for the comparison between the C-SSM and S2MP over four 

different cells (each of 1 km × 1 km) with four different land cover types. Figure 5a shows the 

scatter plot comparison over a cell with mainly grasslands (89% grassland and 6% summer crops). 

The comparison indicates low correlation (R=0.2) but moderate RMSD value (7.6 vol.%) and 

unbiased estimation. Figure 5b shows the scatter plot for a cell covered with mainly agricultural 

areas (80% summer and winter crops and 5% grassland). In this case, the C-SSM and S2MP are 

highly correlated (R=0.8, RMSD=4.6 vol.%, bias = 1 vol.%). This result confirms the evaluation 

results obtained in Section 3.1, where both the C-SSM and S2MP show good agreement with in 

situ measurements over agricultural areas. Figure 5c shows the SSM estimations of both products 

over a cell with mainly forests (86% forests and 7% summer crops). In this cell, the 

overestimation of C-SSM with respect to the S2MP is visible (bias = 8 vol.%). In fact, over forests, 

the backscattered signal in C-band is highly affected by the forest canopy because the penetration 

of the SAR signal to the ground surface is very low. High backscattering coefficients that are 

observed in the forest could induce high soil moisture estimations in C-SSM and thus an 

overestimation of SSM by the C-SSM product. Similarly, Figure 5d shows the intercomparison 

at a cell with a mix of agricultural and vineyard areas (75% vineyards and 18% summer crops) 

with high bias values, where the C-SSM highly overestimates the S2MP. High biased values over 

vineyards (5.6 vol.%) are due to the high backscattering signal reflected from metals and wooden 

stakes that are usually present in vineyards. Baghdadi et al. (Baghdadi et al., 2006b) demonstrated 

that vineyards have strong radar backscattering signal because of these stakes. This strong 

backscattering signal, which is not related to the soil contribution, could induce higher soil 

moisture estimations. 
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Figure 5 : C-SSM against S²MP over cell of 1 km x 1 km for (a) mainly Grassland (89%); (b) 

mainly agricultural areas (80% summer and winter crops), (c) mainly Forests (86%), and (d) 

mainly Vineyards (75%). 

The analysis of the SSM products’ quality according to land cover type reveals that over areas 

mainly used for cereals and market gardening (the case of the middle and western parts), the 

correlation between the SSM products is high, indicating high consistency in soil moisture 

estimation between the products. When the area becomes more occupied by grassland (the case 

in the northern part), the correlation decreases but keeps moderate RMSD and bias values. 

However, when the forested area dominates and the land cover becomes more heterogeneous 

(forests, grassland, agricultural…) (the case in the northeastern part) an overestimation of C-SSM 

with respect to S2MP is observed. Moreover, when the vineyards are dominant in the land cover 

(the case of the eastern part) overestimation of C-SSM with respect to S2MP is observed. The 

limitation observed over heterogeneous land cover for the C-SSM product could be related to the 

spatial resolution because the product is produced at a 1-km pixel size and not at a fine scale. 
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3.3 Temporal behavior of SSM Series 

The temporal evolution of the soil moisture values was investigated over two cells (1 km ×

1 km): one totally covered with winter wheat cultivation (Figure 6a) near Montpellier, France, 

and the second with summer maize cultivation in the western part near Tarbes, France (Figure 

6b). For the wheat cell, in situ soil moisture values are also available. Unfortunately, in situ 

measurements are not available over the maize cell of the western part. In addition to S²MP and 

C-SSM estimates, the NDVI –values derived from Sentinel-2 temporal series images and 

averaged over the 1-km grid cell were also plotted. The precipitation amounts derived from a 

local metrological station near each cell (local station in Montpellier for Figure 6a and local 

station in Tarbes for Figure 6b) were used to qualitatively analyze the behavior of the SSM 

products. The temporal resolution of the C-SSM is also higher than that of the S2MP; thus, more 

points are obtained for the C-SSM product. As mentioned before, the correlation coefficient could 

only be calculated for soil moisture values of the common estimation dates.  For both land cover 

types, the correlation coefficient between the SSM products is significant (0.63 for maize and 

0.77 for wheat). For the maize cell, the RMSD value is of 5.7 vol.%, whereas that of the wheat is 

5.2 vol.%. Moreover, both products show a consistency with the precipitation events. After a 

precipitation event, high soil moisture values are estimated in both products (in both maize and 

wheat cases). However, the C-SSM values frequently show very high SSM values following 

rainfall events, and the estimation reaches 100% in relative soil moisture (39.7 vol.% in 

volumetric soil moisture). Following a dry period, both products show low soil moisture values, 

thus expressing dry soil conditions. 

An important point in the temporal series concerns the winter wheat cultivation. During the 

period between 30 March 2017 and 29 April 2017 (black box in Figure 6a), the C-SSM fails to 

estimate accurate soil moisture values. The relative soil moisture obtained from the C-SSM 

product is approximately 0% during this period (which corresponds to volumetric soil moisture 

of approximately 7.5 vol.%). When comparing these values to the in situ soil moisture 

measurement, we find that C-SSM abruptly drops down and underestimates the soil moisture. 

For the same period, the S2MP does not provide any surface soil moisture estimation (gap in 

the red curve). This is due to the fact that, over dense vegetation (the case of the wheat with 

NDVI > 0.7), the soil contribution in the SAR signal in C-band becomes negligible, and the 

estimation of soil moisture could not be obtained. El Hajj et al. (2018b) studied the penetration 

of C-band SAR data over wheat, maize, and grassland. They showed that the C-band in VV 
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polarization is not able to penetrate the wheat canopy when the vegetation is well developed 

(NDVI > 0.7). As a result, the estimation of the SSM values is not reliable. For this reason, in 

the S2MP algorithm, a mask was applied to eliminate those likely unreliable SSM values for 

NDVI greater than 0.7 and SSM estimations that are less than 5 vol.%. 

 

 

(a) 

 

(b) 

Figure 6: Temporal series of SSM values derived from C-SSM and S2MP products over (a) a winter 

wheat cultivation cell and (b) a summer maize cultivation cell 

For the maize canopy (Figure 6b), both products are able to estimate the soil moisture values, 

even with well-developed vegetation. For example, between the end of July and the end of 

August, the NDVI remains high (approximately > 0.8), and both products are able to show reliable 

SSM values. The SSM values decrease during a time span without rainfall events and increase 

following a rainfall event, even when the canopy is well developed. However, both El Hajj et al. 

(2018b) and (Joseph et al., 2010) reported that the soil contribution to the C-band backscattering 

is notable when the maize canopy is well-developed due to the high order scattering along the 

soil-vegetation pathway that contains the soil contribution. 



CHAPTER II: ASSESSMENT OF THE S2MP SURFACE SOIL MOISTURE PRODUCT 

 

67 

 

4. Conclusion 

The aim of this study was to assess the accuracy of Surface Soil Moisture (SSM) in southern 

France estimated by the Sentinel-1/Sentinel-2-derived Soil Moisture Product at plot scale 

(S2MP) and the new Copernicus Surface Soil Moisture “C-SSM” product at 1-km scale. Using 

in situ measurements, the accuracy of each product was first evaluated and determined by the 

Pearson correlation coefficient (R), the root mean square difference (RMSD), the bias, and the 

unbiased root mean square difference. Then, an intercomparison between the products was 

performed for one year (between October 2016 and October 2017) over the entire Occitanie 

region, south France. The results of the intercomparison were further discussed as a function of 

the land cover. The results reveal that both products show good reliability with in situ 

measurements. However, S2MP shows higher accuracy (RMSD = 4.0 vol.%, R = 0.77) than the 

C-SSM (RMSD = 6.0 vol.%, R=0.48) when compared to in situ measurements over agricultural 

areas and grasslands. The analysis of the intercomparison between the products as a function 

of the land cover shows that the S2MP and C-SSM are highly correlated over dense agricultural 

areas (mainly cereals of winter and summer). When the land cover becomes more 

heterogeneous (mix of forests, grassland and vineyards with agricultural areas) the correlation 

between the products decreases. The C-SSM tends to overestimate SSM values over cells 

containing vineyards and forests. In addition, the C-SSM sometimes shows underestimated 

SSM values when the vegetation is well developed. In wheat areas, the underestimation is 

approximately 7.5 vol.% when NDVI is greater than 0.7. On the other hand, the algorithm of 

S2MP eliminates likely unreliable SSM values for NDVI greater than 0.7 because the SSM 

estimations in this case are less than 5 vol.%. 
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Abstract 

The objective of this paper is to present an analysis of Sentinel-1 derived surface soil 

moisture maps (S1-SSM) produced with high spatial resolution (at plot scale) and a revisit time 

of six days for the Occitanie region located in the South of France as a function of precipitation 

data, in order to investigate the potential of S1-SSM maps for detecting heavy rainfalls. First, 

the correlation between S1-SSM maps and rainfall maps provided by the Global Precipitation 

Mission (GPM) was investigated. Then, we analyzed the effect of the S1-SSM temporal 

resolution on detecting heavy rainfall events and the impact of these events on S1-SSM values 

as a function of the number of days that separated the heavy rainfall and the S1 acquisition date 

(cumulative rainfall more than 60 mm in 24 hours or 80 mm in 48 hours). The results showed 

that the six-day temporal resolution of the S1-SSM map doesn’t always permit the detection of 

an extreme rainfall event, because confusion will appear between high S1-SSM values due to 

extreme rainfall events occurring six days before the acquisition of S1-SSM, and high S1-SSM 

values due to light rain a few hours before the acquisition of Sentinel-1 images. Moreover, the 

monitoring of extreme rain events using only soil moisture maps remains difficult, since many 

environmental parameters could affect the value of SSM, and synthetic aperture radar (SAR) 

doesn’t allow the estimation of very high soil moistures (higher than 35 vol.%). 

Keywords: Sentinel-1; global precipitation measurement; soil moisture; heavy rainfall 
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1. Introduction 

Understanding the Earth’s global water cycle requires the spatiotemporal monitoring of 

precipitation (Kidd and Huffman, 2011; Liu, 2016). Moreover, precipitation monitoring is 

essential, since rainfall directly affects human life. Indeed, very high rainfall episodes may 

cause runoff, which damages life and property, whereas the absence of precipitation can 

produce droughts (Liu, 2016). Thus, knowing the extent of rain helps us better understand the 

effect of climate and weather on agriculture and water availability.  

The registration of in situ rain gauges allows only the measurement of local precipitation 

amounts. Thus, these rain gauge instruments are not sufficient to provide robust continuous 

mapping of rainfall, because rainfall events can be very local. Moreover, in situ rain gauge 

registrations are not usually freely available. On the other hand, remote sensing metrological 

sensors enable the continuous mapping of precipitation in open access mode. Currently, several 

metrological sensors provide rainfall mapping with a high revisit time and low spatial 

resolution: the Tropical Rainfall Measuring Mission (TRMM) (resolution ~0.25°  × 0.25°) 

(Kummerow et al., 1998), the Precipitation Estimation from Remotely Sensed Information 

using Artificial Neural Network (PERSIANN) (resolution ~0.25°  × 0.25°) (Hsu et al., 1997), 

the Climate Prediction Center Morphing (CMORPH) (resolution ~8 km × 8 km at the equator) 

(Joyce et al., 2004). The most recent sensor, Global Precipitation Measurement (GPM), 

provides precipitation mapping at 0.1°  × 0.1° spatial resolution and a high revisit time (up to 

30 minutes) (Skofronick-Jackson et al., 2018). The low spatial resolution makes the available 

metrological sensors not adequate for hydrological application, flood forecasting, and water 

resource management. For example, the spatial detection of extreme rainfall events remains 

difficult due to the low spatial resolution of available precipitation data. Extreme rainfall events 

can be defined as rainy episodes with high cumulative precipitation in short periods (24 to 48 

hours), which is equal to that usually received in one month.  

An important variable affected by precipitation events is the surface soil moisture. In fact, 

surface soil moisture can be a key tool for detecting rain events, because soil moisture is a 

function of the precipitation rate, evaporation, runoff, irrigation, and snow melt. Eventually, an 

increase in the soil moisture values could be primarily associated with a precipitation event, 

assuming that no irrigation activity is performed. Currently, several satellite missions provide 

surface soil moisture estimations at different spatial resolutions such as the Soil Moisture Active 

Passive “SMAP” (level 3: 36 km × 36 km, level 3 enhanced: 9 km × 9 km, and Level 2 
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SMAP/Sentinel-1: 1 km × 1 km) (Entekhabi et al., 2010), the Advanced Scatterometer 

“ASCAT” (level 2 with three spatial resolutions: 25 km ×25 km, 12.5 km × 12.5 km, and 1 km 

× 1 km) (Wagner et al., 2013), and the Soil Moisture and Ocean Salinity “SMOS” (SMOS 

INRA-CESBIO level 3: 25 km × 25 km) (Kerr et al., 2001), the Advanced Microwave Scanning 

Radiometer 2 “AMSR2” (Imaoka et al., 2012) (with two spatial resolutions 0.1° × 0.1° and 

0.25° × 0.25°), and the Chinese Fengyun-3B “FY3B” (spatial resolution of 0.25° × 0.25°) (Shi 

et al., 2006). 

Using soil moisture information, Pellarin et al. (2013) proposed a simple method to correct 

the TRMM and PERSIANN precipitation estimations at low spatial resolution (~0.25° ×

0.25°). However, in the last three decades, numerous approaches have been developed to 

retrieve soil surface parameters using synthetic aperture radar (SAR) remote sensing (Aubert et 

al., 2013; Baghdadi et al., 2012a; Gao et al., 2017). From soil surface parameters, Sentinel-1 

gives soil moisture estimations at very high spatial resolution (plot scale). In fact, with the 

arrival of Sentinel-1 (S1 SAR data at 10-m spatial resolution and a six-day revisit period) and 

Sentinel-2 (S2 optical data at 10-m spatial resolution and a five-day revisit period) satellites, an 

operational algorithm has been developed for soil moisture mapping over agricultural areas 

with six days’ revisit time and high spatial resolutions (up to plot scale) (El Hajj et al., 2017).  

The objective of this paper is to analyze the variation in surface soil moisture values 

obtained from the very high spatial resolution Sentinel-1 surface soil moisture maps (S1-SSM) 

during one year over the Occitanie region in the south of France. In this study, the variation of 

the SSM is analyzed only according to the variation of rainfall derived from GPM data. 

Although the water cycle components, such as evaporation rate and snow melt, play a critical 

role in SSM variation, these components were not considered in this study. This study will 

allow us to investigate the opportunity to detect heavy rainfall using Sentinel-1 surface soil 

moisture products obtained with a revisit time of six days at high spatial resolution in the south 

of France. After a detailed description of the study site and the data used in Section 2, Section 

3 includes a comparison between S1-SSM and precipitation, as well as an analysis of the 

possibility of detecting heavy rainfall using S1-SSM with a revisit time of six days in the south 

of France (Occitanie region). A discussion is presented in Section 4, including the effect of S1 

temporal resolution on detecting heavy rainfall and investigating the potential of SMAP soil 

moisture product with a revisit time of one day to detect heavy rainfall. Finally, Section 5 

presents the main conclusions. 



CHAPTER II: ASSESSMENT OF THE S2MP SURFACE SOIL MOISTURE PRODUCT 

 

71 

 

2. Study site and dataset description 

2.1 Study site 

The study site is the Occitanie region in the south of France (centered on 

2°30′ E and 43°30′ N, Figure 1) covering an area of 72724 km2. The region is formed out of 

13 departments (Figure 1). Having a rich variety of landscapes, Occitanie is mainly covered by 

agricultural areas (especially wheat and corn) in the western part with a mix of crops, 

mountains, and forests in the eastern and southern parts. The region comprises different climatic 

zones. The eastern part is considered Mediterranean (about 700 mm of average annual 

precipitation in Hérault, Figure 1), while the western part is more humid (about 1200 mm of 

average annual precipitation in Gers, Figure 1). 

 

Figure 1: Annual cumulative precipitation calculated using Integrated Multi-satellite Retrievals for 

Global Precipitation Measurement (IMERG-GPM) data over the study site (Occitanie region, South 

France) between 1 September 2016 and 31 August 2017. Black lines represent the department limits 

according to French administrative nomenclature. 

2.2 Dataset Description 

2.2.1 S1-Derived Soil Moisture Maps  

Sentinel-1 soil moisture maps (S1-SSM) at very high spatial resolution (up to a plot scale 

with a minimum area of 0.2 hectares) over our study area were analyzed. These soil moisture 
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maps were operationally produced by coupling SAR data from both the S1A and S1B satellite 

constellations operating at the C-band (wavelength ~6 cm) and optical data from both the S2A 

and S2B satellite constellations (El Hajj et al., 2017). To estimate the soil moisture over 

agricultural areas, El Hajj et al. (2017a) inverted the Water Cloud Model (WCM) (Attema and 

Ulaby, 1978) combined with the Integral Equation Model (IEM) (Baghdadi et al., 2006a). In 

their study, they used the WCM parameterized by Baghdadi et al. (Baghdadi et al., 2017) for 

the C-band. The total backscattering coefficient in the WCM is considered the sum of the direct 

vegetation contribution and the soil contribution multiplied by the attenuation factor. Using a 

vegetation descriptor derived from optical images (Sentinel-2), the direct contribution of 

vegetation can be calculated. El Hajj et al. (2017a) validated the proposed approach for the 

operational mapping of soil moisture over a study site in Occitanie in South France. They 

showed that the soil moisture in agricultural areas could be estimated with an accuracy of 

approximately 5 vol.%. Moreover, El Hajj et al. (2018a) evaluated SMOS, SMAP, ASCAT, 

and S1-SSM products (El Hajj et al., 2018a), and revealed that the S1-derived soil moisture 

maps provide the most accurate estimation of SSM. The higher accuracy of estimated SSM 

moisture is probably due to the well-calibrated IEM combined with the well-parameterized 

WCM and the use of high spatial resolution (10 m ×  10 m) land cover maps derived from S2 

images to eliminate SAR scattering from forest and urban areas. S1-SSM maps are produced 

for agricultural areas masking forest, urban, and high-slope areas (slope >20% calculated based 

on elevation data provided by the Shuttle Radar Topography Mission “SRTM” at 30 m x 30 m 

spatial resolution). S1 soil moisture maps for the Occitanie region are available as open access 

data via the Theia French Land Data Center (http://www.theia-land.fr/en/thematic-products). 

The SSM map at each date was generated using the ascending acquisition mode of the Sentinel-

1 images (acquisition time ~17:40 TU). Four maps are required to cover the region on a single 

date. Thus, a total of 250 soil moisture maps were downloaded to cover the whole region on the 

studied dates. 

2.2.2 IMERG GPM Products 

Rainfall measurements with 30-minute revisit time that were obtained from the GPM 

(Global Precipitation Measurements) sensor were considered in this study. The GPM mission 

is an international satellite mission initiated by the National Aeronautics and Space 

Administration (NASA) and the Japan Aerospace and Exploration Agency (JAXA) to unify 

and advance global precipitation measurements from space (Skofronick-Jackson et al., 2018). 
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GPM provides several precipitation records at different scales by using different sensor 

combinations. From the GPM mission, the IMERG (Integrated Multi-satellite Retrievals for 

GPM) data product was selected to perform our analysis. IMERG data offer global precipitation 

estimations in both real-time and late mode. While real-time IMERG data are proposed for 

disaster monitoring and flood risk assessment, the higher quality late IMERG data are intended 

for meteorological and climatological applications. The spatial resolution of IMERG maps is 

0.1° × 0.1°, which fully covers the globe between 60°N and 60°S. These data provide 

precipitation maps with several time intervals (30 minutes, 24 hours, three days…). The NASA 

GPM program established several campaigns to collect ground-based observations to validate 

GPM products (Houze et al., 2017). Omranian and Sharif (2018) validated the accuracy of 

GPM-IMERG data over the Colorado River basin in Texas, and found that the GPM-IMREG 

slightly underestimates the precipitation over the basin. Several studies have also reported good 

correlation between GPM-IMREG products and rain gauges with small under or overestimation 

depending on the study site, and better estimation when compared to other precipitation 

products (Dezfuli et al., 2017). IMERG data at different spatial and temporal resolutions are 

available via the NASA Precipitation Measurements Mission (PMM) website 

(https://pmm.nasa.gov/data-access). In this study, the fifth version (V05) of GPM-IMERG 

products was used. 

3. Data Analysis 

3.1 Comparison between S1-SSM and Precipitation 

A first analysis of soil moisture variation according to precipitation events was performed. 

For a grid cell of the GPM product (0.1°  × 0.1°) over Montpellier (Figure 1), GPM daily 

cumulative precipitation records were obtained over one year between September 2016 and 

August 2017. Then, at each available S1-SSM map between 1 September 2016 and 31 August 

2017, mean soil moisture values were calculated for the corresponding GPM grid cell. Figure 

2 shows the temporal variation in the mean soil moisture values, the daily precipitation records, 

and the daily air temperature records (minimum and maximum daily air temperature). A global 

consistency is observed between the S1-SSM values and precipitation records. Figure 2 shows 

that after a precipitation event, high soil moisture values are estimated, whereas with the 

absence of precipitation over a period of time, the soil dries due to evaporation, and S1-SSM 

values generally decrease. For example, an increase in soil moisture values from 16 vol.% on 
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15 November 2016 to 25 vol.% on 21 November 2016 was observed due to 40-mm precipitation 

recorded on 20 November 2016. Also, soil moisture values increased from 19 vol.% on 9 

December 2016 to 25 vol.% on 15 December 2016due to 17 mm of precipitation recorded on 

15 December 2016. Moreover, the absence of precipitation along with evaporation (maximum 

temperature between 22 °C and 25 °C) between 1 April 2017 and 25 April 2017 caused soil 

moisture values to drop down below 15 vol.%, followed then by a sharp increase in soil 

moisture values on 26 April 2017 (24 vol.%) due to rainfall event occurring on 25 April 2017 

(13 mm). On the other hand, 18 mm of precipitation on 4 March 2017 did not highly affect the 

soil moisture values on 9 March 2017 (18 vol.%) due to the five-day difference between the 

rainfall date and the following S1-SSM date. For the period between May and August, the 

increase of temperature (and consequently the evaporation) didn’t cause a sharp decrease in 

SSM values. This is probably due to the existence of irrigation activities for summer crops. 

According to the six-day revisit time of the Sentinel-1 sensor, it is difficult to quantitatively 

analyze the correlation between the precipitation and the soil moisture, because this correlation 

also depends on other parameters such as the evaporation rate, the soil texture, and the previous 

state of soil before rainfall events. For this reason, the correlation coefficient R was only 

calculated between the average annual soil moisture for each department and the corresponding 

annual precipitation (Figure 1). A correlation coefficient R of 0.89 was obtained between the 

mean annual soil moisture at each department and the average annual cumulative precipitation 

of each department. 

 
Figure 2: Temporal evolution of soil moisture values of Sentinel-1 derived surface soil moisture maps 

(S1-SSM) with daily precipitation records for a GPM grid cell over Montpellier (0.1°  × 0.1°), and daily 

temperature records (minimum and maximum temperature) at a local station in Montpellier, Occitanie 

region, France. 
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The temporal analysis of the S1-SSM values along with GPM data was then studied during 

the period between 21 December 2016 and 1 February 2017. Different climatological events 

were observed during this period: the absence of precipitation for 24 consecutive days in some 

parts of the region between 27 December 2016 and 25 January 2017 and rain episodes at several 

dates (Figure 2). The objective here is to analyze the temporal evolution of S1-derived SSM as 

a function of cumulative rainfall events (existence or absence of precipitation).  

As mentioned in Section 2.2.1, an S1 soil moisture map can be obtained every six days 

(during the revisit of the S1 satellite). Thus, a total of eight soil moisture maps acquired between 

21 December 2016 and 1 February 2017 were used. For these maps, soil moisture values were 

classified into four different intervals that were found to best describe the spatiotemporal 

variation in soil moisture values.  

To perform the temporal evolution analysis, first, for each S1-SSM map date, one 

cumulative rainfall map for the six days prior to the S1-SSM map date was computed by 

summing the 30-minute time interval of the late IMERG-GPM product. Then, each S1-derived 

SSM map was overlaid with the corresponding six days of cumulative GPM rainfall. From the 

qualitative analysis of the overlaid maps, several arguments can be extracted and discussed. 

Starting with the initial map on 21 December 2016 (Figure 3a), departments as Tarn, Hérault, 

Lozère, and Aveyron of the eastern and middle parts of the region encountered high soil 

moisture values (more than 20 vol.%) corresponding to 10 to 20 mm of cumulative precipitation 

during the past six days, whereas Gers and Haute-Garonne in the western part showed low soil 

moisture values (20 vol.% at most) corresponding to the absence of precipitation in the area for 

the same prior period. A map derived six days later on 27 December 2016 (Figure 3b) shows a 

decrease in soil moisture values in the Hérault and Gard regions due to the absence of 

precipitation between 21 December 2016 and 27 December 2016. Moreover, high soil moisture 

values were estimated for Tarn due to continuous raining episodes between 21 December 2017 

and 27 December 2017, and a slight increase in soil moisture values was observed in western 

part due to three mm of precipitation recorded one day prior to the S1-SSM map, according to 

the GPM data (Figure 3b). A general decrease in the soil moisture values throughout the region 

was observed between 27 December 2016 (Figure 3b) and 2 January 2017 (Figure 3c), as no 

precipitation was recorded. A continuous lack of precipitation for 12 days from 27 December 

2016 until 8 January 2017 caused soil moisture values to drop to less than 15 vol.% on 8 January 

2017 in the whole region, as shown in Figure 3d. Six days later on 14 January 2017 (Figure 3e), 

soil moisture values remained low at the east, as no precipitation was recorded for an additional 
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six days, whereas a moderate increase in soil moisture values was observed in the middle and 

western parts (Tarn, Haute-Garonne, and Gers), corresponding to precipitation between 8 

January 2017 and 14 January 2017 (a cumulative rainfall increase of five to 20 mm). Twenty-

four days with no precipitation recorded in the Hérault and Gard region between 27 December 

2016 and 20 January 2017 caused the soil moisture values to drop more, with values less than 

15 vol.% in this area on 20 January 2017 (Figure 3f).  

In addition, for the Gers department, low soil moisture values (less than 15 vol.%) were 

estimated on 20 January 2017 and high cumulative precipitation was recorded between 14 and 

20 January 2017 (15 mm) (Figure 3f). This low soil moisture estimates could be linked to the 

presence of frozen soil in the area. In a recent study using Sentinel-1 SAR data, Baghdadi et al. 

(2018b) showed that a decrease of at least three dB in the radar backscattered signal can be 

observed over frozen soil conditions. Such a decrease in the SAR signal yields an 

underestimation of soil moisture in the S1-derived SSM maps. In our case, it seems that the low 

soil moisture values for this area on 20 January 2017, although with the presence of rainfall, 

were due to frozen soil conditions. To support our assumption, the temperature curve and 

precipitation records for a local meteorological station in Auch city located in Gers-Occitanie 

were analyzed (Figure 4). On 19 January 2017 (S1 acquisition over Gers on 19 January 2017 

17:56 UTC), the temperature varied between –8 °C and 2 °C with a mean value of –3 °C 

throughout the day. Three days before (15 and 16 January), 15 mm of cumulative precipitation 

was recorded. Thus, a precipitation event followed by a decrease in the air temperature to less 

than 0 °C justifies the presence of frozen soil conditions as the cause of a decrease in the 

estimated soil moisture values in the S1-derived SSM maps. 

After 29 days of dry conditions in the eastern part (Hérault and Gard between 27 December 

2016 and 25 January 2017), a sudden increase in the soil moisture was observed on 26 January 

2017 with the beginning of a rainfall event (Figure 3g). The mean S1-SSM value in this area 

increased from 13 vol.% on 20 January 2017 to 32 vol.% on 26 January 2017. On the other 

hand, the absence of precipitation in the remaining parts of the region between 20 January 2017 

and 26 January 2017 caused the soil moisture to attain lower values (16 vol.%) on 26 January 

2017.The slight increase in soil moisture values in Gers between 20 and 26 January is probably 

due to the disappearance of the frozen conditions observed in the previous acquisition (20 

January 2017). The map on 1 February 2017 (Figure 3h) shows high soil moisture values for 

the eastern part, which was affected by continuous raining events, and a general decrease in the 

western part due to the absence of rainfall between 20 January 2017 and 1 February 2017. The 
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temporal analysis of S1-derived SSM values over a period of time shows the direct effect of 

raining episodes or dry conditions on S1-SSM values.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 



CHAPTER II: ASSESSMENT OF THE S2MP SURFACE SOIL MOISTURE PRODUCT 

78 

 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 

Figure 3: On the left, an S1-derived SSM map. On the right, the corresponding six days of GPM 

cumulative precipitation data. (a) 21 December 2016, (b) 27 December 2016, (c) 2 January 2017, (d) 8 

Precipitation (mm) 0 - 5 10 - 40 > 40 5 - 10

Soil Moisture (Vol.%) < 15 15 - 20 20 - 25 > 25 ¯
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January 2017, (e) 14 January 2017, (f) 20 January 2017, (g) 26 January 2017, and (h) 1 February 2017. 

Departments are represented by dashed lines. 

 
Figure 4: Temporal evolution of temperature and precipitation data recorded at a local meteorological 

station in Auch, Occitanie region. 

3.2 Effect of S1-SSM Temporal Resolution 

The behavior of soil moisture values following rainfall events was then studied as a function 

of the time lag between the rainfall date and the S1-SSM date. In fact, soil moisture values are 

mainly affected by precipitation events, evaporation, runoff, and snow melt. In this analysis, 

only the effect of precipitation was studied. To study the effect of the time difference between 

the date of S1-SSM maps and the date of rainfall events, S1-SSM values were plotted as a 

function of the recorded six days of cumulative precipitation values (Figure 5). For the 

0.1°  × 0.1° GPM grid, the mean S1-SSM values were calculated from each available S1-SSM 

map. The cumulative precipitation was computed for six days, because the revisit time of 

derived S1-SSM maps is for six days over our study site. The results showed that for low 

cumulative precipitation for six days preceding the S1-SSM map date (for example, less than 

20 mm), the soil moisture values are distributed on a wide range between 10–25 vol.% (Figure 

5). This wide range of S1-SSM values was expected, since low precipitation would induce high 

S1-SSM values if the precipitation occurs in the 24 hours preceding S1 acquisition, whereas 

low precipitation would not induce an increase of S1-SSM if it occurs a couple of days before 

S1 acquisition. As the cumulative precipitation for six days is high (for example 100 mm, Figure 

5), the S1-SSM values become more homogenous and high. Indeed, high cumulative 

precipitation for six days (for example, higher than 100 mm) induces high S1-SSM values, even 

if the precipitation occurs six days before S1 acquisition, in particular during winter, and the 

evaporation rate is low. 
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Figure 5: S1-SSM distribution as a function of six days of cumulative precipitation (revisit time of S1-

SSM = six days). 

To illustrate the results presented in Figure 5, three cases of rainfall events with different 

time intervals between the S1-SSM map’s date and the rainfall date were studied for Gard 

Department of Occitanie. First, for the S1-SSM map of 16 October 2016, the latest rainfall 

event before 16 October 2016 took place on 12 October 2016 with an average cumulative 

precipitation of 100 mm in 24 hours (Figure 6a.) Then, between 12 October 2016 and 16 

October 2016, no precipitation was recorded. The soil moisture map of 16 October 2017 shows 

wet soil conditions with S1-SSM values between 20–25 vol.%. On the other S1-SSM map 

acquired on 26 January 2017, a rainfall event occurred on the same date a few hours before the 

S1 acquisition date (26 January 2017) with 20 mm of cumulative precipitation (Figure 6b). 

Consequently, the soil moisture attained very high values: higher than 25 vol.%. The 

department didn’t encounter any rainfall event for 29 days prior to 26 January 2017 (the soil 

moisture map that was acquired six days before 26 January 2017 showed soil moisture values 

of 13 vol.%). Similar soil moisture values were recorded on the S1-SSM map of 27 January 

2018 (Figure 6c), where the department was affected by a light rain event 24 hours before the 

S1-SSM date (nine mm). Wet soil moisture values higher than 25 vol.% were estimated over 

the department. Prior to this rainfall event on 26 January 2018, no events were detected for the 

previous six days, and the soil moisture values six days before presented dry values (15 vol.%). 

This result assures that the detection of rainfall events on S1-SSM is highly dependent on the 

S1-SSM revisit time. Indeed, a few mm of precipitation just 24 hours before the S1-SSM map 

shows higher soil moisture values (for example on 27 January 2018) than an extreme event 

rainfall event (for example on 12 October 2016) four days before the S1-SSM map (16 October 

2016). Thus, the six days of temporal resolution of the S1-SSM map doesn’t always permit the 
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detection of an extreme rainfall event. For example, confusion will appear between high values 

due to extreme rainfall events occurring six days before the S1-SSM acquisition and high values 

due to light or moderate rain a few hours before the S1 acquisition date. 

 
(a) 

 
(b) 

 
(c) 

 

Figure 6: S1-derived SSM maps overlaid with GPM precipitation data. (a) 16 October 2016, (b) 26 

January 2017, and (c) 27 January 2018. Contour lines represent precipitation amounts in mm. 

4. Discussion 

The results obtained in Section 3 show that the detection of heavy rainfall using S1-SSM 

values is highly dependent on the time lag between the heavy rainfall event and the S1-SSM 

acquisition. Figure 5 showed that, on average, SSM values varied between 15 vol.% for five 

mm of accumulated precipitation in six days to about 22 vol.% for accumulated precipitation 

greater than 100 mm in six days. In addition, when the accumulated precipitation was less than 

30 mm, 75% of the pixels (0.1° × 0.1°) showed SSM values lower than 22 vol.%, and the 

remaining 25% had SSM values between 20–28 vol.%. On the other hand, when the 

accumulated precipitation is higher than 100 mm in six days, 75% of the pixels have SSM 

values higher than 22 vol.%, while the remaining 25% of the pixels have SSM values between 

20–22 vol.%. Moreover, for six days of cumulative precipitation between 30–100 mm, the SSM 

¯
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values varied between 15–28 vol.%. Thus, the results show that low rainfall of less than 30 mm 

in six days and very heavy rainfall greater than 100 mm in six days generally result in different 

soil moisture conditions in approximately 75% of the cases. However, it remains difficult to 

distinguish between high SSM values (around 28 vol.%) corresponding to (1) light rain the day 

before the S1 acquisition, (2) heavy rainfall a few days before the radar acquisition, or (3) 

various light rainy episodes during several days preceding the radar acquisition. Therefore, the 

SSM maps with a revisit period of six days do not always allow us to discriminate wet soil 

following a light rain at a date very close to the date of acquisition of the S1 image, and wet 

soil following a heavy rain that took place several days before the S1 acquisition date. 

Moreover, we have analyzed the impact of heavy rainfall (cumulative rainfall more than 60 

mm in 24 hours or more than 80 mm in 48 hours) on S1-SSM values as a function of the number 

of days that separated the heavy rainfall event and the S1 acquisition date (∆𝑡 = t𝑆1 −

t𝐻𝑒𝑎𝑣𝑦 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙). These threshold values of 60 mm and 80 mm were selected according to 

Meteo-France recommendations (http://pluiesextremes.meteo.fr/france-

metropole/Statistiques-et-records.html). Figure 7 shows the SSM values as a function of ∆𝒕 for 

cumulative rainfall greater than 60 mm in 24 hours (Figure 7a) and 80 mm in 48 hours (Figure 

7b). For example, ∆𝒕 = 𝟎 corresponds to a heavy rainfall event that occurred during the past 24 

hours (or 48 hours) of the S1 acquisition. In the case of a cumulative rainfall greater than 60 

mm in 24 hours (Figure 7a), we find that the SSM average values decreases from 25.4 vol.% 

for ∆𝒕 = 𝟎 to 20.8 vol.% for ∆𝒕 = 𝟓 days (S1 image acquired six days after the heavy rainfall 

event). In the case where the cumulative rainfall is greater than 80 mm in 48 hours (Figure 7b), 

we find that SSM average values are similar (23 vol.%) after a heavy rainfall that took place 

during the past 48 hours of the S1 acquisition or after a heavy rainfall during the 48 hours that 

took place six days before the S1 acquisition. 



CHAPTER II: ASSESSMENT OF THE S2MP SURFACE SOIL MOISTURE PRODUCT 

 

83 

 

 

(a) 

 

(b) 

Figure 7: S1-SSM distribution as a function of the number of days that separate the heavy rainfall event 

and the acquisition date of S1. (a) Heavy rainfall with 60 mm of cumulative precipitation in 24 hours, 

(b) heavy rainfall with 80 mm of cumulative precipitation in 48 hours 

The effect of the temporal resolution of satellite images on detecting heavy rainfall events 

was further studied with soil moisture data from SMAP at higher temporal resolution 

(Entekhabi et al., 2010). For this reason, we have re-established Figure 5 with SMAP data at 9 

km × 9 km spatial resolution (Figure 8). SMAP data were processed for the period between 

September 2016 and August 2017, over the Occitanie region, with one day of temporal 

resolution. Figure 8 shows the distribution of SMAP soil moisture values as a function of one 

day of cumulative precipitation obtained from the IMERG-GPM data. In average, SMAP shows 

an estimation of 15 vol.% following light rain one day before the SMAP acquisition, and about 

30 vol.% following 100 mm of cumulative rainfall during one day before the SMAP acquisition. 

Although the difference in soil moisture between the two events (light rain and heavy rain) is 

greater for SMAP (about 15 vol.%) than that of S1 (7 vol.%), the results obtained with SMAP 

at 9 km × 9 km and one-day revisit do not also allow the easier detection of heavy rainfall 

events. However, the potential of the SMAP in detecting heavy rainfall appears to be better than 

the potential of S1 for rainfall events >150 mm, where SMAP-SSM shows values greater than 

30 vol.%. 
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Figure 8: Soil Moisture Active Passive (SMAP)-SSM distribution as a function of one day of 

cumulative precipitation (revisit time of SMAP-SSM = one day) 

The previous discussion leads to the conclusion that soil moisture, which is obviously 

correlated with the amount of rainfall, depends also on other water cycle parameters such as 

evaporation, soil type, and the previous state of soil moisture before the heavy rainfall. 

Although it is obvious that heavy rainfall will lead to very wet soil, a slight rain over already 

wet soil will also result in extremely wet soil. A revisit time of several days (case of S1) makes 

the detection of heavy rainfall more complicated, because an extreme rainfall event that takes 

place four or five days before the S1 acquisition and is then followed by a significant 

evaporation will not lead to very high soil moisture values. In addition, radar sensors don’t 

correctly estimate soil moisture for SSM values above 30 to 35 vol.%. Baghdadi et al. (2008) 

demonstrated that the radar signal is stable when the SSM values ranged between 30–35 vol.%, 

and it decreases beyond this threshold. This eventually leads to an underestimation of SSM 

beyond this threshold value (Baghdadi et al., 2012b) Thus, the configurations for having very 

wet soil are numerous, and do not always depend on the amount of rain that falls. That many 

environmental parameters affect the value of SSM and the limitation of SAR to estimate the 

very high SSM values makes the monitoring of extreme rain events very delicate when it is 

based only on soil moisture maps. Therefore, the analysis carried out in this paper confirms that 

the use of the S1-SSM maps with a revisit period of six days (at plot scale) or the SMAP-SSM 

maps with very high temporal resolution of one day (at 9 km × 9 km) makes the detection of 

heavy rainfall not always obvious. 
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5. Conclusion 

This letter presents an analysis of Sentinel-1 derived surface soil moisture maps (S1-SSM) 

produced with high spatial resolution (at plot scale) and a revisit time of six days for the 

Occitanie region located in the south of France as a function of precipitation data derived from 

the GPM mission, in order to investigate the potential of S1-SSM maps in detecting heavy 

rainfalls. First, we investigated the temporal evolution of the soil moisture according to 

precipitation records derived from the GPM data. A general coherence was observed between 

the soil moisture estimations and precipitation records over the study site. The S1-SSM values 

increase following rainfall events and decrease after a period without rainfall due to 

evaporation. Then, we studied the behavior of soil moisture values following rainfall events in 

order to explore the possibility of detecting heavy rainfall using the revisit time of six days of 

the S1-SSM product. The influence of heavy rainfall over 24 and 48 hours (precipitation 

accumulation of 60 mm and 80 mm, respectively) on the S1-SSM values was analyzed as a 

function of the time lag between the rainfall event and the S1 acquisition. The results show that 

similar soil moisture conditions could be obtained on the S1-SSM maps that are acquired after 

an intensive rainfall event a couple of days prior to the S1-SSM maps, and the S1-SSM maps 

acquired after light rain (few mm) 24 hours before the S1-SSM maps. Finally, we studied the 

effect of the temporal resolution of satellite images on detecting heavy rainfall events using the 

SMAP soil moisture product at one-day temporal resolution. The results show that despite the 

difference in soil moisture values in SMAP data after heavy and light rainfall events, the one-

day revisit time does not also allow an easier detection of heavy rainfall events. Therefore, the 

detection of heavy rainfall is not always obvious, whether using the S1-SSM maps with a revisit 

period of six days (at plot scale) or the SMAP-SSM maps with a very high temporal resolution 

of one day (at 9 km × 9 km) since many environmental parameters (evaporation, soil texture…) 

could also affect the value of SSM. 
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CHAPTER III: SUPERVISED 

CLASSIFICATION APPROACHES FOR 

MAPPING IRRIGATED AREAS USING 

SENTINEL-1 AND SENTINEL-2 DATA 

1. Analytical Summary 

1.1 Overview 

The new satellite constellations SAR Sentinel-1 (S1) and optical Sentinel-2 (S2) has 

encouraged researchers to evaluate their potential for mapping irrigated areas at high spatial 

resolution. Until now, only few studies have reported the use of these two high-resolution 

satellites for irrigation mapping (Demarez et al., 2019; Gao et al., 2018). For irrigation mapping, 

optical data from S2 can provide the difference in vegetation indices between irrigated and non-

irrigated plots while SAR (Synthetic Aperture Radar) data can offer a 6 days temporal 

monitoring of the soil water status; particularly soil moisture. 

In this chapter, two complementary objectives are presented. The first objective is to study 

the potential of S1 and/or S2 data for mapping irrigated areas using supervised classification 

models such as the random forest (RF) and the convolutional neural networks (CNN). This 

study has been performed over Catalonia region of northeast Spain characterized by a semi-arid 

climatic condition. Since supervised classification models are highly dependent on the studied 

region, it is of great importance to resolve this region dependency of the developed 

classification model. Thus, the second main objective is to propose a framework capable of 

transferring the supervised classification model from one region to other region with different 

climatic properties. This transfer has been applied on the model developed on Catalonia to map 

irrigated areas in a humid climatic watershed in southwest France (Adour Amont watershed). 

Figure B presents a general graphical abstract summarizing the two principle objectives. 
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Figure B. Graphical abstract representing a general overview of supervised classification approaches 

for mapping irrigated areas on two different regions (Catalonia and Adour Amont watershed). 

1.2 Materials 

1.2.1 Study sites 

Two study sites are examined for mapping irrigated areas using S1/2 data and supervised 

classification approaches. The first site is the Catalonia region located along the northeastern 

Spanish Mediterranean coast. The climate in the region is typically Mediterranean (semi-arid); 

mild in winter and dry in summer. A huge database of labelled irrigated and non-irrigated plots 

(~193,000 plots) is available over the region thanks to the SIGPAC (Geographic Information 

System for Agricultural Parcels) data. SIGPAC provides the plots’ boundaries and textual data 

for each plot including the crop type and existence or absence of irrigation. On the other hand, 

the Adour Amont basin is located in the Occitaine region of southwest France near the city of 

Tarbes. The basin is characterized by temperate climate (humid to oceanic) with humid summer 

season usually encountering several rainfall events. In Adour Amont, less number of terrain 

data is available including 300 non-irrigated plots and 151 irrigated plots. The terrain data over 

Adour Amont was collected by terrain campaigns for the year 2017. 

1.2.2 Remote sensing data 

Over the Catalonia region, 82 C-band (5.405 GHz) SAR images acquired by S1A and S1B 

satellites were used for the period between September 2017 and December 2018 corresponding 

to the irrigation information of the used SIGPAC data. Over Adour Amont basin, the same 
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number of images (82 images) was collected for the period between September 2016 and 

December 2017 (terrain data collected in summer 2017). The 164 images (82 for Catalonia and 

82 for Adour Amont) are acquired in both VV and VH polarizations. The Sentinel-1 toolbox 

(S1TBX) developed by the European Spatial Agency (ESA) was used to calibrate the S1 images 

radio-metrically and geometrically. In addition, 17 cloud free S2 images (level 2A) were used 

for each study site covering the same period as the S1 images at each site. 

1.3 Methodology 

1.3.1 Irrigated area mapping in Catalonia 

The spatial resolution of irrigation mapping is the agricultural plot scale. First, the average 

S1 SAR backscattering coefficients (σ°) were calculated at both plot scale (SIGPAC plots) and 

grid scale (10 km × 10 km). The mean signal at grid scale is mainly used to discriminate between 

rainfall and irrigation events. Based on the results of chapter 2, we suppose that if the mean 

SAR signal increases at the base of 10 km × 10 km (global increase of soil moisture at grid cell) 

then a rainfall event most probably occurred. Next, the principal component analysis (PCA) 

and the wavelet transformation (WT) were applied on the obtained S1 time series at plot and 

grid scales. In addition, the PCA was applied on the NDVI temporal series at plot scale 

calculated using the S2 optical images. Finally, two classification approaches including the RF 

classifier and the CNN were examined. In each approach, three scenarios have been tested. The 

first scenario is based on the use of SAR data only, the second scenario considers the use of 

optical data only, and the third scenario includes the combined use of both optical and SAR 

data. 

1.3.2 Transfer learning for mapping irrigated areas in Adour Amont 

Among the several scenarios tested over Catalonia, the CNN built using S1 time series 

provided the best classification accuracy (94%). However, applying exactly the same model 

(built on Catalonia) on Adour Amont basin produces unsatisfactory results. The challenge thus 

is to transfer the supervised classification model from a source geographic area (Catalonia) to 

a target geographic area (Adour Amont). The transfer learning is based on “distilling before 

refine” strategy. The CNN model trained in Catalonia (source geographical area) is 

characterized by large volume of labelled samples (from SIGPAC data). This model is denoted 

as the teacher model. A lighter model is then distilled from the teacher model following the 
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distillation procedure developed by Hinton et al. (2015). This lighter model (denoted as the 

student model) contains less number of parameters. The student model is then refined by data 

terrain data from the Adour Amont basin. Then irrigation mapping was performed using the 

refined student model. The proposed strategy is compared to different approaches including RF 

and CNN directly trained using the collected terrain data. 

1.4 Main results 

Using the PC dimensions and WT coefficients of the S1 and S2 temporal series, irrigated 

and non-irrigated plots were separated. Over Catalonia, irrigated areas were first classified in 

two different random forest classifiers one using the PC dimensions and the other using the WT 

coefficients. The results show a good overall accuracy (OA) for the RF classifier using the PC 

values (90.7%) and the WT coefficients (89.1%). Moreover, the results showed that the RF 

classifier using optical data (NDVI) performs well with OA = 89.5%. The combined use of 

optical and SAR data (in PC values) slightly improved the classification accuracy (OA = 

92.3%). The results of the validation of CNN approach, applied directly on the S1 time series, 

showed very high accuracy (OA = 94.1%) compared to the RF classifiers. When using the 

CNN, the accuracy of the irrigated class increased thus allowing better detection of irrigated 

plots. The use of NDVI data only in a CNN classifier produced lower overall accuracy (91.5%) 

than that obtained using only S1 data. However, the combined use of both S1 and S2 data in 

the CNN did not significantly improve the accuracy. The results thus validate the capability of 

mapping irrigated areas with high accuracy and at high spatial resolution using either S1, S2 or 

coupled S1 and S2 data. 

Over Adour Amont Basin, we observed that the proposed framework (distilling before 

refine) obtains best results regarding both Accuracy and F-Measure when compared to other 

alternative approaches. The overall accuracy and the F-Measure for irrigation mapping in 

Adour Amont reaches 83% using the proposed transfer-learning framework. This good 

accuracy supports our distill before refine framework in which a smaller network distilled from 

a bigger one will be easier to adapt to a target area characterized by a very limited number of 

labeled samples. This result constitutes a preliminary experiment to perform transfer learning 

from a source dataset (a geographical area) to a target dataset (another geographical area). 
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1.5 Conclusion 

The results obtained in this chapter demonstrates the capability of obtaining high-resolution 

irrigation mapping using S1 and S2 data. However, a supervised machine-learning classifier 

built on a zone and applied on a second zone does not lead to good accuracy in the second zone. 

Moreover, applying the same classifier on the same zone but at different year could also lead 

to lower accuracies. To build supervised classification models for irrigation mapping, terrain in 

situ data are always required. Therefore, the availability of terrain data remains an obstacle for 

performing irrigation mapping using supervised classifiers. As discussed in the thesis 

problematic, obtaining terrain data of irrigated and non-irrigated plots at yearly basis is difficult, 

time consuming and expensive. To handle the terrain data availability problem, our the next 

chapter will focus on developing operational semi-supervised approach to map irrigated/non 

irrigated plots that does not require in situ reference data. The semi-supervised approach will 

be capable of automatically generating its own reference data before building the supervised 

classification model. The development of the operational semi-supervised approach, that does 

not require in situ reference data, will allow mapping irrigated areas regardless of the studied 

year, geographic region, and climatic properties. 

Although huge effort has been performed to map the extent of irrigated areas, the timing 

and frequency of irrigation has not yet received important attention, despite their high 

importance in managing water resources. Therefore, the next chapter will provide a detailed 

methodology for detecting irrigation events at plot scale using S1, S2 and S2MP data. 
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Abstract 

Mapping irrigated plots is essential for better water resource management. Today, the free 

and open access Sentinel-1 (S1) and Sentinel-2 (S2) data with high revisit time offers a powerful 

tool for irrigation mapping at plot scale. Up to date, few studies have used S1 and S2 data to 

provide approaches for mapping irrigated plots. This study proposes a method to map irrigated 

plots using S1 SAR (synthetic aperture radar) time series. First, a dense temporal series of S1 

backscattering coefficients were obtained at plot scale in VV (Vertical-Vertical) and VH 

(Vertical-Horizontal) polarizations over a study site located in Catalonia, Spain. In order to 

remove the ambiguity between rainfall and irrigation events, the S1 signal obtained at plot scale 

was used conjointly to S1 signal obtained at a grid scale (10 km × 10 km). Later, two 

mathematical transformations, including the principal component analysis (PCA) and the 

wavelet transformation (WT), were applied to the several SAR temporal series obtained in both 

VV and VH polarization. Irrigated areas were then classified using the principal component 

(PC) dimensions and the WT coefficients in two different random forest (RF) classifiers. 

Another classification approach using one dimensional convolutional neural network (CNN) 
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was also performed on the obtained S1 temporal series. The results derived from the RF 

classifiers with S1 data show high overall accuracy using the PC values (90.7%) and the WT 

coefficients (89.1%). By applying the CNN approach on SAR data, a significant overall 

accuracy of 94.1% was obtained. The potential of optical images to map irrigated areas by the 

mean of a normalized differential vegetation index (NDVI) temporal series was also tested in 

this study in both the RF and the CNN approaches. The overall accuracy obtained using the 

NDVI in RF classifier reached 89.5% while that in the CNN reached 91.6%. The combined use 

of optical and radar data slightly enhanced the classification in the RF classifier but did not 

significantly change the accuracy obtained in the CNN approach using S1 data. 

Keywords: irrigation; Sentinel-1; principal components; wavelet transformation; random 

forest; deep learning; convolutional neural network; Spain 

1. Introduction 

Under changing climatic conditions, irrigation plays a significant role in agricultural 

production in order to meet the global food requirement. In fact, better planning of irrigation is 

required to fulfil the high demand of food with the increase in the global population (Godfray 

et al., 2010; Tilman and Clark, 2015). Moreover, irrigated agriculture accounts now for more 

than 80% of water withdrawn from rivers, lakes, and groundwater aquifers being the principal 

consumer of fresh water resources (Cai and Rosegrant, 2002; Shiklomanov, 2000; Thenkabail 

et al., 2009b). Therefore, more focus is being set on the assessment of irrigation performance 

for improving water management in order to achieve higher water productivity and increase the 

agricultural water sustainability. 

Accurate information on the irrigated area extent helps in managing water resources that 

affect global food security and in analyzing the impact of climate change on the irrigation water 

requirement. However, the extent and distribution of irrigated areas remain indefinite in spite 

of the significant impact of irrigation on food security and water resources. At a global scale, 

several irrigation products are available at different spatial resolutions. Existing irrigation 

extent maps such as the FAO (Food and Agriculture Organization of the United Nations) 

database (Ozdogan et al., 2010), the Global Map of Irrigated Areas version 5 (GMIA 5.0) 

(Siebert et al., 2005, 2015) and the MIRCA2000 product (Portmann et al., 2010) have been 

primary derived from national statistical data. The Global Rain-Fed Irrigated and Paddy 

Croplands (GRIPC) with spatial resolution of 500 m was produced using MODIS (Moderate 
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resolution imaging spectroradiometer) satellite data (Salmon et al., 2015). The low spatial 

resolution of these products is an obstacle for using them in irrigation management especially 

in regards to small to medium agricultural areas. 

At a regional scale, several efforts have been made to map irrigated areas using remote 

sensing data including both optical and radar data (Boken et al., 2004; Thenkabail et al., 2005; 

Kamthonkiat et al., 2005; Biggs et al., 2006; Gumma et al., 2011; Dheeravath et al., 2010). 

Most studies that use optical data demonstrate that irrigated/non-irrigated areas can be classified 

based on the difference in temporal signals of vegetation indices such as NDVI (Normalized 

Differential Vegetation Index), NDWI (Normalized Differential Water Index) and GI 

(Greenness index) between irrigated and non-irrigated areas. Among optical sensors, MODIS 

and Landsat have been extensively used to map irrigated areas (Biggs et al., 2006; Dheeravath 

et al., 2010; Kamthonkiat et al., 2005; Thenkabail et al., 2005). For example, Pervez and Brown, 

2010 merged the NDVI derived from MODIS at 250 m spatial resolution and used statistical 

data to map irrigated areas of United States of America in 2002. In their study, they assumed 

that irrigated crops have a higher annual NDVI peak than non-irrigated crops especially under 

non-optimal precipitation conditions such as drought. Chen et al. (2018) proposed a new 

approach to map irrigation extent, time and frequency in an arid region located in Hexi Corridor 

of northwest China by merging the 30 m spatial resolution Landsat images with 250 m MODIS 

data and ancillary data. In their study, they used the GI to detect irrigation events during the 

first half of the growing season. The overall accuracy for detecting irrigation water supplements 

reached 87%. Recently, Xiang et al. (2019) mapped irrigated areas of northeast China by 

comparing the MODIS derived LSWI (Land Surface Water Index) of the agricultural areas to 

the surrounding natural vegetation such as forests. They assumed that the canopy moisture 

indicated by the LSWI is higher for irrigated crops than the adjacent forest. Thus, they mapped 

irrigated areas by fixing a threshold for the difference between LSWI of agricultural plots and 

that of the forest. However, the overall accuracy of the produced map did not exceed 77.2% 

with a 0.49 kappa coefficient. 

Apart from optical data, recent studies have started exploiting the potential of SAR 

(synthetic aperture radar) data to map different agricultural irrigated areas (Bazzi et al., 2019d; 

Bousbih et al., 2018; Demarez et al., 2019; Fieuzal et al., 2011; Gao et al., 2018). The 

assumption established for using SAR data relies on the fact that radar remote sensing is 

sensitive to the water content of soil due to the increase in the dielectric constant with the 

increase of the soil water content. In fact, several studies have reported that the SAR signal is 
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highly affected by soil moisture content (Aubert et al., 2013; Baghdadi et al., 2011a, 2011b, 

2016a; El Hajj et al., 2017; Hajj et al., 2014). For example, Hajj et al. (2014) analyzed the 

sensitivity of radar signals in the X-band over irrigated grassland conditions using time series 

of TerraSAR-X and Cosmo-SkyMed X-band SAR data. Their results showed that the radar 

signal in X-band increased by approximately 1.4 dB due to irrigation events occurring one day 

before the radar acquisition. They concluded that the radar signal could be used to identify 

three-day-old irrigated plots. 

The recently launched Sentinel-1 (S1) SAR satellite offers a powerful tool for agricultural 

area classification and monitoring under various weather conditions. The S1 satellites (S1A and 

S1B) provide an exceptional combination of high spatial and high temporal resolutions for dual 

polarization SAR data (six days of temporal resolution and a 10 m × 10 m pixel spacing) 

available in free open access mode. S1 time series has been newly exploited by several studies 

for land cover classification (Bazzi et al., 2019d; Carrasco et al., 2019; Feng et al., 2019; 

Ndikumana et al., 2018). High quality classification mapping has been produced by applying 

either classical machine learning, such as random forest and the support vector machine, or 

complex deep learning methods on S1 time series. Recently, deep learning (DP) techniques 

(Ahishali et al., 2019; Feng et al., 2019; Zhu et al., 2017) have shown that neural network 

models are well adapted tools to automatically produce land cover mapping from information 

coming from both optical (Interdonato et al., 2019) and radar (Ho Tong Minh et al., 2018) 

sensors. The main characteristic of these models is the ability to simultaneously extract features 

optimized for image classification. However, only few studies have started exploiting the 

potential of S1 time series for land cover classification using the DP method. In Ho Tong Minh 

et al. (2018) the authors proposed to leverage DP to perform winter quality mapping over a 

zone in West France. In Ndikumana et al. (2018) another DP approach was proposed to perform 

land cover mapping considering several agricultural classes. Concerning the joint exploitation 

of radar/optical satellite images based on deep learning techniques, some approaches were 

recently proposed considering really precise tasks such as image simulation (He and Yokoya, 

2018) or change detection (Liu et al., 2018). Unfortunately, the same opportunity has not been 

yet fully exploited in the context of land cover mapping. 

This study proposes an innovative approach to map irrigated areas at plot scale using the 

Sentinel-1 and Sentinel-2 (S2) time series. The potential of S1 and S2 acquired at high spatial 

resolution and high revisit time for irrigation mapping did not yet receive enough attention by 

the scientific committee. The approach is based on the use of S1 and/or S2 time series combined 
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with statistical and mathematical functions such as the principal component analysis (PCA) and 

the wavelet transformation (WT) to map irrigated areas. The novelty of this study resides in 

eliminating the ambiguity between irrigation and rainfall through the comparison between the 

SAR backscattering signal of each plot and that of the grid (10 km × 10 km) including this plot. 

To map irrigated areas, the PCA and WT transformation were applied to the S1 time series 

prepared over a study site located in west of Catalonia, Spain. The PCA was also applied to the 

NDVI time series derived from the S2 images. Then, random forest (RF) and the convolutional 

neural network (CNN) approaches were used to build up classification models in three different 

scenarios: The first using only S1 data, the second using only S2 data, and the third using both 

S1 and S2 data. Finally, the two classification approaches (RF and CNN) were inter-compared. 

2. Materials 

2.1 Study Site 

The study site examined is the western part of Catalonia region of north east Spain (Figure 

1a). Figure 1b shows the location of the S1 footprints used in this study. The area covered by 

the used footprints corresponds to 55% of the total area of Catalonia and compromises 64% of 

the total agricultural areas in the region. Figure 1c is a digital elevation model (DEM) derived 

from the shuttle radar topography mission (SRTM) data and Figure 1d shows the agricultural 

areas derived from the SIGPAC (geographical information system for agricultural parcels) data 

of Catalonia. The hatched zone in Figure 1d represents the area finally used in the classification. 

Catalonia is a region of 32,000 km2 located in the northeast corner of the Iberian Peninsula 

along the northeastern Spanish Mediterranean coast. The agricultural areas of Catalonia are 

concentrated in the northeastern part and the interior plane in the western part as shown in the 

agricultural map of Figure 1d. The climate in the region is typically Mediterranean; mild in 

winter and warm in summer with very dry season. Figure 2 presents the precipitation and 

temperature data recorded at a local meteorological station located in Tornabous village of the 

interior plane (Figure 1b) (https://ruralcat.gencat.cat/web/guest/agrometeo.estacions). The 

average annual precipitation in this station is around 400 mm. 

https://ruralcat.gencat.cat/web/guest/agrometeo.estacions


CHAPTER III: SUPERVISED CLASSIFICATION APPROACHES FOR MAPPING IRRIGATED 

AREAS USING SENTINEL-1 AND SENTINEL-2 DATA 

 

97 

 

 

Figure 1: (a) Location of the study site (in black), Catalonia Spain, (b) Sentinel-1 footprints over 

Catalonia used in the study, (c) digital elevation model (DEM) from shuttle radar topography mission 

(SRTM) data, (d) agricultural areas of Catalonia derived from geographical information system for 

agricultural parcels (SIGPAC) data. The hatched area represents the zone finally used for classification. 

 

Figure 2: Precipitation and temperature records for a local meteorological station in Tornabous of the 

interior plain of Catalonia, Spain. 

During the dry summer season between May and September, irrigation mainly occurs in the 

study site. Different irrigation techniques exist. In the old irrigation systems, water is distributed 

using open channels and irrigation is performed by inundation every two weeks. In the new 

irrigation systems, water is distributed by pressure where sprinklers or drip irrigation are used 

depending on the culture type. Irrigation here can be applied daily. 
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2.2 SIGPAC Data 

SIGPAC data provides referenced geographic boundaries of plot land in Catalonia attributed 

with alphanumeric information. The data are produced and maintained by the General Direction 

of Rural Development of the Department of Agriculture, Livestock, Fishing and Food of the 

Generalitat of Catalunya. The plots are digitized using orthophoto images of 25-cm spatial 

resolution at scale 1:2000. Group of fields are associated in the database of the provided 

geographical data describing each plot by a unique identification code, surface area, land use, 

irrigation coefficient (0 for non-irrigated and 100 for irrigated), average slope and others. The 

SIGPAC data can be freely downloaded for the whole region in vector format. For each plot, 

the crop type could be obtained from the agricultural crop map of Catalonia (DUN). This map 

is produced based on the SIGPAC geographic boundaries and the annual declaration of the 

agricultural exploitation. The agricultural map of Catalonia is also available in free and open 

access mode. 

In this study, SIGPAC data was used as a reference and validation of our proposed 

classification approaches. In our study, only agricultural crops (summer and winter crops) were 

considered for the irrigation classification. Forests, urban and orchards plots were removed 

from the SIGPAC database using the DUN crop map. Finally, a total of 193,327 plots of 

different crop types were used in the study forming a total area of 3795 km2. The pie chart of 

Figure 3 summarizes the distribution of dominant crop types present in the studied zone. It 

shows the number of plots per crop type present in the study area. In general, winter cereals 

such as wheat, oat and barley are rarely irrigated. However, it may happen that these crops are 

exceptionally irrigated very few times. On the other hand, irrigated plots mainly include alfalfa, 

maize, grassland, beans, rapeseed and rice. 
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Figure 3: Distribution of the number of agricultural plots per class of crop type. 

2.3 Remote Sensing Data 

In this study, a database of radar (SAR) and optical data was prepared over the study site 

described in Section 2.1. While the S1 satellite constellation provides SAR images, the S2 

satellite provides optical images. Table 1 summarizes the characteristics of remote sensing data 

used in the study. More details on each data type are further provided in the following 

subsection. 

Table 1: Summary of the used remote sensing data 

Data Type Satellite 
Spatial 

Resolution 

Images 

Number 

Frequency 

Used 

Calibration  

Performed 

Bands  

Polarization 

Satellite 

Images 

SAR Sentinel-1 10 m 82 6 days Geometric/Radiometric VV VH 

Optical Sentinel-2 10 m 17 One month 
Ortho-rectified 

Reflectance 

Near Infrared, 

Red 

2.3.1 Sentinel-1 SAR Data 

A time series of S1 images collected over our study site was used to generate SAR temporal 

profiles at both VV and VH polarizations. Eighty-two S1 images obtained from the S1A and 

S1B satellite constellation operating at the C-band (frequency = 5.406 GHz, wavelength ~6 cm) 

were collected for the period between 28 August 2017 and 27 December 2018. Four S1 (two 

S1A and two S1B) footprints cover the western part of Catalonia with a six days temporal 

resolution as shown in Figure 1b. The 82 S1 images were generated from the high-resolution 

Level-1 ground range detected (GRD) product with 10 m × 10 m pixel spacing and acquired in 

the interferometric wide swath (IW) imaging mode with the VV (Vertical-Vertical) and VH 

(Vertical-Horizontal) polarizations. These S1 images are available via the Copernicus website 

(https://scihub.copernicus.eu/dhus/#/home). The 82 S1 images were calibrated (radiometric and 

https://scihub.copernicus.eu/dhus/#/home
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geometric correction) using the Sentinel-1 Toolbox (S1TBX) developed by the ESA (European 

Spatial Agency). The radiometric calibration aims to convert the digital number values of the 

S1 images into backscattering coefficients (σ°) in a linear unit while the geometric correction 

ortho-rectifies the SAR image using the DEM of the SRTM at 30 m spatial resolution. The 

radiometric accuracy of the S1 SAR backscattering coefficient is approximately 0.70 dB (3σ) 

for the VV polarization and 1.0 dB (3σ) for the VH polarization (El Hajj et al., 2016b; Schwerdt 

et al., 2017). Since the terrain in the study site is very complex, the radar backscattering 

coefficients corresponding to areas with high slope values (slope > 20%) were masked out. The 

slope mask was generated from the SRTM DEM (Figure1c) at 30 m spatial resolution available 

via the earth explorer website (https://earthexplorer.usgs.gov/) and applied to the 82 radar 

image.  

2.3.2 Sentinel-2 Optical Data 

Currently, S2 offers fine spectral and spatial resolution optical images with 13 bands ranging 

from 10 m to 60 m spatial resolution with 5 days revisit time. Seventeen free optical images 

were obtained over our study site during the period between August 2017 and December 2018 

at a frequency of one image per month. The S2 images were downloaded from the Theia (French 

land data center) website (https://www.theia-land.fr/). The Theia website provides ortho-

rectified S2 images at level-2A corrected for atmospheric effect. However, starting from April 

2018, Theia website started providing a monthly synthesis of cloud free images (level-3A). 

These images were used for the period between April 2018 and December 2018. 

3. Methodology 

3.1 Overview 

An overview of the methodology is presented in Figure 4. First, the average S1 SAR 

backscattering coefficients (σ°) were calculated at both plot scale (SIGPAC plots) and grid scale 

(10 km × 10 km). The mean signal at grid scale will be used to discriminate between rainfall 

and irrigation events. In general, we suppose that if the mean signal increases at the base of 10 

km × 10 km then a rainfall event had occurred. Next, the PCA and the WT were performed on 

the obtained S1 time series. Moreover, the PCA was applied on the temporal series of the NDVI 

established at plot scale using the S2 optical data. Finally, two classification approaches 

including the RF classifier and the CNN were investigated. In each approach, three scenarios 
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have been tested. The first scenario is based on the use of SAR data only, the second scenario 

considers the use of optical data only, and the third scenario includes the combined use of both 

optical and SAR data. A detailed description of the methodology is further elaborated in the 

following sub-sections. 

 

Figure 4: Workflow overview using random forest (RF) and the convolutional neural network (CNN). 

3.2 σ° SAR Backscattering at Plot and Grid Scale 

The detection of irrigation activities using SAR data at plot scale requires a good separation 

of irrigation events from rainfall events. In fact, both events are considered as water 

supplements and may have the same effect on the radar backscattering signal. In this case, 

additional information about the rainfall, such as the daily precipitation records, is required to 

remove the ambiguity between rainfall events and irrigation events. However, rainfall data is 

normally hard to be obtained freely and accurately. Thus, another indicator is required to 

separate irrigation events from rainfall events. 

Following a rainfall event, the soil becomes wet thus causing an increase of the SAR 

backscattering signal due to the change in the dielectric constant of the soil (Amri et al., 2012; 

Baghdadi et al., 2011b, 2016a; Hajj et al., 2014). If all the plots within a limited spatial extent 

(5 km, 10 km, 20 km, etc.) show an increase in the SAR backscattering signal between two 

consecutive radar acquisitions, then a rainfall event could have probably occurred. Thus, an 

indicator of an existing rainfall event could be the increase of the SAR backscattering signal, 

between two consecutive SAR dates, obtained within a grid scale (5 km, 10 km, 20 km, etc.). 
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This increase of the SAR backscattering signal at a grid cell is mainly due to increase of soil 

moisture due to a rainfall event. In fact, the relation between rainfall events and soil moisture 

has been investigated in several studies (Brocca et al., 2009, 2014). Most recently, Bazzi et al. 

(2019a) compared the soil moisture values estimated at plot scale with six days revisit time 

from S1 data (El Hajj et al., 2017) with GPM (global precipitation mission) rainfall data at 0.1° 

× 0.1° grid scale (~10 km × 10 km) (Skofronick-Jackson et al., 2018). The study site examined 

was the Occitanie region of France (~72,000 km2). They showed that following a rainfall event 

occurring couple of days before the radar acquisition, the average soil moisture of plots with 

low vegetation cover (NDVI < 0.4) in a grid of ~10 km × 10 km increases. This increase in soil 

moisture estimation is directly related to the increase of the radar backscattering signal at grid 

scale. 

The increase of the SAR backscattering signal at plot scale accompanied with the stability 

or decrease of the radar signal at grid scale could be attributed to an irrigation event that took 

place on the plot. On the other hand, the increase of the SAR backscattering signal at the grid 

scale could be linked to a rainfall event. Therefore, to remove the ambiguity between rainfall 

and possible irrigation events a comparison is considered between the SAR backscattering 

coefficient at each plot and the SAR signal obtained from bare soil plots with low vegetation 

cover at 10 km × 10 km grid cell containing this plot. However, this comparison may not be 

useful for detecting irrigated plots if the irrigation occur simultaneously for almost all plots 

existing within the same 10 km grid cell. In this case, an increase of the SAR backscattering 

signal at grid scale would be due to irrigation that took place on all the plots within the 10 km 

cell and not rainfall. It is also good to mention that cropland plots could encounter a change in 

the radar backscattering coefficient due to change in the surface roughness mainly at sowing 

stage (smooth) or after harvesting (moderate to rough) (Baghdadi et al., 2002). Nevertheless, 

very rough conditions in an agricultural plot are not permanent over the year and may exist only 

for couple of days. 

The temporal series of the S1 SAR backscattering coefficients over each agricultural plot 

was obtained by averaging the σ° values of all pixels within the plot at each available date and 

at both VV and VH polarizations. The average of σ° pixels’ values reduces the speckle noise. 

For grid scale, a 10 km × 10 km grid was first generated to cover the whole region. Then, the 

SAR backscattering coefficients were averaged at each date for each grid cell (10 km × 10 km) 

using pixels within all the agricultural plots having NDVI values less than 0.5 (NDVI values 

calculated using S2 images explained later in Section 3.3). The threshold value of the NDVI 
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was selected in order to consider σ° values for bare soil plots and plots with a low vegetation 

cover. For each plot, the SAR σ° temporal series in both VV and VH polarizations and σ° 

temporal series for its corresponding 10 km × 10 km grid cell in both VV and VH polarizations 

were obtained. 

In order to adjust σ° values at a common scale (between 0 and 1), the σ° time series at plot 

and grid scale were normalized using the minimum-maximum normalization: 

𝑌′ =
𝑌 − 𝑌𝑚𝑖𝑛

𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛
 (1) 

where Y’ is the normalized value, Y is the initial value of the time series (σ° at plot scale “ 

σplot
0  “ and at grid scale “σ10km

0  ” at VV and VH polarizations), 𝑌𝑚𝑖𝑛 is the minimum value of 

the time series, and 𝑌𝑚𝑎𝑥  is the maximum value of the time series. 

The difference between the normalized σ° at plot scale and the normalized σ° at grid scale 

was then computed for each plot at each date in both VV and VH polarizations: 

∆σPG
0 = σplot

0 − σ10km
0  (2) 

Finally, for each plot we obtain four temporal series including:  

 Normalized σ° time series at plot scale in VV polarization (σP,VV
0 ); 

 Normalized σ° time series at plot scale in VH polarization (σP,VH
0 ); 

 Difference between the normalized σ° at plot and grid scales in VV polarization (∆σPG,VV
0 ); 

 Difference between the normalized σ° at plot and grid scales in VH polarization (∆σPG,VH
0 ) . 

3.3 NDVI Temporal Series at Plot Scale 

Using the S2 images, 17 NDVI maps were derived from the red and infrared bands at each 

month between September 2017 and December 2018: 

NDVI =
ρNIR − ρRED

ρNIR + ρRED
 (3) 

To obtain an NDVI value for each plot at each month, the NDVI pixels within each plot 

were averaged. Finally, a temporal series of 17 NDVI values were obtained at plot scale. 
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3.4 Principal Component Analysis 

To reduce the volume of the data prior to the application of any classification method, a data 

compression is necessary to be applied especially when a huge amount of data is involved in 

the study. This data compression reduces the dimensionality of the classifier workspace and 

eliminates redundancies and nonessential information in raw data that may lead to inaccurate 

classification. Among data compression techniques, the principal component analysis is a 

statistical compression technique which converts high dimensional data to low dimensional data 

by selecting the most important features capturing maximum information about the dataset 

(Jain, 1989; Jolliffe and Cadima, 2016). Data compression by means of PCA is accomplished 

by projecting each sample block of data along the directions of the individual orthonormal 

eigenvectors of the covariance matrix of the data. The conventional approach for the PC 

extraction involves the computation of the input data covariance matrix and then the application 

of a diagonalization procedure to extract the eigenvalues and the corresponding eigenvectors. 

For each plot, the PCA was applied on each one of the four SAR temporal series presented 

in Section 3.2 (σP,VV
0 , σP,VH

0 , ∆σPG,VV
0 , ∆σPG,VH

0 ). Since each temporal series consists of 82 

different values, we obtain 82 different PC values for each time series. Finally, each plot is 

defined by 328 different PC values (82 × 4). 

For optical images, the PCA was also applied to the NDVI temporal series of each plot. 

Since the temporal series consists of 17 NDVI values, the PCA produces 17 different PC values 

for each plot. The obtained 17 PC values are later used in a random forest classifier in order to 

classify irrigated plots. 

3.5 Haar Wavelet Transformation 

Wavelet transformation (WT) is used to decode a real periodic or non-periodic signal into a 

linear combination of elementary functions. The principal of the wavelet transformation is 

based on the decay of the signal on a set of sinusoidal functions. Several wavelet transformation 

functions exist from which the ‘Haar’ wavelet transformation was chosen. The idea behind this 

wavelet analysis is to decompose the signal of 𝑁 = 2𝑘  points on a basis of discontinuous and 

orthogonal functions resulting from the translation and dilations of functions called the father 

scaling function 𝜑(𝑡) and the mother wavelet function  𝜓(𝑡).  
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The real SAR time series obtained from the available S1 images consists of 82 values 

corresponding to 82 different dates. Since 82 is not a perfect square of 2 (𝑁 = 2𝑘), the number 

of values to be considered in the wavelet decomposition should be limited to the 1st perfect 

square less than 82. Thus only 64 values were considered out of the 82 values in the time series. 

For 64 σ° values, the temporal series could be decomposed on six levels where  26 = 64. 

However, the 64 values of the time series were able to cover a period of one year (from 15 

September 2017 until 28 September 2018) which is considered sufficient to detect irrigation 

activities since most of the irrigation in the region mainly exist between May and September of 

each year. 

The ‘Haar’ wavelet transformation was computed at each plot for 

σP,VV
0 , σP,VH

0 , ∆σPG,VV
0 , ∆σPG,VH

0 . Thus, each SAR temporal series of 64 values is transformed into 

64 independent wavelet coefficients corresponding to six levels of decomposition. Each plot 

attains finally 256 different wavelet coefficients (64 coefficients × four time series).  

3.6 Random Forest Classifier 

Random forest (RF) is an ensemble of machine learning algorithms consisting of large 

number of decision tree classifiers where each tree is constructed using a different subset of the 

training set. In its architecture, the RF classifier fits a number of decision tree classifiers on 

various subsamples of the dataset and uses averaging to improve the predictive accuracy and 

control over-fitting (Breiman, 2001). When compared to other classical machine learning 

algorithms, the random forest classifier has demonstrated its ability to yield high quality 

classification mapping with fast computation time (Inglada et al., 2017; Rodriguez-Galiano et 

al., 2012). The tree depth and minimum sample size are the two most important parameters in 

the RF classifier. 

Three different scenarios were tested using the RF classifier. First, the RF classifier was 

modeled using SAR data only (one for PC values and another for the WT coefficients). Second, 

NDVI optical data was tested in another RF classifier. Finally, we combined SAR and optical 

data in a third RF classifier. 

Using SAR data only, the RF classifier was applied for the PC variables and the WT 

coefficients separately in two different classifiers denoted later by PC-RF and WT-RF 

respectively. First, each RF classifier (PC-RF and WT-RF) was trained using all variables of 

each method (328 values for the PC-RF and 256 coefficients for the WT-RF). This step gives 
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the importance of each variable which is a number between 0 and 1 evaluating the contribution 

of the variable in the classification. The importance of the variables was then analyzed and a 

threshold value of the importance was determined to select the significant variables only. This 

step allows reducing the number of variables for each classifier while retaining good accuracy. 

Then, both RF classifiers were regenerated using only important variables for each method. In 

all tested RF classifiers, the number of trees was set to 500. This number is fixed by increasing 

the number of trees until the accuracy of the classification converges. The tree depth was kept 

at its default value which is the square root of the number of variables available. In order to 

train and validate the model on two independent datasets, we randomly split the database into 

50% for training and 50% for validation (Demarez et al., 2019; Wang et al., 2018). 

Using optical data only, the 17 PC values obtained from the NDVI data are implemented in 

a random forest classifier later denoted by NDVI-RF. As done for SAR data, important 

variables were then retained based on a threshold value of a variable’s importance, and the RF 

classifier was reestablished using these variables only. 

Finally, a RF classifier was modeled using both SAR and optical data. From the two SAR 

classifiers (PC-RF and WT-RF) the PC-RF was chosen since its results show slightly better 

performance. Therefore, the important variables obtained in the PC-RF classifier were 

combined with the important variables obtained in the NDVI-RF in a new RF classifier. 

3.7 Convolutional Neural Network 

Convolutional Neural Networks are deep learning models that achieve state-of-the-art 

performance on image related classification tasks (Bengio et al., 2013) and, nowadays, they are 

getting increasing attention in the field of remote sensing (Zhu et al., 2017). Here, one 

dimensional (1D) CNN model (CNN1D) was proposed to leverage the convolutional 

characteristics of such networks to manage the time dimension of Sentinel-1 time series data. 

In this scenario, a simple and effective CNN architecture that involves standard operation was 

conceived: Convolution, nonlinear activation function, batch normalization and dropout. Each 

convolutional layer is applied on the valid portion of the time series (without any kind of 

padding) and it is associated with a convolution combined with a rectifier linear unit (ReLU) 

activation function (Nair and Hinton, 2010) to induce non-linearity. Successively, a batch 

normalization step (Ioffe and Szegedy, 2015) is employed to accelerate the network 

convergence and reduce the internal covariate shift. Finally, Dropout (Dahl et al., 2013) was 
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adopted with a drop rate equal to 0.4, i.e., 40% of the neurons are randomly deactivated at each 

propagation step.  

Due to the fact that S1 time series and NDVI time series have different lengths, a two branch 

architecture (one CNN1D for the S1 time series and one CNN1D for the NDVI time series) that 

performs late fusion (Benedetti et al., 2018) of the input sources was proposed. The fusion is 

achieved with a simple concatenation of the features extracted from each branch. The 

concatenated features are successively used by two fully connected layers to produce the final 

classification. The fully connected layers are still associated with a nonlinear activation function 

(ReLU) and both of them contain 512 neurons. The two-branch network architecture is trained 

end-to-end. Figure 5 represents the architecture of the developed CNN. Each layer of the 

network involves the following operations: Convolution with ReLU function (Conv), batch 

normalization (BN), and dropout (DropOut): DropOut(BN(Conv(.))). For each convolution, the 

number of filters used are 64, 128, or 256, the Kernel size is 7 × 1, 5 × 1, 3 × 1 or 1 × 1 and the 

stride value is 1or 2. Once the features are combined (concatenation), two free fully connected 

layers are employed to provide the final decision. The output layer (the last layer of the network) 

has as many neurons as the number of classes to predict (2). 

For all deep learning approaches, the Adam method (Kingma and Ba, 2014) to learn the 

model parameters with a learning rate equals to 1 × 10−4 was used. The training process is 

conducted over 1000 epochs with a batch size of 256. Considering the train/test splits (50%, 

50%) for the neural network strategies, the data was split as 50%, 40% and 10% for training, 

validation and test set respectively (Interdonato et al., 2019). The model that achieves the best 

performances on the validation set will be successively blindly evaluated on the test set. 

Similar to what was proposed for the RF classifiers, two scenarios were first considered for 

the deep learning approach one using only the S1 time series data and the other using only the 

NDVI time series. To do this, one of the two branches of the model is completely dropped and 

the one corresponding to the specific data source is kept. Then, for the third scenario using SAR 

and optical data, the full model with both branches was used. 
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Figure 5: Architecture of the one dimensional (1D) CNN model (CNN1D) used for classification of 

irrigated/non-irrigated plots using SAR and optical data. 

3.8 Accuracy Assessment 

For each tested method, the assessment of the classifier results was expressed as a function 

of the overall accuracy (OA), Kappa and the F-score by applying the generated model on the 

validation dataset (50%). The precision, recall, and F-score were also calculated for each class 

(irrigated/non-irrigated). In fact, several studies report the use of these indices to assess the 

accuracy of the classification (Bazzi et al., 2019d; Gaetano et al., 2018; Ho Tong Minh et al., 

2018; Ndikumana et al., 2018). While OA can be easily interpreted as the percentage of 

correctly classified plots to the total number of plots, Kappa and F-score can be used to assess 

the statistical differences between classifications. The obtained accuracy indices were 

calculated for the obtained results of each method as proposed by (Fawcett, 2006; Landis and 

Koch, 1977; Powers, 2011). Table 2 summarizes the equations used to calculate these accuracy 

indices. 
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Table 2: Accuracy indices calculated for each classifier. TP is the number of the irrigated plots truly 

classified as irrigated, TN is the number non-irrigated plots truly classified as non-irrigated plots, FP is 

the number of non-irrigated plots falsely classified as irrigated, FN is the number of irrigated plots 

falsely classified as non-irrigated plots, N is the total number of plots, and EA is the expected accuracy. 

Index Equation 

OA  
TP + TN

TP + TN + FN + FP
  

EA  
(TP + FP) × (TP + FN) + (FN + TN) × (FP + TN)

(TP + TN + FN + FP)2
  

Kappa  
OA −  EA

1 − EA
  

F1 score  
2TP

2TP + FP + FN
  

Precision  
TP

TP + FP
  

Recall  
TP

TP + FN
  

4. Results 

4.1 Comparison of σ° SAR Backscattering at Plot and Grid Scale 

To remove the ambiguity between rainfall and irrigation events, this study proposes to 

compare between the SAR signal obtained at plot scale and the SAR signal obtained at 10 km 

grid scale. Figure 6 represents an example of the temporal behavior of σ° values in VV 

polarization obtained at plot and grid scale for a non-irrigated plot (Figure 6a) and an irrigated 

plot (Figure 6b). In both figures, the green curve represents the σ° temporal evolution at the 

plot scale and the red curve represents the σ° temporal evolution calculated at the 10 km grid 

cell. Precipitation data obtained from a local meteorological station is added to the figures to 

better understand the relation between grid scale σ° variations and the existence or absence of 

rainfall events. For the non-irrigated plot in Figure 6a, the σ° SAR values at plot scale and grid 

scale attain the same behavior for almost all the dates. Following a rainfall event, both curves 

increase and then decrease following a dry period. The consistency between both curves at both 

scales for the non-irrigated plot during the whole period indicates that the plot did not receive 

any water supplement other than rainfall events. For the irrigated crop in Figure 6b, the temporal 

behavior of the σ° SAR temporal series at plot and grid scales are coherent between September 

2017 and April 2018. Both σ° values for both scales increase following rainfall event, and 

decrease with the absence of rainfall. However, between May 2018 and September 2018 (black 

dashed circle in Figure 6b) the irrigated plot shows a frequent change in σ° values accompanied 
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with the absence of rainfall events due to possible irrigation events occurring. On the other 

hand, the 10 km grid cell shows low and constant values of σ° during the same period indicating 

very dry soil conditions.  

 
(a) 

 
(b) 

Figure 6: Temporal evolution of SAR backscattering coefficient σ° in VV polarization at plot scale 

(green curve) and 10 km grid scale (red curve) with precipitation data recorded at a local meteorological 

station for (a) the non-irrigated plot, (b) the irrigated plot. 

4.2 Classification using Random Forest Classifier 

4.2.1 PC-RF 

As discussed in Section 3.6, the RF classification was first performed using the total number 

of PC values obtained from the application of the PCA on the four different temporal series 

(328 variables). Then, the significant PC variables that most contributed in the classification of 

the irrigated/non-irrigated plots were determined using the increase in the mean square error of 

the predictions (%IncMSE > 1%). The use of this threshold value allows reducing the number 

of predictive variables from 328 to 15 while keeping accurate classification. These variables 

contain the first, second, fourth and sixteenth PC dimension of  σP,VV
0 , the first third and 
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sixteenth PC dimension of  σP,VH
0 , the second and the fifth PC dimension of  ∆σPG,VV

0 , and the 

first and second dimension of  ∆σPG,VH
0 . Figure 7 shows the scatter plot of 2000 irrigated and 

2000 non-irrigated plots (randomly selected) with different combinations of the obtained 

important PC values. It clearly shows that irrigated and non-irrigated plots can be separated 

using several PC combinations as they distinctly appear in two different point clouds. The RF 

classifier is thus capable of obtaining good results when introducing these variables for 

classifying irrigated and non-irrigated plots. 

 

Figure 7: Scatter plot of a random sample of 2000 irrigated and 2000 non-irrigated plots using different 

combinations of important principal component (PC) variables. Irrigated plots are presented in blue and 

non-irrigated plots represented in red. (a) PC1 of σP,VV
0  with PC1 of σP,VH

0 , (b) PC16 of σP,VV
0  with PC1 

of σP,VH
0 , (c) PC1 of σP,VH

0  with PC16 of σP,VH
0 , (d) PC1 of σP,VH

0  with PC2 of ∆σPG,VV
0 , (e) PC16 of 

σP,VH
0  with PC2 of ∆σPG,VH

0  and (f) PC5 of ∆σPG,VV
0  with PC2 of ∆σPG,VV

0 . σPG,VV
0  = σP,VV

0  − σG,VV
0  and 

σPG,VH
0  = σP,VH

0  − σP,VH
0 . “P” means plot scale and “G” means grid scale. 

Table 3 summarizes the accuracy obtained when applying the trained RF classifier on the 

50% validation data using all the variables and the selected important variables. The validation 

of the RF classifier using the 328 PC values generally shows very high accuracy. In fact, the 

overall accuracy reaches 91.2% while the kappa coefficient reaches 0.79 and the F-score 

reaches 0.91. The F-score of the irrigated class is 0.86 while that of the non-irrigated class is 

0.94. The reestablishment of the RF classifier using the 15 important PC variables produced 
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similar accuracy compared to the RF classifier using the total number of variables. In general, 

both classifiers present nearly the same results. However, the overall accuracy slightly 

decreased from 91.2% to 90.7% but yet keeping an accurate classification. The Kappa 

coefficient and F-score remained unchanged for both approaches. 

Table 3: The values of the overall accuracy, Kappa, F-score, precision, and recall obtained from the RF 

classifier using the 328 SAR PC variables and 15 important SAR PC variables. 

Method Class Precision Recall F-Score 

PC-RF 328 Variables 

Irrigated 0.95 0.79 0.86 

Non-Irrigated 0.90 0.98 0.94 

OA 91.2% 

Kappa 0.79 

F-score 0.91 

PC-RF 15 Important Variables 

Irrigated 0.92 0.81 0.86 

Non-Irrigated 0.90 0.96 0.93 

OA 90.7% 

Kappa 0.79 

F-score 0.91 

4.2.2 WT-RF 

The linear combination of all the levels of the WT allows the reconstruction of the real SAR 

signal using the obtained 64 wavelet coefficients. Figure 8 presents an example of the 

reconstruction of the σ° SAR temporal series of an alfalfa irrigated plot using the linear 

combination of consecutive decomposing levels (functions) of the wavelet transformation. The 

first father scale function consists of two coefficients (level 1). The mother scale functions of 

levels two, three, four, five and six consist of two, four, eight, 16, and 32 coefficients 

respectively. The linear combination of the father level with additive mother levels allows the 

reconstruction of the real SAR signal (Figure 8). The obtained 64 wavelet coefficients are used 

in a random forest classifier in order to classify irrigated plots. 
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Figure 8: Reconstruction of SAR signal in VV polarization at plot scale through the linear combinations 

of the ‘Haar’ wavelet coefficients using (a) 2 coefficients, (b) 4 coefficients, (c) 8 coefficients, (d) 16 

coefficients, (e) 32 coefficients, and (f) 64 coefficients. 

The same process applied for the RF classification using the PC values is also performed 

using the Haar wavelet coefficients. The RF classifier was first trained using the 256 values 

(discussed in Section 3.5) of the wavelet coefficients. When validating the obtained classifier, 

the overall accuracy of the classification reached 91.4% with a 0.81 kappa coefficient and a 

0.91 F-score. The F-score of the irrigated class (0.87) is slightly lower than that of the non-

irrigated class (0.94) (Table 4). The significant wavelet coefficients that most contributed in the 

classification were also determined using the threshold value on the increase in the mean square 

error of the predictions (%IncRMSE >1%). This also reduced the number of variables from 256 

coefficients to 18. Figure 9 similarly shows the scatter plot of 2000 irrigated and 2000 non-

irrigated plots (randomly selected) with different combinations of the obtained important WT 

coefficients. As shown with the PC values, Figure 9 also clearly shows that irrigated and non-

irrigated plots can be separated using the WT coefficients as they distinctly appear in two 

different point clouds.  
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Figure 9: Scatter plot of a random sample of 2000 irrigated and 2000 non-irrigated plots using different 

combinations of important wavelet transformation (WT) coefficients. Irrigated plots are presented in 

blue and non-irrigated plots represented in red (a) WC61 of σP,VH
0  with WC62 of σP,VH

0 , (b) WC62 of 

σP,VH
0  with WC53 of ∆σPG,VH

0 , (c) WC62 of σP,VH
0  with WC53 of ∆σPG,VH

0 . σPG,VV
0  = σP,VV

0  − σG,VV
0  and 

σPG,VH
0  = σP,VH

0  − σP,VH
0 . “P” means plot scale and “G” means grid scale and WC means wavelet 

coefficient. 

The validation of the RF classifier trained using important data only (18 variables) produces 

slightly lower accuracy than that using the full dataset (Table 4). The overall accuracy decreased 

by 1.3% only. The F-score of the irrigated class decreased from 0.87 to 0.83 while that of the 

non-irrigated class decreased from 0.94 to 0.92. The kappa value also decreased from 0.81 to 

0.75. Although the accuracies reported using the 18 important WT coefficients show lower 

values compared to those obtained using the whole dataset, the proposed RF classifier keeps a 

very good performance. 

Table 4: The values of the overall accuracy, Kappa, F-score, precision, and recall obtained from the RF 

classifier using the 256 wavelet coefficients and the 16 important wavelet coefficients. 

Method Class Precision Recall F-Score 

WT-RF 256 Variables 

Irrigated 0.94 0.81 0.87 

Non-Irrigated 0.90 0.97 0.94 

OA 91.4% 

Kappa 0.81 

F-score 0.91 

WT-RF 18 Important Variables 

Irrigated 0.89 0.78 0.83 

Non-Irrigated 0.89 0.95 0.92 

OA 89.1% 

Kappa 0.75 

F-score 0.89 

4.2.3 NDVI-RF 

The RF using NDVI data was first developed with the 17 PC values obtained from the 

application of the PCA on the NDVI temporal series. The accuracy obtained when validating 
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the model is reported in Table 5. Then, the analysis of the variables’ importance allows us to 

fix a threshold value of 4% for the increase in mean square error. This threshold reduced the 

number of variables from 17 PC values to seven. The important PC variables obtained includes 

the first five, the eighth and 11th PC dimensions. The regeneration of the RF classifier using 

the seven important PC dimensions of NDVI produced approximately similar accuracy to that 

using all the PC variables. The overall accuracy decreased by only 1% while the kappa and F-

score decreased by 2% and 3% respectively. 

Table 5: The values of the overall accuracy, Kappa, F-score, precision, and recall obtained from the RF 

classifier using the 17 normalized differential vegetation index (NDVI)-PC and the seven important 

NDVI PC values. 

Method Class Precision Recall F-Score 

NDVI-RF 17 Variables 

Irrigated 0.94 0.78 0.85 

Non-Irrigated 0.89 0.97 0.93 

OA 90.5% 

Kappa 0.78 

F-score 0.91 

NDVI-RF 7 Important Variables 

Irrigated 0.92 0.76 0.84 

Non-Irrigated 0.88 0.96 0.92 

OA 89.5% 

Kappa 0.76 

F-score 0.88 

4.2.4 RF using Combined Optical and SAR Data 

The RF classifier using the 15 important PC variables shows slightly higher accuracy than 

that using the WT coefficients. For this reason, the important variables of the PC-RF were 

combined with the important variables of the NDVI-RF in a new RF classifier. The accuracies 

obtained are presented in Table 6. In general, a slight increase in the overall accuracy is obtained 

when adding the NDVI data to the SAR data using the PC values. The overall accuracy 

increased by 1.6% while kappa increases by 3%. The F-score of the classification remains 

unchanged. 

Table 6: The values of the overall accuracy, Kappa, F-score, precision, and recall obtained from the RF 

classifier using 15 important SAR PC variables and the seven important NDVI PC variables. 

Method Class Precision Recall F-Score 

15 variable SAR PC-RF + 7 

variable NDVI-RF 

Irrigated 0.95 0.82 0.88 

Non-Irrigated 0.91 0.98 0.94 

OA 92.3% 

Kappa 0.82 

F-score 0.91 
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4.3 Classification using Convolutional Neural Network 

4.3.1 CNN on SAR Temporal Series 

As discussed in Section 3.7, the CNN was applied on the SAR temporal series of 

σP,VV
0 , σP,VH

0 , ∆σPG,VV
0 , ∆σPG,VH

0  using the SAR branch of the developed CNN1D model. The data 

was divided into 50% for training, 40% for validation and 10% for testing. Table 7 summarizes 

the accuracy obtained when applying the CNN method on the SAR temporal series with the 

corresponding standard deviation of 10 different iterations. The CNN approach reports very 

high accuracy where the overall accuracy reaches 94.1%. The kappa value of the classification 

reaches 0.87 and the F-score of is 0.94. The F-score of the irrigated class reaches 0.91 which is 

less than that of the non-irrigated class (0.96). 

Table 7: The values of the overall accuracy, Kappa, F-score, precision, and recall obtained from the 

CNN method on SAR data. 

Method Class Precision Recall F-Score 

CNN on SAR Data 

Irrigated 0.93 0.89 0.91 

Non-Irrigated 0.95 0.96 0.96 

OA 94.1% ±  0.06 

Kappa 0.87 ±  0.0014 

F-score 0.94 ±  0.0006 

4.3.2. CNN Using NDVI Temporal Series 

Using the optical branch of the developed CNN, the approach was also applied on the NDVI 

temporal series composed of 17 different NDVI values. The data was also divided into 50% for 

training, 40% for validation and 10% for testing. The accuracy obtained from the 10 iterations 

is reported in Table 8. The overall accuracy reaches 91.6% while the kappa and F-score values 

reach 0.81 and 0.91 respectively. The irrigated class also shows a lower F-score value (0.87) 

than the non-irrigated class (0.94). 

Table 8: The values of the overall accuracy, Kappa, F-score, precision, and recall obtained from the 

CNN method on NDVI data. 

Method Class Precision Recall F-Score 

CNN on Optical Data 

Irrigated 0.93 0.81 0.87 

Non-Irrigated 0.91 0.97 0.94 

OA 91.6% ±  0.06 

Kappa 0.81 ±  0.0016 

F-score 0.91 ±  0.0006 
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4.3.3. CNN Using Combined SAR and Optical Data 

The application of the two branches of the CNN model (SAR and optical branches) 

discussed in Section 3.7 shows that the classification model using both datasets did not 

considerably increase the accuracy of the classification. The overall accuracy of the combined 

model reaches 94.5% ± 0.05. The kappa coefficient and the F-score increased by 1% only. The 

accuracy of the irrigated class has increased with 1% while that of the non-irrigated class 

remained stable (Table 9). 

Table 9: The values of the overall accuracy, Kappa, F-score, precision, and recall obtained from the 

CNN method on combined SAR and optical data. 

Method Class Precision Recall F-Score 

CNN on Combined SAR and Optical 

Data 

Irrigated 0.94 0.90 0.92 

Non-Irrigated 0.95 0.97 0.96 

OA 94.5% ± 0.05 

Kappa 0.88 ±  0.0016 

F-score 0.95 ±  0.0005 

4.4 Irrigation Mapping 

Using the SAR based classification, three different maps were produced which are the WT-

RF based map (Figure 10a), the PC-RF based map (Figure 10b) and the CNN based map (Figure 

10c). In the three maps, the blue and the red colors represent the irrigated and non-irrigated 

plots, respectively. The irrigated areas in the classified maps are centered mainly in the western 

part of the study site. The irrigated part present in the south is the Ebro Delta typically used for 

rice cultivation which is inundated from April to November. 
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Figure 10: Irrigation mapping using the (a) WT-RF model, (b) PC-RF model and (c) the CNN model. 

Irrigated areas are presented in blue while non-irrigated areas are shown in red. A zoom version of the 

yellow box in each map is provided to better visualize different classification results. 

5. Discussion 

In this study, irrigated areas were mapped over a study site in Catalonia, Spain using 

Sentinel-1 (S1) SAR time series and optical NDVI time series by applying two classification 

approaches: Random forest (RF) and a convolutional neural network (CNN). The potential of 

each data type was investigated, and the combined use of both data types was also presented 

for both classification approaches. 

5.1 Comparison of σ° SAR Backscattering at Plot and Grid Scale 

Using S1 data only, the analysis of the σ° SAR temporal series showed that an irrigated plot 

encounters a frequent change of the σ° SAR backscattering coefficient due to the artificial 

application of water. This change in the σ° should be differentiated from the change in σ° due 

to the rainfall events. Thus, the ambiguity between rainfall events and irrigation event was the 

most challenging point using S1 data. To overcome this uncertainty, the σ° SAR backscattering 

coefficient at plot scale was compared to that obtained at grid scale (10 km × 10 km). The 

assumption says that if the mean S1 signal within 10 km × 10 km grid cell, obtained from the 

bare soil plots with low vegetation cover, increases between two consecutive dates then a 

rainfall event took place. On the other hand, if σ° value increases at plot scale with stability or 
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decrease of σ° SAR backscattering coefficient obtained at grid scale then an irrigation event 

most probably took place. This dependency was clearly shown in Figure 6 for the irrigated and 

non-irrigated plots. Therefore, the difference between σ° SAR at plot and grid scales helps 

remove the ambiguity between rainfall and irrigation events. 

5.2 Random Forest with PC and WT Transformation 

A transformation of the S1 data by the means of principal component analysis and wavelet 

transformation was applied to the four temporal series of each plot 

(σP,VV
0 , σP,VH

0 , ∆σPG,VV
0 , ∆σPG,VH

0 ). This data transformation of the S1 data showed that using 

either the PC dimensions or the WT coefficients, the irrigated/non-irrigated plots were 

classified with high accuracy using a classical random forest classifier. As a classical machine 

learning method, the RF classifier remains a powerful tool. It is good to mention that adding 

∆σPG,VV
0  and ∆σPG,VH

0  remarkably improved our classification accuracy where the overall 

accuracy increased by more than 15%. This enhancement confirms the relevance of our 

assumption of using conjointly σP
0  to σPG

0  to remove the rainfall-irrigation ambiguity for better 

detection of irrigation. However, in the performed RF classification, the majority of the irrigated 

plots misclassified as non-irrigated plots belong to winter cereals agricultural including wheat, 

barley and oat. To fully understand whether those plots were actually irrigated or not, the NDVI 

temporal behavior of these plots was analyzed and compared to similar non-irrigated 

agricultures. The cycle and maximum values of NDVI did not significantly differ from similar 

non-irrigated agricultures. Thus, some plots being in an irrigated district could be registered as 

irrigated but actually the irrigation did not take place. Moreover, if some winter cereal plots 

(which are usually not irrigated) were exceptionally irrigated and thus misclassified, then this 

may be due to the fact that these plots are irrigated only very few times during the growing 

cycle, and these few irrigation activities have occurred at a date far from the date of S1 

acquisition. In this case, the soil moisture of a given plot irrigated five or six days before the S1 

acquisition date will certainly decrease to reach a level equivalent to that attained before the 

irrigation. Hajj et al. (2014) who have demonstrated that the radar signal could be used to 

identify three-day-old irrigated plots, but it could be difficult to detect irrigation event if the 

irrigation occurs far away from the SAR acquisition time (more than four days). 

Moreover, the assessment of the variable importance of the PC dimensions and the WT 

coefficients allowed us to significantly reduce the number of variables in the RF approach. 

From the results obtained, only 15 out of 328 variables were conserved in the PC-RF and 18 
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out of 256 variables were kept in the WT-RF. Using the conserved important variables in both 

methods, the accuracy slightly decreased compared to that obtained using all variables (in PC-

RF the OA decreased by 0.5% while in WT the OA decreased by 2.3%). This reduction of 

variables’ numbers allows reducing considerably the training time of the model. 

5.3 CNN Approach 

Another approach tested was the convolutional neural network (CNN). The CNN applied 

directly to the four S1 derived temporal series showed a remarkable capability to classify 

irrigated/non-irrigated areas. It is clearly observed that the CNN-based classification approach 

has a better performance than the classical RF machine learning using either the PC dimensions 

or WT coefficients. The CNN approach shows higher overall accuracy (94.1%) than the PC-

RF (90.7%) and the WT-RF (89.1%). In terms of the F-score and the Kappa coefficient, the 

CNN is also superior to the RF classifier. The gain in the performance offered by the CNN is 

clearly visible on the irrigated class where the precision, recall and F-score are higher for CNN 

than that for the RF classifier. For the non-irrigated class, the obtained accuracies by the two 

approaches are quite similar. Thus, the increase of the overall accuracy when using the CNN 

approach is mainly caused by better detection of irrigated plots. 

5.4 Inter-Comparison and Quality Assessment 

An inter-comparison was performed between the maps obtained from the PC and that from 

the CNN in the three different scenarios: SAR only, optical only and combined SAR and 

optical. Figure 11 summarizes the accuracy indices (OA, Kappa, and F-score) obtained for the 

RF and CNN classifiers in the three different scenarios. The comparison between different 

classifications was first evaluated through the obtained accuracy indices. Moreover, to properly 

assess the performance of the tested machine learning algorithms (CNN and RF), the 

significance of the overall accuracy between classifications was calculated using the McNemar 

statistical test (McNemar, 1947; Dietterich, 1998). Several studies have reported the use of the 

McNemar test to compare between two classification approaches (Georganos et al., 2018; 

Hidayat et al., 2018; Wang et al., 2018). In this test, a null hypothesis that there is no significant 

difference between OA values of the two compared classifications is proposed. The McNemar 

test will reject this null hypothesis if the calculated probability (p-value) is less than 0.05 (i.e., 

considering 95% confidence level). In this case, the two classification schemes show a 

statistically significant difference. 



CHAPTER III: SUPERVISED CLASSIFICATION APPROACHES FOR MAPPING IRRIGATED 

AREAS USING SENTINEL-1 AND SENTINEL-2 DATA 

 

121 

 

 

Figure 11: Comparison of accuracy indices between RF and CNN classifications in three different 

scenarios: (a) Using the S1 SAR data, (b) using S2 optical data and (c) using S1 SAR and S2 optical 

data. 

Using SAR data only, the cross-comparison showed a 92% of agreement between both 

maps. This means that 92.2% of the plots were commonly correctly classified using both 

models. Among this percentage, 95.5% of the plots being non-irrigated were classified as non-

irrigated plots while 88.0% of the plots registered as irrigated are correctly classified as irrigated 

in both models. The CNN model was able to correctly classify 4317 plots (forming 6.4% of the 

total number of irrigated plots) as irrigated which were not classified using the RF approach. 

Among these plots, 43% are irrigated cereals plots including wheat, barley and oat. The CNN 

thus was able to improve the accuracy for irrigated cereals compared to the RF classifier. This 

improvement was clearly visible in terms of the precision, recall and F-score of the irrigated 

class in the CNN compared to that in the RF-classifier. Moreover, the McNemar test reveals 

that the two classification approaches using SAR data have a significant statistical difference 

with p-value less than 0.05. 

The use of the NDVI temporal series only shows approximately similar performance 

between the RF classifier and the CNN in terms of overall accuracy (89.5% and 91.6% for RF 

and CNN respectively). However, the inter-comparison between the classifications’ results 

using NDVI time series shows that 90.2% of the plots were commonly correctly classified using 

both models. Among this percentage, 96.0% of the non-irrigated plots were correctly classified 

in both maps while 80.0% of the irrigated plots were commonly classified as irrigated plots. In 

terms of p-value obtained from the McNemar test, the results also show that the two approaches 

have significant statistical difference with a p-value < 0.05. Finally, it is good to mention that, 

compared to the use of S1 data, the use of the NDVI data performed well in classifying irrigated 

areas in both approaches. As irrigation in the region usually takes place between May and 
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September, the probability of a plot being irrigated increases when a growing cycle exists in 

summer season. 

The combined use of optical and radar data in the RF classifier has slightly increased the 

classification results compared to that obtained using SAR data only while the results did not 

significantly change in the CNN approach. The inter-comparison between the results here 

shows that 94.0% of the plots were commonly correctly classified including 97.1% of the non-

irrigated plots and 87.8% of the irrigated plots. The p-value obtained from the McNemar test 

also indicates that the classification approaches have significant statistical difference. 

Moreover, to properly assess the quality of the obtained results, the proposed method was 

compared with the method recently adopted by Gao et al. (2018). In their study, they mapped 

irrigated areas in a region (20 km × 20 km) located in Urgell Catalonia, Spain (contained within 

our study site) using the SIGPAC data and the S1 multi-temporal SAR data. To map 

irrigated/non-irrigated plots, Gao et al. (2018) used the statistical metrics including the mean, 

variance and correlation length of S1 SAR time series obtained at each plot in VV and VH 

polarization. They obtained an overall accuracy of 81.1 % using the SVM (support vector 

machine) and similar accuracy using the RF classifier. For the study site examined in this study, 

the approach proposed by Gao et al. (2018) was tested using the RF classifier. For each plot, 

the same metrics were calculated: The mean of the SAR time series, the variance and the 

correlation length of the SAR signal in both VV and VH polarizations. Results showed low 

accuracy compared to our proposed RF classifiers. The overall accuracy obtained was 80.1% 

with accuracy of irrigated class reaching 60.8% only while that of the non-irrigated class 

reaching 90.3%. Moreover, the addition of these metrics (mean, variance and correlation length) 

to our RF classifier of PC variables or WT coefficients did not enhance the accuracy of the 

classification obtained. 

5.5 Strength, Limitations and Future Directions 

The S1 satellite with the 6 days revisit time allows more precise temporal follow-up of 

agricultural crops. S1 is now the only operational satellite system providing dense time series 

in free and open access mode with global coverage. Thus, any method based on the use of S1 

time series could interest a wide range of end users. Moreover, the advantage of using S1 

temporal series rather than the optical time series is that radar sensors are not limited to good 

weather conditions. The cloud cover, that may be present in the optical images of certain 
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geographical regions, could be a drawback when working with optical satellites. Even though 

the combined use of optical and radar data did not highly enhance the classification results, the 

synergic use of microwave and optical data could increase the possibility of transferring the 

model across different regions.  

The six days temporal resolution of the S1 satellite allows the detection of irrigation events 

especially when the irrigation frequency is high. As shown by Hajj et al. (2014), irrigation could 

be still detected even if the irrigation took place three days before the radar acquisition. On the 

other hand, the detection of irrigation becomes difficult if the irrigation event takes place five 

or six days before the SAR acquisition. However, the effect of irrigation on the radar 

backscattering can change depending on the irrigation technique used (inundation or sprinkler) 

and the frequency of irrigation (weekly or daily).  

Although the RF classifier was less accurate than the deep learning model, the RF classifier 

remains quite precise and competitive. With the dense time series now available, the 

comparison between classical and advanced machine learning techniques allows us to study the 

importance of both techniques to intelligently exploit the temporal behavior of SAR signal in 

the multi-temporal remote sensing data. 

The proposed model was trained on Catalonia region of Spain which is a Mediterranean 

climatic region. Other regions may have different climatic and soil conditions which could lead 

to unsatisfactory results when applying the trained model. Hence, for future studies, including 

other climatic regions in the training process, we would make the proposed model more generic. 

However, with an accuracy exceeding 90%, the trained model could be applied across regions 

with close climatic conditions while maintaining good classification results. Currently, studies 

are concentrating on region adaptation and transfer learning which allow the use of one model 

on several regions. Therefore, future work should concentrate on adapting the proposed model 

to use it over other study sites. Moreover, future work should also concentrate on building 

effective unsupervised approaches that do not require any training procedure. In this case, the 

transferability of the approach would be easier. 

6. Conclusions 

In this paper, a new methodology for mapping irrigated areas using Sentinel-1 time series 

was introduced. First, a temporal series of SAR backscattering coefficients from the S1 data 

was obtained at plot scale in VV and VH polarization. To remove the ambiguity between 
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rainfall and irrigation events, the S1 signal at plot scale was compared to that obtained at grid 

scale (10 km × 10 km). Then, two different transformations including the PCA and the WT 

were applied to both the S1 temporal series at plot scale (σP
0) and the temporal series of the 

difference between plot and grid (∆σPG
0 ). Using the PC dimensions and the WT coefficients, 

irrigated areas were classified in two different random forest classifiers. The results show a 

good overall accuracy (OA) for the RF classifier using the PC values (90.7%) and the WT 

coefficients (89.1%). Moreover, the PC transformation was applied on the NDVI time series 

obtained from Sentinel-2 optical images. Results showed that the RF classifier using optical 

data (NDVI) performs well with OA = 89.5%. The combined use of optical and SAR data (in 

PC values) slightly improved the classification accuracy (OA = 92.3%).  

Another approach tested in this study was the one-dimensional convolutional neural 

network (CNN). The convolutional neural network was applied to the S1 time series obtained 

at plot scale σP
0    and difference between plot and grid scales (∆σPG

0 ). The results of the 

validation of CNN approach showed very high accuracy (OAm = 94.1%) compared to that 

obtained using the RF classifiers. The accuracy of the irrigated class increased when using the 

CNN approach thus allowing better detection of irrigated plots. The use of NDVI data only in 

a CNN classifier produced lower overall accuracy (91.5%) than that obtained using S1 data 

only. However, the combined use of both data types in the CNN did not significantly improve 

the accuracy. 

The proposed approach should be applied to other agricultural areas to better assess its 

relevance and possible usage in operational mode. Given the very good accuracy obtained and 

the fact that S1 data is free and open access, the use of Sentinel-1 data is relevant. Even though 

the optical data presents good results, its use could be problematic in certain geographical areas 

due to the presence of cloud cover. However, machine learning algorithms including classical 

or advanced approaches still require training data to obtain good classification results. Thus, 

future work should also focus on building effective approaches to detect irrigation using less 

training data. 
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Abstract 

This letter proposes a deep learning model to deal with the spatial transfer challenge for the 

mapping of irrigated areas through the analysis of Sentinel-1 data. First, a convolutional neural 

network (CNN) model called “Teacher Model” is trained on a source geographical area 

characterized by a huge volume of samples. Then, this model is transferred from the source area 

to the target area characterized by a limited number of samples. The transfer learning 

framework is based on a distill and refine strategy, in which the teacher model is first distilled 

into a student model and, successively, refined by data samples coming from the target 

geographical area. The proposed strategy is compared with different approaches including a 

random forest (RF) classifier trained on the target data set and a CNN trained on the source data 

set and directly applied on the target area as well as several CNN classifiers trained on the target 

data set. The evaluation of the performed transfer strategy shows that the “distill and refine” 

framework obtains the best performance compared with other competing approaches. The 

obtained findings represent a first step toward the understanding of the spatial transferability of 

deep learning models in the Earth observation domain. 

Index Terms—Deep learning, knowledge distillation, satellite image time series, Sentinel-

1 (S1), transfer learning. 



CHAPTER III: SUPERVISED CLASSIFICATION APPROACHES FOR MAPPING IRRIGATED 

AREAS USING SENTINEL-1 AND SENTINEL-2 DATA 

 

127 

 

1. Introduction 

Irrigation, nowadays, plays a significant role in agricultural production in order to meet the 

global food requirement (Cai and Rosegrant, 2002). Due to this fact, a better management of 

irrigation policies is required to deal with the high demand of food with the increase in the 

global population (Godfray et al., 2010). To support such policies, accurate information on the 

irrigated area extent are essential to manage water resources or evaluate irrigation water 

requirements. Unfortunately, the extent and distribution of irrigated areas remain indefinite and 

the large scale mapping of such property remains a challenge for modern remote sensing 

analysis. Recent works have pointed out that SAR (Synthetic Aperture Radar) signal seems to 

be more suitable to map different agricultural irrigated areas (Gao et al., 2018). The main 

assumption is related to the fact that radar signal is sensitive to the water content of soil due to 

a positive correlation between the dielectric constant and the soil water content. Following this 

direction, time series of SAR information acquired via the recently Sentinel-1 (S1) SAR 

constellation provides an effective tool for large-scale area mapping and monitoring due to their 

high revisit period (six days revisit time). To perform such mapping, machine (and deep) 

learning based techniques are becoming the standard tools since they allow large-scale analysis 

and they provide acceptable results (Pelletier et al., 2019; Zhu et al., 2017). One of the key 

question about the adoption of machine learning based solution is related to their ability, given 

a particular task, to be spatially transferred from a geographical area to another spatially 

uncorrelated one. 

Considering the task of mapping irrigated areas (Bazzi et al., 2019c), the challenge is to 

build a predictive model from a rich set of labelled samples available on a particular area and, 

successively, adapt this model on another geographical area, with a limited set of labelled 

samples. This adaption could be crucial to conceive large-scale monitoring systems in 

operational scenario. 

With the aim to tackle this issue, we propose a deep learning (Zhu et al., 2017) framework 

capable to adapt a predictive model trained from a source dataset (characterized by a large 

volume of labeled samples) to deal with the irrigation mapping on a target dataset (characterized 

by a limited number of labeled samples). To this end, we propose a distill before refine 

framework in which first a teacher model is learned on a source dataset, then a smaller student 

model is distilled from the teacher model and finally the student model is fine-tuned to deal 

with the classification task on the target dataset.  
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Here, the challenge behind our framework is that models with a huge number of parameters 

are difficult to fine-tune (refine) on classification tasks where a very limited number of labeled 

samples are available.  

The innovative component of our framework is associated to the use of Knowledge 

Distillation (Hinton et al., 2015) to distill a new smaller model that can be easily fit with new 

limited labelled samples on the target study area. In the general context of fine-tuning 

approaches (Yin et al., 2019; Zhou et al., 2017), the model learnt on the source data is directly 

fine-tuned on the target data without considering the issues related to scarce or limited 

information. To the best of our knowledge, we are not aware about any other research work that 

adopts a similar pipeline to deal with spatial transfer learning in the field of remote sensing. 

The proposed methodology is implemented on mapping irrigated areas in which the 

classification problem involves Irrigated vs. Non Irrigated area detection. The experiments are 

conducted considering a source study area from Catalonia region of north east Spain where a 

time-consuming and cost-intensive field campaign were conducted collecting around 193,000 

labelled samples and a target study area, from West Occitanie region of South France, where 

the reference data is constituted of less than 500 examples. 

2. Data 

In this section, we introduce the geographical areas involved in this study: the source dataset 

over the Catalonia region and the target dataset over the West Occitanie (South of France) 

region. We also introduce the Sentinel-1 SAR satellite images involved in this study and detail 

the different pre-processing steps performed to obtain the Sentinel-1 time series backscattering 

coefficients at plot scale. 

We point out that, in terms of climate, both studied zones (Catalonia and West Occitanie) 

are extremely different. In fact, the climate of the Catalonia region is typically Mediterranean 

where the average annual precipitation is around 376 mm. On the other hand, the climate in 

West Occitanie is humid to oceanic with average annual precipitation of 1200 mm. In both 

regions, irrigation mainly occurs in the summer season between May and October of each year. 

However, the summer season in Catalonia is very dry with rare rainfall events whereas the 

summer season in West Occitanie is more humid with average precipitation of 300 mm between 

May and October. 
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(a) 

 

(b) 

Figure 1: Location of the source and the target study sites. (a) Catalonia region of North East Spain.  

(b)  Western Occitanie region of South France 

Catalonia dataset 

Over the Catalonia region of northeast Spain (Figure 1a), the SIGPAC (Geographic Information 

System for Agricultural Parcels) data are provided by the General Direction of Rural 

Development of the Generalitat of Catalonia. The SIGPAC data represents the agricultural plots 

digitized using ortho-photo images of 25-cm spatial resolution at scale 1:2000. Each plot in the 

provided dataset is identified by a unique identification code, surface area, land use and an 

irrigation coefficient (0 for non-irrigated and 100 for irrigated). Each year, an update of the 

database is provided based on an annual large field campaign in order to maintain the credibility 

of the dataset (mainly irrigation information and crop type). In our study, a total of 193 000 

plots covering an area of 3795 km2 of different crop types and irrigation management have been 

used to develop the later called teacher model. Among different land cover types, only 

agricultural crops (summer and winter crops) were considered for the irrigation classification. 

Forests, urban, and orchards plots were eliminated. In general, winter cereals such as wheat, oat 

and barely are rarely irrigated with some exceptions. On the other hand, irrigated plots mainly 

include alfalfa, maize, grassland, beans, rapeseed and Rice. Among the total number of plots, 

126 000 are non-irrigated whereas 67 000 plots are irrigated. 

West Occitanie dataset 

Over the western part of the Occitanie region of south France (Figure 1b), a terrain campaign 

was conducted over different summer crop plots in 2017. In this field campaign, the existence 
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or absence of irrigation activity over the summer crops was registered for each visited plot. The 

land cover of the plot was also recorded. Finally, a total of 451 plots including 300 non-irrigated 

and 151 irrigated plots were registered for the agricultural season of summer 2017. The 

dominant crop types of the collected plots are maize and soybeans. 

Sentinel-1 Time Series 

Over the Catalonia region, a total of 82 C-band (5.405 Ghz) SAR images acquired by S-1A and 

S-1B satellites were used for the period between September 2017 and December 2018. Over 

the West Occitanie region, the collected irrigation information correspond to the year 2017. 

Thus, the same number of images (82 images) were collected over this region for the period 

between September 2016 and December 2017. The 164 images (82 for Catalonia and 82 for 

Occitanie) are acquired in the Interferometric Wide (IW) mode in both VV and VH 

polarizations. These S1 images are of Level-1 Ground Range Detected (GRD) product with a 

pixel spacing of 10 m x 10 m and six days revisit time. The Sentinel-1 toolbox 

(https://step.esa.int/main/toolboxes/snap) (S1TBX) developed by the European Spatial Agency 

(ESA) was used to calibrate the S1 images. This calibration converts the digital number of 

downloaded SAR images into backscattering coefficients in linear units and ortho-rectifies the 

images using a 30-m digital elevation model of the Shuttle Radar Topography Mission (SRTM). 

The temporal series of the S1 SAR backscattering coefficients over each agricultural plot in 

each region was then obtained by averaging the σ0 values of all pixels within each plot at each 

available date and at both VV and VH polarizations. 

3. Contributions 

In this section, we describe our Distill before refine framework devoted to deal with spatio-

temporal transfer learning over different geographical areas. Conversely to other scenarios in 

which the transfer is made between different classification problems or considering different 

type of data (Huang et al., 2017; Zhao et al., 2017) the process here focuses on the transfer 

between two distinct geographical areas fixing the classification problem (irrigation mapping) 

as well as the type of considered data (Sentinel-1 time series data). Figure 2 visually depicts the 

different steps of our proposed pipeline. 
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Figure 2: The overview of our distill and refine pipeline. (1) A complex deep learning approach 

(teacher) is learned on a certain study area involving a large volume of labeled samples. (2) A smaller 

(student) model is distilled from the teacher one. (3) The student model is finally fine-tuned with the 

limited labeled samples available on the target study area. 

Firstly, a model is trained from scratch on the source dataset that is characterized by a large 

volume of labelled samples (Step (1) in Figure 2). Such model, considering knowledge 

distillation literature (Hinton et al., 2015; Shi et al., 2019), is commonly denoted as teacher 

model. Secondly, a lighter model (commonly named student) is distilled from the teacher model 

(Step (2) in Figure 2). The distillation step allows to transfer the knowledge from the teacher to 

the student model. More in details, during this step, we are trying to synthesize the teacher 

behavior in a usually smaller network that should behave similarly to the bigger one. Once the 

knowledge is distilled in the student network, such model is finally fine-tuned considering the 

limited labeled samples coming from the target study area (Step (3) in Figure 2). 

The main ratio behind our framework is the follows: models involving a huge number of 

parameters such as the teacher model can hardly be fine-tuned on a target dataset characterized 

by a scarce number of labelled samples. Conversely, smaller and lighter models such as the 

student one, that behave similar to bigger ones, can be adapted more easily in the presence of 

scarce training data since they involve a smaller number of parameters to modify. 

Considering the classical framework of knowledge distillation (Hinton et al., 2015), given 

a teacher T and a student S networks, the main objective is to distill the knowledge of T inside 

the network S. Usually, the common assumption is that the network T is much bigger than the 

network S in terms of parameters. 

To deal with the knowledge distillation task, (Hinton et al., 2015) proposes to learn the 

student network considering the following loss function 𝐿: 
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𝐿 =  
1

|𝑋|
 ∑ 𝛼 ∗ 𝐿1 + (1 − 𝛼) ∗ 𝐿2

𝑥𝑖 ∈𝑋

 

(1) 𝐿1 = 𝐿𝐶𝐸(𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑓𝑠(𝑥𝑖)), 𝑦𝑖) 

𝐿2 = 𝐾𝐿 (𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑓𝑠(𝑥𝑖)

𝜏
) , 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (

𝑓𝑇(𝑥𝑖)

𝜏
)) 

where the main loss (𝐿) is a linear combination of two other task-specific losses (𝐿1 𝑎𝑛𝑑 𝐿2) 

and the linear combination is weighted by the parameter 𝛼. The first task-specific loss (𝐿1) is 

the classical cross-entropy loss usually employed in multi-class classification task. The second 

loss 𝐿2 is the Kullback-Leibler divergence between the predicted output distribution of the 

teacher and the student 𝑥𝑖 ∈ 𝑋 (resp 𝑦𝑖) is an example of the dataset (resp. the associated label). 

In Hinton et al. (2015) the authors employ a temperature scaling factor 𝜏 to smooth the last 

output layer of the neural models before perform the softmax normalization. We remind that 

𝑓𝑇(. ) and 𝑓𝑆(. )are the pre-softmax outputs for the teacher and student model, respectively (the 

Softmax (https://en.wikipedia.org/wiki/Softmax_function) operator is a standard component of 

modern neural network classification model). The objective of the loss 𝐿2 is to force the student 

model to simulate the output of the teacher model with the aim to distill the teacher behavior 

into the student network. 

3.1 Teacher and Student Model Implementation 

In our case, both the teacher and the student models are implemented as Convolutional 

Neural Networks (CNNs). Table 1 resumes the architecture of the teacher and student CNNs. 

Each convolutional operation (Conv) is associated with a successive Batch Normalization and 

Dropout layer. The convolution takes as input the number of filters (nf), the kernel size (k), the 

stride (s) and the activation (act). 

Our CNN follows the idea of temporal CNN introduced in (Pelletier et al., 2019)where the 

convolution is performed on the time dimension. Considering the Fully Connected layer (FC), 

we apply Batch Normalization and Dropout except for the output layer. The FC layer takes as 

inputs the number of neurons nn and the activation function act. For all the layers we adopt the 

Rectifier Linear Unit (Nair and Hinton, 2010) except for the last output layer that is associated 

to a linear function followed by the Softmax operator. 

Comparing the teacher and the student models, we can observe that the former is deeper 

than the latter (11 vs. 6 layers) and the teacher model involves more than the double of 
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parameters of the student model (about 1.69M vs. 0.69M). Considering the student network, 

we eliminate all the fully connected layers. Moreover, the Global Average Pooling (GAP) layer, 

at the end of the convolutional layers, is directly connected with the output layer. The GAP 

layer aggregates each feature maps via the average operator producing a layer with as many 

neurons as the number of the feature maps at the precedent step. 

Table 1: Architectures of the Teacher and Student Convolutional Neural Networks 

Teacher Model Student Model 

Conv(nf=64, k=7x1, s=1, act=ReLU) Conv(nf=96, k=7x1, s=1, act=ReLU) 

Conv(nf=64, k=5x1, s=2, act=ReLU) Conv(nf=96, k=5x1, s=2, act=ReLU) 

Conv(nf=128, k=5x1, s=1, act=ReLU) Conv(nf=192, k=5x1, s=1, act=ReLU) 

Conv(nf=128, k=5x1, s=2, act=ReLU) Conv(nf=192, k=5x1, s=1, act=ReLU) 

Conv(nf=256, k=5x1, s=1, act=ReLU) Conv(nf=384, k=5x1, s=1, act=ReLU) 

Conv(nf=256, k=5x1, s=1, act=ReLU) GlobalAveragePooling 

Conv(nf=256, k=3x1, s=1, act=ReLU) FC(nn=2, act=None) 

Conv(nf=256, k=1x1, s=1, act=ReLU)  

Flatten  

FC(nn=512, act=ReLU)  

FC(nn=512, act=ReLU)  

FC(nn=2, act=Linear)  

Number Parameters Number Parameters 

1 693 570 697 538 

4. Experiments 

In this section we evaluate our distill before refine framework in the context of irrigation 

area mapping using Sentinel-1 time series data and the datasets introduced in Section 2. We 

refer to the Catalonia dataset as source dataset and the West Occitanie dataset as a target dataset. 

We compare the performance of our proposal with respect to several competing methods to 

pinpoint the benefits of compressing the deep learning model before performing fine-tuning on 

a study area characterized by a limited number of samples.  
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4.1 Experimental Settings 

To assess the performances of the different methods we consider two standard metrics: 

Accuracy and F-Measure (Tan et al., 2006). While the former is a standard metric in remote 

sensing, the latter corresponds to the harmonic mean between precision and recall and it is well 

suited to evaluate classification performances in unbalanced scenario.  Considering the Teacher 

CNN model (trained on the Catalonia region characterized by a large volume of labeled 

samples), we consider 80% of the dataset as training data while the rest as validation set to 

choose the best model. More in detail, the model that achieves the best accuracy on the 

validation set is the one that is retained for the subsequent steps.  

Considering the fine-tuned step (trained on the French area characterized by a limited 

number of labeled samples), we adopt the following settings: we employ 33% (150 samples) of 

the data as test set, 20% (60 samples) of the data as validation set while we use the rest of the 

samples as training data (240 samples). Regarding the training set, given the validation and test 

set, we evaluate different models considering different amounts of training samples: 

{60,120,180,240}. In this way, we can study the behavior of the different approaches 

considering a varying amount of training data to feed the learning process. For each method, 

we repeat the procedure 10 times and we report the averaged value for each metric. For the 

different competing approaches, we involve: a Random Forest classifier learned directly on the 

target study area (Occitanie), we name such method RF; a CNN model with the same 

configuration of the teacher network (resp. the same configuration of the student network) 

learned from scratch directly on the target study area named 𝐶𝑁𝑁𝑇 (resp. 𝐶𝑁𝑁𝑆); and the 

teacher model directly fined tuned on the target study area, we name such method 𝐶𝑁𝑁𝑡𝑟𝑎𝑛𝑠. 

The proposed distill before refine framework is named 𝐶𝑁𝑁𝐾𝐷. For the RF models, we optimize 

the model via the maximum depth of each tree (in the range {20, 40, 60, 80, 100}) and the 

number of trees in the forest (in the set {100, 200, 300, 400, 500}). For the CNN models we 

use Adam to optimize the parameters weights with a learning rate of 1 × 10−4. CNNs learned 

on the source dataset (Catalonia) are trained for 1000 epochs with a batch size equals to 256 

while the CNN models trained (or fine-tuned) on the target dataset (West Occitanie), are trained 

for 500 epochs with a batch size equals to 2. For the 𝐶𝑁𝑁𝐾𝐷 method, we empirically set the 𝛼  

and 𝜏  values to 0.5 and 1, respectively. 
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 4.2 Results 

Figures 3a and 3b resume the Accuracy and F-Measure results, respectively. Considering 

both metrics, the RF methods is quite stable over the considered range. No bigger difference 

can be noted between the smallest amount of training samples (60) and the biggest one (240). 

Regarding the 𝐶𝑁𝑁𝑇 and 𝐶𝑁𝑁𝑆 methods trained from scratch on the target dataset, as we can 

expect, they fail to be competitive considering small amount of training data. We can observe 

that when 60 labeled samples are considered, the models performances are really poor 

compared to the competitors. On the other hand, they achieve similar performances to the RF 

method when bigger amounts of training samples are considered. Inspecting the performance 

of the teacher model fine-tuned on the target study area (𝐶𝑁𝑁𝑡𝑟𝑎𝑛𝑠) it exhibits good 

performances starting from a training size of labeled examples equals to 120 but it does not 

show any successive improvement for larger training size. This is probably due to the fact that 

this deep learning model would need more labeled information to effectively modify the huge 

number of parameters it involves. Such behavior is highlighted regarding both evaluation 

metrics.  

Generally, we can observe that the 𝐶𝑁𝑁𝐾𝐷 obtains best (or comparable) results for all the 

considered amount of training samples regarding both Accuracy and F-Measure. Such 

difference is clearly visible when the number of training samples is greater or equals to 180. 

This behavior supports our distill before refine framework in which a smaller network distilled 

from a bigger one will be easier to adapt to a target domain characterized by a very limited 

number of labeled samples. This result constitutes a preliminary experiment in which the benefit 

of knowledge distillation is assessed to perform transfer learning from a source dataset (a 

geographical area) to a target dataset (another geographical area). 

Both Accuracy and F-Measure depicts almost the same behaviors among the different 

competing methods. The only point that changes between the evaluation of the two metrics is 

related to the comparison between the two CNN models trained from scratch (𝐶𝑁𝑁𝑇 and 𝐶𝑁𝑁𝑆) 

and the RF method on the range 120-240. Here we can observe opposite behaviour. Regarding 

the accuracy, it seems that the RF model slightly outperform the two CNN models while the 

opposite happens when F-Measure is considered. This is due to the fact that the test dataset, as 

the whole target dataset, is unbalanced with respect to the involved classes. The RF method is 

biased towards over-represented classes and this is why it achieves best (resp. worst) 

performances in terms of Accuracy (resp. F-Measure). On the other hand, the two CNN models 
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trained from scratch deals better with the unbalanced scenario achieving slightly better 

performance in terms of F-Measure since they are less biased towards over-represented classes. 

As additional test, we also evaluate the performance of the teacher model without any additional 

fine-tuning directly on the test set of the target dataset. In this experiment, we obtain a value of 

Accuracy and F-measure equal to 27.5% and 36.86%, respectively. Considering that we are 

dealing with a binary task, such performances are lower than the average random performances 

we can obtain on such task. This poor behavior indicates that the data distribution associated to 

the source (Catalonia area) and target (Occitanie area) datasets are really different and a heavy 

distribution shift exists. Such result confirms once more that the necessity to study and develop 

new machine learning approaches to deal with shifts in data distribution (due to spatial or 

temporal autocorrelation) to cope with spatio-temporal model transfer for remote sensing data.  

With the increasing availability of remote sensing data, coming from large scale monitoring 

systems (i.e. Copernicus data), issues related to transfer models learned from a particular area 

(resp. in a particular time period) to deal with data coming from another geographical area (resp. 

another time period) will get more and more attention in a near future and, probably, greater 

effort will be made in this direction. 

 

(a) 

 

(b)  

Figure 3: (a) Accuracy and (b) F-Measure results considering the different competing methods varying 

the amount of (target) train samples to learn the model on the West Occitanie dataset. 

5. Conclusions 

We have introduced a new distill before refine framework to deal with spatial transfer 

between two geographical areas coming from different countries. We have deployed the 

proposed framework in the context of irrigation mapping leveraging Sentinel-1 time series data. 

Experimental evaluations have underline the effectiveness of the proposed framework in the 
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context of irrigated area mapping. As future work, we plan to investigate more precisely the 

influence of the 𝛼 and 𝜏 hyper-parameters in the knowledge distillation phase of our framework. 

Acknowledgments 

This work was supported by the French National Research Agency under the Investments 

for the Future Program, referred as ANR-16-CONV-0004 (DigitAg). The authors which to 

thank the CNES for financing this project in the frame of TOSCA program. The authors would 

like to thank Maria Jose Escorihuel from the isardSAT, Catalunya for providing the SIGPAC 

data. Authors would also like to thank Fabien Dauriac of the Chamber of Agriculture of Hautes-

Pyrénées, France.



 

 

 

 

 

  



 

139 

 

CHAPTER IV: TOWARDS OPERATIONAL 

MAPPING OF IRRIGATED AREAS 

1. Analytical Summary 

1.1 Overview 

The use of S1 and S2 data in supervised classification approaches is capable of providing 

good accuracy for mapping irrigated areas. However, the dependency of supervised classifiers 

on terrain data remains an obstacle for operational mapping of irrigated areas. In addition, the 

detection of irrigation events at plot scale using remote sensing data did not yet receive 

important attention despite its vital need in irrigation water management. Before the arrival of 

the S1 and S2 satellites, previous satellite sensors did not have the sufficient temporal resolution 

required for irrigation detection. Indeed, before S1 and S2, most of the sensors had a revisit 

time of 2 weeks at best. Now, S1 and S2 satellites provides SAR and optical images with a 

revisit time better than one week, which could be adequate for irrigation detection at plot scale. 

In this chapter, a near real-time operational model for detecting irrigation events at plot scale 

(IEDM) is first proposed. The IEDM is based on a decision tree-based method built using S1, 

S2 and S2MP data. It principally relies on the change detection in the S1 backscattering 

coefficients following irrigation events at plot scale. To build the IEDM, irrigated and non-

irrigated plots in three study sites with different climatic properties were examined: 

Montpellier, Catalonia and Adour Amont watershed of southwest Occitanie. The behavior of 

the S1 backscattering coefficients following irrigation events was analyzed in the three study 

sites. In the IEDM, the soil moisture estimation derived from the S2MP at grid scale (10 km x 

10 km) and the S1 backscattering coefficients at grid scale were used to eliminate the 

uncertainty between rainfall and irrigation at plot scale. Additional filters were also integrated 

to reduce ambiguities due to vegetation development (phenology stages) and surface roughness 

using S2 NDVI values. To assess the accuracy of the IEDM for irrigation event detection, the 

IEDM was tested over a fourth study site located in the Crau plain of southeast France. The 

IEDM was applied over 46 irrigated grassland plots and the detected irrigation events were 

compared with in situ registered irrigation timing.  
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Then, the IEDM was integrated into an operational framework for mapping irrigated areas 

at plot scale. To insure the operational mapping of irrigated areas, a method capable of 

generating its own terrain training data is required. To generate automatically the training data 

(irrigated and non-irrigated plots), SAR and optical derived metrics were proposed. First, the 

IEDM was applied over all agricultural plots. Plots with no detected irrigation events are 

considered potentially non-irrigated whereas plots with very high number of detected irrigation 

events are considered as irrigated plots. From the selected plots using the IEDM, additional 

filter using the maximum NDVI value from S2 images was applied to select the final training 

dataset of irrigated/non-irrigated plots. Using the selected training dataset as well as S1 and S2 

temporal series, random forest classifier is constructed. The proposed framework was tested 

over a study site near Orléans city (northcentral France) for four distinct years. Figure xx 

presents a graphical abstract for the development of the IEDM and its integration in the 

operational mapping of irrigated areas.  

 

Figure C: Graphical abstract representing a general overview of the IEDM development and 

its use in the operational mapping of irrigated areas 
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1.2 Materials and Methods 

1.2.1 Study sites and reference data 

In this chapter, five different study sites were examined. First, three irrigated plots in 

Montpellier (south France) were examined in the IEDM development. For these three plots, 

exact irrigation dates are registered for the period between May and October 2017 (48 

episodes). These three plots were first used to analyze the effect of irrigation events on the 

backscattered SAR signal. The SIGPAC data from Catalonia region and the terrain data from 

Adour Amont (presented previously in Chapter 3) were also used to analyze the performance 

of the IEDM in irrigation detection. For a robust validation of the IEDM, a fourth study site 

was examined. In the Crau plain of southeast France (PACA region), 46 irrigated grassland 

plots were used to validate the accuracy of the IEDM in irrigation event detection. The exact 

irrigation date at each plot is registered for the period between March and September 2019 (814 

irrigation episodes). Irrigation over the 46 plots is performed using the gravity irrigation system. 

The plots usually encounter three different crop cycles from February to September. 

For the operational mapping of irrigated areas, a fifth study site located near Orléans city is 

examined. In this study sites, several terrain campaigns were conducted to obtain irrigation 

information (absence or existence of irrigation) for four different years (2017, 2018, 2019 and 

2020). Each year, the collected terrain data was used to validate the irrigation mapping 

performed using the proposed operational irrigation mapping methodology.  

1.2.2 Remote sensing data 

Over each study site, all possible Sentinel-1 images acquired with different S1 overpasses 

(ascending and descending) were downloaded and processed. Over Montpellier and Adour 

Amont sites, 92 images (46 ascending and 46 descending) images were obtained for each site 

(for the irrigation period between March 2017 and November 2017). For the Catalonia site, 162 

images (82 ascending and 82 descending) were used covering a period between September 2017 

and December 2018 (period of SIGPAC irrigation information). 180 S1 images were used over 

the Crau plain between February and September 2019. Finally, 578 S1 images were used for 

Orléans study site during the four studied years. All possible cloud free S2 images were also 

downloaded for each study site corresponding to the same period of the S1 acquisition 
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(frequency of approximately one to two S2 images per month). Moreover, all available S2MP 

maps over each study site were used. 

1.3 Methodology 

1.3.1 Development and assessment of the IEDM 

The IEDM is based on detecting the change in the SAR backscattering values at plot scale 

(σp
0) between the SAR acquisition at time ti and the previous SAR acquisition at time ti−1 

(∆𝜎𝑝
0 =   𝜎𝑝

0 (𝑡𝑖) −  𝜎𝑝
0(𝑡𝑖−1)). The IEDM assumes that the increase of the σP

0  between two 

consecutive SAR dates (ti−1 and ti) is mainly caused by the increase of the surface soil moisture 

due to either rainfall or irrigation event. On the other hand, the increase of the SAR 

backscattering values at grid scale (σG
0 ) (10 km x 10 km) and high estimated SSM values from 

S2MP at grid scale could be an evidence of rainfall event that occurred between the two SAR 

acquisitions. The stability or decrease of σG
0  values could indicate the absence of rainfall 

between the two dates. Thus, the increase of the σP
0  values between consecutive acquisitions 

accompanied with the stability or decrease of σG
0  values is considered as an irrigation event. 

The IEDM provides at each SAR image, an irrigation possibility weight that represents the 

chance of having irrigation event. The possibility weight could be either 0 (no irrigation), 25 

(low possibility), 50 (medium possibility) or 100 (high possibility): 

 The possibility weight 0 represents either a decrease in the σP
0  between ti−1 and ti 

(∆σP
0 ≤ −0.5 dB) indicating a decrease in soil moisture values (no irrigation 

possibility) or an important increase of the σG
0  (∆σG

0 ≥ 1 dB) between ti−1 and ti 

indicating the presence of a rainfall event.  

 Low irrigation chance (25) corresponds to a very slight change in the σP
0  between ti−1 

and ti (−0.5 ≤ ∆σP
0 < 0.5 dB) accompanied with high estimated soil moisture values 

at plot scale at ti along with an important decrease of the σG
0  at grid scale between ti−1 

and ti (∆σG
0 ≤ −1 dB), indicating the absence of a rainfall event. In this case, the SSM 

estimations from S2MP at plot scale are used to guarantee the existence of an irrigation 

event. The stability or slight increase of the SAR signal at plot scale between ti−1 and 

ti could be interpreted as an irrigation event (low chance) if the σP
0  at time ti−1 already 

attains high values (due to irrigation or rainfall). To ensure this situation, we say that at 
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time ti−1, SSM estimation should be greater than or equals to 20 vol.% in order to 

guarantee that a humid soil conditions at time ti−1 have continued to time ti.  

 Medium irrigation chance (50) corresponds to a moderate increase in the σP
0  between 

ti−1 and ti (0.5 ≤ ∆σP
0 < 1 dB) accompanied with a decrease of the σG

0  (∆σG
0 ≤

0.5 dB). 

 High irrigation chance (100) corresponds to important increase in the σP
0  between ti−1 

and ti (∆σP
0 ≥ 1 dB) accompanied with a decrease of the σG

0  (increase of soil moisture 

at plot scale at ti with no rainfall event between ti−1 and ti). 

Since the SAR backscattering signal could be affected by factors other than the soil 

moisture, such as the vegetation cover (growth cycle for example) and soil surface roughness, 

additional filter considering the NDVI values was added to the IEDM. During the sowing or 

harvesting periods, the surface roughness increases due to soil work which causes an increase 

in the σP
0 . For each detected irrigation episode, the difference between the NDVI value at the 

detected irrigation event and the next NDVI value of the next optical image after 20 to 30 

days (∆NDVI =  NDVIti − NDVIti+(20 to 30 days)) is obtained. If the 𝑁𝐷𝑉𝐼𝑡𝑖 value is less than 

0.4, (bare soil conditions with small vegetation cover) and ∆𝑁𝐷𝑉𝐼 ≤ 0.1 then the detected 

irrigation is most likely to be a soil work effect and is consequently discarded. 

The IEDM was applied over the three study sites (Montpellier, Catalonia and Adour 

Amont). To validate the performance of the IEDM, the latter was applied on 46 irrigated 

grassland plots (Crau plain) and the detected irrigation events were compared with the irrigation 

schedule recorded in situ. 

1.3.2 Operational mapping of irrigated areas 

The proposed irrigation mapping methodology consists of two major steps for mapping 

irrigated areas. In the first step, the irrigated/non-irrigated training plots are selected based on 

multi criteria derived from both SAR and optical data. The selection of the training dataset is 

based on an irrigation possibility weight obtained at each plot using the irrigation event 

detection model (IEDM) and on the maximum NDVI for the plot. 

Using the IEDM, plots with very high number of detected irrigated events are potentially 

considered as irrigated plots for the training database whereas plots with no detected events are 

considered as potentially non-irrigated plot. By applying the IEDM on the different S1 time 

series of the S1 orbits (in VV and VH polarization), an irrigation possibility metric is obtained. 
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This metric represents an irrigation possibility weight directly related to the number of detected 

irrigation events on the plot. The irrigation possibility weight is calculated by cumulating the 

irrigation possibilities (0, 25, 50 and 100) obtained at each SAR image of all S1 temporal series 

in VV and VH polarization (for each plot). When more irrigation events are detected on the 

plot, the irrigation possibility weight increases. Consequently, when no irrigation events are 

detected on the plot, the irrigation possibility weight attains very low value. Thus, irrigated and 

non-irrigated plots were considered for training data based on very high and very low threshold 

values of the irrigation possibility weight respectively. From the plots selected based on the 

irrigation possibility weight, another criterion based on the maximum NDVI value during the 

crop cycle is applied. It is assumed here that for non-irrigated plots the maximum NDVI should 

not exceed 0.7 whereas for irrigated plots the maximum NDVI should be greater than 0.8. 

After selecting the training dataset that corresponds to the plots deemed as irrigated and 

non-irrigated with a high confidence degree, the second step consists of implementing S1 data 

(at plot and grid scales), S2 data (NDVI) and the selected training plots into a random forest 

classifier to build a classifier for mapping irrigated areas (Irrigation Classifier). Finally, using 

the in situ dataset, the performance of the classifier was assessed by means of several accuracy 

metrics. The methodology was performed and validated for four years separately (2017, 2018, 

2019 and 2020) over Orléans study site. 

1.4 Main results 

In the development of the IEDM, the results show that 84.8% of the irrigation events 

occurring over agricultural plots in Montpellier have been correctly detected using the IEDM. 

By applying the IEDM over the Catalonian site, the results show that 90.2% of the non-irrigated 

plots encountered no detected irrigation events whereas 72.4% of the irrigated plots had one 

and more detected irrigation events. In Adour Amont watershed, the analysis shows that 

irrigation events could still be detected even in the presence of abundant rainfall events during 

the summer season where two and more irrigation events have been detected for 90% of the 

irrigated plots. 

The validation of the IEDM over the 46 irrigated grassland plots of the Crau plain show that 

using only the VV polarization, 82.4% of the in situ registered irrigation events are correctly 

detected with an F_score value reaching 73.8%. Less accuracy is obtained using the VH 

polarization where 79.9% of the in situ irrigation events are correctly detected with an F_score 



CHAPTER IV: TOWARDS OPERATIONAL MAPPING OF IRRIGATED AREAS 

 

145 

 

of 72.2%. The combined use of the VV and VH polarization showed that 74.1% of the irrigation 

events are detected with a higher F_score value of 76.4%. 

The proposed operational irrigation classification was validated using real in situ data 

collected for four years in Orléans. The results show that, using the proposed classification 

procedure, the overall accuracy for the irrigation classification reaches 84.3%, 93.0%, 81.8% 

and 72.8% for the years 2020, 2019, 2018 and 2017 respectively. The comparison between the 

proposed classification approach and the RF classifier built directly from in situ data (fully 

supervised method) showed that our approach reaches an accuracy nearly similar to that 

obtained using in situ RF classifiers with a difference in overall accuracy not exceeding 6.2%. 

1.5 Conclusion 

Currently, the Sentinel-1 satellite is the only operational satellite that provides SAR data 

free and open access with high revisit time (6 days). However, the 6 days revisit time of the S1 

satellite can restrict the detection of irrigation events. The first limitation of the IEDM is the 

effect of the time lag between the irrigation episode and the satellite passage. In fact, the 

detection of irrigation can become difficult if the irrigation event takes place more than three 

days before the SAR acquisition. Over the Crau plain, a sensitivity analysis for irrigation events 

detection as a function of the time lapse between the acquisition date of the S1 image and the 

irrigation date was performed. For NDVI ≤ 0.7, the results show that if the S1 image is acquired 

at the same day of the irrigation event or one day after the irrigation event, 75% of the irrigation 

events could be detected. Two and three days after the irrigation event, the percentage of the 

detected and the undetected events becomes approximately the same (50%). Beyond 4 days of 

the irrigation event, the percentage of the detected irrigation events decreases. However, for 

NDVI values greater than 0.7 the irrigation could only be detected if it exists within the same 

day of the S1 acquisition. In the presence of very well developed vegetation cover, higher 

uncertainty in irrigation detection is observed in the Crau plain, where 80% of the undetected 

events correspond to an NDVI value greater than 0.8. Moreover, the analysis of false detection 

of the IEDM showed that small-sized plots encounter more false irrigation detections than 

large-sized plots because the pixel spacing of S1 data (10 m × 10 m) is not adapted to small size 

plots with very narrow width or very short length. 

Mapping irrigated areas using the proposed operational classification method showed that 

irrigated plots could be classified with very good accuracy with no need for terrain data. 
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However, the analysis of the obtained classification accuracies of the proposed method with 

precipitation data revealed that years with higher rainfall amounts during the crop-growing 

season (irrigation period) had low overall accuracy (72.8% for 2017) whereas years 

encountering drier summer had very good accuracy (93.0% for 2019). 
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Abstract 

In the context of monitoring and assessment of water consumption in the agricultural sector, 

the objective of this study is to build an operational approach capable of detecting irrigation 

events at plot scale in a near real-time scenario using Sentinel-1 (S1) data. The proposed 

approach is a decision tree-based method relying on the change detection in the S1 

backscattering coefficients at plot scale. First, the behavior of the S1 backscattering coefficients 

following irrigation events has been analyzed at plot scale over three study sites located in 

Montpellier (southeast France), Tarbes (southwest France), and Catalonia (northeast Spain). To 

eliminate the uncertainty between rainfall and irrigation, the S1 synthetic aperture radar (SAR) 

signal and the soil moisture estimations at grid scale (10 km × 10 km) have been used. Then, a 

tree-like approach has been constructed to detect irrigation events at each S1 date considering 

additional filters to reduce ambiguities due to vegetation development linked to the growth 

cycle of different crops types as well as the soil surface roughness. To enhance the detection of 

irrigation events, a filter using the normalized differential vegetation index (NDVI) obtained 

from Sentinel-2 optical images has been proposed. Over the three study sites, the proposed 

method was applied on all possible S1 acquisitions in ascending and descending modes. The 

results show that 84.8% of the irrigation events occurring over agricultural plots in Montpellier 
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have been correctly detected using the proposed method. Over the Catalonian site, the use of 

the ascending and descending SAR acquisition modes shows that 90.2% of the non-irrigated 

plots encountered no detected irrigation events whereas 72.4% of the irrigated plots had one 

and more detected irrigation events. Results over Catalonia also show that the proposed method 

allows the discrimination between irrigated and non-irrigated plots with an overall accuracy of 

85.9%. In Tarbes, the analysis shows that irrigation events could still be detected even in the 

presence of abundant rainfall events during the summer season where two and more irrigation 

events have been detected for 90% of the irrigated plots. The novelty of the proposed method 

resides in building an effective unsupervised tool for near real-time detection of irrigation 

events at plot scale independent of the studied geographical context. 

Keywords: irrigation; plot scale; near real-time; Sentinel-1 

1. Introduction 

Efficient management of water resources is required to achieve environmentally sustainable 

development especially under changing climatic conditions and limited water resources. Fresh 

water is mainly consumed in the agricultural sector, which is considered the world’s largest 

water user. In fact, with the increase of the global population, irrigating agricultural crops is 

essential in order to achieve satisfactory agricultural production and income. However, with the 

decreasing supplies of fresh water due to climate change, better management of irrigation 

policies is required to deal with the high demand of food and limited water resources. 

To support the management of irrigated agricultural policies, a spatially detailed 

quantification of the irrigation extent and timing is required. This quantification is crucial to 

monitoring fresh water consumption in the agricultural sector especially for regions suffering 

scarce water resources. Unfortunately, the extent and distribution of irrigated areas as well as 

the irrigation timing remain indefinite especially at large scale. Moreover, existing irrigation 

maps such as the Global Rain-fed, Irrigated and Paddy Croplands (GRIPC) (Salmon et al., 

2015) and the Global Map of Irrigated Areas (GMIA) (Siebert et al., 2005) products remain 

inadequate for irrigation management at plot scale due to their low spatial resolutions (500 m 

and 5 arc minutes, respectively). 

With modern remote sensing, mapping irrigated areas has been the main concern for several 

studies (Boken et al., 2004; Gumma et al., 2011; Ozdogan and Gutman, 2008). Both optical and 

radar data have been exploited to perform an irrigated/non-irrigated classification maps. The 
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use of multi-band optical data is mainly related to the assumption that irrigated/non-irrigated 

crops could be classified using the temporal series of vegetation indices such as the normalized 

differential vegetation index (NDVI) (Boken et al., 2004; Gumma et al., 2011; Ozdogan and 

Gutman, 2008), normalized differential water index (NDWI) (Gumma et al., 2011) or greenness 

index (GI) (Chen et al., 2018). However, optical data is not only limited to weather conditions 

but also to the specific studied crop type. For this reason, several studies tend to map 

irrigated/non-irrigated areas focusing on one specific crop type such as rice (Kamthonkiat et 

al., 2005) wheat (Bousbih et al., 2018; Fieuzal et al., 2011) or maize (Demarez et al., 2019). 

Recent works have shown that a synthetic aperture radar (SAR) signal seems to be more 

adequate to map irrigated areas over different agricultural crops (Bazzi et al., 2019c; Bousbih 

et al., 2018; Gao et al., 2018). The use of a SAR signal for mapping irrigated/non-irrigated areas 

over any vegetation cover is related to the fact that the radar signal is sensitive to soil and 

vegetation water content (Baghdadi et al., 2011a, 2016a). Since irrigation eventually increases 

the soil and the vegetation water content, the sensitivity of the radar signal to soil and vegetation 

water could help detect these irrigation events. Through literature, it has been widely 

demonstrated that the SAR backscattering coefficient (𝜎0) is directly related to the soil and 

vegetation water content (Aubert et al., 2013; Baghdadi et al., 2011b, 2016a, 2016b; El Hajj et 

al., 2019; Gao et al., 2018). Mainly for the irrigation task, Hajj et al. (2014) have reported that 

a three-day-old irrigation point could still be detected using X-band SAR data. In their study, 

they showed that the X-band radar signal increases by more than 1.4 dB due to irrigation events 

occurring one day before the acquisition with 90 cm vegetation height. They also showed that 

for low vegetation cover (vegetation height = 25 cm) the X-band SAR signal increases by 2.6 

dB due to irrigation event one day before the SAR acquisition. Similarly, Benabdelouahab et 

al. (2018) have shown that C-band SAR data could be used to detect irrigation activities over 

irrigated wheat plots with an interval of three days between the irrigation date and the SAR 

acquisition date. Since irrigation is a time dynamic activity, an extensive multi-temporal dataset 

is required to detect consecutive irrigation activities on the studied fields. In addition, high 

spatial resolution SAR data is required to obtain irrigation information at plot scale. In fact, 

irrigation information at plot scale is favorable especially in small agricultural areas. Among 

several SAR satellite constellations, the time series acquired via Sentinel-1 (S1) SAR 

constellation (S1A and S1B) provides an effective tool for large-scale irrigated area mapping 

and monitoring due to the unique combination of high revisit time (6 days revisit period) and 

high spatial resolution (10 m × 10m pixel spacing). 
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To preform irrigated area mapping, as well as other large-scale area mapping, both deep and 

machine learning approaches have been extensively exploited since they provide acceptable 

results and allow large-scale analysis (Pelletier et al., 2019; Zhu et al., 2017). Using the S1 

temporal series and the machine-learning approaches, several studies have achieved high-

quality classification mapping with a good accuracy (Bazzi et al., 2019d; Feng et al., 2019; 

Ndikumana et al., 2018; Zhu et al., 2017). However, one of the most important questions about 

using machine learning approaches relates to the dependency of these models on the terrain 

calibration data and the studied geographical context (Bazzi et al., 2020a). Such supervised 

classifications always depend on a training-validation procedure that requires a rich set of 

labelled samples in order to build the predictive model. Moreover, for better performance, 

almost all classifications performed via machine learning techniques require complete temporal 

series data over the growing season, thus making the near real-time mapping more complicated. 

Most of the remote-sensing applications for irrigation monitoring mainly focus on the 

mapping of irrigation extent without taking frequency and timing into account. On the other 

hand, obtaining information about the period and frequency of irrigation over each agricultural 

cropland is more significant in the context of irrigation management (Mila et al., 2017; 

Ozdogan, 2011). In fact, to understand the sustainability of the water resources, irrigation 

timing and frequency are important especially in arid and semiarid regions. Furthermore, in the 

context of irrigation water management, the early detection of existing irrigation episodes over 

each cropland is of great importance for crop modelling in order to estimate the water status 

and hence better schedule the irrigation episodes over croplands. Better scheduling of irrigation 

activities can save water that may be used to irrigate more land particularly where water is a 

limiting factor of agricultural production. In addition, the improvement of the water-use 

efficiency (WUE) in irrigation requires a real-time control and optimization of the irrigation 

activities. In irrigated agriculture, improvement of WUE is achieved by optimizing the timing 

and quantity of irrigation applications (Koech and Langat, 2018). This optimization of the 

irrigation schedule requires an early detection of irrigation episodes over each irrigated 

agricultural plot. Moreover, the near real-time detection of irrigation episodes can help monitor 

and assess the water consumption over agricultural areas. The arrival of the Sentinel satellites 

(Sentinel-1/2), with high spatial and temporal resolutions, opens the way toward building 

operational models capable of detecting irrigation events at plot scale. Therefore, the challenge 

is to build an effective tool capable of detecting irrigation events at plot scale using simple 
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models that may not require extensive labelled samples (training/validation) and independent 

of the studied geographical context. 

In the context of irrigation water management, the objective of this study is to build a near 

real-time irrigation detection approach at plot scale using Sentinel-1 time series. First, we 

analyzed the sensitivity of the radar signal following irrigation events over irrigated plots for a 

study site located in Montpellier, South-East France. Then, we build a tree-like approach for 

detecting irrigation events based on the change detection of the SAR signal at plot scale 

co-jointly with the change detection of the SAR signal obtained at grid scale (10 km × 10 km) 

which was used to eliminate the ambiguity between rainfall and irrigation. Since the SAR signal 

obtained at plot scale could be also affected by the vegetation contribution and the surface 

roughness, several filters considering these effects were introduced in the proposed tree-based 

approach. The method was tested over irrigated plots in Catalonia, Spain and in Tarbes, 

South-west France. 

2. Materials 

2.1 Study Sites 

In this study, three different irrigation sites are examined. The first site is located in 

Montpellier, southeast France (Occitanie region), the second is located in the Catalonia region 

of northeast Spain and the third in Tarbes of southwest France (Occitanie region) (Figure 1). It 

is important to mention that both the Montpellier and Catalonia sites are nearly similar in terms 

of climatic conditions given that both zones are typically Mediterranean. The average annual 

precipitation in Montpellier is 629 mm where that of Catalonia is 500 mm. However, the 

summer season in Catalonia is drier than that of Montpellier. On the other hand, the climate in 

Tarbes is humid to oceanic with an average annual precipitation of 1200 mm. The summer 

season in Tarbes is more humid with an average precipitation of 300 mm in this season. 

However, in the three regions, irrigation mainly occurs in the summer season between May and 

October of each year. 
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Figure 1: Location of the three studied sites. In green, Montpellier of southeast France; in black, 

Catalonia region in northeast Spain; and in red, Tarbes of southwest France. Irrigated plots are presented 

in blue while non-irrigated plots are in red. 

2.2 Montpellier Dataset 

Irrigation dates over three plots in Montpellier are registered for the year 2017. The three 

plots includes one maize plot denoted by (P1), one soya plot denoted by (P2) and one sorghum 

plot denoted by (P3) (Figure 1). Table 1 summarizes the frequency and period of irrigation for 

each studied plot. In general, irrigation over Montpellier takes place between May and October 

of each year corresponding to the dry summer season. The sprinkler irrigation technique is 

generally used. It is good to mention that not only the frequency of irrigation is available but 

also the exact date of irrigation for these plots. Therefore, these three plots were first used to 

analyze the effect of irrigation events on the backscattered SAR signal in order to build the 

suitable method capable of describing irrigation events at the plot. 

Table 1: Irrigation information over three plots in Montpellier, south-east France. 

Plot Crop Type 
Surface 

(ha) 

Number of 

Irrigations  
Period of Irrigation 

Irrigation 

Type 

P1 Maize 1.2 30 01 June–12 Oct. 2017 Sprinkler 

P2 Soya 0.8 13 29 May–13 Sept. 2017 Sprinkler 

P3 Sorghum 0.44 5 01 June–08 August 2017 Sprinkler 
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2.3 Catalonia SIGPAC (Geographic Information System for Agricultural 

Parcels) Dataset 

Over the Catalonia region of northeast Spain, the General Direction of Rural Development 

of the Generalitat of Catalonia provides the Geographic Information System for Agricultural 

Parcels (SIGPAC) data. The SIGPAC data are based on cadastral plots digitized using aerial 

images at scale of 1:5000 and 25 cm spatial resolution. The graphical data of the SIGPAC 

provide the field boundaries. On the other hand, alphanumerical data define each plot by several 

elements of information including an identification code, surface area, land cover and irrigation 

indicator. The irrigation indicator shows the presence (100) or absence of irrigation (0). Annual 

field campaigns are performed each year, in order to update the database mainly for irrigation 

and land-cover information. In our study, 159 850 plots (123,428 non-irrigated and 36,423 

irrigated plots) of different crop types and irrigation coefficients have been used for the year 

2018. Considering only agricultural crops (summer and winter crops) in the study, forests, 

urban, and orchards plots were eliminated. The surface area of the plots varies between 0.1 ha 

and 65 ha. In general, winter cereals such as wheat, oat, and barely are rarely irrigated with 

some exceptions. On the other hand, irrigated plots mainly include alfalfa, maize, grassland, 

beans, rapeseed, and rice. The study area is mainly irrigated using inundation in the old 

irrigation district and sprinkler or dripper irrigation in the new irrigation district. Fields that 

have access to water are always irrigated, and fields that do not have access to water are not. 

The irrigation period occurs mainly in summer, from May to September, and the frequency 

depends on the irrigation district (old and new). Since irrigation frequency and dates are not 

available via the SIGPAC data, the irrigation information over the plots was used to analyze 

the performance of the proposed approach. 

2.4 Tarbes Dataset 

A field campaign was conducted in Tarbes, southwest France (Figure 1) over irrigated 

summer crops in 2017 where information about the existence of irrigation was registered for 

each plot. During this field campaign, 150 irrigated plots including 135 irrigated maize plots 

and 15 irrigated soya plots were localized. The surface area of the plots varies between 0.15 ha 

and 28 ha. Irrigation over Tarbes usually takes place between May and October of each year. 

The most common irrigation technique used in this site is the sprinkler irrigation technique. 
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Unfortunately, irrigation frequency and dates were not available over these plots. For this 

reason, these plots were used for analyzing the performance of the proposed model. 

2.5 Sentinel-1 Synthetic Aperture Radar (SAR) Time Series 

In this study, a total of 348 C-band (5.405 GHz) S1 SAR images acquired by S1A and S1B 

in both ascending (afternoon at 18:00 UT) and descending modes (morning at 06:00 UT) were 

used. Over the Montpellier and Tarbes sites, 92 images (46 ascending and 46 descending) 

images were obtained for each of the two sites for the period between March 2017 and 

November 2017. This period corresponds to the irrigation period over these two sites. However, 

for the Catalonia site, 162 images (82 ascending and 82 descending) were used covering a 

period between September 2017 and December 2018 that correspond to the irrigation 

information obtained by SIGPAC for 2018. All the images were acquired in the interferometric-

wide (IW) swath with VV (Vertical-Vertical) and VH (Vertical-Horizontal) polarizations. In 

this study, only VV polarization was considered since it is more sensitive to the soil water 

content than the VH polarization (El Hajj et al., 2017). The 348 images are derived from the 

Ground Range-Detected (GRD) product with pixel spacing of 10 m x 10 m. The images were 

downloaded via the European Space Agency (ESA) website 

(https://scihub.copernicus.eu/dhus/#/home). The S1 toolbox developed by ESA was used to 

calibrate the 348 S1 images. The calibration (radiometric and geometric calibrations) converts 

the digital number into backscattering coefficients in linear units (radiometric calibration) and 

ortho-rectifies the images (geometric calibration) using a 30-m digital elevation model of the 

Shuttle Radar Topography Mission (SRTM). 

Figure 2 shows the repetitiveness of the S1 data in ascending “A” and descending “D” 

acquisition modes over the three study sites for August 2017 (Montpellier and Tarbes) and 

August 2018 (Catalonia). For each month, 10 SAR images (5 ascending and 5 descending 

images) are acquired over each study site. For the Montpellier site (Figure 2a), the descending 

SAR image (morning) is acquired 36 h before the ascending evening image with an incidence 

angle of 38.1° and 39.3°, respectively. For Tarbes (Figure 2b), the morning acquisition is also 

36 h prior to the evening acquisition with an incidence angle of 36.2° and 40.3°, respectively. 

Over Catalonia (Figure 2c), the morning acquisition is only 12 h prior to the evening acquisition 

(both images acquired on the same date) with an incidence angle of 39.5° and 43.2°, 

respectively. 
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(b) 

 
(c) 

 
Figure 2: Frequency of the Sentinel-1 images in ascending “A” (afternoon) and descending “D” 

(morning) modes for one month over (a) Montpellier, (b) Tarbes and (c) Catalonia. The number next to 

each line represents the incidence angle for each acquisition. 

2.6. Sentinel-2 Optical Time Series 

We obtained 15, 22 and 17 S2 optical images over Montpellier, Tarbes and Catalonia, 

respectively, covering the same period of the S1 acquisitions (Section 2.3). The optical 

cloud-free images were downloaded over each study site with a frequency of approximately 

one image per month. These optical data were obtained via the Theia website 

(https://www.theia-land.fr/) which provides S2 images corrected for atmospheric effects 

(Level-2A). Optical images were used to calculate the NDVI values. The NDVI values were 

integrated as an additional post-processing filter in the proposed change detection method. 

3. Methodology 

3.1 Overview 

For the three study sites, the average Sentinel-1 SAR backscattering coefficients (𝜎0) in VV 

polarization and the incidence angle values (𝜃) were calculated at both plot scale (𝜎𝑃
0) and grid 

https://www.theialand.fr/
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scale (𝜎𝐺
0) (10 km × 10 km). Since rainfall and irrigation events have the same effect on SAR 

σ0 values (σ0 increases after rainfall or irrigation), this study proposes to remove or minimize 

the false detection of irrigation events due to rainfall events by using the mean SAR 

backscattering signal at grid scale (10km × 10km). The SAR signal at grid scale obtained from 

bare soil areas with low vegetation cover is assumed be a descriptor of rainfall events. For the 

plot scale, σP
0  was obtained by averaging the backscattering coefficient (σ0) in the linear unit 

of all the pixels within each plot. For the grid scale, σG
0  was obtained by averaging σ0 values in 

a linear unit of all agricultural bare soil pixels existing within each grid cell. The average 

backscattering coefficient, at plot and grid scales, helps reduce the speckle noise in the SAR 

data. Moreover, at each available S2 image, the average NDVI values were calculated for each 

plot and grid cell (10 km × 10 km). The proposed methodology consists of two major phases. 

Phase 1 consists of the tree-based conditions applied over σ°-values at both plot and grid scales 

in which, at a given SAR date, each plot is evaluated for encountering or not an irrigation event. 

Phase 2 is a post-processing phase where the irrigation events obtained in Phase 1 at each plot 

were filtered using additional criteria based on optical data. In order to ensure near real-time 

detection in phase 1, the absence or presence of an irrigation event at each plot for a given SAR 

time 𝑡𝑖 is evaluated using only the SAR temporal series collected in previous dates (only before 

𝑡𝑖) at each plot. However, the optical filter in phase 2 requires subsequent optical data one 

month after the SAR date. The significance of each proposed filter (criteria) is discussed 

separately in the coming sections and finally a practical overflow of the whole chain is 

presented. 

3.2 σ° SAR Backscattering at Plot Scale 

The proposed method is based on detecting the change in the 𝜎𝑃
0 backscattering coefficient 

at plot scale. When the surface soil moisture (SSM) increases between two consecutive SAR 

acquisitions, 𝜎𝑃
0-value between these two dates increases. Since irrigation is an artificial 

application of water, it causes obviously an increase in the SSM values. Thus, the SAR 𝜎𝑃
0-value 

could increase between two SAR dates if an irrigation event occurred between these two SAR 

acquisitions (Benabdelouahab et al., 2018; Hajj et al., 2014). It is good to mention that only the 

VV polarization was considered in this study since VV is more sensitive to the soil water 

content than VH which is more sensitive to the vegetation cover (El Hajj et al., 2017). 
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Not only could the increase in the 𝜎𝑃
0-values be an indicator of an irrigation event, but also 

the stability or a slight decrease of 𝜎𝑃
0-values between two dates could be linked to an irrigation 

event if the 𝜎𝑃
0-values attain high values. In fact, with no actions, such as irrigation, rainfall, 

soil work, or vegetation development, the SAR signal between two near dates (at maximum 6 

days) tends to decrease, especially during spring and summer season, due to several water cycle 

parameters such as the infiltration, evaporation and evapotranspiration that cause a decrease in 

the SSM values. Thus, stabilization or slight decrease of 𝜎𝑃
0 between time 𝑡1 and time 𝑡2 could 

be evidence of an additional water supply if and only if the level of the SAR signal at 𝑡1 is 

already high due to a previous irrigation or rainfall event occurring at time 𝑡1. 

Since the method is based on detecting the change is 𝜎𝑃
0 values, we propose to calculate, at 

each SAR acquisition, the difference between the 𝜎𝑃
0 value at this acquisition and 𝜎𝑃

0 at the 

previous SAR acquisition. We calculate therefore ∆𝑉𝑉𝑃 at plot scale as: 

∆𝑉𝑉𝑃 =  𝑉𝑉𝑃𝑡𝑖
− 𝑉𝑉𝑃𝑡𝑖−1

 (1) 

where 𝑉𝑉𝑃𝑡𝑖
 is the 𝜎0 in VV polarization at the present SAR date and 𝑉𝑉𝑃𝑡𝑖−1

 is the 𝜎0 in 

VV polarization at the first previous date. 

Finally, for the 𝜎𝑃
0 value, three main thresholds were determined for probable irrigation 

events. First, if ∆𝑉𝑉𝑃 is less than or equals –0.5 dB (which correspond to a decrease in 𝜎𝑃
0-value 

more than 0.5 dB), then we assume that no chance of irrigation exists. If the ∆𝑉𝑉𝑃 is greater 

than or equal to 1 dB, then a possible irrigation event could have existed. In addition, if the 

∆𝑉𝑉𝑃 is between −0.5 dB and 1 dB (stabilization or slight decrease) then an irrigation event 

could have also existed. However, it is necessary to add other criteria to confirm the possible 

irrigation event between date 𝑡𝑖−1 and 𝑡𝑖. These additional criteria will be discussed in the 

coming sections. 

3.3 σ° SAR Backscattering at Grid Scale 

The increase in the SSM values could not only be attributed to an irrigation event but also 

to rainfall events that are the main contributor in the SSM variation. Then, a good separation 

between rainfall events and irrigation events should be also performed. Actually, rainfall events 

and irrigation events are both considered as water supplements and thus may have the same 

effect on the value of ∆𝑉𝑉𝑃. For example, the threshold value of ∆𝑉𝑉𝑃 ≥ 1𝑑𝐵 (presented in 

Section 3.2) could be a result of a rainfall event and not only an irrigation event. Therefore, the 
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ambiguity between rainfall and irrigation is the principal factor to be resolved for a good 

detection of irrigation events. Thus, better detection of irrigation events requires information 

about rainfall. 

In this study, information about rainfall has been determined through the σ° value obtained 

at grid scale (10 km × 10 km). We assume that if the bare soil plots with low vegetation cover 

within the spatial extent of 10 km x 10 km show an increase of the SAR backscattering signal 

(increase in SSM values) between two consecutive radar acquisitions, a rainfall event probably 

occurred. This correlation between rainfall and 𝜎𝐺
0 has been presented by Bazzi et al. (2019a) 

where they compared SSM estimations at bare soil plots in 10 km grid scale to rainfall events 

at the same scale and concluded that strong consistency exists between rainfall events and SSM 

values at 10 km grid scale. Moreover, Bazzi et al. (2019c) used the SAR signal at grid scale 

conjointly with the SAR signal at plot scale to map irrigated areas at plot scale. They reported 

that the use of 𝜎𝐺
0 has remarkably improved the classification accuracy of irrigated/non-irrigated 

plots by 15%. 

The SAR backscattering coefficients at grid scale are obtained by averaging σ° values of all 

bare soil pixels within each grid cell (10 km × 10 km). A mask for bare agricultural soil pixels 

has been determined using first a land-cover map to delineate only agricultural areas (excluding 

urban, forests…) and then a threshold applied over the NDVI values obtained from S2 images. 

For this reason, the land-cover map proposed by (Inglada et al., 2017)is used for the two French 

sites while the agricultural plots of the SIGPAC data have been used for the Catalonia site. A 

maximum NDVI value of 0.4 is fixed to extract bare soil pixels with low vegetation cover. 

Thus, at each SAR date, and for each grid cell a 𝜎𝐺
0 value is obtained describing the σ° 

backscattered from bare soil pixels of agricultural areas only within each grid cell (10 km × 10 

km). 

At a given date, the change in SAR σ° at each 10 km cell could be obtained through the 

difference of σ° value at the given date 𝑡𝑖 and the σ° at the first previous date 𝑡𝑖−1 

∆𝑉𝑉𝐺 =  𝑉𝑉𝐺𝑡𝑖
− 𝑉𝑉𝐺𝑡𝑖−1

 (2) 

where 𝑉𝑉𝐺𝑡𝑖
 is the 𝜎𝐺

0 in VV polarization at the present SAR date and 𝑉𝑉𝐺𝑡𝑖−1
 is the 𝜎𝐺

0 in 

VV polarization at the first previous date. 

Using a threshold value of ∆𝑉𝑉𝐺, rainfall events could be determined and irrigation events 

detected in Section 3.2 could be filtered. First, the grid based filters are only applied in the case 
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where ∆𝑉𝑉𝑃 has a value more than or equal to −0.5 (Section 3.2) (probable irrigation event). 

We consider that if the ∆𝑉𝑉𝐺 is greater than 1 dB then a rainfall event occurred and, therefore, 

there is no chance of irrigation detection regardless of the value of ∆𝑉𝑉𝑃. This filter helps reduce 

an important part of the ambiguity between rainfall and irrigation. Next, we consider that if the 

value of ∆𝑉𝑉𝐺 is between 0.5 and 1 dB (low rainfall possibility), then a probability of irrigation 

can exist based on the value of ∆𝑉𝑉𝑃. In this case, if ∆𝑉𝑉𝑃 is less than 0.5 dB then irrigation 

did not take place (𝜎𝐺
0 at 10 km bare soil plots have slightly increased more than that at the plot 

scale). On the other hand, if the value of ∆𝑉𝑉𝑃 is greater than 0.5 dB, then we calculate the 

difference (∆) between ∆𝑉𝑉𝑃 and ∆𝑉𝑉𝐺 (∆ =  ∆𝑉𝑉𝑃 −  ∆𝑉𝑉𝐺). If the value of ∆ is greater than 

1 dB, then irrigation has more chance than rainfall and the point is assumed corresponding to 

an irrigation event. Inversely, if ∆ is less than 1 dB then no irrigation occurs. The indicator ∆ 

was also used to help confirm whether a point is an irrigation event or not in the case of slight 

change in ∆𝑉𝑉𝑃 (−0.5 𝑑𝐵 ≤ ∆𝑉𝑉𝑃 < 0.5 𝑑𝐵). When the value of ∆𝑉𝑉𝑃 is between 0 and 0.5, 

the value of ∆ must be greater than or equal to 1.5 dB in order to consider the point as an 

irrigation event. Similarly, ∆ should be greater than or equal to 2 dB if the value of ∆𝑉𝑉𝑃 is 

between −0.5 and 0. 

Finally, we consider that if the value of ∆𝑉𝑉𝐺 is less than 0.5 dB, then irrigation could be 

detected in case the value of ∆𝑉𝑉𝑃 respects certain criteria which will be detailed in Section 

3.7. 

3.4 Reducing Vegetation Contribution 

Over vegetated areas, 𝜎𝑃
0 is not only affected by the soil water content but also by the 

characteristics of the vegetation cover. Indeed, for certain agricultural crops, the SAR 

backscattering signal is attenuated by the existing vegetation cover (Attema and Ulaby, 1978; 

El Hajj et al., 2017). For example, for crop types such as soya, sorghum and sunflower the SAR 

backscattering signal between two dates could increase due to the development of the 

vegetation cover. The direct effect of vegetation cover on the SAR signal should be also 

considered to ensure accurate detection of irrigation events. 

Recently, Nasrallah et al. (2019) used a smoothed Gaussian filter on SAR temporal series 

in order to describe the phenology stages of the vegetation growth over wheat crops. They 

demonstrated that the smoothed Gaussian could be used to describe the vegetation contribution 

in the SAR temporal series over wheat plots. Therefore, to minimize the effect of vegetation 
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growth on the radar signal, we propose to smooth the temporal series of the SAR backscattering 

signal. This smoothing gives the general behavior of the vegetation contribution in the SAR 

signal. However, in order to ensure the near real-time detection of irrigation, we propose to 

smooth the signal only using SAR dates existing before the examined SAR date. This means 

that at each SAR date, a smoothing value 𝜎𝑠𝑚𝑜𝑜𝑡ℎ
0  is obtained by applying a Gaussian smooth 

on all points before this date (from 𝑡0 to 𝑡𝑖). In this study, the multidimensional Gaussian 

smooth has been used and the standard deviation for the used Gaussian kernel was set equal to 

4. Finally, we obtain the index 𝑆 considered as a vegetation descriptor where: 

𝑆 = 𝜎𝑃𝑡𝑖

0 − 𝜎𝑠𝑚𝑜𝑜𝑡ℎ
0  (3) 

Therefore, if 𝜎𝑃𝑡𝑖

0  is less than 𝜎𝑠𝑚𝑜𝑜𝑡ℎ
0  (i.e., 𝑆 < 0), then the point should not be further 

considered for irrigation detection. This smoothing allows us to determine a vegetation 

indicator capable of reducing the vegetation effects in the SAR signal (at each date) without 

losing possible irrigation events. 

Another vegetation contribution filter has been suggested particularly for winter cereals 

usually grown in the period between September and July of each year (wheat, barley and oats). 

In their study over wheat crops, Nasrallah et al. (2019) showed that the C-band SAR 

backscattering signal in VV polarization decreases gradually between the germination phase 

occurring by the beginning of January and the heading phase occurring between mid-March 

and mid-April. In the heading phase, the C-band SAR backscattering signal attains extremely 

low values due to extreme vegetation attenuation (less than –15 dB for incidence angle between 

32° and 34°). The 𝜎𝑃
0 gradually increases then, between mid-April and the end of May, when 

cereals move from the heading phase to the soft dough phase. This increase in the C-band SAR 

signal is mainly due to the change in the phenology phase of the cereals and is not linked to 

irrigation episodes. To reduce this ambiguity, we propose to eliminate detected irrigation points 

between mid-April and the end of May if and only if 𝜎𝑃
0 attains extremely low value (less than 

−15 dB) between mid-March and mid-April. In this way, we can ensure that these detected 

points are most probably a phenology change of cereals where 𝜎𝑃
0 increases from extremely 

low values between March and April (< −15 𝑑𝐵) to higher values in May. Practically, for any 

plot, if a point is detected between mid-April and the end of May, we find the minimum of all 

𝜎𝑃
0 values (denoted by 𝑀𝐼𝑁) acquired between mid-March and mid-April. If the 𝑀𝐼𝑁 value is 

less than –15 dB (most probably heading phase of cereals), then we eliminate the detected point. 
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3.5 Surface Soil Moisture Filter 

As discussed in Section 3.2, irrigation activities obviously cause an increase in the SSM 

values at plot scale. Thus, an important factor that can describe the presence or absence of 

irrigation events is the SSM value. We consider here that low soil moisture values are not 

correlated with an occurring irrigation event since irrigation must increase the SSM values 

especially over plots with small vegetation cover. However, the integration of any proposed 

SSM filter requires proper estimation of SSM values. Recently, an algorithm using the neural 

network (NN) technique was developed by El Hajj et al. (2017) to estimate SSM values at plot 

scale over agricultural areas with vegetation cover. In their study, SSM values were estimated 

with an accuracy of 5 vol.% (volumetric water content in percent = 0.05 cm3cm−3) over 

agricultural areas which is considered a pleasant accuracy for any hydrological application at 

plot scale. In addition, the NN developed by El Hajj et al. (2017) has showed the most accurate 

SSM estimations when evaluated against several SSM products such as the Soil Moisture and 

Ocean Salinity (SMOS), Soil Moisture Active Passive (SMAP) (El Hajj et al., 2018a) and 

Copernicus Surface Soil Moisture (C-SSM) (Bazzi et al., 2019a) 

In this study, the NN developed by El Hajj et al. (2017) has been used to estimate SSM 

values at plot scale. The NN requires as input data: SAR signal in VV polarization (𝜎0), the 

SAR incidence angle (𝜃), and an NDVI value. As a result, SSM values were estimated at each 

plot and for each SAR date denoted by (𝑆𝑆𝑀𝑃). However, in another study, El Hajj et al. 

(2018b) recommend that the SSM estimation could be limited in the presence of very dense 

vegetation cover due to the high vegetation attenuation on SAR signal. Thus, 𝑆𝑆𝑀𝑃 has only 

been considered for NDVI values less than 0.5. Finally, an additional filter is applied in which 

irrigation points have been restricted to SSM estimation ≥15 vol.% when the NDVI value is 

less than 0.5. For NDVI values greater than 0.5, the SSM filter was not applied. 

SSM values at plot scale were also used to help confirm whether a point is an irrigation 

point or not in the case of slight change in ∆𝑉𝑉𝑃 (−0.5 𝑑𝐵 ≤ ∆𝑉𝑉𝑃 ≤ 1 𝑑𝐵). As presented in 

Section 3.2, the stability or slight decrease of the SAR signal at plot scale between 𝑡𝑖 and 

𝑡𝑖−1 could be interpreted as an irrigation event if and only if the 𝜎0 at time 𝑡𝑖−1 already attains 

high values (due to irrigation or rainfall). To ensure this situation, we say that at time 𝑡𝑖−1, SSM 

estimation should be greater than or equals to 20 vol.% in order to guarantee that humid soil 

conditions at time 𝑡𝑖−1 have continued to time 𝑡𝑖. 



CHAPTER IV: TOWARDS OPERATIONAL MAPPING OF IRRIGATED AREAS 

162 

 

Over the grid scale, the SSM estimation for the 𝜎𝐺
0 obtained for bare soil plots with low 

vegetation cover (NDVI <0.4) at grid scale (Section 3.3) was also performed at each grid cell 

and for each SAR date (𝑆𝑆𝑀𝐺). This estimation presents the surface water content over bare 

soil plots on the basin scale. In fact, we assume that high soil moisture values at grid scale (10 

km × 10 km) are more likely to be linked to possible rainfall events rather than irrigation events 

(humid soil conditions at grid scale). For this reason, we propose to eliminate all the points 

where the SSM estimation at grid scale is greater than 20 vol.%. For the grid scale, the effect 

of vegetation attenuation on SSM estimations (high NDVI values) does not exist since the 

𝜎𝐺
0-values were only calculated for bare soil plots with low vegetation cover. 

3.6 Optical Normalized Differential Vegetation Index (NDVI) Filter 

During the sowing or harvesting periods, the cropland plots usually encounter an increase 

in the surface roughness due to soil work. In fact, the backscattered radar signal strongly 

depends on the geometric characteristics such as the surface roughness that is usually expressed 

by the height root mean square (Hrms). The Hrms is the standard deviation of surface height 

(root mean square) which specifies the vertical scale of surface roughness. Several studies have 

discussed the sensitivity of the radar backscattering signal to the surface roughness (Aubert et 

al., 2011; Baghdadi et al., 2008b, 2018a). Baghdadi et al. (2008a) reported that a difference of 

4 dB could be observed between backscattering signal from smooth surface (Hrms = 0.5 cm) 

and rough surfaces (Hrms = 3 cm). Therefore, between two near-date SAR acquisitions, an 

increase in the surface roughness could cause an increase in the backscattering coefficient. This 

increase is related to the change of the geometrical characteristics of the soil and not to the 

change of the water content (irrigation or rainfall). To overcome this limitation, an additional 

optical filter is suggested in order to better distinguish irrigation peaks from soil works such as 

sowing or harvesting. 

Generally, irrigation activities must occur during a crop-growing cycle. This means that 

irrigation must be followed by a development of the vegetation cycle. When croplands receive 

water, high soil moisture causes better photosynthesis resulting in an increase in the leaf area 

index (LAI) values and therefore an increase in the NDVI values (Chen et al., 2018). Therefore, 

we consider that an irrigation event should be followed by the development of NDVI values. 

For this reason, a post processing filter is proposed to eliminate some false detected irrigation 

events due to soil work. At each plot and for each detected irrigation event (at a given SAR 

date), we first obtain the difference between the NDVI value at the detected irrigation event and 
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the next NDVI value of the next optical image (after 20 to 30 days according to cloud 

limitation): 

∆𝑁𝐷𝑉𝐼 =  𝑁𝐷𝑉𝐼𝑡𝑖 − 𝑁𝐷𝑉𝐼𝑡𝑖+(20 𝑡𝑜 30 𝑑𝑎𝑦𝑠) (4) 

where 𝑁𝐷𝑉𝐼𝑡𝑖 is the NDVI value at the current SAR date and 𝑁𝐷𝑉𝐼𝑡𝑖+(20 𝑡𝑜 30 𝑑𝑎𝑦𝑠) is the 

NDVI value one month later. 

The ∆𝑁𝐷𝑉𝐼 value is considered as a vegetation indicator which helps in detecting whether 

an increase of the NDVI values is observed or not (growing cycle) after the probable detected 

irrigation event. The filter suggests that if the 𝑁𝐷𝑉𝐼𝑡𝑖 value is less than 0.4 (bare soil conditions 

with small vegetation cover) and ∆𝑁𝐷𝑉𝐼 ≤ 0.1, then the point is a falsely detected irrigation 

point and is eliminated. For 𝑁𝐷𝑉𝐼𝑡𝑖 greater than 0.4, the filter is discarded because in the 

presence of vegetation the existence of irrigation event is more probable. This filter ensures that 

if the bare soil condition is permanent and a vegetation growth cycle does not exist (or was in 

a decreasing stage), then the detected event is most likely to be a soil work point and not an 

irrigation point. However, this filter is a post-processing filter that can be applied after obtaining 

another NDVI image after 20 to 30 days. 

3.7 Global Overflow for Irrigation Event Detection 

Figure 3 presents a detailed overflow of the proposed tree-based change detection 

methodology. For a given plot and at a given SAR image acquired at time 𝑡𝑖, seven main 

indicators could be extracted for the plot: 

 ∆𝑉𝑉𝑃: Change in SAR signal at plot scale 

 ∆𝑉𝑉𝐺: Change in SAR signal at grid scale 

 𝑆: Smoothed vegetation descriptor 𝑆 

 𝑆𝑆𝑀𝑃: SSM value at plot scale 

 𝑆𝑆𝑀𝐺: SSM value at plot at grid scale containing this plot 

 𝑁𝐷𝑉𝐼𝑡𝑖: NDVI value at time 𝑡𝑖 

 ∆𝑁𝐷𝑉𝐼: Vegetation growth indicator 

The chain starts with the ∆𝑉𝑉𝑃 value where a value less than −0.5 dB is considered as the 

non-irrigation point. If the value of ∆𝑉𝑉𝑃 is greater than −0.5 dB, the smoothed vegetation 

descriptor 𝑆 is then checked for being positive and the point is considered as non-irrigation 

if 𝑆 < 0. If 𝑆 is positive, the 𝑆𝑆𝑀𝑃 is then checked for the threshold value of 15 vol.% and the 
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point is considered as non-irrigation if the 𝑆𝑆𝑀𝑃 < 15 𝑣𝑜𝑙. % with 𝑁𝐷𝑉𝐼𝑡𝑖 ≤ 0.5 (both 

conditions should occur simultaneously). When the studied point arrives to pass by all the 

previous filters, the chance of having a water supplement (irrigation or rainfall) increases, and 

thus the change of SAR signal at grid scale is required at this stage in order to eliminate the 

irrigation-rainfall ambiguity. Filters applied at grid scale could be divided into four main cases: 

 Case i: If ∆𝑉𝑉𝐺 ≥ 1 𝑑𝐵 then a rainfall event have occurred and the point is not an irrigation 

point. 

 Case ii: If 𝑆𝑆𝑀𝐺 > 20 𝑣𝑜𝑙. % then a rainfall event probably occurred before and there is 

low chance to have an irrigation event (humid soil conditions at basin scale). 

 Case iii: If 0.5 ≤ ∆𝑉𝑉𝐺 ≤ 1 𝑑𝐵 we check the value of ∆𝑉𝑉𝑃 for two cases: 

 Case iii.1: If ∆𝑉𝑉𝑃 ≤ 0.5 then no irrigation took place. 

 Case iii.2: If ∆𝑉𝑉𝑃 > 0.5 and ∆ (∆𝑉𝑉𝑃 − ∆𝑉𝑉𝐺) ≥ 1 then it is considered as 

irrigation point with high certainty. 

 Case iv: If ∆𝑉𝑉𝐺 ≤ 0.5 𝑑𝐵 then we check the ∆𝑉𝑉𝑃 for four different cases: 

 Case iv.1: ∆𝑉𝑉𝑃 ≥ 1 𝑑𝐵 then the point is an irrigation point with high certainty. 

 Case iv.2: 0.5 ≤ ∆𝑉𝑉𝑃 < 1 𝑑𝐵 then the point is an irrigation point with medium 

certainty if and only if 𝑆𝑆𝑀𝑃 ≥ 20 𝑣𝑜𝑙. % OR ∆ ≥ 1.5 𝑑𝐵. 

 Case iv.3: 0 ≤ ∆𝑉𝑉𝑃 < 0.5 𝑑𝐵 then the point is an irrigation point with low 

certainty if and only if 𝑆𝑆𝑀𝑃 ≥ 20 𝑣𝑜𝑙. % OR ∆ ≥ 2 𝑑𝐵. 

 Case iv.4: −0.5 ≤ ∆𝑉𝑉𝑃 < 0 𝑑𝐵 then the point is an irrigation point with low 

certainty if and only if 𝑆𝑆𝑀𝑃 ≥ 20 𝑣𝑜𝑙. % AND the previous point at 𝑡𝑖−1 is a high 

certainty irrigation point or a rainfall point (∆𝑉𝑉𝐺 ≥ 1 𝑑𝐵). 
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Figure 3: Workflow overview using the tree-based classification for irrigation detection at plot scale 

A certainty indicator of irrigation (high, medium and low) is also associated for each 

detected irrigation point. The high certainty irrigation points are associated for the points 

considered as irrigation points from cases iii.2 and iv.1 (significant increase in ∆𝑉𝑉𝑃). For the 

points of case iv.2 a medium certainty is associated, while low certainty is considered for 

irrigation points detected from cases iv.3 and iv.4. 

The implementation of the proposed method in a near real-time scenario depends principally 

on the delivery time of S1 images. S1 images are usually delivered by ESA in a “fast 24 h” 
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delivery mode. This mode insures that the S1 image is available for download 24 h after the 

satellite acquisition. Considering that the pre-processing of S1 images and applying the 

proposed method could be automatically performed with minimum human involvement, the 

irrigation event could then be detected about one hour after receiving the S1 images. 

Finally, the post NDVI filter (Section 3.6) is applied for each detected irrigation point in 

order to eliminate the ambiguity with soil work. When another NDVI image is acquired 

at 𝑡𝑖+(20 𝑡𝑜30 𝑑𝑎𝑦𝑠), the ∆𝑁𝐷𝑉𝐼 is calculated. Then, for each detected irrgation event, if 

𝑁𝐷𝑉𝐼𝑡𝑖 < 0.4 and ∆𝑁𝐷𝑉𝐼 ≤ 0.1, then this irrigation event is eliminated. This NDVI filter is a 

long-term real-time scenario because it requires obtaining a new NDVI value one month later. 

Therefore, this optical filter remains as a post processing of the obtained irrigation points. 

It is important to mention that the methodology is applied separately for the ascending 

(evening overpass) and descending (morning overpass) SAR acquisitions. In fact, morning and 

evening acquisitions could not be joined in one temporal series due to the presence of the diurnal 

variations between the two acquisitions. The diurnal variation is a result of the difference in the 

vegetation water content (VWC) between the morning and the evening. This difference in VWC 

causes high difference in the radar backscattering signal over vegetated plots between the 

morning and the evening acquisitions. Several studies have reported that σ0 in the morning 

overpass registers higher values than 𝜎0 in the evening overpass (Brisco et al., 1990; van 

Emmerik et al., 2015; Friesen et al., 2012). Therefore, it was suggested to investigate separately 

each SAR temporal series acquired in the morning and evening. 

4. Results 

4.1 Grid Scale σ° Temporal Profile 

Since irrigation and rainfall events are both considered a water supplement and have the 

same effect on the SAR backscattering coefficients, it was proposed to minimize the 

irrigation-rainfall ambiguity using the σ° values obtained at basin scale (10 km × 10km). Figure 

4 shows an example of the temporal behavior of σG
0  SAR values in VV polarization obtained at 

a 10 km grid cell (red curve) for Montpellier (Figure 4a), Tarbes (Figure 4b) and Catalonia 

(Figure 4c). Daily precipitation records obtained from the Global Precipitation Mission (GPM) 

data are added to the figures (blue curve) to help understand the consistency between the grid 

scale σG
0  values and the rainfall events. The green line shows the SSM estimation at grid scale 
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(for bare soil plots with low vegetation cover) at each SAR date while the dotted black line 

shows the threshold value fixed for 𝑆𝑆𝑀𝐺  at 20 vol.%. Following a rainfall event, the σG
0  value 

increases (more than 1 dB) due to important precipitation before the SAR acquisition (black 

dashed circle) accompanied with high SSM estimations (more than 20 vol.%) indicating humid 

soil conditions at 10 km scale. On the other hand, the absence of precipitation causes a decrease 

or stability of σ° value at grid scale with low soil moisture values (less than 15 vol.%) indicating 

dry soil conditions (yellow dashed circle). This consistency between rainfall, σG
0  and SSM 

estimations at grid scale ensures that both σG
0  and SSM estimations at 10 km scale are a good 

representative for rainfall events and, therefore, could be used to eliminate the uncertainty 

between rainfall and irrigation. 

  
(a) (b) 

 

 

(c)  

Figure 4: Temporal evolution of Synthetic Aperture Radar (SAR) backscattering coefficient σ° in VV 

polarization at 10 km grid scale (red curve) with surface soil moisture (SSM) estimation at 10 km grid 

scale (green curve) and daily precipitation data from the Global Precipitation Mission (GPM) mission 

(blue curve) for (a) Montpellier, (b) Tarbes and (c) Catalonia. Black dashed circle corresponds to 

existing rainfall events while yellow circle shows the absence of rainfall. 

4.2 Results over Montpellier 

Figure 5 presents the results of the application of the proposed methodology (Phase 1 and 

2) over the three plots P1, P2 and P3 located in Montpellier, France using the ascending 

(morning) and descending (evening) SAR images separately. Over Montpellier site, the 

morning acquisition is 36 h prior to the evening acquisition. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 
Figure 5: Irrigation detection over P1 (a, b), P2 (c, d), and P3 (e, f) using the morning SAR acquisition 

(a, c, e) and the evening SAR acquisition (b, d, f), in Montpellier, France. SAR VV signal at plot scale 

in dashed black line and VV at grid scale in dashed pink line. Points with blue, green and red are 

irrigation points detected on SAR signal at high, medium and low certainty respectively. The green line 

represents the normalized differential vegetation index (NDVI). High, medium and low correspond 

respectively to detected irrigation events with high, medium and low certainty. 

Figures 5a and 5b show the morning and evening SAR acquisitions for P1 plot (maize), 

respectively. The first detected irrigation point was on 17/07 (morning acquisition) and 18/07 
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(evening acquisition) due to two irrigation episodes that took place on 16/07 and 18/07. 

Between 19/07and 31/07 no irrigation occurred on the plot and no peaks where detected for 

two consecutive SAR acquisitions. Later, on both 05/08 (morning) and 06/08 (evening), an 

irrigation peak was detected due to two irrigation episode occurring on 03/08 and 04/08. In 

addition, two irrigation episodes that occurred on 04/09 and 05/09 appeared as an irrigation 

peak on the evening image of 06/09. However, the morning image acquired on 04/09/2017 did 

not show any detected irrigation since the episodes occurred after the SAR acquisition (SAR 

acquired at 06h00 while irrigation generally takes place after 09h00). Moreover, an irrigation 

episode occurring on 11/09 was detected on the evening image acquired on 12/09/2017. Two 

irrigation episodes occurring on 13/09 and 14/09 appeared on both the morning and evening 

acquisitions on 14/09 and 15/09, respectively. By combining the irrigation events detected from 

the morning and evening acquisition, 12 out of 15 possible irrigation episodes over P1 were 

detected including 5 points with high certainty, 5 points considered as medium certainty and 2 

points with low certainty. However, it is important to mention that several irrigation episodes 

occurring between two consecutive SAR dates are considered as only one irrigation episode. 

For plot P1 only one point with low certainty was falsely detected as irrigation event. 

For the soya plot (P2), the results of the combined use of the morning (Figure 5c) and 

evening (Figure 5d) acquisitions show that 11 irrigation episodes were detected out of 13 

possible irrigation episodes. Among the 11 detected irrigation points, eight points were with 

high certainty, two medium and one low certainty point. Moreover, among the 92 SAR 

acquisitions (morning and evening), only one false irrigation detection was obtained with low 

certainty. The first irrigation episode on 29/05 was detected in the morning SAR image of 31/05 

(Figure 5c). For the morning acquisition, the radar signal then decreased between 31/05 and 

06/06 due to the decrease in soil moisture but started to increase between 06/06 and 24/06 

without any rainfall or irrigation events. This increase in the σP
0  values for three consecutive 

acquisitions was strongly correlated with the development of vegetation cover (NDVI values 

increases sharply during this period). However, among these three SAR points, two points were 

correctly not detected as irrigation points since they were filtered by the smoothed Gaussian 

filter (𝑆) that helped eliminate the effect of the vegetation development on σP
0 . Figure 6 explains 

the effect of the smoothed-Gaussian filter over P2 plot of Montpellier where the 𝜎𝑠𝑚𝑜𝑜𝑡ℎ
0  (red 

curve) is added to the results obtained by Figure 5d to demonstrate the importance of the 

smoothed-Gaussian filter. In Figure 6, the green dashed circle shows the three consecutive 

increase of 𝜎𝑃
0 between 06/06/2017 and 24/06/2017. However, for two out of these three points, 
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the 𝜎𝑠𝑚𝑜𝑜𝑡ℎ
0  curve is above 𝜎𝑃

0 curve thus the calculated 𝑆 value is negative and these points 

were not detected as irrigation points. 

The sorghum plot (P3) encountered five irrigation episodes between 31/05/2017 and 

10/08/2017 (Figure 5e and Figure 5f). Using the proposed change detection method, five out of 

the five episodes were correctly detected as irrigation events. The first irrigation episode was 

detected on the evening SAR image (Figure 5f) of 01/06 due to an irrigation event occurring on 

the same date. Then, the 4 irrigation episodes that occurred on 26/06, 07/10, 27/10 and 10/08 

were detected with both acquisition modes (ascending and descending). However, on this plot 

two false irrigation points were detected with medium and low power. 

 

 

 
Figure 6: Effect of smoothed-Gaussian filter on the detection of irrigation points for plot P2, 

Montpellier. The red dashed curve represents the 𝜎𝑠𝑚𝑜𝑜𝑡ℎ
0  calculated as each SAR date. 

Table 2 summarizes the results obtained on the three plots of Montpellier site. The total 

number of irrigation events over the three plots was 48 events. However, at each plot, several 

irrigation events occurring between two consecutive SAR dates are considered as only one 

irrigation event. We call these events the possibly detectable irrigation events. For example, 

three irrigation events occurring on 10/08, 11/08 and 13/08 on plot (P1) are considered as one 

irrigation event since the three events were followed by only one available SAR acquisition on 

13/08/2017. Therefore, among the 48 irrigation events occurring on the three plots, 33 events 

could be possibly distinguished by the acquired SAR temporal series. This means that, 69% of 

the total number of irrigation events could be detected by the available SAR temporal series. 

Out of 33 possibly detectable irrigation events over the three plots, 28 irrigation episodes have 
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been correctly detected. This means that among the possible detectable irrigation events 84.4% 

of these events are correctly detected. However, a total error of five falsely detected irrigation 

events has been registered over the three plots. The falsely detected irrigation points 

corresponds to the saturation of the radar signal caused by very well developed vegetation cover 

in plots P1 (maize) and P3 (Sorghum). 

Table 2: Irrigation events detected over three plots in Montpellier, South-east France 

Plot 
Number of Irrigation 

Events 

Possibly Detectable 

Irrigation Events 

Detected 

Irrigation Events 

False 

Detection 

P1 30 15 12 2 

P2 13 13 11 1 

P3 5 5 5 2 

Total 48 33 28 5 

4.3. Results over Catalonia 

Over the Catalonia region, the huge database available allows us to investigate in depth the 

performance of the proposed method. The method was applied not only over irrigated plots but 

also over non-irrigated plots in order to analyze its capability to distinguish between irrigated 

and non-irrigated fields. First, it is important to remember that Catalonia region is a semi-arid 

region with a dry summer where most of the irrigation activities occur during the summer 

season (between May and September). Figure 7 presents the temporal profile of σP
0  and σG

0  over 

the period between September 2017 and December 2018 (evening acquisitions) along with the 

irrigation points detected during this period for an irrigated maize (Figure 7a) plot, irrigated 

alfalfa plot (Figure 7b), and non-irrigated wheat plot (Figure 7c). The daily GPM precipitation 

data are also presented in the three figures (blue curve). During the period between September 

2017 and December 2018, 11 irrigation points were detected on the maize plot whereas 12 

irrigation points were detected on the alfalfa plot. In both irrigated plots (Figure 7a and 7b), the 

irrigation points correspond to the dry summer period (between 25 April and 30 September). 

For example, 6 irrigation points were detected on the maize plot (Figure 7a) between 

12/06/2018 and 15/08/2018. This is correlated with the existence of the maize vegetation cycle 

in the summer season (Increasing NDVI values). The alfalfa plot (Figure 7b) shows also 

frequent irrigation points detected between 12/06/2018 and 30/08/2018. For both maize and 

alfalfa plots, the σG
0  between 01/06/2018 and 30/09/2018 shows stable low values indicating 

dry conditions and the absence of rainfall events. On the other hand, the frequent change of the 

σP
0  in both plots indicates that possible irrigation events have occurred. This increase of the σP

0  

was detected as irrigation events based on our proposed method. 
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(b) 

 
(c) 

 
Figure 7: Irrigation detection over agricultural plots in Catalonia, Spain for (a) irrigated maize plot, (b) 

irrigated alfalfa plot, and (c) non-irrigated wheat plot. The red dashed ellipse represents the period of 

the transition between the heading and soft dough phase of the wheat plot. 

Over the non-irrigated wheat plot presented in Figure 7c, no irrigation points have been 

detected for 82 SAR images (18 months). Such results support our criteria for detecting 

irrigation events and eliminating ambiguities with rainfall or vegetation effects. Following a 

rainfall event both σP
0  and σG

0  increase and then decrease following a dry period. The 

consistency between both σP
0  and σG

0  for the non-irrigated plot during the whole period indicates 

that the plot did not receive any water supplement other than rainfall events. Despite several 

frequent changes of the σP
0  over the complete temporal series due to several rainfall events and 
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vegetation change, the method was able to eliminate all possible irrigation ambiguities and 

judge that the plot did not receive any irrigation event. 

An important point regarding the wheat plot in Figure 7c is the period between 19/04/2018 

and 13/05/2018. During this period, the SAR backscattering signal increases gradually between 

each two SAR dates (red dashed circle). This increase in the SAR signal is related to the 

transition between the heading phase (minimum point on 19/04) and the soft dough phase 

(maximum point at 19/05). However, these points were eliminated using the proposed cereal 

phenology filter discussed in Section 3.4. 

The proposed method was applied over a wide area of Catalonia region including 159,850 

plots (123,428 non-irrigated and 36,423 irrigated plots) of different crop types. Despite the 

absence of information about the exact irrigation dates over Catalonia, a quantitative analysis 

was performed by comparing the results obtained by applying the method over irrigated and 

non-irrigated plots. Over Catalonia, the morning acquisition was 12 h prior to the evening 

acquisition. Figure 8 presents the histogram of the distribution of the number of events detected 

over irrigated and non-irrigated plots. Figure 8a corresponds to the morning SAR acquisition 

and Figure 8b corresponds to the evening SAR acquisition. The intersection between the 

evening and morning acquisitions is presented in Figure 8c. The intersection means that at each 

SAR date the point is considered as irrigation point if it exists within both the ascending and 

the descending acquisition modes (only 12 h difference between the two acquisitions is 

approximately equal to same day). Finally, Figure 8d shows the result of the combined use of 

both acquisitions. The combination between the results of the both acquisition modes means 

that at a given SAR date, the point is considered irrigation point if it exists in either the 

ascending or the descending acquisition modes. For morning acquisition mode (Figure 8a), the 

distribution shows that 68.3 % of the non-irrigated plots had no detected irrigation events for 

the period between September 2017 and December 2018 (82 SAR images). Moreover, 20.3 % 

of the non-irrigated plots encountered only one detected event. Therefore, 88.6% of the 

non-irrigated plots have maximum one detected irrigation point in the morning acquisition 

mode. The non-irrigated plots with 2 and 3 detected irrigation points represent only 6% and 2% 

respectively. On the other hand, only 12.1% of the irrigated plots failed to register any irrigation 

event. Thus, 87.9% of the irrigated plots had one and more detected irrigation points. The 

percentage then increases gradually where 54.9% of the irrigated plots had between two and 

five detected irrigation points. In addition, 20.4% of the irrigated plots encountered between 

five and 10 detected irrigation points. Similar results are obtained for the evening acquisition 
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(Figure 8b). For example, 58.2% of the non-irrigated plots had no detected irrigation events 

while 25.1% had only one detected event. Thus, 83.3% of the non-irrigated plots encountered 

a maximum of one detected point for evening acquisition mode. In contrast, only 9.1 % of the 

irrigated plots failed to gain any detected irrigation point and therefore 91.9. % of the irrigated 

plots had one and more detected irrigation point in the evening acquisition mode. Moreover, 

51.1% of the irrigated plots had between two and five events and 27.3% of the irrigated plots 

had between six and ten detected points. 

The intersection between the morning and evening acquisitions modes (Figure 8c) shows 

that 90.2% of the non-irrigated plots have no detected peaks whereas 72.4% of the irrigated 

plots had one or more detected irrigation peak. The combination of both acquisition modes 

(Figure 8d) increases the number of detected irrigation points but leads to an accuracy of the 

same order of magnitude as in the case of a separate use of the two SAR acquisition modes or 

in the case of the intersection of the two acquisition modes. For non-irrigated plots, 45.9 % of 

the plots had no detected points and 27.0 % had one detected points. The percentage decreases 

gradually to then reach 7% for three detected irrigation points. Inversely, the irrigated plots with 

no detected irrigation points consist of only 6.8% while the percentage of plots varies between 

5% and 10% for irrigation points between 1 and 14 points. 

  
(a) (b) 

  
(c) (d) 

Figure 8: Distribution of the irrigation points detected over irrigated (blue) and non-irrigated (orange) 

plots in Catalonia Spain for (a) morning SAR acquisition, (b) evening SAR acquisition, (c) intersection 
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between morning and evening acquisitions and (d) combination between morning and evening 

acquisitions 

Figure 9 represents the distribution of the number of irrigation points detected over irrigated 

plots in Catalonia, Spain as a function of months. For each month (including approximately 

five SAR acquisitions at each acquisition mode), the number of irrigation peaks detected over 

all the irrigated plots is calculated. While Figure 9a represents the distribution of irrigation 

points for the morning acquisitions, Figure 9b shows this distribution for the evening 

acquisition. For the morning acquisition mode (Figure 9a), the number of irrigation points 

reaches a low value in February 2018 (1040 points ~0.7%) and then starts to increase gradually 

between March 2018 and May 2018. A sharp increase of the irrigation points exists between 

May 2018 (3827 ~3%) and June 2018 (21,787 ~16%) and then continues to increase to reach a 

maximum value in July 2018 (25,380 ~19%). In August 2018, the number of irrigation points 

slightly decreases to attain approximately 15%. Then the number of detected irrigation points 

starts to decrease until reaching a minimum value in November 2018 (103 ~0.01%). Similar 

behavior is registered in the evening acquisition (Figure 9b) where the number of irrigation 

points reaches low value in February 2018 (2735 ~1%) and then increases until reaching its 

maximum value in July 2018 (29,286 ~18%). A slight decrease is recorded in August 2018 

(27,252 points ~16%). The number of detected irrigation points then starts to decrease to reach 

a minimum value of 257 points ~0.01% in November 2018. 

As a result, Figure 9 shows that most of the detected irrigation points exist within the period 

between March 2018 and September 2018. Indeed, 80.0% of the total detected points using the 

evening acquisition mode (Figure 9b) exist within the period between 01 March 2018 and 30 

September 2018. Similarly, 74.5% of the total detected points exist within the same period for 

the morning acquisition mode (Figure 9a). Only 12% of the irrigation points (in both morning 

and evening) correspond to the period between November 2017 and February 2018. This low 

percentage mostly corresponds to the false detection of irrigation events since irrigation rarely 

occurs over this period and rainfall events are abundant. Therefore, the results show that most 

of the detected points using our proposed irrigation detection method correspond to the dry 

season where irrigation mostly occurs in the region. 
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(a) (b) 

Figure 9: Distribution of the irrigation points detected over irrigated plots in Catalonia Spain as a 

function of months for (a) morning SAR acquisition, (b) evening SAR acquisition 

4.4. Classifying Irrigated and Non-Irrigated Plots over Catalonia 

Based on the results obtained in Section 4.3, we propose to classify irrigated and 

non-irrigated plots over the Catalonia site using the obtained distributions of detected irrigated 

points present in Figure 8. Four different classifications were performed. The first classification 

was performed using the results obtained from the morning SAR acquisitions (Figure 8a), and 

the second classification was executed using the results of evening SAR acquisitions (Figure 

8b). A third classification was undertaken using the intersection between the morning and 

evening results (Figure 8c), and finally a fourth classification was executed using the 

combination of the morning and evening results (Figure 8d). As stated in 4.4, the intersection 

means that at each SAR date, a point is considered an irrigation point if it exists in both SAR 

acquisition modes while the combination means that the point is considered as irrigation point 

if it exists in either one of the two modes. For the morning and the evening classification 

scenarios, we suppose that a plot is considered irrigated if our method identifies two and more 

irrigation points within the complete SAR temporal series (morning or evening). For the 

intersection classification scenario, we consider that a plot is an irrigated plot if the intersection 

between the morning and the evening results gives one and more irrigation points. Finally, for 

the combined classification we consider that a plot is irrigated if the combination of the morning 

and the evening results gives three and more irrigation points. For each of the four 

classifications, a confusion matrix is built and Table 3 reports the accuracy metrics by means 

of the overall accuracy, weighted F-measure, and the F-Measure at each class (irrigated, 

non-irrigated). The overall accuracy is a standard metric used for remote-sensing applications. 

The weighted F-measure corresponds to the harmonic mean affected by the number of samples. 
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Since the number of non-irrigated plots is bigger than the irrigated plots, the weighted 

F-measure is well suited to evaluate the performance of the classification (Tan et al., 2006) 

The highest overall accuracy (85.9%) was recorded for the intersection scenario with a 

weighted F-measure of 86.0%. The F-score of the irrigated class in the intersection scenario 

reaches 0.70 and that for the non-irrigated class reaches 0.90. On the other hand, the lowest 

overall accuracy was recorded for the evening SAR acquisition (82.5%) accompanied with the 

lowest weighted F-measure (83.4%). The combined scenario shows the highest accuracy for 

the irrigated class (F-measure = 0.72) with an overall classification accuracy of 85.4%. 

Generally, the F-measure of each class was nearly the same between the four scenarios. In fact, 

the F-measure varies between 0.68 and 0.72 for the irrigated class, and varies between 0.88 and 

0.90 for the non-irrigated class. 

Table 3: The values of the overall accuracy and F-measure obtained for classification of irrigated and 

non-irrigated plots using the detected irrigation points for four different scenarios. 

Scenario 
Condition to be 

Irrigated 
Class F-Measure 

Weighted 

F-Measure 

Overall 

Accuracy 

SAR Morning 
Two points and 

more 

Non-irrigated 0.90 
86.1% 85.7% 

Irrigated 0.71 

SAR Evening 
Two points and 

more 

Non-irrigated 0.88 
83.4% 82.5% 

Irrigated 0.68 

Intersection Morning 

and Evening 

One point and 

more 

Non-irrigated 0.90 
86.0% 85.9% 

Irrigated 0.70 

Combined Morning 

and Evening 

Three points and 

more 

Non-irrigated 0.89 
84.7% 85.4% 

Irrigated 0.72 

 

The four proposed classification scenarios were re-established using only the detected 

irrigation events between April and September 2018 which corresponded to the irrigation 

period in Catalonia. Figure 10 shows a comparison between the accuracy metrics previously 

obtained when using all the detected irrigation events (between September 2017 and December 

2018) and that obtained when using only irrigation events between April 2018 and September 

2018. For the morning and evening classification scenarios, the results show that the overall 

accuracy increased by 2.8% and 4.8%, respectively, when considering only detected irrigation 

events between April and September (Figure 10a). The F-measure of the irrigated class 

increased by 2.2% for the morning scenario and significantly increased by 5.0% for the evening 

classification (Figure 10b). For the intersection scenario, the obtained results remained nearly 

the same for the four accuracy metrics. Moreover, in the combined classification scenario, the 

overall accuracy increased by 4.0% (Figure 10a) where the F-measure of the irrigated class 

increased by 4.5% (Figure 10b). The F-measure of the non-irrigated class (Figure 10c) also 
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increased for the four different scenarios. Finally, the weighted F-measure also increased by 

2.0%, 4.0% and 3.4% for the morning, evening and the combined classification scenarios, 

respectively (Figure 10d). Therefore, a priori information about the irrigation period can help 

reduce the uncertainty in the proposed model for better irrigation detection. This priori 

information helps limiting the size of the studied temporal series and thus reduces the chance 

of detecting additional false irrigation events. 

  
(a) (b) 

  
(c) (d) 

Figure 10: Comparison between accuracy metrics obtained for classification of irrigated and 

non-irrigated plots using all the detected irrigation events (red bar) and the detected irrigation events 

between April and September 2018 (blue bar). (a) Overall accuracy, (b) F-measure of irrigated class, (c) 

F-measure of non-irrigated class and (d) weighted F-measure. 

4.5. Results over Tarbes 

The proposed method was applied over irrigated plots in Tarbes, south-west France. Figure 

11a represents the σP
0  and σG

0  in the morning acquisition mode for an irrigated maize plot with 

the irrigation points detected using the proposed change detection method. While Figure 11a 

shows the complete series between 01 March and 30 November 2017, Figure 11b represents 

the period where the irrigation points were detected. However, irrigation dates were not 

available over this site so a qualitative analysis was performed to show the performance of the 

method. During the period between 01 March 2017 and the end of June 2017 (Figure 11a), the 



CHAPTER IV: TOWARDS OPERATIONAL MAPPING OF IRRIGATED AREAS 

 

179 

 

σP
0  and σG

0  followed the same behavior for almost all the dates. Following a rainfall event both 

curves increased and then decreased following a period without rainfall. This consistency could 

be related to the absence of any additional water supplement on the plot scale. However, 

between March and mid-May, the NDVI values were low (less than 0.2) indicating bare soil 

conditions. This also supports the possibility that no irrigation had occurred for this period. The 

NDVI then started to increase showing a vegetation cycle between May and October.  

 
(a) 

 
(b) 

 
Figure 11: Irrigation events detection over a reference irrigated maize plot in Tarbes, France. (a) 

Complete temporal series between March and November 2017; (b) irrigation events detected between 

29 May and 21 August 2017. 

Using the proposed method for detecting irrigation events, four irrigation points were 

detected over this plot (Figure 11b). In general, all these irrigation points corresponded to an 

important increase of σP
0  accompanied with absence of rainfall events as shown by the GPM 

data (blue curve) and the σG
0 -values at grid scale (pink curve). For example, an important 

cumulative rainfall of approximately 40 mm three days before the SAR image acquired on 

28/06/2017 caused σG
0  to increase by 2.5 dB. Six days later, no rainfall events were registered 
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and the σG
0  decreased by 1.5 dB. For the same period, σP

0  increased by 1 dB. This point was the 

first irrigation point detected on the plot. Similarly, between 10/07 and 16/07, σG
0  decreased by 

2.1 dB due to the absence of precipitation while σP
0  increased by 1.1 dB indicating that a water 

supplement could have occurred. The absence of precipitation for 12 days between 22/07 and 

04/08 caused σG
0  to decrease gradually. However, the SAR image acquired on 04/08 showed an 

increase of the SAR signal at plot scale which was evidence of an irrigation event occurring. 

Likewise, between 15/08 and 21/08 the σP
0  increased by 1.5 dB indicating the presence of 

irrigation event along with a stability of low σG
0  (~ -11.5 dB) indicating the absence of any 

rainfall events. After the fourth detected point on 21/08, the NDVI started to decrease. Usually 

during this phase irrigation events rarely occur. After 02/09, the σ° values at both plot and grid 

scale regained their consistent behavior indicating the absence of irrigation. Finally, it is 

important to mention that the summer season in Tarbes is humid and encountered several 

rainfall events. 

Figure 12 presents the histogram of the distribution of the number of events detected over 

irrigated plots in Tarbes for morning acquisition (Figure 12a), evening acquisition (Figure 12b), 

intersection between morning and evening acquisitions (Figure 12c) and the combination of 

both acquisitions (Figure 12d). It is important to remember that the intersection means that the 

detected points are considered irrigation events if they exist within the morning and the evening 

modes while the combination means that the points are considered irrigation events if they exist 

in either the morning or the evening acquisition modes. Figure 12a shows that using the morning 

acquisition, 91% of the irrigated plots has one or more detected irrigation events and 75% of 

the plots have two and more detected irrigation events. Figure 12b shows that fewer points are 

detected in the evening acquisition than the morning acquisition where only 50% of the plots 

have one and more irrigation events. In Figure 12c, the intersection shows that with an interval 

of 36 h between both acquisitions, only 38% of the irrigation events were commonly detected 

within both acquisition modes. Finally, the combined use of the morning and the evening 

acquisitions in Figure 12d shows that 97% of the irrigated plots had and more detected irrigation 

events. Moreover, 90% of the irrigated plots had two and more detected irrigation events and 

65% of the plots had three and more irrigation events. This indicates that the combined use of 

the morning and the evening acquisitions helps detect more irrigation events than using only 

one S1 overpass each 6 days. Figure 12d also shows that the maximum percentage of plots was 

registered with three irrigation events (29.7%) and the percentage then decreased as the number 

of detected irrigation events increase (four events and more). The low number of detected 
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irrigation events in Tarbes, compared to those obtained over Catalonia, was expected since 

Tarbes is a humid region and the frequency of irrigation is less than that in the arid or semi-arid 

regions. Moreover, the abundance of rainfall events during the summer season could restrict 

the possibility of detecting all the possible irrigation events. 

  
(a) (b) 

  
(c) (d) 

Figure 12: Distribution of the irrigation points detected over irrigated plots in Tarbes, France for (a) 

morning SAR acquisition, (b) evening SAR acquisition, (c) intersection between morning and evening 

acquisitions and (d) combination between morning and evening acquisitions. 

5. Discussion 

5.1. Change Detection in σ° SAR Backscattering 

In this study, a new methodology is presented for detecting irrigation events at plot scale 

using the change detection in the SAR backscattering signal. The first important fact is that the 

change of the surface soil moisture due to irrigation events (artificial application of water) 

between two SAR dates may cause an increase in the SAR backscattering coefficient between 

these two dates. However, this assumption remains limited with the changes in SAR 

backscattering signal due to a rainfall event or vegetation development. Therefore, the 

separation between the changes in SAR backscattering signal due to irrigation events from 

similar changes, which could be caused by rainfall or vegetation development, was challenging. 
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To remove the uncertainty with rainfall events, the method proposes using the SAR 

backscattering signal at basin scale (10km × 10km) obtained from bare soil plots with low 

vegetation cover as a descriptor of rainfall events. The assumption stipulates that if the mean 

SAR signal within 10km x 10km grid cell increased between two consecutive dates then a 

rainfall event took place and thus irrigation, if it had occurred, could not be detected. This 

dependency between rainfall and σG
0  was presented in Figure 4. For this reason, we judge that 

any increase in the SAR signal at 10km grid scale by more than 1 dB is linked to rainfall events. 

In addition, the surface soil moisture estimation performed at grid scale (𝑆𝑆𝑀𝐺) was used to 

enhance the detection of rainfall events. Thus, a threshold of 20 vol.% for 𝑆𝑆𝑀𝐺  was proposed 

to describe humid soil conditions at basin scale which is probably linked to a rainfall event that 

occurred couple of days before the SAR acquisition. The combination of these two conditions 

at grid scale allowed a good separation between rainfall and irrigation episodes occurring at 

each SAR acquisition. 

The second main contributor in the SAR backscattering signal at plot scale was the 

development of the vegetation cover. This development could cause an increase in the SAR 

backscattering signal at plot scale without any change in the surface soil moisture content and 

thus without any irrigation or rainfall events. In this study, a descriptor of the vegetation growth 

is suggested. This descriptor (𝑆) is a Gaussian-smoothing filter applied to the SAR temporal 

series. The 𝑆 values allow describing the vegetation growth pattern at the plot scale and thus 

permit the separation of irrigation events from vegetation growth events. This contribution of 

the smoothed-Gaussian is shown in Figure 6. For the soya plot (P2) of Figure 6, the vegetation 

descriptor (𝑆) helped eliminate two points considered as vegetation development points. 

Another vegetation development filter was proposed for cereal plots in order to remove the 

increase in the SAR backscattering signal due to the transition between the heading and the soft 

dough phenology phases. The importance of this filter was demonstrated in Figure 7c for a 

non-irrigated winter wheat plot. However, the date limits present in this filter (mid-March until 

May) could be adjusted for other geographical contexts in order to follow the cereal growth 

cycle where cereals could be cultivated in other months. 

5.2. Effect of NDVI Optical Filter 

Throughout the study, an optical post-processing filter has been suggested to ameliorate the 

detection of irrigation events and remove the ambiguity between the increase in the SAR 

backscattering signal due to irrigation events and soil work. The role of the NDVI filter is to 
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insure that a vegetation growth cycle truly exists within or after the detected irrigation point. 

As presented in Section 3.6, the NDVI optical filter suggests that if the 𝑁𝐷𝑉𝐼𝑡𝑖 (NDVI value at 

a detected irrigation event) is less than 0.4 and ∆𝑁𝐷𝑉𝐼 ≤ 0.1 then the point is a falsely detected 

irrigation point, and is further eliminated. For 𝑁𝐷𝑉𝐼𝑡𝑖 greater than 0.4, the filter was no longer 

applied because the vegetation cover is already developed (NDVI >0.4) and the existence of 

irrigation event is more probable. 

To assess the importance of this NDVI optical filter, we obtain first the results over 

Catalonia without applying the NDVI optical filter. Then we apply the NDVI optical filter using 

two threshold values on 𝑁𝐷𝑉𝐼𝑡𝑖 accompanied with the criterion ∆𝑁𝐷𝑉𝐼 ≤ 0.1. The filter was 

first applied using 𝑁𝐷𝑉𝐼𝑡𝑖 ≤ 0.2 and then applied using 𝑁𝐷𝑉𝐼𝑡𝑖 ≤ 0.3. The results obtained 

previously with 𝑁𝐷𝑉𝐼𝑡𝑖 ≤ 0.4 were also used in this comparative analysis. For each case, the 

threshold of ∆𝑁𝐷𝑉𝐼 was kept equal to 0.1. To present the effect of this NDVI optical filter, we 

intended to monitor the change in the percentage of plots that did not encounter any irrigation 

event for both irrigated and non-irrigated plots (0 detected irrigation events). The class with no 

detected irrigation events was chosen for this analysis since it describes the capability of 

discriminating between irrigated and non-irrigated plots. Figure 13 presents the evolution of the 

percentage of the plots that did not register any irrigation event as a function of the value of 

𝑁𝐷𝑉𝐼𝑡𝑖 used in the optical filter for both morning (Figure 13a) and evening (Figure 13b) 

acquisition modes. 

For the morning acquisition mode, Figure 13a shows that when the NDVI filter is not 

applied only 29% of the non-irrigated plots have no detected irrigation events. When adding 

the NDVI filter using 𝑁𝐷𝑉𝐼𝑡𝑖 ≤ 0.2 (∆𝑁𝐷𝑉𝐼 ≤ 0.1), this percentage increases to reach 44%. 

The optical filter applied at 𝑁𝐷𝑉𝐼𝑡𝑖 ≤ 0.3 increases the percentage of non-irrigated plots with 

no detected irrigation events to reach 59%. Finally, using the NDVI optical filter at 𝑁𝐷𝑉𝐼𝑡𝑖 ≤

0.4, 68% of the non-irrigated plots had no detected irrigation events. Beyond 0.4, the filter was 

no longer applied since vegetation already exists and the occurrence of an irrigation event was 

more probable than soil work. For irrigated plots in morning acquisition (Figure 13a), the 

percentage of irrigated plots with no detected irrigation events was 4% when no NDVI filter 

was added and slightly increased to 12% as the NDVI optical filter with 𝑁𝐷𝑉𝐼𝑡𝑖 ≤ 0.4 was 

used. Therefore, when applying the NDVI filter using 𝑁𝐷𝑉𝐼𝑡𝑖 ≤ 0.4 in the morning acquisition 

mode, the percentage of the non-irrigated plots with no detected irrigation events significantly 

increased by 39% (68%–29%) compared to the percentage obtained when no NDVI filter was 
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used. The percentage of the irrigated plots with no detected irrigation events increased only by 

8% (12% minus 4%) compared to that obtained when no NDVI filter was used. 

For the evening acquisition mode (Figure 13b) the results show that the percentage of 

non-irrigated plots with no detected events increased from 22% when no filter was applied to 

reach 35%, 49% and finally 58% when the 𝑁𝐷𝑉𝐼𝑡𝑖 ≤ 0.2,  𝑁𝐷𝑉𝐼𝑡𝑖 ≤ 0.3 and 𝑁𝐷𝑉𝐼𝑡𝑖 ≤ 0.4 

were used respectively. For the irrigated plots in evening acquisition, the percentage increased 

from 3% when no filter was applied to reach 9% when NDVI optical filter was applied at 

𝑁𝐷𝑉𝐼𝑡𝑖 ≤ 0.4. Therefore, when applying the NDVI filter using 𝑁𝐷𝑉𝐼𝑡𝑖 ≤ 0.4 in the evening 

acquisition mode, the percentage of the non-irrigated plots with no detected irrigation events 

increased by 36% (58%–22%) compared to the percentage obtained when no NDVI filter was 

applied. On the other hand, the percentage of the irrigated plots with no detected irrigation 

events increased only by 6% (9%–3%) compared to that obtained when the filter was not 

applied. 

The significant increase in the percentage of non-irrigated plots with no detected peaks, 

between the case where NDVI filter was not applied and NDVI filter was applied at 𝑁𝐷𝑉𝐼𝑡𝑖 ≤

0.4, encouraged the use of the post-processing optical filter despite of the loss of 8% and 6% in 

the irrigated plots for morning and evening acquisitions, respectively. 

  
(a) (b) 

Figure 13: Percentage of plots with no detected irrigation points a function of the value of 𝑁𝐷𝑉𝐼𝑡𝑖 used 

for the optical filter in Catalonia, Spain for irrigated (blue) and non-irrigated (orange) plots using (a) 

morning acquisition mode and (b) evening acquisition mode. 

5.3. Strengths, Limitations and Future Directions 

The results of the study demonstrate that irrigation events could be detected using the 

Sentinel-1 satellite data with 6 days temporal resolution. Using the proposed method, the spatial 

distribution of the plots that encountered an irrigation event could be obtained at each available 
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SAR acquisition. Currently, the Sentinel-1 satellite is the only operational satellite that provides 

SAR data with high revisit time (6 days). However, this revisit time could still affect the 

detection of irrigation events. The first limitation of the proposed method is the effect of the 

time lag between the irrigation episode and the satellite passage. In fact, the detection of 

irrigation can become difficult if the irrigation event takes place more than three days before 

the SAR acquisition. Hajj et al. (2014) showed that irrigation could be detected if the irrigation 

took place three days and less before the radar acquisition. In their study using X-band SAR 

data, they showed that more than three days after the irrigation event, the surface soil moisture 

could attain the same value as that before the irrigation due to evaporation. Thus, a SAR 

acquisition more than three days after the irrigation event could not show any change in the 

surface soil moisture and the irrigation could not be detected. However, an analysis of the 

detected and non-detected irrigation events over Montpellier site using the C-band SAR data 

reveals that detection of irrigation events is not necessarily limited to the three-day time lag. 

For example, some detected irrigation points were found to be occurring four days before the 

SAR acquisition whereas few points were not detected even two days after the SAR acquisition. 

Thus, additional information such as the type of irrigation, the quantity of water, the evaporation 

rate and the plant water needs could be used to confirm the presence or absence of such 

irrigation events. 

In general, to overcome the limitation of the time lag between the SAR date and irrigation 

date, a dense SAR temporal series is required. Indeed, within the overlapping area of the 

different orbits of the Sentinel-1, four images (two morning and two evening images) could be 

obtained each 6 days. Thus for some sites, we could obtain up to 20 images each month (10 

morning and 10 evening images) which could help easily detect all the irrigation events. This 

configuration mainly depends on the surface area of the studied site in order to be covered by 

the overlapping area of different Sentinel-1 overpasses. The dense temporal series of SAR 

acquisitions (20 images per month) could also help increase the number of possibly detectable 

irrigation events. The number of possibly detected irrigation events mainly depends on the 

availability of the SAR images. As shown in the results over Montpellier (Section 4.2), 69% of 

the irrigation events could be possibly detected by SAR data using the available SAR 

configuration over the study area (10 images each month). Thus, as the number of SAR images 

increases, the chance of detecting all the existing irrigation events increases. 

Another limitation for detecting irrigation events could be the existence of a very well 

developed vegetation cover. In fact, the value of ∆𝑉𝑉𝑃 over high vegetation cover could be 



CHAPTER IV: TOWARDS OPERATIONAL MAPPING OF IRRIGATED AREAS 

186 

 

lower than that for bare soil (Gao et al., 2017). However, this difference in ∆𝑉𝑉𝑃 between bare 

soil and vegetated soil is a difficult aspect to quantify but can cause some uncertainty. 

The strength of the method resides in the near real-time detection of irrigation episodes. 

Despite the post-processing step required in the NDVI optical filter, the method could still be 

operationally applied in near real-time. Unlike other approaches that may require the complete 

temporal series to perform irrigation mapping or detection, the proposed method could be a 

near real time application for irrigation detection. 

The classification results obtained in Section 4.4 show that the proposed method could be a 

competing method for classifying irrigated plots versus machine-learning approaches that 

require an extensive training database in order to obtain good classification results. For 

example, Gao et al. (2018) and Bazzi et al. (2019c) used machine learning models such as the 

random forest and the convolutional neural network with S1 temporal series to classify 

irrigated/non-irrigated plots in Catalonia, Spain. Both studies achieved an overall accuracy of 

82% and 90%, respectively. Using our approach, we were able to separate irrigated and 

non-irrigated plots with an overall accuracy of 85.9% over the same study site (4.4). 

Generally, machine-learning models used for classification tasks usually depend on the 

studied sites and the studied period of the year. In our case, the proposed method was tested 

over three different study sites with different geographical and climatic properties. This 

indicates that the proposed method is not site-dependent. Since no specific site calibration is 

required in the proposed approach, the proposed method is thus capable of providing a 

non-supervised tool for monitoring irrigation activities at plot scale. This reflects the strength 

of the proposed method against the transfer of the machine-learning models from one site to the 

other. However, the threshold values used could still be modified to obtain optimum results 

over another study sites. The change of the thresholds, if needed, does not require extensive 

dataset from in situ observations for irrigated plots. 

By analyzing the number of obtained irrigation points on each field (as for Section 4.3), our 

proposed method could be used to generate labelled samples of irrigated/non-irrigated plots. 

This means that the proposed method could be used to create a training/validation dataset, over 

any study site, which could be then used in machine-learning models such as random forest or 

deep-learning approaches. Our future work will concentrate on merging our proposed method 

with machine learning methods to obtain a semi-supervised classification model in which the 

training/validation data will first be selected using the proposed approach in this study, and then 
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a machine-learning model will be built to perform further irrigation classification. In this case, 

the proposed method could replace the terrain campaigns usually done for collecting rich set of 

labelled samples in order to perform machine-learning classification approaches. 

6. Conclusions 

To deal with the aspect of managing water resources in the agricultural sector, this paper 

proposes a new approach for detecting irrigation events at plot scale in a near real-time scenario. 

The proposed method is a decision tree-based approach for detecting irrigation events using the 

change detection in the S1 SAR backscattering coefficients at plot scale. Several filters were 

applied in order to remove the ambiguity between irrigation events and rainfall, vegetation 

development and soil surface roughness. A thresholds-based method was proposed to detect 

irrigation events at each available S1 SAR date and for each agricultural plot mainly using the 

backscattering S1 SAR signal at plot and at grid scale (10 km × 10 km). Finally, a 

post-processing filter based on the NDVI value was integrated to ameliorate the detection of 

irrigation events. 

To ensure the transferability and the possible operational application of the proposed 

approach, three study sites were examined in this study (Montpellier, Catalonia and Tarbes) 

with two different climatic properties. In terms of climate, both Montpellier and Catalonia are 

similar (Mediterranean) with dry summer season whereas Tarbes is a humid region with 

frequent rainfalls in the summer season. Results showed, first, that the proposed method was 

capable of detecting 84.8% of the irrigation events occurring at three plots encountering 33 

irrigation events in Montpellier. Then, an analysis performed over the semi-arid region in 

Catalonia revealed that the proposed method was capable of classifying irrigated and 

non-irrigated plots with an overall accuracy of 85.9%. Finally, the analysis performed over 

irrigated plots in Tarbes revealed that our proposed method is able to detect irrigation events 

even in the presence of frequent rainfall events in the summer season where 90% of irrigated 

plots were detected with two and more irrigation events. 

Our irrigation events detection method opens the way toward building new semi-supervised 

approaches for irrigated area mapping at plot scale. Since several machine-learning models 

require an extensive dataset with costly terrain measurements, this method could be used to 

create a dataset of irrigated/non-irrigated labelled samples in order to be used in a 

machine-learning model that could be more efficient. Our future work will concentrate on 
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combining this new method with a supervised classification model to obtain a semi-supervised 

model for irrigation mapping. This combination can permit the transfer of machine-learning 

classification models over several regions to perform irrigation mapping at plot scale. 
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Abstract 

Better management of water consumption and irrigation schedule in irrigated agriculture is 

essential in order to save water resources, especially at regional scales and under changing 

climatic conditions. In the context of water management, the aim of this study is to monitor 

irrigation activities by detecting the irrigation episodes at plot scale using the Sentinel-1 (S1) 

C-band SAR (synthetic-aperture radar) time series over intensively irrigated grassland plots 

located in the Crau plain of southeast France. The method consisted of assessing the newly 

developed irrigation detection model (IDM) at plot scale over the irrigated grassland plots. First, 

four S1-SAR time series acquired from four different S1-SAR acquisitions (different S1 orbits), 

each at six-day revisit time, were obtained over the study site. Next, the IDM was applied at 

each available SAR image from each S1-SAR series to obtain an irrigation indicator at each 

SAR image (no, low, medium, or high irrigation possibility). Then, the irrigation indicators 

obtained at each image from each S1-SAR time series (four series) were added and combined 

by threshold value criteria to determine the existence or absence of an irrigation event. Finally, 

the performance of the IDM for irrigation detection was assessed by comparing the in situ 
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recorded irrigation events at each plot and the detected irrigation events. The results show that 

using only the VV polarization, 82.4% of the in situ registered irrigation events are correctly 

detected with an F_score value reaching 73.8%. Less accuracy is obtained using only the VH 

polarization, where 79.9% of the in situ irrigation events are correctly detected with an F_score 

of 72.2%. The combined use of the VV and VH polarization showed that 74.1% of the irrigation 

events are detected with a higher F_score value of 76.4%. The analysis of the undetected 

irrigation events revealed that, in the presence of very well-developed vegetation cover 

(normalized difference of vegetation index (NDVI) ≥ 0.8); higher uncertainty in irrigation 

detection is observed, where 80% of the undetected events correspond to an NDVI value greater 

than 0.8. The results also showed that small-sized plots encounter more false irrigation 

detections than large-sized plots certainly, because the pixel spacing of S1 data (10 m × 10 m) 

is not adapted to small size plots. The obtained results prove the efficiency of the S1 C-band 

data and the IDM for detecting irrigation events at the plot scale, which would help in improving 

the irrigation water management at large scales especially with availability and global coverage 

of the S1 product 

Keywords: irrigation; grassland; Sentinel-1; change detection; Crau plain; France 

1. Introduction 

In order to meet the global food demand, affected by the global increase in the world 

population and climate change, current policies are pushing toward the expansion of the 

irrigated areas especially in arid and semi-arid regions (Godfray et al., 2010; Tilman and Clark, 

2015; Tilman et al., 2011). According to the FAO (Food and Agriculture Organization of the 

United Nations), irrigated agriculture currently shares more than 40% of the global food 

production and accounts for approximately 70% of the total freshwater consumption considered 

thus the main consumer of freshwater (Pokhrel et al., 2016). Under limited water resources, 

efficient management of irrigation schedule and timing is important to achieve the 

environmental sustainability in the agricultural sector (Ozdogan, 2011). In fact, obtaining 

information about irrigation timing is of great importance for several studies dealing with food 

security (Burney et al., 2010) and water consumption (Paredes et al., 2014). 

Satellite remote sensing has proven its high capability and effectiveness for mapping and 

monitoring irrigated areas (Thenkabail et al., 2009a, 2005, 2009b). Recent studies have shown 

that irrigated areas could be spatially quantified over large scale using either passive optical 
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sensors (Dheeravath et al., 2010; Gumma et al., 2011; Xiang et al., 2019) or active radar sensors 

(Bazzi et al., 2019c; Bousbih et al., 2018; Gao et al., 2018). Optical images has been widely 

used to map irrigated areas using the difference between the spectral signature of irrigated crops 

and that of non-irrigated crops in the time series domain. The difference in the temporal signal 

between irrigated and non-irrigated crop is based on the fact that irrigation mixed with fertilizers 

makes the crop grow healthier and faster causing a difference in the captured spectral signature 

between irrigated and non-irrigated plot. This difference in the spectral signature has been 

investigated using several vegetation indices such as the NDVI (Normalized Differential 

Vegetation Index) (Pervez and Brown, 2010) or the GI (Greenness Index) (Chen et al., 2018). 

On the other hand, the Synthetic Aperture Radar (SAR) data has proven a superior efficiency 

over optical data for mapping irrigated areas (Bazzi et al., 2019c, 2019d; Fieuzal et al., 2011). 

The use of SAR data is mainly driven by the fact that the backscattered SAR signal is sensitive 

to the soil water content that is a key point in the irrigation activity (Aubert et al., 2013; 

Baghdadi et al., 2011a, 2016a; El Hajj et al., 2017). Since irrigation increases the soil water 

content, the detection of irrigated areas could be possible using SAR data that are highly 

affected by the soil moisture values.  

Although huge effort has been performed to quantify the extent and spatial distribution of 

irrigated areas, the timing and frequency of irrigation has not yet received important attention 

despite their high importance in managing water resources. Using optical data, few studies have 

reported the detection of irrigation events. For example, Chen et al. (Chen et al., 2018) used 

MODIS (Moderate Resolution Imaging Spectroradiometer) and Landsat optical images with 

ancillary data (precipitation and soil moisture) to detect irrigation timing and frequency during 

the first half of the growing season. In their study, they performed a threshold-based model 

using the GI (Greenness index) to count the possible water supplement stages. To distinguish 

between rainfall and irrigation events, which are both counted as water supplements, they used 

local daily precipitation records. Their results show that the overall accuracy of detecting a 

water supplement stage using the proposed method reaches 87%. However, the cloud limit 

could restrict the use of optical data despite the high revisit time of the new optical satellites 

such as the Sentinel-2 (S2) satellite that reaches 5 days. 

On the other hand, SAR data could be used to detect the wetness information caused by 

irrigation episodes due to the sensitivity of the SAR backscattered signal to the soil water 

content (Bazzi et al., 2019c; Bousbih et al., 2017, 2018; Gao et al., 2018). However, the 

detection of irrigation by SAR data depends, in addition to the vegetation cover (crop type, 
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density, growing phase …), on the characteristics of the SAR satellite used (mainly revisit time 

and radar wavelength). The revisit time of the SAR satellite could constraint the detection of 

all the irrigation events due to the rapid drying out of the soil within few days after the irrigation. 

Hajj et al. (2014) had shown that a radar image in X-band acquired 3 days after irrigation makes 

it difficult to certainly detect the irrigation event. This difficulty for detecting the irrigation 

event is due to the rapid dry out of the surface soil moisture which increases after an irrigation 

episode from 15-20 vol.% to reach 30-40 vol.%, and then the dries out three days after the 

irrigation event to reach the same value attained before irrigation (15-20 vol.%). Moreover, the 

used radar wavelength could constrain the detection of irrigation events. In fact, the available 

free and open access radar sensors provides C-band data (wavelength around 6 cm in the case 

of Sentinel-1). Recent studies (El Hajj et al., 2018b) have showed that the C-band SAR data 

could present certain limits for mapping soil moisture due to the low penetration of the SAR 

signal over certain very well vegetation cover (case of irrigated maize). Moreover, El Hajj et 

al. (2018b) and Nasrallah et al. (2019) showed that the sensitivity of the C-band SAR signal to 

soil moisture becomes negligible over wheat crops between the germination and the heading 

growing phases due to the low penetration of the C-band signal to the soil surface. Therefore, 

it is sometimes difficult to detect an increase in the radar signal due to an irrigation event 

because the soil contribution is very low. However, recent studies have started exploiting the 

potential of SAR data for detecting irrigation events at plot scale. Recently, Bazzi et al. (2020b) 

developed a decision tree based model to detect irrigation events at plot scale using S1 C-band 

SAR data. The proposed model relies on separating irrigation events from rainfall events using 

rainfall information derived from grid scale (10 km x 10 km) SAR backscattering signal (Bazzi 

et al., 2019b). By applying their model on three regions with different climatic contexts, they 

report that irrigation events could be detected by SAR data independent of the studied 

geographic context. In their study, they achieved a success rate of 84% in detecting irrigation 

events. However, they recommend that dense SAR temporal series help detect more irrigation 

events at plot scale. Since irrigation is a dynamic activity, the six-days revisit time of the S1 

satellite remains a constraint for the detection of all irrigation events at plots scale. For this 

reason, an extensive temporal dataset is still required for the detection of all irrigation events 

occurring at plot scale. In addition, over irrigated maize plots of southwest France, Le Page et 

al. (2020) investigated the potential of the S2MP (Sentinel-1/Sentinel-2-derived soil moisture 

product El Hajj et al. (2017) to detect irrigation events at plot scale. The S2MP is a soil moisture 

estimation product mainly derived by coupling Sentinel-1 SAR data and Sentinel-2 optical data 

using the neural network (Bazzi et al., 2019a; El Hajj et al., 2017). They showed that irrigation 
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timing was detected with a good accuracy reporting an F-score between 80% and 83% for all 

studied plots. Lower accuracy of 69% was obtained when the vegetation cover is well 

developed (NDVI > 0.7). However, the study was only performed over five irrigated maize 

plots, which is still not considered robust enough for an operational application. 

In France, the agricultural water consumption reaches 4.8-billion m3 of the total withdrawn 

water. Particularly in of southeast France, the Crau plain is well known irrigated agricultural 

region exploited mainly for hay production. It covers an area of 12,500 ha and produces 100,000 

tons of hay each year. The plain is intensively irrigated area that uses mainly the gravity 

irrigation technique. Despite the low irrigation efficiency of gravity irrigation, which is 

estimated at 60-70% (Tiercelin, 2006), this technique is still used over the Crau plain since four 

centuries. Several studies have been conducted over the Crau plain in order to estimate surface 

soil moisture and monitor the irrigated grassland plots using SAR data. Using the X-band SAR 

data from TerraSAR-X and COSMO-SkyMed satellites, (Hajj et al., 2014) showed that it is 

possible to track gravity irrigation and soil moisture variations from SAR X-band images 

acquired at high spatial resolution. In their study, they showed that over the irrigated grassland 

plots, the penetration depth of the radar wave in the X-band was high, even for dense and high 

vegetation (vegetation height more than 1 m); especially using the HH polarization. Moreover, 

(Baghdadi et al., 2016b) showed that using the C-band RADARSAT data in the HH 

polarization, the surface soil moisture over the irrigated grassland plots could be estimated with 

an accuracy of 6 vol.%. In addition, El Hajj et al. (2016a) showed that the use of X-band SAR 

measurements in HH polarization for soil moisture estimation over the irrigated grassland plots 

produces an estimation accuracy of 3.6 vol.% for NDVI values between 0.45 and 0.75, and 6.1 

vol.% for NDVI between 0.75 and 0.90.  

In the context of water resource management especially under changing climatic conditions, 

the objective of this paper is to monitor irrigation activities over irrigated grassland plots in the 

Crau plain of southeast France using Sentinel-1 SAR data. In this study, the irrigation detection 

model proposed by Bazzi et al. (2020b) has been adopted to detect irrigation events at grassland 

plots using all possible Sentinel-1 SAR acquisitions. Given the exact irrigation dates at 46 

different grassland plots, the performance of the used model is assessed and the accuracy of 

irrigation event detection is reported. The capability of detecting irrigation events using S1-

SAR data was evaluated as a function of the plot geometrical structure, the vegetation cover 

and the specific type of grass. While Section 2 presents the study site and materials used, 



CHAPTER IV: TOWARDS OPERATIONAL MAPPING OF IRRIGATED AREAS 

194 

 

Section 3 describes the methodology. Section 4 presents the main obtained results followed by 

a discussion in Section 5. Finally, Section 6 shows the main conclusions. 

2. Materials 

2.1 Study Site 

In this study, forty-six intensively irrigated grassland plots located in the Crau Plain of 

Southeast France (N 43°38′; E 5°1′) were examined (Figure 1). The Crau plain has a 

Mediterranean climate characterized by mild winter and dry summer season. For the past 15 

years, rainfall amounts are relatively variable between years and ranges between 350 and 800 

mm. Figure 2 represents the daily rainfall and temperature records in 2019 registered over the 

nearest local meteorological station located in “Salon-de-Provence“, six km away from the 

study site. According to the registered precipitation data, the cumulative rainfall amounts in 

2019 reaches 580 mm. The minimum-recorded temperature is 5.9 °C on 24/01/2019, while the 

maximum-recorded temperature is 43.5 °C, occurring on 28/06/2019. The average temperature 

in the summer season (between June and September) reaches 31.6 °C, with a cumulative rainfall 

of 37 mm only. Due to high temperatures in the summer season, the evaporation rate reaches 

10 mm/day. In the Crau plain, the source of water for irrigation originates from the Alps 

Mountains.  

 

Figure 1: Location of the forty-six experimental plots in the Crau plain of Southeast France. 
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Figure 2: Temperature (in red) and rainfall (blue) profiles recorded at the local meteorological station 

in Salon de Provence near the study site. 

2.2. Reference Data 

The forty-six studied plots (Figure 1) are oriented toward hay production certified with the 

AOP French label (protected designation of origin), ensuring high quality of hay product 

(Mérot, 2007). Each plot undergoes three major cycles between February and September with 

three harvesting periods. The first cycle starts from the beginning of February until May with 

the first harvesting occurring in mid-May. The second cycle starts in May and is usually 

harvested in July which coincides with the beginning of the third cycle. The third cycle is finally 

harvested after mid-August. Different grass species are present in each plot with varying 

biomass proportions for each cycle. The 1st cycle is usually rich in grasses (60–65% of coarse 

hay). The grass percentage then decreases in the 2nd and 3rd cycles to reach 35% with the 

increase of the legumes proportion (Mérot, 2007). Therefore, the 1st cycle could be 

characterized as grass dominant cycle, whereas the second and the third cycle are legume 

dominant cycles (more leafy). Concerning the soil texture, loam is the dominant top soil texture 

among the plots, with depth varying between 30 and 80 cm. The area of the plots varies between 

0.4 and 9.9 ha, with an average area of 2.8 ha. 

Irrigation is performed using the gravity irrigation system where the gentle slope of the plots 

allows water to reach from the irrigation canals to cover the whole plot. The plots are usually 

irrigated between March and September of each year. The exact date of the end of each 

irrigation episode was registered at each plot for the period between March and September 

2019. For each irrigation episode, the time between the start and the end of the irrigation usually 

varies between 1 and 24 h, depending on the surface of the plot (Hajj et al., 2014). 

Unfortunately, only the exact date of the end of irrigation was registered whereas the exact 

timing (in h) of the start and end of irrigation were not available. Some large surface plots are 
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split into two different subplots being irrigated sequentially with a time difference of less than 

24 h. In general, the average frequency of the irrigation for each grassland plot reaches one 

irrigation each 10 days during the three vegetation cycles with approximately 14 irrigation 

episodes per plot and a total water quantity between 15,000 to 20,000 m3/ha. Finally, the 

mowing date for each cycle at each plot was also registered. 

2.3. Sentinel-1 SAR Data 

Over the study site, all available Sentinel-1 (S1) SAR images corresponding to the period 

between February 2019 and September 2019 were downloaded and processed. One hundred 

eighty C-band (f = 5.405 GHz) SAR images, acquired by the two polar-orbiting S1 satellites 

(S1A and S1B), were downloaded from the Copernicus website 

(https://scihub.copernicus.eu/dhus). The images are acquired in both ascending (afternoon 

~18h00 UTC) and descending (morning ~06h00 UTC) modes. Each month, twenty images are 

available over the study site. Figure 3 shows the repeat cycle of the acquired S1 images in both 

ascending “A” and descending “D” modes for August 2019. The first image corresponds to the 

morning descending acquisition at an incidence angle of 32.2°. Twenty-four h later, another 

morning descending image is available at an incidence angle of 42.4°. A third image is then 

acquired twelve h later, corresponding to an afternoon ascending acquisition at 44.4° incidence 

angle. Finally, 24 h later, a new afternoon ascending image at 34.8° incidence angle is available. 

Thus, four S1 images are acquired within a period of 2.5 days. Since each one of the four 

acquisitions is repeated six days later (temporal resolution of S1 satellite), the time gap between 

the last afternoon acquisition and the first repeated morning acquisition is 3.5 days. Finally, 

four different temporal series were obtained where each temporal series represents the repeated 

images of the same acquisition mode each six days. The first series represents the 1st morning 

acquisition at incidence angle of 32.4° denoted by “MS1”, while the second morning temporal 

series acquired at 42.4° is denoted by “MS2”. The first afternoon SAR series at 44.4° is denoted 

by “AS1”, while the second afternoon series at 34.8° is denoted by “AS2”.  

To perform the radiometric and geometric calibration of the downloaded GRD SAR images, 

the S1 toolbox developed by the European Space Agency (ESA) was used. The radiometric 

calibration converts the digital number (DN) into backscattering coefficient (𝜎0) expressed in 

linear unit. The geometric calibration uses the digital elevation model at 30 m spatial resolution, 

offered by the Shuttle Radar Topography Mission (SRTM), to ortho-rectify the SAR images. 
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Figure 3: Repeat cycle of the Sentinel-1 images in ascending “A” (afternoon, red) and descending “D” 

(morning, blue) modes for the month of August 2019 over the examined plots. 

2.4. Sentinel-2 Optical Data 

The high temporal resolution of the Senintel-2 satellite (five days) allowed obtaining forty-

six Sentinel-2 (S2) cloud free optical images acquired over the reference plots for the period 

between February and September 2019. The level-2 cloud free S2 images were downloaded 

from the Theia website (https://www.theia-land.fr/) which provides ortho-rectified level-2 

products corrected for atmospheric effects. These optical images were used to calculate the 

NDVI values. The NDVI values are required as an input layer in the irrigation detection model 

used in this study (Bazzi et al., 2020b). 

3. Methods 

3.1. Irrigation Detection Model 

The irrigation detection model (IDM) was recently developed by Bazzi et al. (2020b) to 

detect irrigation events at agricultural plots in a near real-time scenario. The IDM is a decision 

tree-based model that relies on the change detection in the SAR backscattering coefficient at 

plot scale (𝜎𝑃
0) accompanied by the change detection of the SAR backscattering coefficient at 

grid scale (𝜎𝐺
0) of 10 km × 10 km. The joint use of 𝜎𝑃

0 and 𝜎𝐺
0 is mainly used to remove the 

uncertainty between a rainfall event and an irrigation event because both events are water 

supplements that cause an increase in soil moisture value and therefore an increase in 𝜎0 values 

between two dates. The IDM is based on detecting the change is 𝜎𝑃
0 values between the 𝜎𝑃

0 

value at the current SAR acquisition at time 𝑡𝑖 and 𝜎𝑃
0 value at the previous SAR acquisition at 

time 𝑡𝑖−1. Deep in details, the IDM assumes that the increase of the 𝜎𝑃
0 between two consecutive 

SAR dates (𝑡𝑖−1 and 𝑡𝑖) is mainly caused by the increase of the surface soil moisture due to 

either rainfall or irrigation event. On the other hand, the increase of the 𝜎𝐺
0 values (grid scale) 
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could be an evidence of rainfall event that occurred between the two SAR acquisitions, whereas 

the stability or decrease of 𝜎𝐺
0 values could indicate the persistence of dry conditions between 

the two dates (absence of rainfall). Thus, the increase of the 𝜎𝑃
0 values between consecutive 

acquisitions accompanied with the stability or decrease of 𝜎𝐺
0 values is considered an irrigation 

event. Since the SAR backscattering signal could be affected by other factors, such as the 

vegetation cover (growth cycle for example) and surface roughness, additional filters 

considering the NDVI values and surface soil moisture estimations (SSM) are also added to the 

IDM to enhance the irrigation event detection. Therefore, the application of the IDM requires 

five principal data inputs: 

 The SAR backscattering signal at plot (σP
0) and grid (σG

0 ) scales; 

 Surface Soil Moisture at plot (SSMP) and grid (SSMG) scales; 

 The NDVI value at plot scale.  

3.1.1 σ° SAR Backscattering at Plot Scale 

For each acquired S1 SAR image, the 𝜎𝑃
0 at each of the forty-six plots was calculated by 

averaging the pixel values within each plot in both VV and VH polarizations. This average 

helps reducing the speckle filter present in the SAR images. As a result, four distinct temporal 

series are obtained for each plot using the four different SAR acquisitions discussed in Section 

2.2 in both VV and VH polarizations. Although the study of Bazzi et al. (2020b) recommends 

the use of the VV polarization for better detection of irrigation events, the VH polarization was 

tested in order to assess the potential of VH polarization for detecting irrigation events. 

Moreover, the combined use of both VV and VH polarization for irrigation detection was also 

examined. The SAR incidence angle (𝜃𝑃) at each plot has been obtained for each SAR image. 

3.1.2 σ° SAR Backscattering at Grid Scale 

The 𝜎𝐺
0 value at grid scale (10 km × 10km) was obtained at each SAR acquisition by 

averaging the SAR backscattering coefficient of all pixels corresponding to bare soil pixels or 

with small vegetation cover within each grid cell. Bare soil pixels with low vegetation cover 

has been extracted by using first a land cover map of France to delineate agricultural areas 

(Inglada et al., 2017) and then applying a threshold value of the NDVI obtained from the S2 

images (NDVI < 0.4). The 𝜎𝐺
0 has been also obtained in both VV and VH polarizations as well 

as the average SAR incidence angle at each grid cell (𝜃𝐺) for each SAR image. 
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3.1.3 NDVI Values 

The NDVI was calculated for the forty-six available S2 images. Then, the average NDVI 

value at each plot was obtained by averaging the pixels’ values within each plot. The plot NDVI 

value is used as an input data layer for the IDM and used for estimating the SSM value at plot 

scale. In addition, at each grid cell, the average NDVI value was obtained for bare soil pixels 

with low vegetation cover, as discussed in Section 3.1.2, and used to obtain the SSM estimation 

at grid cell. 

3.1.4 Surface Soil Moisture Estimation 

The IDM requires the SSM estimation, as one of the input parameters, at each SAR 

acquisition for both plot and grid scales. As recommended by Bazzi et al. (2020b), the SSM 

estimations are derived using the neural network (NN) developed by El Hajj et al. (2017). This 

NN provides satisfying SSM estimations (RMSE = 5 vol.%) and needs as inputs the 𝜎0 value 

in VV polarization, the SAR incidence angle (𝜃) and an NDVI value. Therefore, the SSM 

estimations are obtained for each plot and for each grid cell at each available SAR date in the 

four temporal series MS1, MS2, AS1 and AS2. However, the soil moisture estimations do not 

have a major role in the irrigation detection. They are mostly used to ensure the detection of 

irrigation events in some cases where the difference of the SAR backscattering signal at plot 

scale could not lead to a definitive decision on the existence of irrigation events. 

3.2. Application and Assessment of the IDM 

Figure 4 represents the overflow of the IDM application at a given plot using four SAR 

temporal series. First, the IDM was applied at each plot using inputs from each SAR temporal 

series (MS1, MS2, AS1 and AS2) independently. For example, at time 𝑡𝑖 in the MS1 series, 

irrigation detection using the IDM has been performed using only SAR images from the MS1 

time series between 𝑡0 and 𝑡𝑖−1. While developing the IDM, Bazzi et al. (2020b) proposed a 

certainty indicator, which represents the chance of having an irrigation event at each SAR date. 

This certainty indicator depends mostly on the observed difference of 𝜎𝑃
0 between two 

consecutive SAR dates from the same temporal series. Therefore, at each plot, each SAR image 

from each series is labelled with an irrigation indicator value (𝑝) that represents irrigation 

chances as either no (𝑝 = 0), low (25), medium (50) or high (100). In the IDM, the indicator 

value 0 represents either a decrease in the 𝜎𝑃
0 between 𝑡𝑖−1 and 𝑡𝑖 (∆𝜎𝑃

0 ≤ 0) indicating a 
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decrease in soil moisture values (no irrigation possibility) or an important increase of the 𝜎𝐺
0 

(∆𝜎𝐺
0 ≥ 1 𝑑𝐵) between 𝑡𝑖−1 and 𝑡𝑖 indicating the presence of a rainfall event. Low irrigation 

chance indicator (𝑝 = 25) corresponds to a very slight increase in the 𝜎𝑃
0 between 𝑡𝑖−1 and 𝑡𝑖 

(0 ≤ ∆𝜎𝑃
0 < 0.5 𝑑𝑏) accompanied with high estimated soil moisture values at plot scale at 𝑡𝑖 

along with an important decrease of the 𝜎𝐺
0 at grid scale between 𝑡𝑖−1 and 𝑡𝑖 (∆𝜎𝐺

0 ≤ 1 𝑑𝐵), 

indicating the absence of a rainfall event. In this case, the SSM estimations at plot scale 

presented in Section 3.1.4 are used to guarantee the existence of an irrigation event.  

 

Figure 4: Overflow of the methodology for the detection of irrigation events using the IDM and four 

SAR temporal series. The time intervals (𝑡𝑖 - 𝑡𝑖−1), (𝑡𝑗 - 𝑡𝑗−1), (𝑡𝑘 - 𝑡𝑘−1), (𝑡𝑞 - 𝑡𝑞−1) are equal to 6 

days. 

The stability or slight increase of the SAR signal at plot scale between 𝑡𝑖 and 𝑡𝑖−1 could be 

interpreted as an irrigation event (low chance) if the 𝜎𝑃
0 at time 𝑡𝑖−1 already attains high values 

(due to irrigation or rainfall). To ensure this situation, we say that at time 𝑡𝑖−1, SSM estimation 
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should be greater than or equals to 20 vol.% in order to guarantee that a humid soil conditions 

at time 𝑡𝑖−1 have continued to time 𝑡𝑖. The medium chance index (𝑝 = 50) corresponds to a 

moderate increase in the 𝜎𝑃
0 between 𝑡𝑖−1 and 𝑡𝑖 (0.5 ≤ ∆𝜎𝑃

0 < 1 𝑑𝑏) accompanied with a 

decrease of the 𝜎𝐺
0 (∆𝜎𝐺

0 ≤ 0.5 𝑑𝐵). Finally, high chance irrigation index (𝑝 = 100) 

corresponds to important increase in the 𝜎𝑃
0 between 𝑡𝑖−1 and 𝑡𝑖 (∆𝜎𝑃

0 ≥ 1 𝑑𝑏) accompanied 

with a decrease of the 𝜎𝐺
0 (increase of soil moisture at plot scale at 𝑡𝑖 with no rainfall event 

between 𝑡𝑖−1 and 𝑡𝑖). Therefore, a value (𝑝) equals to 100 represents the highest chance of 

existing irrigation. As the value of 𝑝 decreases, the irrigation chance decreases to reach zero for 

no possible irrigation. As a result, the four SAR temporal series are transformed into labelled 

series of irrigation indicators showing the possibility of an existing irrigation event for each 

SAR date. It is good to mention that the irrigation indicator 𝑝 is obtained at each SAR image 

using only the images from its corresponding SAR time series acquisition (orbit) at 6 days 

interval (Figure 4) where (𝑡𝑖 - 𝑡𝑖−1) = (𝑡𝑗 - 𝑡𝑗−1) = (𝑡𝑘 - 𝑡𝑘−1) = (𝑡𝑞 - 𝑡𝑞−1) = 6 days. 

The second step is to compare the obtained labelled SAR dates of the four SAR series with 

the irrigation dates registered for each plot. To compare between in situ irrigation events and 

detected irrigation events from the four SAR time series, the 𝑝 indicators coming from the four 

series were combined and compared to a threshold value, to determine the detection or not of 

in situ irrigation event. For each in situ irrigation date, four irrigation “𝑝” values (one indicator 

from each image following this event from the four SAR series) are available. The four 𝑝 values 

correspond to the irrigation chances detected by each SAR image that follows this irrigation 

event. The four obtained 𝑝 values are then summed to obtain a value (P) for this irrigation event. 

Finally, the obtained P value is compared to a threshold in order to determine if the irrigation 

has been positively detected (considered as a true detection) (Figure 4). Inversely, if an 

irrigation episode attains a P value less than the fixed threshold then the event is considered as 

undetected irrigation event. In this study, the threshold values of 25, 100, 150 and 200 are tested. 

Finally, false detections are detected irrigation events but actually, no irrigation event is 

registered on the plot. This means that the P value (obtained from four SAR image encountering 

the false detection) is greater than the determined threshold but no real irrigation event is 

registered. 

The IDM was applied on the four SAR series using the VV and VH polarizations separately. 

The assessment of the IDM for irrigation detection was then performed in four different 

configurations. The first and the second configurations correspond to the application of the IDM 
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using the VV and the VH polarizations, respectively. In the third configuration, “VV and VH”, 

a detected event is considered as an irrigation event of the IDM if it is detected within both VV 

and VH configurations. Finally, in the fourth configuration “VV or VH”, a detected event is 

considered as an irrigation event of the IDM if it exists within either the VV or VH the 

configurations. In the four configurations, the number of positively detected events, undetected 

events and the falsely detected events are registered. 

Three accuracy metrics are calculated to assess the performance of the IDM for detecting 

irrigation events over grassland plots for each configuration. The first metric “S” is related to 

the sensitivity of the IDM for detecting irrigation events also known as the recall Equation (1). 

It reflects the ratio between the number of the positively detected irrigation events by the IDM 

and the total number of irrigation events on the plots. High S values represent the successful 

detection of irrigation events with low number of undetected events. The second metric “Pr” is 

the ratio between the positively detected irrigation events and all the detected events (true and 

false detections) by the IDM, also known as the precision Equation (2). High precision values 

mean that irrigation events are detected with low possibility of obtaining false detections 

(events detected as irrigation but no real irrigation events occur). To assess the performance of 

the model in detecting irrigation events, it is important to quantify simultaneously the number 

of irrigation events that could be positively detected represented by “S” and the additional false 

irrigations that could be detected represented by “Pr”. In order to obtain a balanced 

quantification between the sensitivity and the precision, the F_score value is calculated by 

Equation (3). The F_score is the harmonic mean between the recall (S) and the precision (Pr) 

that allows the comparison of the global accuracy for irrigation detection between the several 

thresholds and configurations used. In this study, the three accuracy metrics were calculated on 

all the tested threshold values of P (25, 100, 150 and 200) and for each of the four 

configurations. 

S =
Number of Positive Detected Events 

Number of All Existing Irrigation Events
 ×  100% (1) 

Pr =  
Number of Positive Detected Events 

Number of All Detected Events
 ×  100% (2) 

F_score =  
2 x S x Pr

S + Pr
 ×  100% (3) 
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4. Results 

4.1 Irrigation Detection using VV and VH separately 

Table 1 summarizes the results obtained for the assessment of the irrigation detection using 

the IDM for the VV and the VH configurations separately. At each configuration, four threshold 

values of P were tested. The P value is obtained as a sum of the four 𝑝 values from the four 

SAR images corresponding to each irrigation event. The 𝑝 values are obtained in IDM for each 

SAR image using only its corresponding SAR time series (same orbit acquisition) at 6 days 

time interval. The first tested threshold value (𝑃 ≥ 25) means that an irrigation event is detected 

if it exists, at least, on one SAR image from the four SAR time series with any obtained 

irrigation chance (25, 50 or 100). This threshold insures the positive detection of most of the 

existing irrigation events in both VV (82.4%) and VH (79.90 %) but with high chance of having 

false detections with Pr-value of 66.9% and 65.8% for VV and VH respectively. The second 

tested threshold corresponds to 𝑃 ≥ 100. This threshold occurs if at least one of the four SAR 

images shows high irrigation chance (p = 100) or two out of the four images insures a medium 

irrigation chance (2 x 50) or the four SAR images shows low irrigation probability 

simultaneously (4 x 25). Using the VV polarization, 66.5% of the events could be correctly 

detected with high detection precision of Pr-value reaching 81.6% (18.4% of false detection 

could be obtained). Using the VH polarization, 60.1% of the irrigation events could be detected 

with a precision of 76.8% where the chance of having false detections reaches 23.2%. For the 

threshold value 150, an irrigation event should exist at least with high chance on one of the four 

images accompanied with medium chance on another image or low chance on two other images 

(100+50 or 100+2 x 25). This condition (𝑃 ≥ 150) could be also attained if at least three out 

of the four images shows medium irrigation chance (3 x 50) or two images with medium chance 

and two images with low chance (2x50+2x25). In the case of 𝑃 ≥ 150, the sensitivity value 

“S” decreases since less events could satisfy the threshold values but the precision increases 

indicating that less falsely detected irrigation events could be obtained. In fact, using the VV 

polarization, only 44.6% of the events could still be detected with 𝑃 ≥ 150 but with a high 

detection precision with Pr_value reaching 91.8% (only 8.2% of false detections could be 

obtained). For the VH polarization, only 29.7% of the irrigations could be detected with high 

precision value Pr reaching 86.6%. Finally, the threshold value 𝑃 ≥ 200 means that an 

irrigation could be detected if it exists at high chance on one image accompanied with either a 

high chance on another image (100+100) or two medium chances on two images (100+2 x 50). 
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It could be also satisfied if the four images shows medium irrigation chances (4x50). For very 

high tested P value (𝑃 ≥ 200), the sensitivity drops for S=32.3% using the VV polarization and 

18% using the VH polarization. This drop in the sensitivity value is expected since higher 

thresholds constraints the detection of irrigation and obliges an event to be present with high 

and medium chances on several images among the four SAR images. 

Table 1 shows that low threshold values (i.e. P ≥ 25) allows detecting most of the irrigation 

events (S equals to 79.9% and 82.4% for VH and VV respectively). However, this high 

detection is accompanied with moderate possibility of obtaining additional false detections 

where the Pr values reaches 66.9% and 65.8% for VV and VH respectively. On the other hand, 

high threshold values (i.e. P≥ 200) insures low chance of obtaining any false irrigation event 

with higher precision Pr reaching 93.7% in VV polarization. However, in this case only one-

third of the irrigation events could be detected (32.3%).  

Table 1: Accuracy metrics obtained for the assessment of the IDM for irrigation detection using VV 

and VH polarizations separately 

Configuration Metric 
Thresholds 

𝐏 ≥ 𝟐𝟓 𝐏 ≥ 𝟏𝟎𝟎 𝐏 ≥ 𝟏𝟓𝟎 𝐏 ≥ 𝟐𝟎𝟎 

VV 

S (%) 82.4 66.5 44.6 32.3 

Pr (%) 66.9 81.6 91.8 93.7 

F_score (%) 73.8 73.3 60.0 48.0 

VH 

S (%) 79.9 60.10 29.7 18.0 

Pr (%) 65.8 76.8 86.6 85.44 

F_score (%) 72.2 67.4 44.2 29.7 

 

Figure 5 represents the average sensitivity (S) (Figure 5a), precision (Pr) (Figure 5b) and 

F_score (Figure 5c) at each month in VV and VH polarizations for a P threshold value equals 

to 25. This threshold value was used since it represents the highest F_score value compared to 

the other tested thresholds in both VV and VH polarizations. Figure 5a shows that in both VV 

and VH polarizations, the lowest percentage of detected irrigations occurs during the first cycle 

(Cycle I) in March, April and May. Using VV, the S-value reached 69.0%, 60.0% and 60.5% 

for March, April and May, respectively. For VH polarization, a sensitivity of 64.2%, 58.4% and 

57.1% for March, April and May is obtained, respectively. For Cycle I, the precision value Pr 

(Figure 5b) and F_score (Fugure 5c) show low values for both VV and VH, indicating low 

precisions for irrigation detection with a high possibility of obtaining false detections. During 

the second cycle (Cycle II) and the third cycle (Cycle III), the percentage of truly detected 

irrigation events (S) increases for both VV and VH. In these two cycles the S value ranges 
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between 91.5% (in June) and 96.2% (in August) for the VV polarization. For the VH 

polarization, the S-value ranges between 83.9% (in June) and 96.2% (in August). The precision 

value Pr also increases during Cycle II and Cycle III to reach its maximum value of 74.5% for 

the VV polarization in July and 78.8% for the VH polarization in August. Similarly, Figure 5c 

shows that the F_score increases for Cycle II and Cycle III to reach its maximum value of 84.5% 

in July for VV and 86.6% in August for VH. 

 
(a) 

 
(b) 

 
(c) 

 
Figure 5: The accuracy of the detection of irrigation events in each month using the IDM for VV and 

VH over all the plots during the three vegetation cycles. (a) sensitivity “S”, (b) precision “Pr” and (c) 

F_score. The green line represents the average normalized differential vegetation index (NDVI) values 

derived from S2 images for all the studied plots at the three distinct grass cycles 
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4.2. Irrigation Detection Using Combined VV and VH 

In this section, we report the combined use of both VV and VH polarizations for irrigation 

detection. As mentioned in Section 3.2, the results of irrigation detection using VV and VH 

were joined in two different configurations. The first configuration “VV or VH” implies that a 

detected event is considered an irrigation event if it is detected within either one of the VV or 

the VH polarizations or both. The second configuration “VV and VH” means that a detected 

event is registered as a detected irrigation event if it is present within both polarizations 

simultaneously. The obtained accuracy metrics are reported in Table 2.  

For low threshold value (𝑃 ≥ 25), 88.2% of the total irrigation events (S) are detected in 

the “VV or VH” configuration with a moderate opportunity to obtain false detections with a 

precision (Pr) of 58.5% only. For the same value of P, the intersection configuration “VV and 

VH” shows less detection of irrigation events than “VV or VH” (S=74.1%) but with higher 

precision (Pr = 78.9%) and, thus, a lower possibility of false detections compared to that 

obtained with “VV or VH” configuration. For 𝑃 ≥ 100, half of the irrigation events could be 

detected using the “VV and VH” configuration with high precision of 91.8% (only 8.2% of 

possible false detections). However, using the “VV or VH” configuration, 76.8% of the 

irrigation events are detected with a precision value reaching 72.8% indicating a 27.2% chance 

of having false detections. For higher threshold value (𝑃 ≥ 150), half of the irrigation events 

(51.6%) could be detected using the “VV or VH” scenario with a precision of 87.4%. However, 

for the intersection configuration “VV and VH” the detection of irrigation events becomes 

difficult for 𝑃 ≥ 150, as the S value does not exceed 22.7% but with very high precision of 

95.2%. Finally, with the threshold of 200, both configurations detect not more than 38% for 

“VV or VH” and 12.1% for “VV and VH” despite the high precision of 89.5% and 94.1%, 

respectively. 

Table 2: Accuracy metrics obtained for the assessment of the IDM for irrigation detection by the 

combined use of VV and VH in two different configurations. 

Configuration Metric 
Thresholds 

𝐏 ≥ 𝟐𝟓 𝐏 ≥ 𝟏𝟎𝟎 𝐏 ≥ 𝟏𝟓𝟎 𝐏 ≥ 𝟐𝟎𝟎 

VV 

S (%) 88.2 76.8 51.6 38.0 

Pr (%) 58.5 72.8 87.4 89.5 

F_score (%) 70.3 74.7 64.9 53.3 

VH 

S (%) 74.1 50.0 22.7 12.1 

Pr (%) 78.9 91.8 95.2 94.1 

F_score (%) 76.4 64.7 36.7 21.4 
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5. Discussion 

In this section, the obtained results are analyzed as a function of group of factors that could 

limit the irrigation detection at plot scale. Among these factors, we consider the geometrical 

structure of the plot, the vegetation cover, the precipitation records and harvesting time of the 

plots. In order to discuss the obtained results, we chose the configuration attaining the highest 

F_score as the representative case for irrigation detection. The highest F_score has been chosen, 

since it represents the significant balance between the recall and the precision for the detection 

of irrigation events among the several tested thresholds and configurations. For this reason, the 

following discussion is based on the results obtained by the configuration “VV and VH” having 

a threshold value 𝑃 ≥ 25, which has the highest F_score of 76.4%, being a representative case 

for irrigation detection. 

5.1 Effect of the Geometrical Structure of the Plots 

The average 𝜎𝑃
0 calculated for all pixels within the plot could be affected by the geometrical 

shape of the plot. For example, narrow plots with very small width could have border pixels 

attaining the backscattering values from the plot boundaries usually covered by trees, concrete 

or agricultural roads. Small plots as a function of width or length increases the chance of 

encountering speckle noise in the SAR backscattering coefficients, thus, causing undesirable 

fluctuation in the SAR signal (increase of 𝜎𝑃
0 value). Therefore, one of the factors that could 

increase the possibility of encountering false detections is the geometrical structure of the plot 

such as the length, width and the surface area knowing that the Sentinel-1 images have pixel 

spacing of 10 m × 10 m. For this reason, we analyzed the false detections (events detected as 

irrigation where no registered irrigation exists) as a function of the length (l), width (w) and the 

surface area of the plots (S). For each plot the length, width and surface area have been 

calculated based on the RGF-93 projection system.  

The grassland plots are generally elongated having a length significantly larger than the 

width (Figure 1). The length and width have been grouped into three classes to define small, 

average and large dimensional plots. The first class includes plots having a width less than 50 

m or a length less than 150 m (10 plots). Independent of the first class, the second class contains 

averaged size plots having a width between 50 m and 100 m or a length between 150 m and 

300 m (24 plots). Finally, the third class represents the large plots with a width more than 100 

m and a length more than 300 m (12 plots). For each class, the average number of false detection 
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is obtained by averaging the number of the false detections registered over all the plots in the 

class. Similarly, the surface area of the plots has been classified into three classes. The first 

class represents the plots with surface area less than 2 ha (18 plots), the second class contains 

plots with a surface area between 2 and 3 ha (17 plots), while the third class having the plots 

with a surface area more than 3 ha (11 plots). The average number of false detection is also 

obtained by averaging the number of the false detections registered over all the plots in the 

class.  

Figure 6a represents the average false detections in each class as a function of the length-

width grouping for the three classes and Figure 6b represents the average false detections as a 

function of the three surface area classes for “VV and VH” configuration with 𝑃 ≥ 25. Figure 

6a shows that when the width (𝑤) of the plot is narrow (less than 50m) or the length (𝑙) is short 

(less than 150 m) the average false detections reaches five false detections per plot. The average 

false detections decreases to three false detections when the length (𝑙) or the width (𝑤) attains 

moderate sizes (50 < 𝑤(𝑚) < 100 and 150 < 𝑙(𝑚) < 300). Finally, big plots that have wide 

width (greater than 150 m) and long length (greater than 300 m) encounters the least false 

detections having an average of one false detection per plot. 

Similar results are shown by Figure 6b using the surface area. Small surface plots having an 

area less than 2 ha have the highest average false detections (an average of four false detections 

per plot). As the surface area increases, the average false detections decrease to reach an average 

of two false detections per plot for medium surface area plots (between 2 and 3 ha) and an 

average of one false detection per plot for large surface area plots (greater than 3 ha). 

 
(a) 

 
(b) 

Figure 6: Average false detections per plot for each class as a function of (a) combined length-width 

and (b) surface area for “VV and VH” configuration with 𝑃 ≥ 25. 
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5.2 Effect of the Vegetation Cover 

The detection of irrigation events could be limited by the existing vegetation cover, 

depending on the crop type or the vegetation density. In fact, this limitation is mainly related to 

the ability of the SAR signal to penetrate the vegetation cover in order to reach the surface soil. 

El Hajj et al. (2018b) analyzed the penetration of the C-band SAR signal over maize, wheat and 

grassland plots. In their study, they showed that over grassland plots, the penetration of the C-

band SAR signal is limited to an NDVI value of 0.7. They also showed that over highly 

developed grassland cover, the C-band signal is insensitive to the SSM. For this reason, very 

well-developed vegetation cover could constrain the detection of the irrigation events, due to 

the lack of the SAR sensitivity to surface soil moisture. Figure 7 represents the distribution of 

the NDVI values for the non-detected irrigation events over the forty-six plots. The figure 

shows that more than 80% of the undetected irrigation events correspond to very high NDVI 

values exceeding 0.8, and 90% of the undetected events correspond to NDVI greater than 0.7. 

These very high NDVI values indicate the presence of highly developed vegetation cover. 

These results are in line with the findings of El Hajj et al. (2018b) for grassland plots and Le 

Page et al. (2020) for maize plots where both studies report the limitation of irrigation detection 

over dense vegetation cover (NDVI > 0.7) due to the limited penetration of C-band SAR signal. 

 

Figure 7: Distribution of the NDVI values for the non-detected irrigation events over all the plots among 

the three cycles for “VV and VH” configuration with 𝑃 ≥ 25. 

As shown in Figure 5 in Section 4.1, the period with the least irrigation detection and highest 

false irrigation detection (in both VV and VH) corresponds to the first vegetation cycle from 

March to May, attaining the lowest sensitivity values compared to other months. In fact, 

independent of the NDVI values, the existing crop type could also affect the penetration of the 
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SAR signal. As presented in Section 2.2, different grass types exist within the three cycles with 

different biomass proportion of each type. Actually, the grass type for the first cycle is more 

oriented toward coarse hay, which represents more than 65% of biomass in the existing 

vegetation cover of the first cycle. The vegetation cover in the first cycle is rich in grasses with 

less leaves and more stems (Mérot, 2007). With the stem elongation in March and April, the C-

band SAR backscattering decreases due to the attenuation of the direct ground scattering. In 

fact, the vertical stems and leaves highly absorbs the incident SAR wave causing weak direct 

scattering of the SAR signal and thus a decrease in the C-band backscattering (Cookmartin et 

al., 2000; Del Frate et al., 2004; El Hajj et al., 2018b; Mattia et al., 2003). This attenuation 

behavior is also similar to that present on the wheat crop between the germination and the 

heading phase, as shown by Nasrallah et al. (2019). Therefore, for the period with very well 

developed vegetation cover for the first cycle, (NDVI > 0.8) the backscattering from the canopy 

(with very low soil contribution) is the dominant mechanism, and the sensitivity of the SAR 

signal to the surface soil moisture is negligible. This high canopy attenuation of the soil 

contribution found in the first cycle is scarce in the second and the third cycles, since the grasses 

is less dominant, and the vegetation cover is leafier, containing more legumes than stems. In 

this case, the penetration of the C-band SAR signal is stronger and thus the soil contribution is 

more important. For this reason, higher accuracy in irrigation detection using the C-band SAR 

data is found for the second and third cycle than the first cycle (Figure 5). 

To illustrate the vegetation attenuation mechanism that leads to the missing detection of 

irrigation events, Figure 8 presents a comparison between the backscattering SAR signal in VV 

polarization for the undetected irrigation events and that of the detected irrigation events for the 

four SAR temporal series MS1 (Figure 8a), MS2 (Figure 8b), AS1 (Figure 8c) and AS2 (Figure 

8d).  

The boxplots in Figure 8 shows that within all the SAR acquisitions, the average 𝜎0 value 

of the undetected events is at least 2 dB less than the average 𝜎0 value for the detected events. 

For example, the median of the 𝜎0 for undetected events in MS1 at incidence angle of 32° 

(Figure 8a) reaches -13.1 dB, while that of the detected events reaches -10.8 dB, with a 

difference of 2.2 dB. Figure 8a also shows that approximately 75% of undetected events attains 

a 𝜎0 value less than the minimum 𝜎0 value of any detected irrigation event. Similar behavior 

is found for other SAR acquisitions at different incidence angles (Figure 8b–d). The low 𝜎0 

values for the undetected events validates the existence of the high canopy attenuation 

mechanism that weakens the backscattered SAR signal (low soil penetration) and, thus, 
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decreases the 𝜎0 values, indicating the absence of soil contribution in the SAR backscattered 

signal. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8: Boxplots of the distribution of 𝜎0-values in VV polarization for the detected and undetected 

events in the four temporal series. (a) MS1-32°, (b) MS2-42°, (c) AS1-44°, (d) AS2-34°. 

5.3 Effect of precipitation and harvesting 

In the Crau plain, the grassland plots are usually harvested three times per year 

corresponding to the three existing cycles between March and September. The harvesting 

mechanism usually increases the surface roughness of the plot (Figure 9). In fact, the 

backscattered radar signal strongly depends on the surface roughness that is usually expressed 

by the Height Root Mean Square (Hrms) (Baghdadi et al., 2018a). Baghdadi et al. (2008a) have 

reported that a difference of 4 dB could be observed between backscattering signal from rough 

surfaces (Hrms = 3 cm) and smooth surface (Hrms = 0.5 cm). When the surface roughness 

increases between two consecutive SAR images due to harvesting, the backscattering SAR 

signal will increase between these two SAR dates and thus a false irrigation event could be 

detected. In this study, the harvesting date is available for each plot at each cycle. The 

comparison between the false detected irrigation events and the harvesting dates shows that 

28% of the false detections were preceded by a harvesting activity. Therefore, a priori 

knowledge about the exact harvesting dates could help reduce the false detections. 
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Figure 9: Harvesting of a grassland plot with an increase in surface roughness. 

Rainfall events can also limit the capability of detecting irrigation events. Certainly, when 

both a rainfall event and an irrigation event occurs between the same two consecutive SAR 

image, the irrigation detection would not be possible since the increase in the SSM values could 

not be distinguished between the rainfall event and the irrigation. Over the study site, five 

important rainfall events occurred on 03, 09, and 27 April and on 09 and 21 May. These rainfall 

events constrained the detection of 50 irrigation events over the forty-six plots representing 

20% of the total undetected events. The existence of rainfall events contributes also to the low 

sensitivity value of irrigation detection in March, April and May shown in Figure 5a. 

5.4. Sensitivity Analysis of the IDM ∆𝝈𝑷
𝟎  Threshold Values 

In order to assess the effect of the threshold values fixed in the IDM for the detection of 

irrigation events, a sensitivity analysis has been performed on the threshold values of the main 

contributor in the IDM (∆𝜎𝑃
0) which is the difference between the SAR backscattered signal at 

plot scale between time 𝑡𝑖 and time 𝑡𝑖−1. The threshold of ∆𝜎𝑃
0 has been modified in order to 

analyze their impact on the results of the three indicators: sensitivity (S), precision (Pr) and the 

F_score. In this sensitivity study, we used the four following configurations (1) VV with P = 

25, (2) VH with P = 25, (3) “VV and VH” with P = 25”, and (4) “VV or VH” with P = 100, 

which correspond to the best configurations identified in this study for the detection of irrigation 

events. 

Two tests were carried out in the sensitivity analysis. The first test consists of adding 0.25 

dB to the different threshold values considered for ∆𝜎𝑃
0 in the irrigation events detection. This 
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means that for low irrigation chances (p = 25), a new threshold of ∆𝜎𝑃
0 between 0.25 dB and 

0.75 dB are used instead of the initial threshold values between 0 and 0.5 dB. For the medium 

irrigation chances (p = 50), the threshold values of ∆𝜎𝑃
0 between 0.75 and 1.25 dB are newly 

used instead of the initial thresholds between 0.5 dB and 1 dB. Finally, for high irrigation 

chances (p = 100), a threshold value of ∆𝜎𝑃
0 greater than 1.25 dB is used instead of the initial 1 

dB value. The second test consists of adding 0.5 dB to the initial threshold values of the ∆𝜎𝑃
0 

making, thus, low irrigation chances (p = 25) with a threshold of 0.5 ≤ ∆𝜎𝑃
0 < 1 dB, the 

medium irrigation chances (p = 50) with a threshold value 1 ≤ ∆𝜎𝑃
0 < 1.5 dB, and the high 

irrigation chances (p = 100) with threshold values ∆𝜎𝑃
0 ≥ 1.5 dB. 

Figure 10 shows the variation of the three accuracy metrics (S, Pr and F_score) as a function 

of the two-tested increase in the threshold values in the four configurations. The results show 

that, by increasing the threshold values, the sensitivity decreases (less event irrigation is 

detected) while the precision increases (less false detections could be obtained). Similarly, the 

F-score also decreases. For the case of VV (P = 25), the sensitivity decreases from 82.4% to 

72.8% by adding 0.25 dB to the threshold values of ∆𝜎𝑃
0 and to 69.9% by adding 0.5 dB to the 

thresholds. Thus, nearly 12% of the event irrigations initially detected with our starting 

thresholds will no longer be detected by increasing the values of the starting thresholds by 0.25 

dB or 0.5 dB. For the same case, the precision increases from 66.9% with our starting thresholds 

to 74.3% by increasing the thresholds by 0.25 dB and to 76.4% by increasing the thresholds by 

0.5 dB. Thus, the precision on the detection of irrigation events increases by approximately 

10% by increasing the values of the starting thresholds by 0.25 dB or 0.5 dB. The effect of the 

increasing of the threshold values of ∆𝜎𝑃
0 is clearly a decrease in the sensitivity when the 

precision increases and vice versa. What is also observed is that the sensitivity decreases more 

strongly than precision when the threshold value is increased. For example, for the 

configuration using VV and VH with P = 25, S decreases by 17.9% when the thresholds are 

increased by 0.5 dB, and Pr increases only by 8.3% when the thresholds are increased by 0.5 

dB. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 10: Variation of the accuracy metrics as a function of varying threshold values of ∆𝜎𝑃
0 for (a) 

VV (P = 25), (b) VH (P = 25), (c) ‘VV and VH’ (P = 25) and (d) ‘VV or VH’ (P = 100). 

5.5. Effect of the S1 Revisit Time on the Irrigation Detection 

To study the effect of the S1 revisit time for the detection of irrigation events, a sensitivity 

analysis of the irrigation events detection as a function of the time lapse between the acquisition 

date of the S1 image and the irrigation date was performed. First, for each in situ irrigation 

event, we obtained the difference in days (∆𝑡 = 𝑡𝑆1 − 𝑡𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛) between the acquisition date 

of S1 images used for the detection in each of the four temporal series (MS1, MS2, AS1 and 

AS2) and the date of the irrigation event. Since the revisit time of the S1 is 6 days, the values 

of ∆𝑡 for an irrigation event varies between 0 days (irrigation occurred the same date as the S1 

passage) and 5 days (the SAR image was acquired 5 days after the irrigation event). At each 

value of ∆𝑡 (0, 1, 2, 3, 4, 5) we obtained the total number of irrigation events and then we 

calculate the percentage of the detected events and the percentage of the undetected events by 

the IDM. Since the vegetation cover can also play an important role in the detection of irrigation 



CHAPTER IV: TOWARDS OPERATIONAL MAPPING OF IRRIGATED AREAS 

 

215 

 

events, we analyzed the percentage of detected and undetected irrigation events at each ∆𝑡 value 

for two classes of NDVI values: (1) NDVI ≤ 0.7 and (2) NDVI > 0.7. 

Figure 11 shows the percentage of detected and undetected irrigation events for each value 

of ∆𝑡 between 0 and 5 days for NDVI ≤ 0.7 (Figure 11a) and NDVI > 0.7 (Figure 11b). For 

NDVI ≤ 0.7, the results show that if the S1 image is acquired at the same day of the irrigation 

event or one day after the irrigation event, we are able to detect approximately 75% of the 

irrigation events (Figure 11a). Two and three days after the irrigation event, the percentage of 

the detected and the undetected events are approximately the same (50%). Beyond 4 days of 

the irrigation event (4 ≤ ∆𝑡 ≤ 5 days), the percentage of the detected irrigation events 

decreases. However, the percentage of undetected events increases and becomes greater than 

that of the detected events (60% and 40%, respectively). 

For NDVI > 0.7 (Figure 11b), 70% of the irrigation events could still be detected when the 

S1 image is acquired at the same date of the irrigation event (∆𝑡 = 0), whereas 30% of the 

events are not detected. These results are similar to that obtained for NDVI ≤ 0.7 and ∆𝑡 = 0. 

However, one day after the irrigation event, the percentage of undetected events (60%) becomes 

greater than that of the detected events (40%). In the case where NDVI > 0.7, the percentages 

of detected and undetected events remain approximately stable for the values of ∆𝑡 greater than 

1 day (∆𝑡 equals to 2, 3, 4 or 5 days), with a percentage of undetected events greater than that 

of the detected events (60–70% and 30–40%, respectively). 

 

(a) 

 

(b) 

 

Figure 11: Percentage of detected and undetected irrigation events as a function of time laps between 

the S1 acquisition date and the irrigation date (∆𝑡) for (a) NDVI ≤ 0.7 and (b) NDVI > 0.7. Numbers 

over the bars present the number of irrigation events at each value of ∆𝑡. 
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6. Conclusions 

In this study, the potential of the Sentinel-1 C-band time series for detecting irrigation events 

has been evaluated over intensively irrigated grassland plots located in the Crau plain of 

southeast France. The irrigation event detection has been carried out using the newly developed 

near real-time irrigation detection model (IDM). Four SAR time series from four different S1 

orbits were used in this study. The IDM was first applied on each SAR time series of the same 

orbit acquisition (at a 6 day interval) to obtain irrigation indicators (low, medium and high 

irrigation chance) at each SAR image. Then, the irrigation indicators obtained at each image of 

the four SAR time series were combined and compared to a threshold value to obtain detected 

irrigation events.  

The application of the IDM over all possible S1 SAR images in ascending and descending 

modes proved the capability of detecting irrigation events with a good accuracy. The results of 

the comparison between the in situ registered irrigation events and the detected irrigation events 

by the IDM showed that using the VV polarization the accuracy for irrigation detection reaches 

73.8% by the means of F_score. The use of the VH polarization seems to be slightly less 

accurate than the VV polarization, with an F_score reaching 72.2%. However, the combined 

used of the VV and VH polarization enhances the irrigation detection accuracy to obtain an 

F_score of 76.4%. The analysis of the threshold value used for combining the irrigation 

indicators from all possible SAR acquisitions showed that the use of low threshold value allows 

higher detection of existing irrigation events with a sensitivity (S) of 74.1%, but with slightly 

high possibility of obtaining false detections where the precision (Pr) reaches 78.9% (the case 

of “VV and VH”). On the other hand, using high threshold values for combining the irrigation 

indicators from the four SAR time series, less irrigation events could be detected (S = 50%), 

but with higher precision and low chance of obtaining false irrigation detection with a high 

precision value of 91.8% (the case of “VV and VH”). 

The analysis of the undetected irrigation events as a function of vegetation cover and NDVI 

values showed that over leafy grass type (coarse hay) with very high NDVI values (NDVI > 

0.8) the irrigation detection becomes difficult, due to the very low sensitivity of the C-band 

SAR signal to the surface soil moisture. The analysis of the falsely detected irrigation events, 

as a function of the plot size, showed that small sized plots in terms of narrow width or short 

length, (surface area less than 2 ha) encounter more false detections than large sized plots 

(surface area more than 3 ha), mainly due to the 10 m × 10 m pixel spacing of the S1 satellite. 
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The analysis of the irrigation detection as a function of the time laps between the S1 acquisition 

and the irrigation date showed that for NDVI values less than 0.7, the irrigation event could be 

detected until two to three days after the irrigation event. However, for NDVI values greater 

than 0.7 the irrigation could only be detected if it exists within the same day of the S1 

acquisition. 

The obtained results present a quantitative evaluation of the capability of S1 data to detect 

irrigation events, which opens the way towards the operational use of the S1 data with the IDM 

to detect irrigation events over regional scales. The operational detection of irrigation events is 

ensured with the free and open access availability of the S1 data and the direct use of the IDM 

that does not require priori calibration (training) phase. 
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Abstract 

In this study, we present an operational methodology for mapping irrigated areas at plot 

scale, which overcomes the limitation of terrain data availability, using Sentinel-1 (S1) C-band 

SAR (synthetic-aperture radar) and Sentinel-2 (S2) optical time series. The method was 

performed over a study site located near Orléans city of north-central France for four years 

(2017 until 2020). First, training data of irrigated and non-irrigated plots were selected using 

predefined selection criteria to obtain sufficient samples of irrigated and non-irrigated plots 

each year. The training data selection criteria is based on two irrigation metrics; the first one is 

a SAR-based metric derived from the S1 time series and the second is an optical-based metric 

derived from the NDVI (normalized difference vegetation index) time series of the S2 data. 

Using the newly developed irrigation event detection model (IEDM) applied for all S1 time 

series in VV (Vertical-Vertical) and VH (Vertical-Horizontal) polarizations, an irrigation 

weight metric was calculated for each plot. Using the NDVI time series, the maximum NDVI 

value achieved in the crop cycle was considered as a second selection metric. By fixing 

threshold values for both metrics, a dataset of irrigated and non-irrigated samples was 

constructed each year. Later, a random forest classifier (RF) was built for each year in order to 

map the summer agricultural plots into irrigated/non-irrigated. The irrigation classification 
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model uses the S1 and NDVI time series calculated over the selected training plots. Finally, the 

proposed irrigation classifier was validated using real in situ data collected each year. The 

results show that, using the proposed classification procedure, the overall accuracy for the 

irrigation classification reaches 84.3%, 93.0%, 81.8% and 72.8% for the years 2020, 2019, 2018 

and 2017 respectively. The comparison between our proposed classification approach and the 

RF classifier built directly from in situ data showed that our approach reaches an accuracy 

nearly similar to that obtained using in situ RF classifiers with a difference in overall accuracy 

not exceeding 6.2%. The analysis of the obtained classification accuracies of the proposed 

method with precipitation data revealed that years with higher rainfall amounts during the 

summer crop-growing season (irrigation period) had lower overall accuracy (72.8% for 2017) 

whereas years encountering drier summer had very good accuracy (93.0% for 2019). 

Keywords: Irrigation, synthetic aperture radar, normalized difference vegetation index, soil 

moisture, summer crops 

Introduction 

The current changing climate has altered the frequency and severity of extreme hydrological 

events (Grillakis, 2019) causing adverse impacts on crop production (Harkness et al., 2020) and 

endangering food security (Richardson et al., 2018). Insufficient precipitation and the 

significant increase in evaporative demand due to higher air temperatures have already affected 

agricultural regions particularly in arid and semi-arid regions (Jamshidi et al., 2019). As a 

natural response, water demand for crop cultivation has increased in the last decades (Tilman 

et al., 2011) despite the significant decrease in water resources in many regions worldwide 

(Scanlon et al., 2018). Over the last 50 years, irrigated areas is doubled (FAO, 2017) and it is 

projected to increase from 287 million hectares in 2005 to 318 million hectares in 2050 

(Bruinsma, 2009). Given the regional water shortage, new agricultural policies should be 

adapted for a transition towards a more efficient and sustainable agriculture system to conserve 

water and enhance crop productivity. 

Imposing sustainable water conservation policies at the core requires quantifying the spatial 

extent of the irrigated areas. Currently, the extent of irrigated areas at global scales is principally 

derived from country-level statistics and remains uncertain (Ozdogan et al., 2010; Portmann et 

al., 2010; Siebert et al., 2005; Thenkabail et al., 2009a). Although national statistical data gives 

the gist of irrigated areas and water use, these data may lack precision especially when irrigation 
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is not reported by the farmers. To address the need for a precise large-scale mapping of irrigated 

areas, remote sensing provides a powerful tool for mapping irrigated areas (Bazzi et al., 2019c; 

Gao et al., 2018; Hajj et al., 2014; Ozdogan et al., 2010; Pageot et al., 2020). With the 

availability of several operational cost-free and open access satellites (e.g., Landsat, Sentinels), 

remote sensing has been widely used for monitoring and managing agricultural crops from field 

level (Jamshidi et al., 2019; Segarra et al., 2020) to large domains (Bazzi et al., 2019d; Fayad 

et al., 2020; Ienco et al., 2019; Ndikumana et al., 2018). 

Irrigation extent mapping using optical satellite data has been explored in several studies 

using various methodologies to distinguish between irrigated and rain-fed crops (Biggs et al., 

2006; Kamthonkiat et al., 2005; Xiang et al., 2019). Nevertheless, these methods are developed 

based on a similar principle that the phenological differences between irrigated and non-

irrigated crops (e.g., growth rate, greenness) are detectable by the vegetation spectral 

information derived from satellite optical sensors (Naser et al., 2020). Vegetation indices such 

as NDVI (Normalized Difference Vegetation Index) (Pervez and Brown, 2010), NDWI 

(Normalized Water Vegetation Index) (Xiang et al., 2019), NDRE (Normalized Difference 

Red-Edge) (Pageot et al., 2020) or GI (Greenness Index) (Chen et al., 2018) derived from 

Landsat, MODIS and Sentinel-2 data have been widely used to map irrigated areas. Most of the 

prior studies using optical data tend to classify irrigated/non-irrigated areas only for one specific 

crop type. The transferability of the methods based on the optical data is further limited in 

humid regions due to the cloud cover (Karakizi et al., 2018), and the marginal difference in the 

crop phenology between irrigated and rain-fed crops (Maselli et al., 2020b). 

Synthetic Aperture Radar (SAR) data has been also exploited for mapping irrigated areas. 

The key element in the usage of the SAR data for irrigation mapping is the surface soil moisture 

(SSM) values that have been widely demonstrated to be correlated with the radar backscattering 

coefficients (Baghdadi et al., 2008a, 2011c, 2011b, 2016b; Bazzi et al., 2019a; El Hajj et al., 

2016a, 2017). Several studies have shown that the C-band SAR temporal series derived from 

the Sentinel-1 (S1) satellite is efficient for mapping irrigated areas at plot scale (Bazzi et al., 

2019c; Gao et al., 2018). The increase in the soil moisture due to an irrigation event causes an 

increase in the SAR backscattering coefficient between two consecutive SAR acquisitions if no 

rainfall is observed. However, since rainfall and irrigation have the same influence on the SSM 

values, it is important to distinguish between the increase of the SSM due to rainfall and 

irrigation.  
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In a recent study, Bazzi et al. (Bazzi et al., 2019c) used the differences between the S1 SAR 

signal calculated at grid-scale and plot scale to remove the rainfall-irrigation ambiguity. Using 

this technique and employing a convolutional neural network as a classification tool, Bazzi et 

al. (Bazzi et al., 2019c) mapped irrigated areas at plot scale using the S1 C-band SAR temporal 

series over a semi-arid region in Catalonia with an overall accuracy of 94%. Other studies 

including Gao et al. (Gao et al., 2018), Bousbih et al. (Bousbih et al., 2018) and Yann et al. 

(Pageot et al., 2020) have also used S1 SAR data for mapping irrigated areas with accuracy 

ranging from 78% to 82%. Bazzi et al. (Bazzi et al., 2020c) used a change detection model for 

detecting irrigation episodes at plot scale using S1 data. They achieved an overall accuracy of 

76% in detecting irrigation episodes over grassland plots. The applicability of SAR data for 

irrigation mapping, however, could be limited in regions with frequent rainfall events (Bazzi et 

al., 2020c, 2020b). Additionally, the C-band SAR data has been reported to be more sensitive 

to canopy density than soil moisture in dense vegetative areas such as wheat and grasslands 

(Bazzi et al., 2020c; El Hajj et al., 2018b; Nasrallah et al., 2019). In the case of very well 

developed vegetation cover, the penetration of the C-band into the canopy is significantly 

reduced. El Hajj et al. (2018b) and Nasrallah et al. (2019) showed that the soil contribution in 

the C-band SAR backscattered signal (wavelength of 6 cm for S1) is negligible between the 

germination and heading growth stages in wheat due to the low penetration of the C-band signal 

to the soil surface. In this case, detecting an irrigation event using the increase in the 

backscattering coefficient could be challenging. 

Another key factor in mapping irrigated areas using remotely sensed data is the 

classification method. Most of the previous studies on land cover classification and irrigation 

mapping are based on supervised classification techniques including Random Forest (RF) 

(Bazzi et al., 2019c, 2019d), Support Vector Machine (SVM) (Gao et al., 2018), or neural 

networks (NN) (Ienco et al., 2019; Ndikumana et al., 2018; Zhu et al., 2017). Supervised 

classification methods require obtaining in situ data (at yearly or half-yearly period) which is 

time and resource consuming, and may not be transferable spatially and temporally (Talukdar 

et al., 2020). To circumvent this issue, Bazzi et al. (2020a) proposed a spatiotemporal transfer-

learning framework that transfers a CNN (Convolutional Neural Network) based irrigation 

classification model built on a source geographical region (Catalonia northeast Spain), to map 

irrigated areas on a target region (Tarbes of southwest France). Nevertheless, this method still 

requires in situ data over the target area in order to refine the source classification model. 
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Therefore, for continuous and yearly mapping of irrigated areas with fewer in situ 

measurements, an operational methodology capable of overcoming the limitation of terrain data 

collection is required. The proposed methodology should be reproducible and applicable for 

several years. In the context of operational mapping of irrigated areas, this study proposes an 

operational semi-supervised framework for mapping irrigated areas at a plot scale that 

overcomes the limitation of the availability of in situ data. The proposed methodology is based 

on a pre-step of selecting irrigated and non-irrigated plots to be served as training data for 

building a classification model. The training data selection is based on SAR and optical derived 

irrigation metrics (without using in situ data). The defined training data were then implemented 

in a RF classifier to map irrigated areas using SAR and optical temporal series. The obtained 

classifier was validated using real in situ data acquired over four years to assess the accuracy 

of the classification. The findings including irrigated area map could be later used by local 

authorities and stakeholders for estimating and managing water use at regional scales. These 

maps could help decision makers better follow the current irrigation situation and build future 

policies to manage water resources. 

2. Materials 

2.1 Study Site 

The study site examined is located near Orléans city of north-central France (Figure 1). 

Located in the “Centre-Val de Loire” region, the study site is characterized by oceanic climate 

with an average rainfall of 730 mm per year with several rainfall events recorded in summer 

season. The cumulative precipitation, recorded from a local metrological station located in 

Orléans city, during the period between May and October for the years 2017, 2018, 2019 and 

2020 reached 321 mm, 210 mm, 150 mm and 180 mm respectively. In the study site, irrigation 

mainly exists for summer crops (maize, sorghum, sunflower …) during the period between May 

and October of each year. The agricultural plots in the studied area are almost flat with very 

slight average slope of 3.2%. 

2.2 Field Campaigns 

In the study site, irrigation mainly occurs for spring and summer crops, which are generally 

sowed in April and May and harvested in September and October. For this reason, four field 

campaigns in the years 2017, 2018, 2019 and 2020 have been conducted over the study site in 
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June and July of each year to collect irrigation information. In the field campaigns, each plot 

has been registered as either irrigated, if irrigation was in progress during the campaign date or 

irrigation materials exist on the plot with summer crop cycle, or non-irrigated if neither 

irrigation nor irrigation materials has been observed. 

Table 1 presents the number of terrain samples collected for each year. In 2020, a large 

database of 686 plots has been registered. However, a total of 92, 127 and 116 plots were 

registered for the years 2017, 2018 and 2019 respectively. Years 2017 and 2018 had the least 

percentage of non-irrigated plots from the total number of examined plots (approximately 28%). 

On the other hand, 49% and 42% of the collected plots are non-irrigated in the database of the 

years 2019 and 2020 respectively. 

The average area of the visited plots in 2017, 2018, 2019 and 2020 is 10.96, 10.34, 8.35 and 

7.18 hectares respectively (Table 1). For the four years together, the average area of all the 

visited plots is 8.0 ha. The area of the in situ plots varies between one ha and 48 ha. 70% of the 

plots have a surface area between 1 and 10 ha, 21% of the plots have a surface area between 10 

and 20 ha and 9% of the plots have a surface area greater than 20 ha. 

Table 1: Distribution of the number of in situ irrigated and non-irrigated plots for the four years. 

Year Irrigated Non-Irrigated Total Average Area (ha) 

2017 66 26 92 10.96 

2018 91 36 127 10.34 

2019 59 57 116 8.35 

2020 395 291 686 7.18 

Total 611 410 1021 8.00 
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Figure 1: Location of the study site with collected in situ data near Orléans city in north-central France 

for (a) 2017, (b) 2018, (c) 2019 and (d) 2020. Non-irrigated plots are presented in red and irrigated plots 

are presented in blue. 

2.3 RPG Data 

The graphical parcel registry (RPG) is the French official graphical declaration system used 

by farmers, which provides an annual geo-localized representation of the agricultural parcels 

and their corresponding crop type. Covering around 26 million hectares, the RPG contains more 

than 6 million small parcels over the entire country. For each year, the corresponding RPG data 

was downloaded over the study site (Figure 1) (https://www.data.gouv.fr/en/datasets/) and used 

in this study. Among all the existing agricultural classes in the RPG, only classes corresponding 

to agricultural activities of summer and winter crops (including irrigated grasslands) were kept 

whereas vines and fruit trees were discarded. It is good to mention that the RPG data contains 

only the plot limits and their crop type and does not contain any information about irrigation. 

In this study, the RPG data was used to get the agricultural fields. Using the RPG agricultural 

fields, the training plot dataset (irrigated/non-irrigated) used for the irrigation classification 

model, are later selected with the training dataset selection criteria. 

2.4 Sentinel-1 SAR Data 

The high-resolution Level-1 ground range detected (GRD) product of the S1 satellite 

provides a 10 m x 10 m pixel spacing SAR image with a 6 days revisit time. However, with 
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several crossing orbits of the S1, four SAR images could be obtained in the period of 6 days 

within a study site. Thus, 578 available S1 images over the study site from different orbit 

acquisitions have been downloaded for the four years via the Copernicus website 

(https://scihub.copernicus.eu/dhus/#/home). Figure 2 shows an example of the frequency of the 

four SAR images acquired from the four S1 orbits for the year 2020 in both ascending ‘A’ and 

descending ‘D’ modes. Images is the descending mode are acquired in the morning (~05h00 

UTC) whereas images in the ascending mode are acquired in the evening (~17h00 UTC). After 

the first acquired descending morning image (D1), another descending morning acquisition is 

available 24 hours later (D2). Thirty-six hours later, an ascending evening image is acquired 

(A1). Finally, the fourth image (A2) is acquired 24 hours after the first evening acquisition. The 

hatched area in Figure 2 shows the period where no images are acquired (2.5 days). After 6 

days from the first descending image acquisition (D1), the first descending morning image is 

then repeated (revisit time of S1 satellite) and the same acquisition pattern is later repeated. 

Therefore, over the study site and for each year, four S1 temporal series (TS) are obtained later 

referred to as TSI, TSII, TSIII and TSIV (for 2020, it corresponds to TSD1, TSD2, TSA1 and TSA2 

respectively). The four S1 temporal series correspond to S1 images from the four different S1 

orbit acquisitions. Each TS in each year is composed of 42 to 46 S1 images (at 6 days revisit 

time) according to the studied year. 

Radiometric and geometric calibration have been performed for all S1 images using the S1 

toolbox developed by the ESA (European Space Agency). The radiometric calibration allows 

passing from the DN (digital number) of the pixel to backscattering coefficient (𝜎0) in linear 

units while the geometric calibration insures the ortho-rectification of the S1 images using the 

digital elevation model (DEM) of the SRTM (Shuttle Radar Topography Mission) at 30 m 

spatial resolution. 

 
Figure 2: Example of the frequency of S1 images in ascending ‘A’ (evening, blue) and descending ‘D’ 

(morning, red) modes for the year 2020. Hatched area represents the period with no available SAR 

acquisitions. 
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2.5 Sentinel-2 Optical Data 

For each year, temporal series of S2 optical images were downloaded from Theia website 

(https://www.theia-land.fr/) covering the period between February and October. This period 

largely fits the period of the irrigation of summer crops in the four years (usually between May 

and October). Optical S2 images were downloaded at a frequency of one to two images each 

month. The images downloaded from the French land data center (Theia) are calibrated for 

atmospheric correction and ortho-rectified for geometric correction (level 2A). Moreover, 

starting from 2018, Theia started providing monthly-synthesized cloud free S2 images (level 

3A) which were also downloaded when available. The S2 images were mainly used to calculate 

the NDVI images used later in the training dataset selection criteria and the irrigation mapping 

classifier. 

2.6 Global Precipitation Mission (GPM) data 

The GPM mission is an international satellite mission initiated by the National Aeronautics 

and Space Administration (NASA) and the Japan Aerospace and Exploration Agency (JAXA) 

with the aim to provide global precipitation measurements from space (Huffman et al., 2014). 

The IMERG (Integrated Multi-satellite Retrievals for GPM) data product of the GPM offers 

global precipitation estimations at 0.1° spatial resolution (~10 km x 10 km) 

between 60°N and 60°S. In this study, the daily cumulative rainfall maps offered by the Final 

GIS (Geographic Information System) IMERG data (version 06) were downloaded for the 

period between February and October of each year (https://gpm.nasa.gov/data/directory). 

Nevertheless, the rainfall data from the GPM were not used in the proposed mapping method. 

They were only used to analyze and discuss the obtained results with rainfall registrations. 

3. Methods 

3.1 Overview 

The proposed methodology, later referred to as S2IM (Sentinel-1/Sentinel-2 Irrigation 

Mapping) consists of two major steps for mapping irrigated summer crops (Figure 3). In the 

first step, the irrigated/non-irrigated training plots are selected based on multi criteria derived 

from both SAR and optical data. The selection criteria of the training dataset are based on 

threshold values for the maximum attained NDVI for the plot during the studied period 

https://www.theia-land.fr/
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(calculated from S2 data), and an irrigation possibility weight at each plot obtained using the 

newly derived irrigation event detection model (IEDM) at plot scale (Bazzi et al., 2020c, 

2020b). After selecting the training dataset that corresponds to the plots deemed as irrigated 

and non-irrigated with a high confidence degree, the second step consists of implementing S1 

data (radar backscattering coefficient at plot and grid scales), S2 data (NDVI) and the selected 

training plots into a random forest classifier to build a classifier for mapping irrigated areas 

(Irrigation Classifier). Finally, using the in situ dataset, the performance of the classifier was 

assessed using several accuracy metrics. The methodology was performed and validated for 

four years separately (2017, 2018, 2019 and 2020). 

 
Figure 3: Overflow of the methodology for irrigation mapping at plot scale. 
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3.2 Sentinel-1 data 

Using the plots’ boundaries of the RPG data, the average S1 backscattering coefficient at 

plot scale 𝜎𝑝
0 has been calculated for each acquired S1 image by averaging the pixel values 

within each plot. Before averaging the pixel values within each plot, an interior buffer of -10 m 

(10 m ~ one S1/S2 pixel) was applied to the RPG plots in order to avoid including boundary 

pixels from nearby plots, highways or surrounding vegetation. Moreover, RPG plots with a 

surface area less than 0.1 ha were not considered in order to avoid the speckle noise in the SAR 

data due to very small number of averaged pixels (0.1 ha ~ 10 S1 pixels). The 𝜎𝑝
0 is calculated 

in both VV and VH polarizations. For each plot, four distinct S1 temporal series could be 

obtained (TSI, TSII, TSIII, and TSIV) each at 6 days revisit time (maximum time difference 

between TSI and TSIV is 3.5 days). However, due to the limited overlapping zone of the S1 

images, some plots of the RPG are only covered by two TS. In addition, the radar backscattering 

coefficients have been calculated at a grid of 10km x 10km (𝜎𝐺
0). Indeed, as shown by (Bazzi 

et al., 2019c, 2020b) the grid scale S1 backscattering helps reducing the uncertainty between 

rainfall and irrigation. In fact, the increase of the S1 backscattering signal at grid scale 𝜎𝐺
0, 

between two consecutive S1 images, is mainly due to increase of soil moisture caused by a 

rainfall event. On the other hand, when 𝜎𝑝
0 increases between two consecutive S1 images and 

𝜎𝐺
0 decreases or remain stable (no rainfall) then an irrigation event could have occurred. As 

such, the average S1 backscattering coefficient 𝜎𝐺
0 at the grid scale was calculated by averaging 

the pixel values of bare soil pixels within each grid cell (10km x 10km) in both VV and VH 

polarizations. The extraction of bare soil pixels at each S1 date was performed by delineating 

the agricultural area from the French land cover map (Inglada et al., 2017) and applying a 

threshold value of the NDVI calculated from S2 images (NDVI < 0.4). Thus, for each 

agricultural plot, a temporal series of 𝜎𝑝
0 at each TS is obtained at plot scale and its 

corresponding grid scale (𝜎𝐺
0). The plot and grid scale S1 backscattering coefficients for each 

TS were used as input layers for applying the irrigation event detection model (IEDM) and later 

in the RF classification of irrigated areas. 

3.3 Sentinel-2 data 

Using each available S2 image, the average NDVI value at plot scale was obtained by 

averaging the NDVI pixels’ within each RPG parcel. The interior buffer of -10 m was also 

considered on the RPG plots to eliminate border pixels and plots with area less than 0.1 ha were 
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also not considered. Thus, an NDVI temporal profile is obtained for each plot in each year. The 

NDVI was first used as input in the IEDM, then in the selection criteria of the training dataset 

(maximum attained NDVI value) and finally as input data for the RF classifier. 

3.4 Training dataset selection criteria 

The selection of the irrigated/non-irrigated training plots from the RPG data is based on two 

threshold criteria fixed from S1 and optical derived metrics. Using the S1 data, an irrigation 

possibility weight was calculated for each plot by applying the IEDM on the several S1 

temporal series in VV and VH polarizations. In addition, using the optical NDVI temporal 

profile, the maximum attained NDVI value at each plot was considered as additional selection 

metric. 

3.4.1 Irrigation possibility metric 

In a recent study, Bazzi et al. (2020b) developed a change detection model (called IEDM 

for irrigation event detection model) capable of detecting irrigation events at plot scale using 

S1 SAR temporal series. The IEDM principally uses the 𝜎𝑝
0 and 𝜎𝐺

0 for detecting the irrigation 

possibility at each S1 acquisition for each plot. In the IEDM, the increase in the SAR 

backscattering 𝜎𝑝
0 between two consecutive SAR acquisitions is assumed be related mainly to 

the increase in the surface soil moisture (SSM) of the plot. However, since both rainfall and 

irrigation lead to an increase in the SSM values, the IEDM considers that rainfall/irrigation 

uncertainty could be removed by using the S1 backscattering at grid scale. Indeed, the increase 

in the 𝜎𝐺
0 between two consecutive S1 acquisitions is most probably linked to a rainfall event 

occurring between the two S1 images. 

For each plot and at each S1 image, the IEDM gives an irrigation possibility 0, 25, 50 and 

100. The four irrigation possibility values are directly related to the change in the 𝜎𝑝
0 between 

two dates 𝑡𝑖 and 𝑡𝑖−1 (∆𝜎𝑃
0 =  𝜎𝑝

0(𝑡𝑖) −  𝜎𝑃
0(𝑡𝑖−1)). The value 0 corresponds to the absence of 

any irrigation chance between 𝑡𝑖 and 𝑡𝑖−1 caused either by the decrease of the 𝜎𝑝
0 (∆𝜎𝑝

0 ≤

−0.5 dB decrease of SSM) or increase of the 𝜎𝐺
0 (∆𝜎𝐺

0 ≥ 1 dB rainfall event occurred). The low 

irrigation possibility weight (value=25) correspond to the absence of rainfall events between 𝑡𝑖 

and 𝑡𝑖−1 insured by the decrease of 𝜎𝐺
0 (∆𝜎𝐺

0 ≤ 0.5 dB) and a slight modification in the 𝜎𝑝
0 

between 𝑡𝑖 and 𝑡𝑖−1 (−0.5 ≤ ∆𝜎𝑝
0 < 0.5 dB). The medium irrigation possibility weight 

(value=50) is associated to a moderate increase in the 𝜎𝑝
0 (0.5 ≤ ∆𝜎𝑝

0 < 1 dB) with the absence 
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of rainfall events (∆𝜎𝐺
0 ≤ 0.5 dB). Finally, the high possibility of irrigation (value=100) is 

insured when the 𝜎𝑝
0 strongly increases (∆𝜎𝑝

0 ≥ 1 dB) with no rainfall event detected (∆𝜎𝐺
0 ≤

0.5 dB). However, additional filters are used in the IEDM to confirm the existence of an 

irrigation event or to remove falsely detected irrigation events. One of the additional filters 

considerers the SSM estimations at plot scale easily estimated using 𝜎𝑝
0 and the neural network 

technique proposed by El Hajj et al. (El Hajj et al., 2017). For example, to confirm the existence 

of low irrigation possibility weight (value=25) with only slight modification of 𝜎𝑝
0, the IEDM 

uses the SSM estimation at plot scale. In fact, the low possible irrigation event is detected if 

and only if the plot’s SSM estimation at time 𝑡𝑖−1 was high (SSM ≥ 20 𝑣𝑜𝑙. %) and remained 

with high value to time 𝑡𝑖 (humid soil conditions persisted from time 𝑡𝑖−1 to 𝑡𝑖). Moreover, an 

NDVI filter is used to reduce some falsely detected irrigation events. The false detections could 

be due to the increase in the 𝜎𝑝
0 values related to the change of surface roughness (Aubert et al., 

2011; Baghdadi et al., 2018a). The NDVI filter proposes that if an event is detected with low 

NDVI value at date 𝑡𝑖 (NDVI < 0.4) and the NDVI value one month later at 𝑡𝑖+30 decreases or 

remains stable (𝑁𝐷𝑉𝐼𝑡𝑖+30
− 𝑁𝐷𝑉𝐼𝑡𝑖

≤ 0.1) then the event is discarded (crop cycle in 

decreasing stage or persistent bare soil conditions). 

The IEDM was validated on several geographical areas with different climatic contexts 

where Bazzi et al. (Bazzi et al., 2020b) proved the applicability of this algorithm on several 

study sites (semi-arid and temperate areas). Moreover, Bazzi et al. (Bazzi et al., 2020c) 

validated the IEDM for irrigation detection at intensively irrigated grassland plots. They 

reported that irrigation events could be detected with an F_score of 75% when using both the 

VV and VH polarizations and four S1 temporal series (all available acquisitions over a study 

site).  

As proposed in Bazzi et al. (2020b) and Bazzi et al. (2020c), the IEDM was applied at each 

plot of the RPG, at each S1 temporal series separately. This means that, for a given year, the 

IEDM was applied at each plot using the S1 data (𝜎𝑝
0 and 𝜎𝐺

0) of the same temporal series at 6 

days revisit time. The separate use of the IEDM over the four TS is basically due to the diurnal 

effect between the morning and the evening acquisitions that may lead to uncertain irrigation 

detection (Bazzi et al., 2020c; Brisco et al., 1990; van Emmerik et al., 2015). Moreover, as the 

S1 images are acquired at different incidence angles, the use of all S1 temporal series together 

necessitates a normalization of the incidence angle, which generally does not allow eliminating 

completely the effect of incidence angle. Thus, an undesirable error will be added to the 𝜎𝑝
0. 
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Therefore, at each plot and each date (𝑖) of each TS an irrigation possibility weight PTS
i (pq) is 

obtained for each polarization (TS is the temporal series, 𝑖 is the date of the image and pq = 

VV or VH). Then, the results of the irrigation possibilities of the four TS were combined in 

both VV and VH polarizations to obtain an irrigation possibility metric for each plot.  

Figure 4 illustrates the combination procedure of the four temporal series and both VV and 

VH polarizations at each plot. For a given plot, four S1 TS are available where each TS is 

treated separately with the IEDM for both VV and VH. The application of the IEDM gives to 

each S1 date (𝑖) in each TS an irrigation possibility indicator in both VV and VH 

polarizations PTS
i (pq) (pq=VV or VH). Then, the results of the IEDM from the four series are 

summed for both VV and VH separately. In other words, the irrigation possibilities appearing 

in the search window of the 4 consecutive S1 images (Figure 2) at 3.5 days interval are added. 

For example, in the VV and the VH polarizations, the four irrigation possibilities occurring at 

the first acquisition date PI
1, PII

1, PIII
1 , and PIV

1  of the four S1 temporal series (3.5 interval between 

PI
1 and PIV

1 ) are summed to obtain one value for VV (PVV
1 ) and one value for VH (PVH

1 ). As a 

result, two irrigation indicator series are obtained from the four TS; one for VV and the other 

for VH henceforth referred to P-VV and P-VH respectively. 

As suggested by Bazzi et al. (2020c), the combined use of VV and VH provides better 

detection of irrigation events and reduces significantly the false detection. Thus, P-VV and P-

VH were further combined. For each irrigation indicator value obtained at each date (i) of P-

VV and P-VH series, if no irrigation possibility exists within one polarization (PVV
i  = 0 or PVH

i  

=0) then the irrigation event is not considered. Thus, the irrigation indicator that combines VV 

and VH PVVVH
i  will be 0 (no irrigation event retained by the algorithm). If an irrigation 

possibility exists simultaneously within both VV and VH (PVV
i ≠ 0 and PVH

i ≠ 0) then the 

maximum of the possibility weight value between PVV
i  and PVH

i  is considered. Finally, the 

cumulative irrigation possibility weight for each plot “𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤” is the sum of all the irrigation 

possibilities of combined VV and VH (∑ P𝑛
𝑖=1 VVVH

𝑖
) divided by the number of the used temporal 

series (maximum 4 in our case). In fact, some plots are not covered by four images due to the 

limited overlapping extent of the S1 images. Therefore, it was important to normalize the 

cumulative irrigation possibility weight by the number of used TS to get a discrete metric 

independent of the number of the used TS. Thus, each plot has an irrigation indicator deduced 

from the application of the IEDM on all possible TS using VV and VH polarizations. This 

indicator will be later used to select training samples of irrigated/non-irrigated plots. The 
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𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 is a value that represents for each plot, the accumulation of the irrigation possibility 

weights PTS
i (pq) which are derived from the IEDM at each S1 image in both VV and VH and 

normalized for the number of TS used. Thus, as the detectable irrigation events on the plot 

increase, the 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 value will increase. Consequently, very low 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 values could be 

an evidence of absence of irrigation events at the plot and very high 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 values could be 

an evidence of intensively irrigated plot. Therefore, a non-irrigated plot to be selected in the 

training dataset, the value of the 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 should be very low to insure that approximately no 

possible irrigations are detected on the plot. On the other hand, high value of 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 is 

required for a plot to be selected as irrigated training plot to be highly sure that the plot 

corresponds to an irrigated plot. 

 
Figure 4: Detailed description of the combination of temporal series (TS) in VV and VH polarizations 

to calculate the irrigation metric for each plot using the IEDM. 𝑛 is the number of images (dates) in each 

TS and 𝑖 represents the date. Number of TS equals to 4 in our case 

3.4.2 Maximum NDVI metric 

Several studies have shown that vegetation indices derived from optical images could be 

used to separate irrigated and non-irrigated plots due to the different spectral response between 

irrigated and non-irrigated plots. 

The NDVI, which represents a proxy measure for absorbed photosynthetic active radiation, 

is a commonly used vegetation index to map irrigated and non-irrigated crops (Bousbih et al., 
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2018; Ozdogan et al., 2010; Pageot et al., 2020). In fact, several studies assessed the effect of 

water abundancy on the NDVI values and showed that the NDVI values of different crops 

increase when the available soil moisture for vegetation increases (Ji and Peters, 2003; 

Kawabata et al., 2001; Potter and Brooks, 1998; Wulder et al., 2004). When the crop benefits 

from additional amounts of water through irrigation, highest levels of photosynthesis could be 

achieved along with highest biomass and densest vegetation cover. These three mentioned 

biophysical properties induce high NDVI values for irrigated crops. Indeed, several studies 

have demonstrated that irrigated crops, especially maize and wheat, show higher NDVI than 

non-irrigated crops (Wardlow and Egbert, 2008). For example, Pervez and Brown (Pervez and 

Brown, 2010) used the maximum NDVI criterion to map irrigated areas over the entire US 

continent. In their study, they showed that the maximum NDVI (peak value) for non-irrigated 

crops (including corn, dry beans, pasture and millet) does not exceed 0.75. However, all 

irrigated crops showed a peak NDVI value higher than 0.8.The same methodology was later 

used by Pervez and Brown (Brown and Pervez, 2014) to map irrigated areas over USA and 

extract the temporal change of irrigated surface. 

Unlike other low temporal resolution satellites, the high revisit time of the S2 satellite allows 

obtaining at least two cloud free images each month. The high revisit time of the S2 permits the 

detailed monitoring of the NDVI values at plot scale and thus extract the maximum NDVI or a 

value near to the maximum NDVI attained at the plot. 

For these reasons, we propose to include additional criteria for the selection of the training 

irrigated/non-irrigated plots based on the maximum value of the NDVI. As mentioned in 

Section 2.2, the irrigation period in our study site mainly occurs for irrigated spring/summer 

crops, which are sowed in April and May and harvested between September and October. 

Therefore, the maximum NDVI value reached for each plot during the crop cycle between May 

and October was registered (maxNDVI). Based on the literature and the analysis of the in situ 

maximum NDVI for irrigated and non-irrigated plots (results shown later in the Results 

section), we were able to define two threshold values to separate irrigated and non-irrigated 

training plots. For the 𝑚𝑎𝑥𝑁𝐷𝑉𝐼 metric, we consider that for the plot to be selected as non-

irrigated training plot the 𝑚𝑎𝑥𝑁𝐷𝑉𝐼 value must not exceed 0.7 whereas the 𝑚𝑎𝑥𝑁𝐷𝑉𝐼 value for 

a plot to be selected as irrigated training plot must exceed 0.8. The considered thresholds (< 0.7 

for non-irrigated and > 0.8 for irrigated) allow obtaining irrigated and non-irrigated training 

plots with high confidence and less overlap between the two classes. 
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3.4.3 Selection criteria of Irrigated/Non-Irrigated plots 

Based on the two calculated metrics, 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 and maxNDVI, the irrigated and non-

irrigated plots for the training phase of the RF each year are selected. 

For the 𝑚𝑎𝑥𝑁𝐷𝑉𝐼 metric, we consider that for the plot to be selected as non-irrigated training 

plot the 𝑚𝑎𝑥𝑁𝐷𝑉𝐼 value must not exceed 0.7 whereas the 𝑚𝑎𝑥𝑁𝐷𝑉𝐼 value for a plot to be selected 

as irrigated training plot must exceed 0.8. 

 For the 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 metric, a plot must have a low value of 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 to be considered as 

non-irrigated training plot. In this study, we consider that for the plot to be selected in the non-

irrigated class of the training dataset, the 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 value should be less than or equal to 25. 

The cumulative possibility weight of 25 was considered as a very low value indicating very low 

number of detected irrigation events by the IEDM at the plot during the whole crop season. For 

example, using four temporal series as present in Figure 4, a plot achieving a 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 value 

of 25 can have only one high possibility-weight event (100) present on only one image of the 

four images (from 4 TS: PI
i, PII

i , PIII
i , PIV

i ) during the whole season in both VV (PVV
𝑖 = 100)and 

VH (PVH
i = 100) (Ppq

𝑖 = PI
i + PII

i + PIII
i + PIV

i  =  100 + 0 + 0 + 0). In this case the 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 

is the maximum between PVV
𝑖  and PVH

i  (100) divided by 4 TS (100/4 = 25). Another example to 

attain a 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 value of 25, if a medium possibility-weight irrigation is detected on only one 

image of the four TS (PI
i, PII

i , PIII
i , PIV

i ) in VV (PVV
𝑖 = 50) and VH (PVH

i = 50) and another 

medium possibility-weight irrigation is detected over one image of different four TS (date “k”) 

in VV and VH (PVV
𝑘 = 50) and PVH

k = 50). In this case, the 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 value reaches 25 

((50+50)/4). 

For the irrigated class, we consider that a plot must have a high value of 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 to be 

taken for the irrigated training samples. The high 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 value insures the detection of 

several irrigation events on the plot during the crop season. In this study, a value of 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 

greater than or equal to 250 is fixed to consider a plot in the irrigated training sample. For 

example, using the four TS, a value 250 could be achieved if five irrigation events are detected 

with high possibility weights (100) and each irrigation event is present on two of the four images 

from the 4 TS (e.g. Ppq
i = PI

i + PII
i + PIII

i + PIV
i  = 100+100+0+0) in both VV (PVV

𝑖 = 200)  and 

VH (PVH
i = 200). These 5 irrigation events will give a cumulative irrigation possibility weight 
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equals to 250 (5 irrigation events x 200 possibility weight / 4 TS). Thus, the value greater than 

or equal to 250 insures that a sufficient number of irrigation events are detected on the plot. 

Finally, the selection of the training dataset for each class was fixed by combining both 

metrics (𝑚𝑎𝑥𝑁𝐷𝑉𝐼 and 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤). This means that a plot is considered as “irrigated training 

plot” if the 𝑚𝑎𝑥𝑁𝐷𝑉𝐼 ≥ 0.8 and the 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 ≥ 250 simulatenously. In contrast, a plot is 

selected as “non-irrigated training plot” if the 𝑚𝑎𝑥𝑁𝐷𝑉𝐼 ≤ 0.7 and the 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 ≤ 25. For 

each of the four years (2017, 2018, 2019 and 2020), an independent training dataset of irrigated 

and non-irrigated plots has been selected from the RPG data using the explained selection 

criteria. This means that for each year, a corresponding classification model could be obtained. 

3.5 Random Forest Classifier 

3.5.1 Training Phase 

Through literature, random forest (RF) has widely demonstrated its ability to perform a high 

quality classification. Particularly, irrigation mapping using random forests has been recently 

exploited by several studies (Bazzi et al., 2019c; Gao et al., 2018; Pageot et al., 2020). 

Moreover, studies dealing with mapping irrigated areas proved the reliable use of both SAR 

and optical temporal series for mapping irrigated areas. For example, Pageot et al. (Pageot et 

al., 2020) used both S1 time series and optical derived vegetation indices to map irrigated and 

rain-fed summer crops in a humid area. Moreover, Bazzi et al. (Bazzi et al., 2019c) showed that 

the use of the grid scale 𝜎𝐺
0 S1 temporal series along with the plot scale 𝜎𝑝

0 series and NDVI 

derived from S2 images in a RF classifier enhances the accuracy of irrigated area mapping. In 

addition, Gao et al. (Gao et al., 2018) demonstrated that using statistical metrics derived from 

S1 SAR series at plot scale in a random forest classifier leads to a good accuracy for mapping 

irrigated areas. Following these studies, the RF classifier was used for mapping irrigated areas 

using 𝜎𝑝
0, 𝜎𝐺

0 and NDVI temporal series (Figure 3). 𝜎𝑝
0, 𝜎𝐺

0 and NDVI temporal series of the 

training dataset derived from the previously explained selection criteria (Section 3.4) were used 

to train the RF classifier. It is good to mention that for each year a RF classifier was developed 

using the training dataset corresponding to each year (2017, 2018, 2019 and 2020). 
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3.5.2 Validation and assessment phase 

To assess the accuracy of the obtained RF classifier in each year, we used the in situ terrain 

dataset of irrigated/non-irrigated plots (Section 2.2) as a validation dataset. This means that, for 

each year, the corresponding RF classifier, built using the selected training dataset, was applied 

on the in situ terrain plots to predict whether each plot is irrigated or not. From the obtained 

confusion matrix between predicted and in situ labels, the accuracy of the RF classifiers could 

be assessed each year. The classifier accuracy has been evaluated using several accuracy 

metrics including the overall accuracy (OA), the weighted F_score (F_score), the F_score of 

the irrigated class (F_score_Ir) and the F_score of the non-irrigated class (F_score_Nir). The 

OA shows the percentage of correctly classified plots to the total number of plots while the 

F_score presents the harmonic mean between the precision and the recall of each class. For 

each year, a classification accuracy report of the mentioned metrics could be obtained. 

In addition to the validation of the RF classifier each year using its corresponding terrain 

data, we also compared the reported accuracy of each year using the proposed methodology 

(S2IM) to the accuracy obtained when building a RF classifier using five folds cross validation 

of the in situ data. This comparison will allow us evaluate the robustness of the proposed 

method against the classical training/validation methods that directly use terrain data for 

classification. 

4. Results 

4.1 Irrigated vs non-irrigated plots 

Figure 5 presents an example of the temporal evolution of the 𝜎𝑝
0 (black dashed line) and 

𝜎𝐺
0 (brown dashed line) for one of the four TS along with the NDVI (green line) for an irrigated 

maize plot (Figure 5a) and non-irrigated maize plot (Figure 5b) between February and October 

2019. The blue bars in the figure represent the daily rainfall amounts given by the IMERG GPM 

product described in Section 2.6. Between February 2019 and mid-May 2019, 𝜎𝑝
0 and 𝜎𝐺

0 of 

each plot show the same behavior for both irrigated and non-irrigated plots. Indeed, for this 

period both 𝜎𝑝
0 and 𝜎𝐺

0 increase with rainfall events (blue bars) and decrease with the absence 

of rainfall. Moreover, the low NDVI values in the same period for both plots (approximately 

0.2) indicate the absence of a vegetation cycle (bare soil conditions). After mid-May, the maize 

cycle of both irrigated and non-irrigated plots started when the NDVI values increased from 0.2 
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to 0.6 for both irrigated and non-irrigated plots between 15 May and 15 June 2019. This increase 

in the NDVI took place with a cumulative rainfall of 110 mm. After a rainfall event on 23 June 

2019, no rainfall events occurred for approximately 1.5 months (until 12 August 2019) (very 

dry conditions). During this period, the 𝜎𝐺
0 values of both irrigated and non-irrigated plots 

decreased gradually between 26 June and 12 August indicating no rainfall events. 

 
 (a) 

 
(b) 

 
 

Figure 5: Example of 𝜎𝑝
0 , 𝜎𝐺

0 and NDVI temporal profiles for (a) irrigated maize plot and (b) non-

irrigated maize plots for the year 2019. Black arrows highlights the dates with detected irrigation events 

by the IEDM. Blue bars show the daily rainfall from the GPM data. 

For the irrigated plot, the 𝜎𝑝
0 value increased between two consecutive S1 images on 26 June 

2019 and 01 July (∆𝜎𝑝
0=1.9 dB) whereas for the same SAR images the 𝜎𝐺

0 value decreased by 

2.3 dB. Due to the important increase in 𝜎𝑝
0 and important decrease in 𝜎𝐺

0 between two 
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consecutive SAR images, the IEDM was capable of detecting the first irrigation event with high 

irrigation possibility weight on the irrigated plot on 01 July 2019. Similarly, two additional high 

probable irrigation events were detected on the S1 images of 13 July and 25 July (black arrows). 

The three high chance detected irrigations are mainly detected due to the important increase in 

𝜎𝑝
0 between two consecutive S1 image and the decrease of 𝜎𝐺

0 indicating no rainfall events 

occurring. Due to these three detected irrigation events, the NDVI of the irrigated plot increased 

from 0.6 to 0.82 for the period between 15 June 2019 and 30 July 2019. Finally, a fourth 

irrigation event with low possibility weight has been detected on 24 August 2019 due to only 

slight decrease in 𝜎𝑝
0 but at high level of radar signal at plot scale (-9 dB and SSM ≥ 20 vol.%) 

accompanied by a sharp decrease of 𝜎𝐺
0 between 18 and 24 August 2019. 

In contrast, the temporal profile of 𝜎𝑝
0 of the non-irrigated plot (Figure 5b) decreases during 

the dry period (between 23 June and 18 August) showing no possible irrigation events on the 

plot. The similar behavior between 𝜎𝑝
0 and 𝜎𝐺

0 during the dry period of the season could be an 

evidence that the plot did not receive any additional water supplement. Therefore, the IEDM 

did not detect any irrigation events on the non-irrigated plot. Moreover, the NDVI value 

between 15 June and 30 July decreased from 0.6 to 0.5 and then continued its decreasing pattern 

until the end of the cycle. 

4.2 Comparison of irrigation derived metrics using in situ data 

In this section, we present a comparison between in situ irrigated and non-irrigated plots as 

a function of the irrigation derived metrics in the four years. We present first the 𝑚𝑎𝑥𝑁𝐷𝑉𝐼 

metric derived from the NDVI temporal profile and then the 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 metric derived using 

the IEDM. It is good to mention that the objective of this metrics comparison for in situ data is 

to only demonstrate the separability between the irrigated and non-irrigated classes using the 

proposed metrics. However, in situ data were not used to build the classification model of the 

S2IM (step 1 of Figure 3) and were only used for the validation of the built RF classifier each 

year. 

4.2.1 Maximum NDVI value (𝒎𝒂𝒙𝑵𝑫𝑽𝑰) 

Figure 6 presents the boxplot of the distribution of the maximum NDVI value (𝑚𝑎𝑥𝑁𝐷𝑉𝐼) 

acquired by the in situ plots in the summer cycle (between May and October) for the four 
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different years. The red line in the box plot represents the median value whereas the black point 

represents the mean value.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6: Boxplots of the distribution of maximum NDVI values (𝑚𝑎𝑥𝑁𝐷𝑉𝐼) for in situ irrigated and 

non-irrigated plots in (a) 2020, (b) 2019, (c) 2018 and (d) 2017. Red line in each box represents the 

median value while the black dot shows the mean value. The number of the irrigated and non-irrigated 

plots for each year corresponds to the number of in situ plots presented in Table 1 of Section 2.2. 

In Figure 6a of 2020, the distribution of 𝑚𝑎𝑥𝑁𝐷𝑉𝐼 for non-irrigated plots shows that the 

average of 𝑚𝑎𝑥𝑁𝐷𝑉𝐼 value reaches 0.61 with approximately same median value (0.62). 

Moreover, the non-irrigated boxplot shows that 75% of the plots have a maximum NDVI value 

less than 0.69. In contrast, the irrigated plots have an average 𝑚𝑎𝑥𝑁𝐷𝑉𝐼 value of 0.82 and a 

median of 0.81 where 86.5% of the plots have a 𝑚𝑎𝑥𝑁𝐷𝑉𝐼 value greater than 0.7. In Figure 6b, 

the distribution of the 𝑚𝑎𝑥𝑁𝐷𝑉𝐼 value for the non-irrigated plots in 2019 shows approximately 

similar behavior as 2020 with a median value reaching 0.58 and a mean value of 0.59. Also in 

2019, more than 75% of the non-irrigated plots attain a maximum NDVI value less than 0.7. 

However, irrigated plots in 2019 show that all the irrigated plots attain a maximum NDVI value 

greater than 0.7 with an average of 0.84 and a median value of 0.85. In 2018, the distribution 

of the maximum NDVI value for non-irrigated plots shows an average value of 0.71 and a 

median of 0.73 whereas that of the irrigated plots shows an average of 0.84 with a median value 
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of 0.85 (Figure 6c). In 2017 (Figure 6d), all the irrigated plots have a 𝑚𝑎𝑥𝑁𝐷𝑉𝐼 value greater 

than 0.7. However, Figure 6d of 2017 shows that, in situ irrigated and non-irrigated plots have 

close distributions with 𝑚𝑎𝑥𝑁𝐷𝑉𝐼 average value of 0.77 and 0.81 for non-irrigated and irrigated 

plots respectively. Given the poor separability between irrigated and non-irrigated classes in 

2017, it will be difficult to map accurately irrigated plots for the year 2017. 

4.2.2 IEDM cumulative irrigation (𝒄𝒖𝒎𝒖𝒍𝒊𝒑𝒘) 

The histograms in Figure 7 present the distribution of the 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 metric obtained for in 

situ data for the four years. In Figure 7a, the 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 distribution in 2020 shows good 

discrimination between irrigated and non-irrigated plots. In fact, 26% of the non-irrigated plots 

encounter a 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 value less than 25, 41% have a 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 less than 50 and 67% have a 

𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 less than 100. In contrast, irrigated plots register higher 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 values than the 

non-irrigated plots where 80% of the irrigated plots have a 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 value more than 100, 

54% have a 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 value more than 150 and 33% have a 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 value greater than 200. 

In 2019, Figure 7b shows that better discrimination between irrigated and non-irrigated plots is 

available using the 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 metric. Indeed, 87% of the non-irrigated plots have a 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 

value less than 75 including 38% less than 25 and 22% between 25 and 50. Moreover, 61% of 

the irrigated plots in 2019 have a 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 value greater than 150, 46% greater than 200 and 

24% greater than 250. On the other hand, the distribution of  𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 values for irrigated and 

non-irrigated plots in both 2018 (Figure 7c) and 2017 (Figure 7d) have less separability than 

that present in 2020 and 2019. In 2017 and 2018, less number of irrigation events are detected 

over irrigated plots. Thus, the 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 at irrigated plots did not reach high values as that 

reaches in 2019 and 2020 and therefore the histogram of the irrigated plots is closer to that of 

the non-irrigated plots. For example, in 2017, Figure 7d shows that 34% of the non-irrigated 

plots have a 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 value less than 50 and 73% of the non-irrigated plots have a 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 

value less than 100. However, 48% of the irrigated plots have a 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 value less than 100 

and 52% of the irrigated plots have a 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 value between 100 and 200. Moreover, the 

irrigated plots in 2017 have maximum 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 of 200 whereas the maximum 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤value 

of irrigated plots in 2019 and 2020 is between 400 and 450. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 7: Distribution of the cumulative irrigation metric "𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤" for in situ irrigated (blue bars) 

and non-irrigated (red bars) plots for (a) 2020, (b) 2019, (c) 2018 and (d) 2017. The overlap between 

irrigated and non-irrigated classes appears with dark red color. The 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 is unitless. 

4.3 S2IM selected training data 

Table 2 presents the number of the training samples of irrigated and non-irrigated plots 

selected using the proposed metrics for each year. The total RPG represent the total number of 

investigated summer crop plots in the study area. 

Table 2. Number of the selected irrigated and non-irrigated training samples for each year 

Table 2: Number of the selected irrigated and non-irrigated training samples for each year 

Year Non-Irrigated Plots 
Irrigated 

Plots 

Total RPG  

Plots 

2020 1486 2209 19938 

2019 1033 614 15958 

2018 1441 1176 14161 

2017 852 289 23599 

Total 4812 4288 73656 
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Figure 8 shows the NDVI temporal profiles of the selected irrigated and non-irrigated 

training data (Table 2) and the in situ data for each year. The blue dashed line represents the 

temporal profile of the average NDVI of all the selected irrigated plots surrounded by the 

standard deviation (shaded blue) while the black line represents the temporal NDVI profile of 

the in situ irrigated plots. The red dashed line shows the temporal profile of the average NDVI 

for the selected non-irrigated plots with the red shading of the standard deviation value 

compared to the in situ NDVI temporal profile in grey line.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 8: Comparison of average NDVI temporal profiles between selected training plots and in situ 

plots for (a) 2020, (b) 2019, (c) 2018 and (d) 2017. Red dashed line represents the selected non-irrigated 

plots while grey line represents the in situ non-irrigated plots. Blue dashed line represents the selected 

irrigated plots while the black line represents the in situ irrigated plots. Shaded regions represent the 

standard deviation of the average NDVI for selected samples for both irrigated (blue) and non-irrigated 

(red). Number of in situ plots is referred to Table 1 whereas the number of selected plots is referred to 

Table 2 for the irrigated and non-irrigated classes each year. 

Figures 8a, 8b, 8c and 8d of the four years show that the selected irrigated plots have the 

same behavior of the NDVI as the in situ irrigated plots. The NDVI starts to increase between 

April and May with approximately the same increasing gradient for both in situ and selected 
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irrigated plots. The NDVI in both datasets (selected and in situ) then reach a maximum high 

NDVI value (approximately 0.85) between July and August. Similarly, the selected non-

irrigated plots show the same NDVI pattern as the in situ non-irrigated plots for the years 2020, 

2019 and 2018. The NDVI values increase between April and May to reach a maximum value 

of approximately 0.6 in July and August. Only in 2017 (Figure 8d), the NDVI temporal profile 

of the in situ non-irrigated plots looks far from the selected non-irrigated plots. In fact, in 2017, 

both irrigated and non-irrigated classes of the terrain in situ data show similar temporal profile 

with only small differences. In general, except for 2017, the selection criteria of by the S2IM 

produced a training dataset of irrigated and non-irrigated plots that are nearly similar in terms 

of NDVI profile to the dataset of irrigated and non-irrigated plots collected through a terrain 

campaign. 

4.4 Random Forests classification results 

In this section, we present the results obtained by the S2IM for each RF classifier built at 

each year using the selected training data of our proposed methodology. Moreover, for each 

year, we compare the obtained S2IM results with RF 5-folds cross validation developed using 

the in situ terrain data (RF in situ). Table 3 summarizes the accuracy metrics obtained when 

applying the RF classifier, trained with selected training data of each year, on the in situ 

validation dataset of the same year. 

The validation of the RF classifier built from selected training data in 2020 generally shows 

very good accuracy (Table 3). The overall accuracy (OA) obtained using the S2IM reaches 

84.3% with a similar F_score value (84.1%). The irrigated class seems to have higher accuracy 

(86.4%) than the non-irrigated class (81.3%). On the other hand, the RF 5-folds cross validation 

(RF in situ) shows slightly higher accuracy values than the RF S2IM for the four accuracy 

metrics (Table 3). In terms of OA, F_score, and irrigated class F_score (F_score_irr) the 5-folds 

cross validation is approximately 5% higher than the proposed S2IM. Higher difference of 7% 

between the 5-folds cross validation and the S2IM is observed for the non-irrigated class. 

In 2019, the results show that an optimum accuracy is obtained for the irrigation mapping 

(Table 3). Indeed, the validation of the S2IM with in situ data shows that the four accuracy 

metrics attain high values (between 92.5% and 93%). In addition, the RF 5-folds cross 

validation built directly from in situ data shows approximately the same accuracy values as that 

obtained using the S2IM for the four accuracy metrics. 
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Using the selected training dataset in the S2IM, an overall accuracy of 81.8% is obtained for 

the year 2018 with a weighted F_score of 82.2% (Table 3). While the irrigated class show good 

accuracy (F_score_irr = 86.8%), the non-irrigated class shows lower accuracy than the irrigated 

class (70.0%). However, in the 5-folds cross validation using in situ data, similar results are 

obtained. The F_score_nirr of the non-irrigated class (73.6%) is lower than that of the irrigated 

class (92.0%) while the overall accuracy reaches 88% (6.2% more than that obtained with 

the S2IM). In the RF 5-folds cross validation, the weighted F_score (86.9%) is also slightly 

higher than that obtained using the S2IM (82.2%). 

When validating the S2IM using in situ data in 2017, an overall accuracy of 72.8% is 

obtained for irrigation mapping with an F_score value of 74.0% (Table 3). However, the 

accuracy between the two classes is different. While the irrigated class shows good accuracy 

(F_score 78.1%), the non-irrigated class show a moderate accuracy reaching 62% only. This 

trend is also present in the RF 5-folds cross validation where the irrigated class attains an 

accuracy of 85.7% greater than that of the non-irrigated class (53.7%). In general, the RF 5-

folds cross validation has marginally higher accuracy than the proposed S2IM. Although, the 

overall accuracy of the RF 5-folds cross validation (78.3%) is slightly higher than that of 

the S2IM, the S2IM gives higher accuracy for the non-irrigated class (53.7% vs 62%). 

Table 3: Accuracy metrics of RF classifications obtained using the proposed S2IM methodology and 

the in situ 5-folds cross validation for the four years 

Year Method OA F_score F_score_irr F_score_nirr 

2020 
RF S2IM 84.3% 84.1% 86.4% 81.3% 

RF in situ 89.0% 87.5% 90.2% 88.1% 

2019 
RF S2IM 93.0% 92.8% 93.0% 92.5% 

RF in situ 91.3% 91.3% 91.2% 91.3% 

2018 
RF S2IM 81.8% 82.2% 86.8% 70.0% 

RF in situ  88.0% 86.9% 92.0% 73.6% 

2017 
RF S2IM 72.8% 74.0% 78.1% 62.0% 

RF in situ  78.3% 76.5% 85.7% 53.7% 

4.5 Method Generalization  

The effectiveness of the S2IM mainly resides in the ability of generating a training dataset 

each year. The training data generation helps obtaining an irrigation map each year even with 

the absence of terrain campaigns for in situ data collection. On the other hand, it is known that 

using machine-learning algorithms such as the RF, the transfer of the model from one year to 

another remains difficult due to the variable response obtained using SAR and optical data 

between different years. However, to explore the difficulty of transferring the RF model from 
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one year to another, we conducted an experiment to test the ability to transfer the RF classifier 

for mapping irrigated areas from one year to the other years. In this experiment, we built a RF 

model at each year using its own in situ data with S1 and optical data, and we applied it on the 

three other years to obtain the classification accuracies. For example, a model was built using 

in situ data of 2017 (considered for training) and applied over the in situ data of 2018, 2019, 

and 2020 (considered for validation). Table 4 summarizes the weighted F_score obtained when 

applying an in situ built RF model of one year on the other years. Among different scenarios of 

training and validation for the four years, the maximum accuracy of the transfer does not exceed 

68.6%. All the models trained on one year and applied on the three other years present low 

accuracy for mapping irrigated areas. Indeed, the F_score value ranges between 51.5% and 

68.6% only. The results thus confirm the difficulty of mapping irrigated areas using only one-

year in situ data and applying over several years. Therefore, as the irrigation mapping using 

spatiotemporal machine learning transfer is not yet achieved with high accuracy, the need of a 

training dataset for each year remains important. However, since the terrain campaigns are still 

time and resource consuming, the automatic reference data generation of the S2IM offers a 

powerful tool to achieve irrigation mapping at very good accuracy without the need of yearly 

terrain campaign. 

Table 4: Accuracy metrics derived from training a RF classifier at a year and applying on the other 

years. 

 Training 

Validation 

 2017 2018 2019 2020 

2017  61.3% 65.1% 65.8% 

2018 68.6%  54.2% 51.5% 

2019 67.1% 53.4%  67.4% 

2020 62.2% 61.7% 60.9%  

4.6 Thresholds Sensitivity Analysis 

For the operational use of the S2IM method, it is important to discuss the threshold values 

of the irrigation metrics fixed to select training datasets (irrigated and non-irrigated classes). In 

order to show the flexibility of the thresholds considered, we conducted a sensitivity analysis 

to test the effect of changing the threshold values of the 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 metric on the accuracy of 

the classification. For this experiment, we chose two years, one representing a humid year 

(2017) and the other representing a dry year (2019). The selection of the training dataset (step 

1 of Figure 3) was re-performed using different threshold values for 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 for both irrigated 

and non-irrigated classes. In fact, instead of considering 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 ≤ 25 for non-irrigated class 
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and 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 ≥ 250 for irrigated class we considered new values in three different tests (Table 

5). In the first test, a threshold less than or equal to 50 is considered for the 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 value of 

non-irrigated class and greater than or equal to 225 for the irrigated class. In the second test, we 

considered a value of 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 ≤ 75 for the non-irrigated class and 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 ≥ 200 for the 

irrigated class. Finally, we considered the threshold values 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 ≤ 100 and 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 ≥

175 for non-irrigated and irrigated classes respectively. Table 5 presents the weighted F_score 

obtained for both 2017 and 2019 when applying the S2IM in the three tested thresholds 

compared with the initial thresholds (≤25 and ≥250). For the dry year 2019, the F_score value 

remains nearly constant with the change of the threshold values. The F_score decreased only 

1% when the threshold values changes to 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 ≤ 100 for non-irrigated and 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 ≥

175 for the irrigated class. In contrast, the F_score of 2017 decreases by 10% as the threshold 

values of the two classes becomes closer (≤100 and ≥175 for non-irrigated and irrigated classes 

respectively). However, for the threshold values ≤50 and ≥225, for non-irrigated and irrigated 

class respectively, both years showed the same accuracy as the initial thresholds considered in 

this study. 

Table 5: Variation of obtained weighted F_score as a function of the threshold values of 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 for 

2017 and 2019. 

Threshold Test 
Non-Irrigated 

Threshold ≤ 

Irrigated  

Threshold ≥ 

F_score  

2019 

F_score  

2017 

Initial 25 250 0.93 0.74 

Test 1 50 225 0.93 0.74 

Test 2 75 200 0.92 0.66 

Test 3 100 175 0.92 0.66 

 

The results could be analyzed using the histograms of the distribution of 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 for in 

situ data presented in Figure 7 of Section 4.2.2. For the dry year of 2019 (Figure 7b), the 

distribution of the 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 for the in situ irrigated class is distinguished from that of the non-

irrigated class where the separability between both classes is highly present using 

the 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤. This distribution could be the same for the RPG data when selecting the training 

dataset. For this reason, when narrowing the difference between the irrigated and non-irrigated 

threshold values from (≤25, ≥250) to (≤100, ≥175) both classes remains separable and distinct 

and thus the classification accuracy remained constant. However, for a humid year as 2017, the 

𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 distributions of the in situ irrigated and non-irrigated classes are closer to each other 

than 2019 (Figure 7d). Thus narrowing the threshold window from (≤25, ≥250) to (≤100, 

≥175) increases the ambiguity between the two classes. When using the RPG data, the 
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consideration of the thresholds (≤100, ≥175) most probably reduced the separability of the two 

classes in the selected training dataset (as shown for the in situ). As a result, the classification 

accuracy decreases significantly. 

5. Discussion 

5.1 Classification accuracies and rainfall data 

In order to understand the variable performance of the irrigation mapping classifiers 

between the four studied years it is important to discuss the limitations that can affect the 

distinction between irrigated and non-irrigated plots. Among several limitation in both radar 

and optical data for irrigation mapping, the most important factor that can affect the irrigation 

classification is the amount of rainfall received during the growth cycle of the crop. In fact, 

several studies have reported that irrigation classification in humid areas is more difficult than 

that in semi-arid and arid regions due to abundant rainfall events (Bazzi et al., 2020b; Pageot et 

al., 2020). Therefore, we analyzed the performance of the proposed S2IM method for each year 

as a function of the cumulative rainfall data received each year. Figure 9 shows the 

accumulation of the daily precipitation record from 01 May (considered as starting point for the 

cumulative calculation) until 01 October for the four years derived from the IMERG daily 

rainfall maps presented in Section 2.6 

 
Figure 9: Daily cumulative rainfall for the period between May and October for 2020 (red), 2019 

(green), 2018 (orange) and 2017 (blue) over the study site. 

Between 01 May and 01 June, the study area received a cumulative rainfall of 66, 92, 50 

and 56 mm in 2017, 2018, 2019, and 2020 respectively. In 2020, the cumulative rainfall from 
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May to mid-June reached 100 mm and then remains stable until the mid-August (approximately 

2 months with no registered rainfall). In 2019, no rainfall was registered in the summer season 

for approximately 3 months between mid-June and late September where the cumulative 

rainfall remained stable at 100 mm during this period. On the other hand, in 2018, an important 

rainfall was registered at the beginning of June, causing the cumulative rainfall to reach 150 

mm during the first two weeks of June 2018. From mid-June until the beginning of October, 

the study area received 60 mm of rainfall distributed over the summer season to reach a 

cumulative rainfall of 210 mm in the end of September. In 2017, rainfall events occurred during 

the whole summer season. After a stable cumulative rainfall in June (100 mm) for 2017, 

successive rainfall events occurred between July and August, which increased the cumulative 

rainfall to 150 mm by the beginning of August. In August, important rainfall events occurred 

causing an increase in the cumulative rainfall between the first week of August until the 

beginning of October. In August and September 2017, the area received a cumulative rainfall 

of 158 mm. Thus in 2017, a cumulative rainfall of 320 mm was registered for the period between 

May and October 2017 with continuous rainfall events during the whole summer season. 

Finally, we conclude that both 2019 and 2020 were the most dry years (2019 the driest) with a 

cumulative rainfall during the irrigation period (summer season) reaching 150 and 180 mm 

respectively. The year 2018 had moderate cumulative rainfall of 210 mm but with very 

important rainfall event occurring with the beginning of the crop cycle (end of May and 

beginning of June 2018). The most humid year was 2017 with continuous rainfall events during 

the whole irrigation period and the highest cumulative rainfall of 321 mm. 

Concerning the irrigated/non-irrigated classification accuracy, we notice that the years 2019 

and 2020 attain the highest overall accuracies of 93.0% and 84.3% respectively among the four 

years accompanied with the least amount of cumulative rainfall (150 and 180 mm respectively). 

In 2018, the overall accuracy reaches 81.8% with moderate amount of cumulative rainfall (210 

mm). However, the discrimination between the irrigated and non-irrigated class is less accurate 

in 2018 than that of 2019 and 2020. In fact, the F_score_nirr (F_score of non-irrigated class) 

reaches 70% for the year 2018 compared to 92.5% and 81.3% for the years 2019 and 2020 

respectively. This means that the discrimination of non-irrigated plots from irrigated plots is 

harder in 2018 than that in 2019 and 2020 due to higher rainfall amounts received during the 

summer season. In 2017, the overall accuracy is the lowest among the four years whereas the 

cumulative rainfall is the highest. With 320 mm of rainfall during the irrigation period of 2017, 

the overall accuracy reached 72.8% only, which is the lowest accuracy compared to the other 
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three years. Moreover, the F_score_nirr value attains in 2017 its lowest value of 62.0% among 

the four years. This indicates that in a humid year (2017) with abundant and continuous rainfall 

events during the summer crop-growing season, which corresponds to the irrigation season, the 

discrimination between irrigated and rain-fed plots is more complicated. Therefore, when less 

rainfall events and cumulative rainfall are registered during the irrigation period, the 

classification accuracy increases and the discrimination of irrigated and non-irrigated plots 

becomes easier. 

The effect of rainfall on discriminating irrigated and non-irrigated plots appears on both 

radar and optical data. Using optical data, frequent rainfall events expose a similar vegetation 

index profile for both irrigated and non-irrigated plots. This is mainly due to the fact that with 

abundant rainfall, the non-irrigated plots are also benefiting from a sufficient amount of water 

capable of giving a well-developed canopy cover. This similarity in the NDVI between irrigated 

and non-irrigated plots due to high frequency of rainfall events is clearly visible in the in situ 

data for the year 2017. In Figure 6d of Section 4.2.1, the distribution of the maximum NDVI 

values (𝑚𝑎𝑥𝑁𝐷𝑉𝐼) of irrigated and rain fed plots shows that both classes from in situ have nearly 

the same distribution with a similar average value of 0.81 and 0.77 respectively. On the other 

hand, in both 2019 and 2020 with the least rainfall amounts, the distribution of the 𝑚𝑎𝑥𝑁𝐷𝑉𝐼 

value showed that the separability between the irrigated and non-irrigated class of in situ data 

is high. In Figure 8d (Section 4.3), the NDVI temporal profile of the non-irrigated class (in situ) 

showed same behavior as that of the irrigated profile, which indicates that both classes had 

similar vegetation development. Therefore, more difficulty to separate both classes is present 

in 2017. In contrast, in the dry years (2019 and 2020) the temporal profile of the NDVI for non-

irrigated plots was easily distinguished from the NDVI temporal profile of irrigated plots (in 

situ data). This indicates that the addition of water for irrigated plot in dry year induces a 

significant difference in the NDVI temporal profile when compared to non-irrigated plot. 

Using radar data, frequent rainfall events can affect the detection of irrigated plots. In fact, 

if a rainfall event and an irrigation event occurred between two consecutive S1 images, the 

irrigation event will be difficult to detect. This is mainly due to the incapability to distinguish 

whether the increase of soil moisture is due to irrigation or rainfall since both have the same 

effect on the SSM. Therefore, with frequent rainfall events, the capability to detect irrigation 

events decreases. This fact has been demonstrated in Bazzi et al. (2020c) where they reported 

that frequent rainfall events in the spring season limited the detection of irrigation events over 

grassland plots. In Figure 7c and Figure 7d (Section 4.2.2), the histogram of the distribution of 
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the 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 metric for 2017 and 2018 using the in situ data showed that both irrigated and 

non-irrigated plots have close distribution. This is due to the fact that over the irrigated plots in 

a humid season with frequent rainfall events, a limited number of irrigation events could be 

detected and thus the 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 metric will not attain high values due to low numbers of 

detected irrigation events. In contrast, years 2019 and 2020 showed higher separability in the 

in situ data between irrigated and non-irrigated plots using the 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 metric. In dry 

conditions with low number of rainfall events, the irrigation frequency at the plot increases and 

the capability to detect these irrigation events also increases with the absence of rainfall. For 

this reason, most of the irrigated plots in 2019 and 2020 encountered high 𝑐𝑢𝑚𝑢𝑙𝑖𝑝𝑤 values, 

which were separable from the non-irrigated plots. 

5.2 Limitations of 𝑺𝟐𝑰𝑴 

5.2.1 Threshold values and reference data selection 

In this study, an innovative approach is proposed to map irrigated areas at plot scale (S2IM). 

To overcome the limitation of terrain data availability, the power of the proposed method 

resides in its ability to generate automatically its own reference data. The generated reference 

data are then used in a RF classifier to map irrigated areas at plot scale. However, the selection 

of the training reference data is based on two metrics (SAR and optical) with threshold values 

to deem whether a plot is irrigated or not. The first metric is related to the number of detected 

irrigation events computed from the newly derived IEDM. However, the irrigation detection 

using IEDM presents some limitations. The IEDM is based on the detection of soil moisture 

change using the S1 C-band SAR data. Nevertheless, the detection of soil moisture change 

(therefore irrigation) using the S1 C-band SAR data could be limited to two main factors. First, 

the time lag between the irrigation time and the S1 acquisition time plays an important role in 

irrigation detection. When the S1 acquisition is acquired long time after the irrigation event (3 

to 4 days), the detection of the irrigation event becomes difficult. This is mainly due to the 

evaporation (especially in summer), which causes soil moisture values to decrease 3 or 4 days 

after irrigation. This limitation has been discussed in both (Hajj et al., 2014) and Bazzi et al. 

(2020c). In the study of Hajj et al. (2014), they showed that using the X-band SAR data, a 

maximum of 3 days old irrigation could be detected. In the assessment of the IEDM by Bazzi 

et al. (2020c), they showed that for low vegetation cover (NDVI < 0.7), the irrigation event 

could be detected until two to three days after the irrigation event using S1 C-band data. For 
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NDVI > 0.7, they showed that irrigation event could be detected if it occurs on the same day of 

the S1 acquisition. Therefore, the time interval between the S1 acquisition time and the 

irrigation time can constraint the detection of irrigation events.  

The second important factor that limits the detection of irrigation events by C-band SAR 

data is the penetration of the C-band SAR signal in developed vegetation cover. When the 

vegetation cover is well developed (NDVI > 0.7), the soil contribution to the backscattered SAR 

signal in C-band decreases. This limitation has been demonstrated by several studies (Bazzi et 

al., 2019a, 2020c; El Hajj et al., 2017, 2018b; Joseph et al., 2010; Nasrallah et al., 2019). In a 

study performed by El Hajj et al. (2018b), they compared between C and L bands penetration 

over wheat and maize. They showed that the C-band in VV polarization is able to penetrate the 

maize canopy even when the canopy is well developed (NDVI > 0.7) due to high-order 

scattering along the soil-vegetation pathway that contains a soil contribution. (Joseph et al., 

2010) also showed that surface soil moisture in maize plot could still contribute to the C-band 

SAR backscattering signal even at maximum biomass stage. On the other hand, El Hajj et al. 

(2018b) showed that for wheat crops, the sensitivity of the C-band SAR signal to soil moisture 

estimations is negligible for NDVI > 0.7. For grassland, Bazzi et al. (Bazzi et al., 2020c) showed 

that for some grass types, the high vegetation canopy (NDVI > 0.7) attenuates the SAR 

backscattering signal (no soil contribution) and therefore makes the detection of the irrigation 

event difficult. Thus, the well-developed vegetation cover reduces the opportunity of detecting 

part of the irrigation events on the plot. This may lead to less number of detected irrigation 

events on the plot. Nevertheless, for less dense vegetation cover, the radar signal in C-band has 

the necessary penetration to detect soil moisture change. Thus, the irrigation events occurring 

from the sowing date until the stage before the vegetation is very well developed, could still be 

detected using the C-band SAR signal due to the existence of soil contribution in the 

backscattered signal. 

Nowadays, the S1 satellite in C-band is the only operational radar satellite providing free 

and continuous data acquisitions at high spatial and temporal resolutions. It is well known that 

L-band SAR data can penetrate more the vegetation canopy (El Hajj et al., 2018b), but the 

current L-band satellites such as ALOS-2 does not provide continuous (high revisit time) and 

free acquisitions. The arrival of new L-band SAR satellites (some are planned in 2022) could 

help apply the IEDM using L-band data and acquire accurate detection of irrigation events with 

less uncertainty caused by the vegetation cover. 
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The second metric used for reference data generation is based on the maximum NDVI value 

during the crop cycle. For this metric, two thresholds were considered. The first considers that 

reference non-irrigated plots should not attain a maximum NDVI more than 0.7. The second 

states that reference irrigated plots must have a maximum NDVI greater than 0.8. The 

thresholds on the 𝑚𝑎𝑥𝑁𝐷𝑉𝐼 metric were derived through the analysis of this metric using in situ 

data and supported by previous studies using the 𝑚𝑎𝑥𝑁𝐷𝑉𝐼 for discriminating between irrigated 

and rain-fed crops. It is important to note that the criterion on NDVI thresholds is not exclusive 

and the thresholds allow only the selection of irrigated/non-irrigated plots. In fact, the RF can 

later detect irrigated plots with NDVI < 0.8 if the radar signal shows significant increases in 𝜎𝑝
0 

identified by the IDEM as potential irrigation events.  

However, for other terrains having irrigated plots corresponding to NDVI lower than 0.6 

(vegetables plots for example), a small number of irrigated plots may not be detected by the RF 

as irrigated while the IEDM may show many irrigation events. For this reason, once the 

classification is completed, a filter could be applied on the non-irrigated plots, which consists 

in transforming a non-irrigated plot into an irrigated plot if the IEDM detects many irrigation 

events with high certainty. On our database in Orlèans, the improvement of the mapping 

accuracy after applying this filter is not more than 1%. This improvement could be higher in 

another territory having irrigated crop types with low NDVI values (0.5-0.7) 

For some other crop types, the 𝑚𝑎𝑥𝑁𝐷𝑉𝐼 of both irrigated and non-irrigated plots could be 

different from the proposed thresholds which may lead to uncertain accuracy. Generally, a 

priori information about the crop type in the studied area could help adjust the threshold values 

of the 𝑚𝑎𝑥𝑁𝐷𝑉𝐼 metric. The addition of crop type map could help better adjust the threshold 

values for each crop class and help distinguish irrigation/rain-fed for each crop class. This 

threshold value adjustment could be done to enhance the selection of the training data and thus 

ameliorate the classification accuracy. The crop type map could be either provided by local 

authorities or obtained by classifying crop types using S2 and/or S1 data. Nonetheless, crop 

type maps are not always available. In this case, the proposed general threshold that accounts 

to the most common summer crops could serve as general thresholds for reference data 

selection. 



CHAPTER IV: TOWARDS OPERATIONAL MAPPING OF IRRIGATED AREAS 

 

253 

 

5.2.2 Irrigation mapping in humid and dry areas 

Over our study site, four different years were examined. One of the years (2017) was 

characterized by very humid summer while another (2019) was characterized by very dry 

summer. 

As shown in the results, using either our approach (the S2IM) or a RF classifier directly 

performed using in situ data; the irrigation mapping in humid conditions is less accurate than 

that in dry conditions. Using either in situ RF or the S2IM, the irrigation classification accuracy 

in 2017 was between 73% and 78%. The decrease in the classifier performance is mainly due 

to the minimized difference between irrigated and non-irrigated plots in both SAR and optical 

(NDVI) data for humid conditions. In fact, this is considered as one of the limitations for using 

remote sensing data (nowadays S1 and S2 data) in irrigation mapping in humid areas. 

Regardless of the proposed methodology, when abundant rainfall events occur during the 

irrigation period, the differences in NDVI between irrigated and non-irrigated cropland 

becomes negligible. Adequate moisture from precipitation available to non-irrigated crops can 

increase the NDVI value, potentially narrowing the difference in NDVI between irrigated and 

non-irrigated crops. This will make the separation of irrigated and non-irrigated crops difficult. 

Using SAR data, abundant rainfall events decreases the chance of detecting irrigation events. 

When irrigation and rainfall occurs between the same consecutive SAR acquisitions, it is 

difficult to distinguish between irrigation and rainfall. However, the results show acceptable 

accuracy in 2017 for irrigation mapping.  

Several studies mapping irrigated areas have reported the same common limitation in humid 

conditions (Bousbih et al., 2018; Brown and Pervez, 2014; Demarez et al., 2019; Pageot et al., 

2020). Recently, Pageot et al. (Pageot et al., 2020) tried to map irrigated summer crops in a 

humid area in southwestern France (Adour Amont watershed). Despite of using climatic data 

(precipitation) in addition to S1 and S2 data in the RF classifier, the overall accuracy for 

irrigation mapping did not exceed 78%. They showed that the difference between the vegetation 

indices NDVI and NDWI (Normalized Difference Water Index) was narrow due to frequent 

rainfall events occurring during the growing season. This is the same case as our study site in 

the year 2017 were the region received 320 mm of rainfall during the irrigation period. 

Finally, mapping irrigated areas is more important in dry areas, which suffer from water 

scarcity and altering rainfall amounts. In humid climates, irrigation is a supplementary water 

applied usually to meet the additional crop water demand especially for crops that may require 
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water more than that offered with natural precipitation. In arid and semi-arid climates, 

continuous irrigation is usually required to assure agricultural production (Ozdogan et al., 

2010). 

6. Conclusion 

In this study, an operational methodology for mapping irrigated areas at plot scale (S2IM) 

has been proposed. To address the main issue related to the dependency of supervised 

classification models on in situ terrain campaigns for irrigation mapping, the methodology 

presented in this study is capable of automatically generating reference dataset of irrigated and 

non-irrigated plots to be used in a supervised classification model. The reference data selection 

was based on two metrics derived from S1 and S2 temporal series. The RF classifier was then 

used to map irrigated areas using the selected reference dataset, S1 and S2 data. The method 

was applied on a study site located in northcentral France for four years between 2017 and 

2020.  

The proposed methodology “S2IM” delivered reasonable performance with overall accuracy 

between 93.0% and 72.8% depending on the climatic conditions. Dry years with slight rainfall 

events in the irrigation period had significant separability between both classes with a mapping 

accuracy reaching 93%. Humid years with frequent rainfall in summer irrigation period had 

low separability between both classes in SAR and NDVI data revealing moderate accuracy in 

irrigation mapping. The comparison of the S2IM with traditional RF developed using in situ 

terrain data revealed that the proposed S2IM performs well with accuracy nearly similar to that 

obtained using in situ RF. However, generating yearly basis reference data using the S2IM 

showed widely better classification results than using one in situ based RF model built on a 

year and applied on others.  

With the absence of terrain data to perform irrigated area maps, the strength of the S2IM is 

the ability of generating yearly reference data. Thus, the proposed mapping approach is 

temporally transferable to other years, which can insure continuous monitoring of irrigated 

areas even in the absence of terrain data. The method could be also spatially transferred to other 

areas sharing similar climate, cropping landscapes and crop management. Areas with different 

climate and cropping land cover may only require some adaptation of the reference data 

selection thresholds before further application. 
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CHAPTER V: GENERAL CONCLUSIONS 

AND PERSPECTIVES 

1. Research synthesis 

Accurate information on the spatial extent of irrigated areas is fundamental in several 

aspects of water and agricultural management. In this thesis, two complementary objectives, 

including irrigation mapping and irrigation events detection using radar and optical remote 

sensing data, were investigated. Nowadays, Sentinel-1 satellite is the only operational SAR 

satellite that provides continuous acquisitions at six days revisit time and 10 m spatial resolution 

in C-band. Sentinel-2 satellite also provides exceptional revisit time over Europe (5 days) and 

10 m spatial resolution (for some wavelengths). The temporal resolution of both S1 and S2 

satellites allows obtaining temporal series information with suitable temporal interval (less than 

a week) permitting accurate spatio-temporal follow of the agricultural fields during the season. 

Concerning the thesis problematic presented at the beginning of this manuscript, the 

performed work replied to all the posed questions. Primary, the thesis studied the potential of 

Sentinel-1 radar data and Sentinel-2 optical data combined with the S2MP soil moisture 

estimation (at plot scale) for mapping irrigated areas. Before integrating the S2MP product into 

irrigation mapping, it was first validated across in situ SSM estimations, and compared to other 

soil moisture product (C-SSM over 1 km x 1 km) and rainfall data (GPM). The results showed 

that the S2MP provides good SSM estimations, highly correlated with rainfall events. To map 

irrigated areas at plot scale, several techniques were tested, including supervised classification 

models, transfer-learning approaches, and semi-supervised classification models. First, the 

results showed that the use of Sentinel-1, Sentinel-2, or coupling Sentinel-1 and Sentinel-2 data 

permits accurate mapping of irrigated plots mainly using supervised classification models. The 

study conducted over the semi-arid region of Catalonia showed significant accuracy for 

mapping irrigated area using either classical machine learning models (such as the random 

forest – 92.3%) or deep learning models (such as the CNN – 94.1%) with S1 and/or S2 data. 

However, it was proved through literature that irrigation mapping models at regional and global 

scales using remote sensing has not been entirely operational. Models that work in one place 

and time are not necessarily transferable to other locations and periods. For this reason, the 

thesis focused on proposing a transfer learning procedure capable of transferring the irrigation 
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model from one region to another. As a result, a transfer-learning framework was implemented 

to transfer the irrigation mapping model from a semi-arid area (Catalonia) to a humid area 

(Adour-Amont watershed). The model built on Catalonia was re-calibrated using some 

reference data in Adour Amont by applying the transfer technique “Distilling before refine”.  

Using the new proposed transfer learning technique, the results demonstrated that a model built 

on a specific area could be transferred to another area in order to map irrigated plots. A 

reasonable accuracy of 83% has been obtained for irrigation mapping using the transfer learning 

technique. On the other hand, applying the Catalonia model in Adour Amont directly without 

any re-calibration produced very low accuracy of 27.5%. With the transfer learning approach, 

this accuracy was widely enhanced to reach 83%. Nevertheless, the transfer technique requires 

some in situ data on the target study site to re-calibrate the model. 

The third objective in this thesis is the detection of irrigation events at the plot scale. In this 

context, the thesis evaluated the potential of using the C-band SAR data (Sentinel-1 data) to 

detect irrigation events at the plot scale.  The Sentinel-1 (S1) data was used conjointly with soil 

moisture estimations from S2MP and optical S2 data to detect the existence or absence of 

irrigation event at each available S1 image. The thesis thus proposed a decision tree algorithm 

(IEDM) capable of detecting the irrigation events at the plot scale. The algorithm mainly 

analyzes the change in SAR backscattering signal between two successive SAR acquisitions. 

The significant increase of the SAR signal at plot scale between two consecutive dates is mainly 

attributed to increase in soil moisture values. Then, using the grid scale SSM values from the 

S2MP and the SAR signal at grid scale, irrigation events are distinguished from rainfall events. 

The results demonstrated that irrigation events could be detected with an accuracy reaching 

75%. Two main limitations were found in the detection of irrigation events using S1 C-band 

SAR data. These limitations include the time lag between the irrigation event and SAR image 

date in addition to the penetration of the C-band SAR data in very well developed vegetation 

cover. Both limitations will be deeply discussed in the following limitation section. 

The most critical obstacle toward the operational mapping of irrigated areas across several 

regions is the reference data availability. Indeed, machine-learning algorithms, including 

classical or advanced approaches, still require training data to obtain good classification results. 

Therefore, any new approach for irrigation mapping should be independent of terrain data in 

order to be operational and applicable in several areas and over different years. In this context, 

the thesis tried to resolve the terrain data availability required to perform irrigation mapping. 
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To get over the availability in situ collected reference data, we proposed an innovative semi-

supervised classification approach for irrigated area mapping capable of generating its reference 

data, which is used next in a machine-learning model. The model is based on the use of the 

IEDM and optical NDVI data to generate reference dataset of irrigated/non-irrigated plots. 

Then, irrigation mapping was performed using the automatically generated reference data in a 

supervised classification (RF) using S1 and S2 time series. The proposed approach has been 

validated over an irrigated basin near Orléans city. The results showed good accuracy in 

irrigation mapping for four different years where the accuracy varied between 72% and 93% 

depending on the climatic conditions of the year. Dry years showed higher classification 

accuracy than humid years. 

The use of remote sensing techniques (mainly here S1 and S2) for irrigation mapping and 

irrigation events detection presents some limitations in producing high accuracy maps and 

event’s detection. In this conclusion, a set of limitations which constraints the use of S1 and S2 

data in irrigation monitoring (mapping and events detection) are highlighted. Then, future 

perspectives are presented. 

2. Limitation 

2.1 Climatic limitation 

Throughout this thesis, a set of limits for irrigation mapping using remote sensing has 

emerged. The first limitation to be discussed is the studied climatic region. Many studies that 

used multi-spectral and multi-temporal remote sensing images for irrigation mapping were 

performed mainly over arid and semi-arid regions (Ambika et al., 2016; Cheema and 

Bastiaanssen, 2010; Dheeravath et al., 2010; Gumma et al., 2011). Over humid areas, mapping 

irrigated areas is more difficult and faces more challenges. The limitation of remote sensing in 

obtaining high precision irrigation mapping in humid area is present on both optical and radar 

data. Using optical data, the main assumption to map irrigated areas is the difference in the 

spectral response (thus vegetation indices) between irrigated and rain-fed areas. Several studies 

have demonstrated that vegetation indices such as the NDVI, GI (Green Index) and LAI (Leaf 

Area Index) are positively correlated with the available soil moisture of the vegetation (Aparicio 

et al., 2000; Wardlow and Egbert, 2008). However, climatology plays an important role in this 

assumption. When the studied area is humid, it encounters several rainfall events during the 

irrigation period. Thus, sufficient soil moisture caused by frequent rainfall makes NDVI values 
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of non-irrigated plots similar to NDVI values of irrigated plots. This change in the NDVI of 

non-irrigated crop can potentially narrow the difference in NDVI between irrigated and non-

irrigated crops. When the difference between the satellite information for irrigated and non-

irrigated plots becomes lesser, it becomes difficult to separate accurately both classes. In 

contrast, low soil moisture from time to time due to less rainfall events will affect the NDVI 

values and widen the difference between NDVI from irrigated and non-irrigated crops making 

them more separable. The narrow and large difference between irrigated and non-irrigated crops 

in humid and dry areas respectively is the same also over other vegetation indices such as the 

NDWI (Normalized Difference Water Index) and the GI. 

In C-band SAR data, the difference in the SAR temporal series between irrigated and non-

irrigated plots also decrease when abundant rainfall events are present in the area because soil 

moisture will be quite frequently similar on irrigated and non-irrigated plots. The high number 

of rainfall events can decrease the number of detectable irrigation events. When both an 

irrigation event and rainfall event occur between two S1 images at time ti and ti-1, it is difficult 

to distinguish between the rainfall and irrigation. 

The limitation of optical and radar remote sensing for irrigation mapping in humid areas has 

been shown in some recent studies. Recently, Pageot et al. (2020) tried to map irrigated summer 

crops in a humid area (Adour Amont watershed). Despite of using climatic data (precipitation) 

in addition to S1 and S2 data, the overall accuracy for irrigation mapping did not exceed 78%. 

They showed that the difference between irrigated and rain-fed crops in the NDVI and NDWI 

was narrow due to frequent rainfall events occurring in 2018 (humid year) during the irrigation 

season. In my thesis, we also encountered this same limitation when applying the proposed 

semi-supervised approach in Orléans. For the humid year with the highest rainfall amounts in 

the summer (320 mm for summer 2017), the overall accuracy for irrigation mapping reached 

72%. On the other hand, the driest year (2019) with less rainfall amounts in the summer season 

showed the best accuracy (93%). Nevertheless, the obtained accuracies even in humid 

conditions are not bad (between 70% and 80%) and could be still used for irrigation water 

management. Indeed, irrigation and water consumption in humid areas is less than that in arid 

and semi-arid areas due to higher temperatures and dries seasons in the latter. In humid climates, 

irrigation often takes place as a supplementary water supply to meet the excess demand of crops 

whose growth cycle may require water more than that offered with natural precipitation. In arid 

and semi-arid climates, continual irrigation is often necessary to assure agricultural production. 
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In this thesis, only spring-summer crops were studied. Thus, it would be interesting to 

validate the proposed models on winter crops (mainly wheat). For winter crops, distinguishing 

between irrigated and rain-fed crops could be also difficult. In some regions across the world, 

deficit irrigation is exceptionally applied for some winter crops (such as wheat in April and 

May). In such cases, the detection of irrigated and rain-fed crops could be difficult first due to 

the abundant rainfall events in winter, second due to the very limited number of irrigation events 

occurring on the plot and third due to the penetration limitation of the C-band signal in very 

well developed vegetation cover (discussed in the following section). Bousbih et al. (2018) tried 

to map irrigated winter wheat using S1 estimated soil moisture and S2 data. They reported a 

poor accuracy for winter wheat irrigation mapping using NDVI (58.1%) and moderate accuracy 

using S1 estimated soil moisture (71.8%). In humid area performing irrigation maps less 

relevant than dry and semi-arid areas since irrigation is limited. Mapping irrigated areas is more 

important in dry areas, which suffer from water scarcity and altering rainfall amounts. In humid 

climates, irrigation is a supplementary water applied usually to meet the additional crop water 

demand especially for crops that may require water more than that offered with natural 

precipitation. In arid and semi-arid climates, continuous irrigation is usually required to assure 

agricultural production. Therefore, the proposed methods could be to mobilize for the dry 

periods of the year which is consistent with the studies carried out in arid or semi-arid zones.  

2.2 S1 C-band SAR limitation for irrigation event detection and irrigation 

mapping 

One of the main concern regarding the use of the C-band SAR signal in irrigation event 

detection is the penetration of the C-band signal in very well developed vegetation cover. Over 

bare soil or soil with low vegetation cover, the emitted C-band SAR signal (wavelength ~ 6 cm) 

will interact without difficulty with the surface layer of the soil (top 5 cm) and thus, the radar 

backscattered signal will be highly correlated to soil moisture. In this case, the detection of 

irrigation events based on the increase in soil moisture values between two dates could be easily 

obtained. When the canopy cover develops, the behavior of SAR signals and its penetration in 

the canopy becomes also dependent on the crop type and canopy growth stage (Ulaby, 1982). 

In fact, in the case of very well developed canopy cover, the emitted SAR signal in C-band may 

not reach the soil layer and thus the soil contribution in the backscattering signal becomes 

negligible. We say here that the S1 backscattering signal is insensitive to the soil moisture 

content and thus cannot provide information about the soil moisture value. In this case, the 
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change in the S1 backscattering signal between two S1 dates could not always represent the 

change in the soil moisture values. As a result, the detection of irrigation events based on the 

change is soil moisture values becomes difficult.  

The penetration constraint of the C-band SAR signal into very well developed vegetation 

cover could also differ according to crop types and phenology stage. For wheat crops as well 

as grassland, the crop growth until an NDVI value of 0.7 (corresponding to approximately an 

LAI of 1.5 m2/m2) does not strongly attenuate the C-band SAR backscattered signal. Thus, 

irrigation events could still be detected. Beyond NDVI of 0.7, the sensitivity of backscattered 

signal becomes negligible to soil moisture content due to very high attenuation by the wheat 

canopy (similarly for some grassland crop types). The extreme canopy attenuation of the S1 

signal in wheat crops and some grass types (coarse hay) corresponds to the heading phenology 

phase. This phenology phase causes the SAR backscattering signal to reach very low values 

mainly due to the very low soil contribution in the backscattering signal (He et al., 2014; 

Nasrallah et al., 2019; Srivastava et al., 2011). In our study performed over the irrigated 

grassland in PACA region (southeast France), we showed that for very well developed canopy 

cover (NDVI > 0.7) the detection of irrigation events was extremely hard during the first crop 

cycle where the canopy was rich in grasses such as coarse hay which are similar in geometric 

structure and type to wheat crops. This was mainly due to the attenuation of the C-band SAR 

signal during the heading phenology phases of grasses (hay).  

For maize crop which is the most dominant irrigated crop in France, the penetration of the 

C-band SAR data into the canopy cover is different from the wheat or grassland. In two studies 

by El Hajj et al. (2018) and (Joseph et al., 2010), they showed that surface soil moisture in 

maize plot could still contribute to the C-band SAR backscattering signal even at maximum 

biomass stage. This soil moisture contribution even in developed maize vegetation cover is 

mainly explained by the significant soil-vegetation scattering pathway that includes soil 

moisture information. Thus, the scattering along the soil-vegetation pathway present in dense 

maize cover allows obtaining SSM estimations (Macelloni et al., 2001). 

In conclusion, the penetration of the C-band SAR signal in developed vegetation cover 

remains the most important limitation for the detection of some irrigation events using S1 

satellite. The irrigation events occurring from the sowing date until the stage before the 

vegetation is very well developed for some crop types, could still be detected using the C-band 

SAR signal due to the existence of soil contribution in the backscattered signal. Thus, the IEDM 
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proposed in this thesis would still be capable of detecting most of the irrigation events for a 

large period of the cropping cycle. Indeed, the S1 satellite working with C-band SAR data is 

the only operational satellite that provides continuous and free access acquisitions at high revisit 

time and high spatial resolution. Hence, the interest today is working exclusively on this radar 

frequency (C-band) while waiting for other satellites that could provide P or L band data with 

high revisit time as well as a high spatial resolution. 

The second concern for using S1 satellite in detecting irrigation events is the revisit of the 

S1 images. The S1 temporal resolution is six days. On the other hand, irrigation is a time 

dynamic activity. Thus, monitoring and detecting irrigation events requires a fine temporal 

follow of the plot using SAR data. When the S1 image is acquired long time after the irrigation 

event, it becomes difficult to detect the change in the SSM values before and after the irrigation. 

This is mainly due to the evaporation of the soil water content especially in summer. Thus, the 

detection of the irrigation events is also constrained by the time lapse between the irrigation 

and the following SAR image. In our work, we showed using the in situ data of the grassland 

plots that irrigation could be detected two to three days after the irrigation event if the vegetation 

cover is low (NDVI < 0.7). If the vegetation is well developed (NDVI > 0.7), the irrigation 

event could be mainly detected if it occurs at the same date as the SAR acquisition.  

In order to overcome this limits, we tried to use all the possible S1 acquisitions from all the 

S1 orbits to increase the chance of detecting an irrigation event. In this case, we obtain 20 

different S1 images in one month from four S1 orbits instead of only five images from only one 

orbit. However, the IEDM was applied to each orbit temporal series separately and thus the 

detection of irrigation events remained at 6 days basis but with several images acquired on 

consecutive dates (4 images in 6 days). Both the incidence angle difference and the diurnal 

effect prevented us from combining the four temporal series together. While the effect of 

different incidence angles could be minimized by normalizing the S1 signal at a reference 

incidence angle, the diurnal effect on the S1 backscattering signal between day and night could 

not be precisely quantified. The diurnal variation is a result of the difference in the vegetation 

water content (VWC) between the morning and the evening. This difference in VWC causes 

high difference in the radar backscattering signal (for some dates higher than 1dB) over 

vegetated plots between the morning and the evening acquisitions. Several studies have 

reported that σ0 in the morning overpass registers higher values than 𝜎0 in the evening overpass 

(Brisco et al., 1990; Van doninck et al., 2012). Therefore, combining a morning acquisition and 
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an evening acquisition to make the time interval less than 6 days can cause uncertain detection 

of irrigation events and lead to various false detections. 

3. Perspectives  

Several research perspectives arise from my thesis work. Some perspectives concern, on 

one hand methodology related perspectives capable of enhancing the proposed approaches and 

thus increasing the output confidence. On the other hand, other perspectives include wider scale 

applications, which would open the way toward real implementation of the proposed 

approaches for agricultural and water management.  

3.1 L-band SAR data for irrigation event detection and irrigation mapping 

In this thesis, the S1 carrying a C-band SAR was used principally for irrigation mapping 

and for detecting irrigation events. The use of S1 was mainly due to the unique continuous 

acquisitions at high spatial and temporal resolution offered in free open access mode. However, 

as explained previously in the limitations, the C-band SAR signal for irrigation mapping could 

encounter some limitations over very well developed vegetation cover in several crop types. 

This is mainly due to the low penetration of the C-band signal in developed vegetation cover. 

For this reason, a SAR signal with higher penetration capabilities is required. In fact, it has been 

demonstrated that the L-band SAR signal (wavelength ~ 24 cm) penetrates the vegetation cover 

well more than the C-band (wavelength ~6 cm) for several crop types (El Hajj et al., 2018b; 

Joseph et al., 2010).The vegetation attenuation in the L-band SAR signal is less than that of the 

C-band (Ulaby, 1982). Therefore, the change in soil moisture values due to irrigation could be 

better detected using L-band in the presence of well-developed canopy cover since the L-band 

(~24 cm) is characterized by a large penetration depth into the crop canopy. As stated in the 

state of art of the introduction, the satellite based soil moisture products such as SMOS and 

SMAP provide SSM estimations using the L-band signal. However, their low spatial resolution 

makes the estimated SSM useless for irrigation mapping at plot scale.  

Studies focusing on the potential of the L-band SAR data from ALOS-2 or PALSAR-2 

satellites for soil moisture estimations are few (Narvekar et al., 2015). This is mainly because 

most of the L-band satellites does not offer free and open access data with high revisit time thus 

making the spatio-temporal monitoring of soil moisture and irrigation difficult. However, even 

though current satellites provide low number of images, the integration of the L-band data with 
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C-band data can partially ameliorate the detection of irrigation events. When the C-band fails 

to detect the irrigation event due to the high canopy attenuation (example for wheat or grassland 

in heading phenology phase), the integration of only some L-band images (one or two images 

in one month) could help detect some of the missing irrigation events by C-band. Since both 

signals are at different frequencies and could not be joined together, the study could be 

performed based on SSM values estimated from C-band compared to SSM values estimated at 

some available L-band images. For example, high L-band SSM estimations in the period of 

very well developed vegetation cover (where C-band fails to detect irrigation) could indicate 

the presence of irrigation event when no rainfall is registered during the same period. 

Several L-band satellites are to be launched soon such as the NISAR NASA-ISRO SAR 

(planned in 2022), the Tandem-L (German Aerospace Center, planned in 2022) and ALOS-4 

(JAXA planned in 2022). Some of these missions (NISAR and Tandem-L) aim providing open 

access images at weekly basis temporal resolution. Therefore, concerning our work, the 

application of the developed IEDM for irrigation detection could be later performed using the 

expected new L-band images. In this case, accurate detection of irrigation events with higher 

confidence could be achieved mainly for well-developed vegetation. Thus, the L-band would 

open the way toward better mapping of irrigated areas because (1) L-band will allow better 

mapping of irrigation events if the vegetation is well developed and (2) the next L-band data 

combined with C-band data will give several radar acquisitions per week, which will allow 

detecting almost all the irrigation events. Thus, instead of using the C-band temporal series only 

in the RF classification, the L-band time series could be used in addition to the C-band time 

series for more accurate mapping. 

3.2 Mapping irrigated fruit trees 

This thesis concentrated on mapping irrigated areas at plot scale mainly for major crops 

(maize, sunflower, sorghum, vegetables, legumes…) and grassland. On the other hand, irrigated 

trees were not investigated. Mapping irrigated trees using satellite imagery is still an unexplored 

subject. Among fruit trees, irrigating vineyards is the most important matter in several regions 

in Europe and especially in the south of Europe. In vineyards, the term irrigation has a negative 

connotation and is often associated with high yields and therefore low quality wines. 

For some time now, irrigating vineyards has become the major political and trade union 

issue in the South of France. Ensuring the profitability and the durability of the vineyard will 
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not be possible without water. Today, the Languedoc-Roussillon region is the main vine 

irrigated region in France with 23,000 hectares of vines that benefit from water, i.e. 10% of the 

region's vineyards. This surface is increasing under the effect of the successive severe droughts. 

Public authorities in France decided to change the legislation that prohibited the irrigation of 

vineyards. They governed vineyard irrigation with many restrictions to guarantee the proper 

vine yields. For example, irrigation of vines is possible between 1 May and 15 August and 

remains prohibited for all vines between 15 August and the harvest. 

Therefore, building approaches capable of detecting irrigation events at vine plots and 

mapping irrigated vineyards is of great importance for public authorities and wine manufacturer 

to insure the high quality of wine. Irrigation mapping for vineyards presents many challenges. 

Notably the use of micro-irrigation and low applied doses in vineyards makes it difficult to 

detect irrigation by the approaches developed for irrigated crops by sprinklers or gravity 

irrigation techniques. Methods developed for soil moisture estimation or irrigation mapping 

(detection) at major crops (cereals and grassland) cannot be directly applied on vineyards 

because of the complexity of vineyard plots (presence of metal and wooden stakes, metal 

wires…). Thus, one of the future perspectives is to develop a method capable of estimating soil 

moisture and another method capable of detecting irrigation events at vine plots. For these 

objectives, two major challenges are to be investigated including the age of vines (young or 

old), presence of metal stakes and wires, inter-rows between trees, irrigation technique (drip 

irrigation, etc.) 

3.3 Irrigation mapping using remote sensing and land surface models 

Recent studies have exploited the joint use of land surface models (LSMs) and satellite soil 

moisture estimations to map irrigated areas. Using LSMs such as the SURFEX (developed by 

Meteo-France), soil moisture values could be simulated using several environmental and 

atmospheric variables without taking into consideration the irrigation. Then, satellite soil 

moisture estimations, which are eventually affected by irrigation, are compared to simulated 

soil moisture values from land surface models. Studies have demonstrated that low correlation 

is observed between soil moisture estimations (by remote sensing) and soil moisture 

simulations (by land surface models) over irrigated areas (Escorihuela and Quintana-Seguí, 

2016) whereas high correlation is observed over non-irrigated surfaces. The low correlation 

between simulated and estimated surface soil moisture over irrigated areas is mainly due to the 

presence of irrigation (not considered in the SSM simulations) which is altering the soil 
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moisture values. Recently, Dari et al. (2021) used this assumption to map irrigated areas at 

coarse spatial resolution using the SMAP, SMOS and S1 satellite soil moisture. However, such 

land surface models are usually applied at coarse spatial resolution (few km2) which makes it 

difficult to use it at plot scale. Thus, as a future perspective, it is of great importance to 

investigate the potential of using crop models at plot scale (such as Aquacrop, Cropsyst, 

Optirrig …) instead of land surface models combined with estimated surface soil moisture from 

the S2MP to map irrigated areas at plot scale. Soil moisture values could be first simulated from 

a crop model using several weather data and hydrological parameters such as the precipitation, 

temperature, evapotranspiration and soil type. Then, the simulated SSM values could be 

compared to S2MP estimated SSM values to map irrigated/non-irrigated plots. 

3.4 Estimating irrigation water amounts 

One of the important future aspect of irrigation mapping is the estimation of the irrigation 

water amounts. It is difficult through only SAR and optical data to estimate the applied water 

amount at each irrigation. Nevertheless, integrating remote sensing derived data into a crop 

model could help estimate the water use. Using the detected irrigation events from the IEDM 

with satellite derived vegetation index such as the LAI, the actual amounts of applied water 

could be estimated. The optimized irrigation crop model developed by INRAE called the 

“Optirrig” (Cheviron et al., 2020) opens the way toward accurate estimation of water amounts 

if coupled with the satellite derived information such as the LAI and the irrigation events from 

the IEDM. 

3.5 Participative GIS platform for irrigation management 

Irrigation products developed in this thesis (irrigation maps and irrigation events) could be 

a beneficial tool to public authorities, decision makers and farmers. Thus, it would be useful to 

create a participatory GIS (Geographic Information System) platform of our irrigation area 

maps as well as of the detected irrigation events in order to share these supports with end users 

and decision makers concerned by the thematic of irrigation.  

Through the GIS platform, the farmer can enrich our irrigation products (irrigation events 

and irrigated areas) by validating whether this or that plot is irrigated or not and confirming the 

detected irrigation events (complete some undetected events or correct some false detections). 

In such way, the database of irrigated/non-irrigated plots and the irrigation events will be 
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adjusted according to farmer’s knowledge in order to ameliorate and refine the proposed 

irrigation detection and mapping models. Such participation from farmers through the GIS 

platform helps us collecting reliable information about the irrigation time and irrigated/rain-fed 

plots without the need to organize costly terrain campaigns by our research organizations. 

The participative GIS platform can help authorities and decision makers understand better 

follow the current situation of irrigation (irrigated surfaces) and plan for the future policies 

concerning the water use for irrigation. For example, stakeholders can initiate a pedagogical 

work designated for farmers to explain whether they need to decrease the irrigation rates based 

on the availability of the water resources in the irrigated basin and on the irrigated surfaces 

derived from our irrigation maps. By visualizing the irrigation events detected on the plots, 

stakeholders can guide farmers to irrigate in a better way suitable to the planted crop since some 

farmers may sometimes irrigate much more than the needs of the plants. Through the 

continuous monitoring of irrigated plots using the GIS platform, authorities could propose a 

bonus/penalty system in order to financially gratify farmers who respect the regulations and 

penalize the farmers who does not follow the recommendations on water use for irrigation 

especially when water resources are deficit. 
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RÉSUMÉ EN FRANÇAIS 

1. Introduction (Chapitre I) 

L'augmentation de la population mondiale et le changement climatique exercent une 

pression croissante sur les ressources naturelles et leur capacité à répondre aux besoins 

alimentaires de la population mondiale. Ce risque patent sur la sécurité alimentaire et la 

disponibilité en ressources naturelles rend indispensable la mise en place d’un suivi des zones 

agricoles à grande échelle, notamment pour atteindre les objectifs de développement durable 

dans le secteur agricole. Actuellement, l'intensification de l'agriculture mondiale, nécessaire 

pour répondre à la demande alimentaire croissante, est principalement basée sur l'augmentation 

de l'utilisation des ressources, en particulier de l'eau. L'irrigation est déjà la principale source 

de consommation d'eau douce à l’échelle mondiale, entraînant une dégradation rapide des 

ressources en eau dans plusieurs régions. Avec le changement climatique, caractérisé par une 

diminution des précipitations et une augmentation des températures, les eaux de surface et les 

eaux souterraines sont soumises à une sur exploitation accrue. Davantage d’informations sur 

l'étendue des zones irriguées et sur la fréquence d'irrigation aidera les agriculteurs à mieux gérer 

l’irrigation pour augmenter son efficience d’utilisation et les décideurs politiques pour définir 

les leviers socio-économiques et techniques pour une mobilisation plus durable des ressources 

hydriques. L'objectif du présent travail de recherche est de i) développer des méthodes de 

cartographie de l'étendue spatiale des zones irriguées, ainsi que ii) de mobiliser la télédétection 

spatiale pour détecter les épisodes d'irrigation à l'échelle de la parcelle. Les données de 

télédétection optique et radar ont été exploitées dans le but de cartographier et de suivre les 

pratiques d'irrigation à l'échelle de la parcelle.  

Pour répondre aux besoins de cartographie et de suivi de l'irrigation à l'aide de données de 

télédétection, cette thèse veut répondre à quatre principales questions. Premièrement, quel est 

le potentiel des données Sentinel-1 (S1) et/ou Sentinel-2 (S2) pour la cartographie des zones 

irriguées à l'échelle de la parcelle agricole ? Deuxièmement, comment pouvons-nous appliquer 

un modèle de classification supervisée développé sur une zone pour cartographier l’irrigation 

d'autres régions ? Troisièmement, pouvons-nous détecter les événements d'irrigation à l'échelle 

de la parcelle en utilisant les données Sentinel-1 et Sentinel-2 en temps quasi réel ? Enfin, 

pouvons-nous construire un modèle opérationnel de cartographie de l'irrigation qui ne nécessite 
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pas de données de terrain in situ et qui soit facilement transférable entre les régions 

géographiques ? 

2. Évaluation de l’estimation d’humidité du sol de produit S2MP (Chapitre 

II) 

2.1 Objectif 

L’humidité du sol (SSM pour Surface Soil Moisture) est un paramètre clé pour la détection 

de l’irrigation car cette dernière provoque de fait une augmentation de cette humidité. 

L'intégration d’informations sur l'humidité du sol obtenues à l'échelle de la parcelle ou d’une 

grille de quelques km2 permet d'améliorer la précision de la cartographie des zones irriguées. 

Récemment, l'unité de recherche TETIS (équipe INRAE) a développé un algorithme pour 

estimer l'humidité du sol (SSM) à l'échelle de la parcelle appelé S2MP (en anglais Sentinel-1/2 

Soil Moisture Product). Afin d'utiliser le S2MP dans la cartographie de l'irrigation, il est 

important d'abord d’évaluer la précision de l’algorithme. Dans cette thèse, l'évaluation du S2MP 

a été réalisée selon trois approches différentes. Tout d'abord, le S2MP a été évalué en utilisant 

des mesures in situ de l'humidité des sols afin de déterminer la précision de l’estimation 

d’humidité du sol par le S2MP. Ensuite, le S2MP a également été comparé au plus récent produit 

d'humidité du sol fournit par Copernicus « Global Land Service »  à l'échelle de 1 km x 1 km 

(C-SSM). Enfin, le S2MP a été évalué en comparant l’humidité estimée aux enregistrements de 

précipitations dérivées des données GPM « Global Precipitation Mission » à l’échelle de grille 

de 10 km x 10 km. L'évaluation du S2MP dans les trois approches a été réalisée sur la région 

Occitanie dans le sud de la France. 

2.2 Matériel et méthodes 

Zone d’étude : Pour l'évaluation du S2MP, le site d'étude examiné est la région Occitanie (sud 

de la France). La région présente une variété de paysages et est principalement couverte de 

zones agricoles au centre et à l'ouest. Dans la partie est, le climat est méditerranéen 

(précipitations annuelles moyennes de 700 mm), tandis que dans la partie ouest, le climat est 

humide et océanique (précipitations annuelles moyennes de 1200 mm). 

Données terrain : Pour comparer les produits d’humidité S2MP et C-SSM avec des données 

terrain, les valeurs d’humidité du sol ont été mesurées pour 23 parcelles de référence (prairie et 
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blé) à chaque date d'acquisition Sentinel-1 (identique aux dates S2MP et C-SSM) dans une zone 

agricole proche de Montpellier (sud-est de la France) pour la période entre janvier 2017 et juin 

2018.  

Algorithme S2MP : Le S2MP fournit des estimations de l’humidité du sol à l'échelle de la 

parcelle. Basé sur le couplage de données S1 et S2 (El Hajj et al., 2017), l’algorithme inverse 

le coefficient de rétrodiffusion radar S1 en utilisant les réseaux de neurones (NN). Pour estimer 

les valeurs de l’humidité du sol, le S2MP utilise le signal Sentinel-1 en polarisation VV (σ0), 

l'angle d'incidence S1 (θ) et la valeur NDVI dérivée des images optiques S2. Le S2MP fournit 

des estimations de l'humidité du sol en unité volumétrique (vol.%). 

Données C-SSM : Copernicus « Global Land Service » fournit des estimations de l'humidité 

du sol à une résolution spatiale de 1 km en utilisant les données S1 (C-SSM). Dans le C-SSM, 

l'humidité du sol est estimée en pourcentage entre 0 % (conditions de sol extrêmement sèches) 

et 100 % (conditions de sol très humides). L'estimation de l'humidité du sol du produit C-SSM 

est convertie en unité volumétrique (vol.%) afin de comparer les estimations du C-SSM avec 

l'humidité du sol mesurée sur le terrain et celles fournies par S2MP (fournies en unité 

volumétrique). 

Données GPM : GPM (Global Precipitation Mission) fournit des mesures de précipitations à 

l'échelle mondiale entre 60°N et 60°S à une résolution spatiale de 0.1° x 0.1° (~10 km x 10 km) 

et une résolution temporelle de 30 minutes. La comparaison entre S2MP et les données 

pluviométriques de la mission GPM a été réalisée sur la durée d’une année hydrologique, entre 

le 1er septembre 2016 et le 31 août 2017. 

Comparaison entre S2MP et C-SSM :La précision des produits S²MP et C-SSM par rapport 

aux données in situ a été déterminée à l'aide du coefficient de corrélation de Pearson (R), la 

différence quadratique moyenne (RMSD), le biais (estimé - mesuré) et la différence quadratique 

moyenne non biaisée (ubRMSD). Sur la région Occitanie, une comparaison a été réalisée entre 

les produits S2MP et C-SSM pour la période du 1er octobre 2016 au 1er octobre 2017. La 

comparaison a été réalisée par les métriques statistiques R, RMSD, biais et ubRMSD. 

Comparaison entre S2MP et GPM :Pour chaque carte S2MP, une carte de précipitations 

cumulées pour les 6 jours précédant la date de la carte S2MP (la revisite de S2MP est de 6 jours) 

a été calculée en cumulant les cartes IMERG (Integrated Multi-satellite Retrievals for GPM) de 

la mission GPM toutes les 30 minutes. Ensuite, chaque carte S2MP a été superposée avec la 

carte pluviométrie cumulative de 6 jours. Une analyse temporelle a été effectuée entre la 
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variation des valeurs d’humidité du sol estimées par le S2MP et les enregistrements des 

précipitations GPM. 

2.3 Résultats et conclusion 

La comparaison entre l'estimation de l'humidité du sol du S2MP et les mesures in situ a 

montré que le S2MP fournit une bonne précision pour l'estimation de l'humidité du sol (RMSD 

= 4,0 vol.%, ubRMSD = 3,9 vol.% et R=0,77). Cependant, le C-SSM est moins précis que le 

S2MP (RMSD = 6,0 vol.%, ubRMSD = 6,0 vol.% et R=0,48). La comparaison entre les deux 

produits sur une année montre une corrélation très élevée entre le S2MP et le C-SSM 

principalement sur les zones agricoles qui cultivent des céréales (valeur R entre 0,5 et 0,9 et 

RMSE entre 4 vol.% et 6 vol.%). Sur les pixels de 1 km x 1 km du produit C-SSM qui 

correspondent aux parcelles agricoles avec des forêts et des vignes, les valeurs du C-SSM ont 

tendance à surestimer les valeurs du S2MP (biais > 5 vol.%). 

La comparaison entre le S2MP et les données pluviométriques GPM a montré une cohérence 

globale entre les valeurs d’estimation d’humidité du sol et les enregistrements de précipitations 

à une résolution spatiale de 10 km. Par exemple, entre deux cartes S2MP consécutives acquises 

le 15 novembre 2016 et le 21 novembre 2016, les valeurs SSM augmentent de plus de 9 vol.% 

à cause des 40 mm de précipitations enregistrées entre les deux dates S2MP. De plus, l'absence 

de précipitations pendant une période de 25 jours entre le 01 avril 2017 et le 25 avril 2017 a fait 

chuter les valeurs d'humidité du sol de 25 vol.% à moins de 15 vol.%. 

Les résultats ont montré que les estimations de l’humidité par S2MP à l’échelle de 10 km x 

10 km était très corrélées aux événements de précipitation. Pour la suite, notre algorithme de 

détection des événements d’irrigation a donc pu utiliser les cartes d’humidité S²MP à l’échelle 

de grille pour distinguer l’augmentation de l’humidité due à une pluie de l’augmentation due à 

une irrigation. La cartographie des surfaces irriguées a été établie sur cette base. 

3. Approche de classification supervisée pour la cartographie des zones 

irriguées à l'aide des données Sentinel-1 et Sentinel-2 (Chapitre III) 

3.1 Objectif 

Dans la deuxième partie de la thèse, nous nous sommes concentrés sur le potentiel des 

données radar Sentinel-1 et des données optique Sentinel-2 pour la cartographie des zones 
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irriguées à l'échelle de la parcelle. Deux objectifs complémentaires ont été poursuivis. Le 

premier objectif est l’étude du potentiel des données S1 et/ou S2 pour la cartographie des zones 

irriguées en utilisant des modèles de classification supervisée tels que la forêts d'arbres 

décisionnels (RF) et les réseaux de neurones convolutifs (CNN). Cette étude a été réalisée pour 

la région de Catalogne, au nord-est de l'Espagne, caractérisée par un climat semi-aride. Le 

deuxième objectif est de proposer une approche capable de transposer le modèle de 

classification supervisée d'une région à une autre région ayant des propriétés climatiques 

différentes. Le modèle développé en Catalogne pour cartographier les parcelles irriguées a ainsi 

été transféré au bassin versant « Adour Amont » au sud-ouest de la France. 

3.2 Matériel et méthodes 

Zones d’étude : Deux sites d'étude ont été retenus pour cartographier les zones irriguées en 

utilisant les données S1/2 et les approches de classification supervisée. Le premier site est la 

région de Catalogne située en nord-est de l'Espagne (climat semi-aride). Une grande base de 

données de parcelles irriguées et non irriguées (~193 000 parcelles) est disponible dans cette 

région grâce aux données SIGPAC (Système d'information géographique pour les parcelles 

agricoles). Le second site est le bassin Adour Amont, situé dans la région Occitanie du sud-

ouest de la France (climat océanique) avec une saison estivale humide présentant généralement 

plusieurs événements pluvieux. Dans le bassin, 300 parcelles non irriguées et 151 parcelles 

irriguées ont été collectées par des campagnes de terrain pour l'année 2017. 

Données de télédétection : Sur la région de Catalogne, 82 images SAR (Synthetic Aperture 

Radar = Radar à synthèse d’ouverture) en bande C (5,405 GHz) acquises par les satellites S1A 

et S1B ont été utilisées pour la période entre septembre 2017 et décembre 2018. Sur le bassin 

Adour Amont, le même nombre d'images (82 images) a été récupéré pour la période entre 

septembre 2016 et décembre 2017. En outre, 17 images S2 sans nuage (niveau 2A) ont été 

utilisé pour chaque site d'étude, couvrant la même période que les images S1. 

Cartographie des zones irriguées en Catalogne : La résolution spatiale de la cartographie 

de l'irrigation est l'échelle de la parcelle. D'abord, les coefficients moyens de rétrodiffusion des 

images S1 (σ°) ont été calculés à l'échelle des parcelles (mis à disposition par SIGPAC 

« Système d'information géographique pour les parcelles agricoles de Catalogne » et à l'échelle 

de la grille (10 km × 10 km). Le signal moyen à l'échelle de la grille est principalement utilisé 

pour discriminer les événements pluvieux des événements d'irrigation. Basé sur les résultats du 
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chapitre 2, nous supposons que si le signal SAR moyen à l’échelle de 10 km × 10 km augmente, 

un événement pluvieux a très probablement eu lieu. Ensuite, l'analyse en composantes 

principales (ACP) et la transformation en ondelettes (WT) ont été appliqué sur les séries 

temporelles S1 à l'échelle de la parcelle et de la grille. En outre, l'ACP a été appliquée sur la 

série temporelle NDVI à l'échelle de la parcelle. Enfin, deux approches de classification, dont 

le classifieur RF et le CNN, ont été considérées. Dans chaque approche, trois scénarios ont été 

testés. Le premier scénario est basé sur l'utilisation des données SAR (S1) uniquement, le 

deuxième scénario considère l'utilisation des données optiques (NDVI) uniquement et le 

troisième scénario inclut l'utilisation combinée des données optiques et SAR. 

Apprentissage par transfert pour la cartographie des zones irriguées dans l'Adour 

Amont : Parmi les différents scénarios testés sur la Catalogne, le CNN construit à partir des 

séries temporelles S1 a fourni la meilleure précision de classification (94 %). Cependant, 

l'application d'exactement le même modèle (construit sur la Catalogne) sur le bassin Adour 

Amont a donné des résultats insatisfaisants (précision globale de 27 %). Le défi est donc de 

trouver comment transposer le modèle de classification supervisée d'une zone géographique 

source (Catalogne) à une zone géographique cible (Adour Amont). Pour cette raison, nous 

avons proposé un cadre d'apprentissage de transfert basé sur un « distilling before refine ». Le 

modèle CNN formé en Catalogne est désigné comme le modèle « Teacher ». Un modèle plus 

léger est distillé à partir du modèle « Teacher » en suivant la procédure de distillation 

développée par (Hinton et al., 2015). Le modèle « Student » est ensuite raffiné par des données 

de terrain du bassin Adour Amont. Enfin, la cartographie de l'irrigation sur le bassin Adour 

Amont est réalisée en utilisant le modèle « Student ». La stratégie proposée a été comparée à 

différentes approches, y compris RF et CNN, directement entraînées à l'aide des données de 

terrain. 

3.3 Résultats et conclusion 

En Catalogne, les résultats montrent une bonne précision globale (OA) pour le classifieur 

RF en utilisant les composantes principales issues de l’ACP (90,7 %) et les coefficients de la 

transformation en ondelette (89,1 %). De plus, les résultats montrent que l’outil de classification 

RF construit en utilisant les données optiques (NDVI) est performant avec une OA = 89.5 %. 

L'utilisation combinée des données optiques et SAR (analyse en composantes principales) a 

légèrement amélioré la précision de la classification (OA = 92,3 %). Les résultats de la 

validation de l'approche CNN, appliquée directement sur les séries temporelles S1, ont montré 
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une très bonne précision (OA = 94,1 %) par rapport au RF. L'utilisation uniquement des 

données NDVI dans un classificateur CNN a produit une précision globale plus faible (91,5 %) 

que celle obtenue en utilisant uniquement les données S1. Cependant, l'utilisation combinée des 

données S1 et S2 dans le CNN n'a pas amélioré la précision de manière significative. 

Dans le bassin d'Adour Amont, la technique d'apprentissage par transfert « distilling before 

refine » a permis de cartographier les zones irriguées avec une précision globale de 83%. 

Comparé à d'autres alternatives telles que RF et CNN construites directement à partir de 

données in situ d’Adour Amont, l'apprentissage par transfert a montré une meilleure précision.  

Les résultats obtenus dans ce chapitre démontrent la possibilité d'obtenir une cartographie 

de l'irrigation à haute résolution en utilisant les données S1 et S2. Cependant, un classifieur 

supervisé construit sur une zone et appliqué sur une seconde zone ne donne pas une bonne 

précision. De plus, l'application du même classifieur sur la même zone mais à une année 

différente pourrait conduire à perte de précision. La construction du modèle supervisé nécessite 

toujours des données terrain. En outre, le transfert du modèle supervisé nécessite également des 

données de terrain sur le site cible. Par conséquent, la disponibilité des données terrain reste un 

obstacle pour réaliser la cartographie de l'irrigation. Notre étude dans le prochain chapitre se 

concentrera sur le développement d'approches opérationnelles semi-supervisées pour 

cartographier les zones irriguées sans avoir recours aux données de terrain. 

4. Vers une cartographie et un suivi opérationnel des zones irriguées 

(Chapitre IV) 

4.1 Objectif 

L'utilisation de données S1 et S2 couplée à des classifieurs supervisés améliore la précision 

d’une cartographie des zones irriguées. Cependant, la dépendance des classifieurs supervisés 

aux données de terrain reste un obstacle pour la cartographie opérationnelle des zones irriguées. 

En outre, la détection des événements d'irrigation à l'échelle de la parcelle à l'aide de données 

de télédétection n'a pas encore été explorée en profondeur malgré son apport potentiel pour la 

gestion de l'eau d'irrigation. Ce chapitre veut donc d’abord proposer un modèle opérationnel en 

temps quasi réel pour la détection des événements d'irrigation à l'échelle de la parcelle (IEDM 

qui veut dire Irrigation Event Detection Model). L'IEDM est une méthode basée sur un arbre 
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de décision construit à partir des données S1, S2 et S2MP. Cette méthode est ensuite validée sur 

des parcelles de prairies irriguées situées dans la plaine de la Crau, dans le sud-est de la France. 

Une méthode opérationnelle de cartographie de l'irrigation demande d’être capable de 

générer ses propres données d'entraînement. Pour générer automatiquement les données 

d'entraînement (parcelles irriguées et non irriguées) nécessaires, le modèle IEDM a été utilisé 

à l'échelle de la parcelle en complément des valeurs NDVI. Ensuite, pour cartographier les 

zones irriguées, une classification RF a été construite en utilisant les données d'entraînement 

générées automatiquement, les données S1 et les données S2. 

4.2 Matériel et méthode 

Zones d’étude : Pour développer l'IEDM, trois sites d'étude ont été examinés. Trois parcelles 

irriguées situées à Montpellier avec des événements d'irrigation enregistrés (48 irrigations) ont 

été utilisées pour analyser l'effet de l'irrigation sur les coefficients de rétrodiffusion de S1 (σ0). 

Les données SIGPAC en Catalogne et les données de terrain collectées à Adour Amont 

(détaillées dans le chapitre 2) ont été utilisées pour analyser la performance de l'IEDM dans la 

détection de l'irrigation. Pour valider l'IEDM, 46 parcelles de prairies (plaine de la Crau, sud-

est de la France) avec des événements d'irrigation enregistrés in situ ont été utilisées. 

Pour la cartographie opérationnelle des zones irriguées, un site d'étude situé à proximité de la 

ville d'Orléans (centre nord de la France) est examiné. Sur ce site d'étude, plusieurs campagnes 

de terrain ont été réalisées pour obtenir des informations sur l'irrigation (absence ou existence 

d'irrigation) pour quatre années (2017, 2018, 2019 et 2020). Chaque année, les données de 

terrain collectées ont été utilisées pour valider la cartographie de l'irrigation réalisée à l'aide de 

la méthodologie proposée. 

Données de télédétection: Sur chaque site d'étude, toutes les images Sentinel-1 possibles 

acquises avec différents passages de S1 (ascendants et descendants) ont été téléchargées et 

traitées. Toutes les images S2 possibles (sans nuage) ont également été téléchargées pour 

chaque site d'étude correspondant à la même période d'acquisition que les S1. De plus, toutes 

les cartes S2MP disponibles sur chaque site d'étude ont été utilisées. 

Développement et évaluation de l'IEDM : L'IEDM est basé sur la détection du changement 

des coefficients de rétrodiffusion S1 à l'échelle de la parcelle (σp
0), entre l'acquisition SAR au 

temps ti et l'acquisition SAR précédente au temps ti−1. L'IEDM suppose que l'augmentation de 
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la σp
0  entre deux acquisitions S1 consécutives est principalement causée par l'augmentation de 

l'humidité du sol due soit à une pluie, soit à un événement d'irrigation. D'autre part, 

l'augmentation des valeurs de σG
0  (échelle de grille de 10 km x 10 km) et les valeurs élevées 

d’humidité du sol de S2MP à l'échelle de la grille pourraient être la preuve d'un événement 

pluvieux. La stabilité à de faibles valeurs ou la diminution des valeurs de σG
0  pourraient, elles, 

indiquer la persistance de conditions sèches entre les deux dates (absence de précipitations). 

Ainsi, l'augmentation des valeurs σp
0  entre deux acquisitions consécutives accompagnée de la 

stabilité ou de la diminution des valeurs σG
0  est considérée comme un événement d'irrigation. 

L'IEDM fournit, pour chaque image S1, un poids de possibilité d'irrigation qui représente la 

probabilité d'avoir un événement d'irrigation. Le poids peut être soit 0 (pas d'irrigation), 25 

(faible possibilité), 50 (possibilité moyenne) ou 100 (forte possibilité). Étant donné que le signal 

de rétrodiffusion SAR peut être affecté par d'autres facteurs tels que le couvert végétal (cycle 

de croissance de végétation) et la rugosité de la surface, des filtres supplémentaires ont été 

ajoutés en utilisant les valeurs NDVI et les valeurs d'humidité du sol du S2MP. Pour valider 

l'IEDM, le modèle a été appliqué sur 46 parcelles de prairies irriguées (plaine de Crau), et les 

événements d'irrigation détectés ont été comparés avec le calendrier d'irrigation enregistré in 

situ. 

Cartographie opérationnelle des zones irriguées : La méthodologie proposée pour la 

cartographie de l'irrigation consiste en deux étapes principales. Dans la première étape, les 

parcelles d'entraînement (irriguées/non irriguées) sont sélectionnées en fonction de deux 

critères dérivés des données S1 et optiques. Le premier critère est basé sur un poids de 

possibilité d'irrigation dérivé de l'IEDM. Le second critère est basé sur la valeur NDVI 

maximale de la parcelle.  

En appliquant l'IEDM sur les différentes séries temporelles des orbites S1 (en polarisations 

VV et VH), on obtient une métrique de possibilité d'irrigation. Cette métrique est calculée en 

cumulant les possibilités d'irrigation (0, 25, 50 et 100) obtenues à chaque image S1 de toutes 

les séries temporelles S1 en polarisations VV et VH (pour chaque parcelle). Pour la sélection 

des données d'entraînement, les parcelles ayant une valeur de possibilité d'irrigation très élevée 

sont considérées comme irriguées et les parcelles ayant des valeurs très faibles sont considérées 

comme non irriguées. Sur ces parcelles sélectionnées, un autre filtre NDVI est ensuite appliqué. 

On suppose ici que pour les parcelles non irriguées, la valeur maximum de NDVI ne doit pas 

dépasser 0,7 alors que, pour les parcelles irriguées, la valeur maximum de NDVI doit être 

supérieur à 0,8. La deuxième étape consiste à utiliser les données S1 (à l'échelle de la parcelle 
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et de la grille), les données S2 (NDVI) et les parcelles d'entraînement sélectionnées dans un 

classifieur (RF) pour réaliser la cartographie de l'irrigation.  

4.3 Résultats et conclusion 

En termes de développement de l'IEDM, les résultats montrent que 84,8 % des événements 

d'irrigation sur des parcelles agricoles à Montpellier ont été correctement détectés en utilisant 

ce modèle. Sur le site de Catalogne, les résultats montrent aussi une bonne cohérence :  90,2 % 

des parcelles non irriguées n'ont rencontré aucun événement d'irrigation détecté alors que 

72,4 % des parcelles irriguées ont eu un et plusieurs événements d'irrigation détectés. Dans le 

bassin versant de l'Adour Amont, l'analyse indique également que deux événements d'irrigation 

et plus ont été détectés pour 90 % des parcelles irriguées. La validation de l'IEDM sur les 

46 parcelles de prairies irriguées montre qu'en utilisant uniquement la polarisation VV, 82,4 % 

des événements d'irrigation enregistrés in situ sont correctement détectés, avec une valeur 

F_score de 73,8 %. Une précision moindre est obtenue en utilisant la polarisation VH, où 

79,9 % des événements d'irrigation in situ sont correctement détectés avec un F_score de 

72,2 %. L'utilisation combinée des polarisations VV et VH permet de détecter 74,1 % des 

événements d'irrigation, avec une valeur F_score de 76,4 %. 

La classification opérationnelle et semi-supervisée proposée a été validée en utilisant des 

données réelles in situ collectées pendant quatre ans à Orléans (centre-ouest de la France). Les 

résultats indiquent qu’en utilisant la procédure de classification proposée, la précision globale 

de la classification de l'irrigation atteint 84,3 %, 93,0 %, 81,8 % et 72,8 % pour les années 2020, 

2019, 2018 et 2017, respectivement. La comparaison entre l'approche de classification proposée 

et le classifieur RF construit directement à partir de données in situ (méthode entièrement 

supervisée) montre que notre approche atteint une précision presque similaire à celle obtenue 

en utilisant les classifieurs RF avec des données in situ (différence de précision globale ne 

dépassant pas 6,2 %). 

5. Conclusions générales et perspectives (Chapitre V) 

Des informations précises sur l'étendue spatiale des zones irriguées sont fondamentales dans 

plusieurs aspects de la gestion de l'eau et de l'agriculture. Dans cette thèse, le produit d'humidité 

du sol S2MP a d'abord été évalué afin de l'utiliser ensuite dans la cartographie de l'irrigation et 

la détection des événements d'irrigation. Ensuite, plusieurs approches de classification 
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supervisée ont été présentées pour cartographier les zones irriguées à l'échelle de la parcelle sur 

deux sites d'étude différents (Catalogne et Adour Amont). Puis, un algorithme a été proposé 

pour détecter les événements d'irrigation à l'échelle de la parcelle en utilisant les données S1, 

S2 et les cartes d’humidité du produit S2MP. Enfin, une méthode de classification semi-

supervisée a été développée pour la cartographie des parcelles irriguées. 

Les principaux résultats sont : 

 Le S2MP fournit de bonnes estimations de l’humidité du sol (humidité de surface sur les 

5 premiers centimètres), fortement corrélées avec les événements pluvieux. 

 L'utilisation des données Sentinel-1 et Sentinel-2 permet une cartographie précise des 

parcelles irriguées en utilisant des modèles de classification supervisée (RF ou CNN). 

 Les modèles supervisés de cartographie des surfaces irriguées qui fonctionnent dans une 

région à une année donnée ne sont pas nécessairement applicables à d'autres régions et 

périodes. 

 En utilisant des techniques d'apprentissage par transfert, un modèle construit sur une 

zone spécifique peut être transféré à une autre zone afin de cartographier les parcelles 

irriguées. 

 Le couplage de S1, S2 et S2MP permet une bonne détection des événements d'irrigation 

à l'échelle de la parcelle en utilisant l'algorithme « IEDM » développé. 

 En utilisant principalement l'IEDM et un classificateur RF, on obtient une classification 

semi-supervisée des zones irriguées qui ne nécessite pas de données in situ. 

La cartographie des zones irriguées et la détection des événements d'irrigation en utilisant les 

données S1 et S2 présentent néanmoins quelques limites : 

 Sur les zones humides, la cartographie des zones irriguées est plus difficile et présente 

plus de défis. Lorsque la zone étudiée est humide, elle rencontre plusieurs événements 

pluvieux pendant la période d'irrigation. Ainsi, les précipitations fréquentes rendent les 

valeurs NDVI des parcelles non irriguées similaires aux valeurs NDVI des parcelles 

irriguées. Ce changement dans le NDVI de la parcelle non irriguée peut potentiellement 

réduire la différence de NDVI entre les parcelles irriguées et non irriguées. Ainsi, il 

devient difficile de distinguer les deux classes avec une bonne précision. 

 Dans le cas d'une couverture végétale très développée (NDVI > 0.7, principalement pour 

le blé et les prairies), la pénétration limitée du signal SAR en bande C (longueur d'onde 

~ 6 cm) peut contraindre la détection des événements d'irrigation. Dans le cas d'une 



RÉSUMÉ EN FRANÇAIS 

280 

 

couverture végétale très développée, le signal SAR en bande C peut ne pas atteindre le 

sol et, donc, la contribution du sol dans le signal de rétrodiffusion devient négligeable. 

Par conséquent, la détection des événements d'irrigation basée sur le changement des 

valeurs d'humidité du sol devient alors difficile. 

 Lorsque l'image S1 est acquise longtemps après l'événement d'irrigation, il devient 

difficile de détecter le changement des valeurs d’humidité du sol après l'irrigation. Ceci 

est principalement dû à l'évaporation de la teneur en eau du sol, surtout en été. Nous 

avons montré que l'événement d'irrigation pouvait être détecté deux à trois jours après 

l'événement d'irrigation si la couverture végétale est faible (NDVI < 0,7). Si la végétation 

est bien développée (NDVI > 0.7), l'événement d'irrigation pourrait être principalement 

détecté s'il se produit à la même date que l'acquisition SAR. Cette limitation est donc due 

au temps de revisite des données S1 et la longueur d’onde utilisé des capteurs S1. 

Quelques perspectives se dégagent de cette thèse : 

1. Le signal SAR en bande L (longueur d'onde ~ 24 cm) a des capacités de pénétration plus 

élevées que le signal SAR en bande C, principalement dans une couverture végétale 

dense. L'intégration des données en bande L (ALOS-2/PALSAR-2) avec les données en 

bande C peut donc améliorer la détection des événements d'irrigation. Les futurs 

satellites en bande L (NISAR et Tandem-L qui seront lancés à partir de 2022) 

permettront une meilleure cartographie des événements d'irrigation si la végétation est 

bien développée. E effet, les prochaines données en bande L combinées aux données en 

bande C de Sentinel-1 augmenteront le nombre d‘acquisitions radar par semaine, ce qui 

permettra de détecter presque tous les événements d'irrigation. 

2. La cartographie des arbres fruitiers irrigués à l'aide d'images satellites est encore un sujet 

inexploré. Parmi les arbres fruitiers, l'irrigation des vignobles est le sujet le plus 

important dans plusieurs régions d'Europe, notamment dans le sud. L'élaboration 

d'approches capables de détecter les événements d'irrigation dans les parcelles de vigne 

et de cartographier les vignobles irrigués est d'une grande importance pour les autorités 

publiques et les fabricants de vin au moment où les dérèglements climatiques 

questionnent les pratiques de la filière. Ainsi, une des perspectives ouvertes par cette 

thèse est de développer, d’une part, une méthode capable d'estimer l'humidité du sol pour 

les parcelles de vigne et, d’autre part, une méthode capable de détecter les événements 

d'irrigation sur les parcelles de vigne 
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3. Il serait utile de créer une plateforme SIG (Système d'Information Géographique) 

participative de nos cartes d'irrigation ainsi que des événements d'irrigation détectés afin 

de partager ces supports avec les gestionnaires concernés par la thématique de 

l'irrigation. Les gestionnaires pourraient alors initier un travail pédagogique à destination 

des agriculteurs pour adapter la fréquence d'irrigation à la disponibilité de la ressource 

en eau. Grâce au suivi continu des parcelles irriguées à l'aide de la plateforme SIG, les 

autorités pourraient proposer un système de bonus/malus afin de gratifier les agriculteurs 

qui respectent les réglementations et pénaliser ceux qui ne suivent pas les 

recommandations sur l'utilisation de l'eau pour l'irrigation.
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