
HAL Id: tel-04745592
https://hal.inrae.fr/tel-04745592v1

Submitted on 21 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Probabilistic Models for the Uncertain Hydrologist
Benjamin Renard

To cite this version:
Benjamin Renard. Probabilistic Models for the Uncertain Hydrologist. Environmental Sciences. Aix-
Marseille University, 2024. �tel-04745592�

https://hal.inrae.fr/tel-04745592v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr
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General introduction

Modified from: https://en.wikipedia.org/wiki/File:Diagram_of_the_Water_Cycle.jpg

Consider the following practical questions, with a possible underlying motivation being

provided in brackets:

1. What is the discharge flowing in this river right now? (Should action be taken against an

upstream user because discharge is below the environmental threshold?)

2. What was the peak discharge reached during last week’s flood? (Was it large enough to

issue a disaster declaration?)

3. Did the great flood of 1910 in Paris exceed the 100-year threshold? (Should this event be

taken as the reference for flood planning?)

4. How large will discharge be during the upcoming weeks? (Should we start emptying this

reservoir?)

5. How much water will flow in French rivers during the summers of the next 50 years, and

how warm will it be? (Will cooling of nuclear plants built along rivers be reliable?)

5
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6 INTRODUCTION

6. How would floods be affected if this patch of forest was turned into an urban area?

(Should this area be urbanized, and if so with what kind of counter-measures?)

A few common threads emerge from these questions and allow setting the scene for the

content of this document. First, all questions are related to the quantity of water flowing in

rivers, so this manuscript will obviously be about Hydrology. Second, all questions request

estimating unknown quantities. Third, it is quite intuitive that none of these estimates can

be perfect, and that they are all affected, to varying degrees, by uncertainty. Quantifying

this uncertainty is important because it strongly affects the decision to be made (i.e. the

answer to the questions in brackets). My research work is structured around the development

of probabilistic models to make such uncertain hydrologic estimations.

The work presented in this document is therefore essentially of methodological nature: the

aim is not to answer the questions above (although I may occasionally try), but rather to build

the tools that help others answering them. Moreover, while the methodological motto ‘building

probabilistic models for the uncertain hydrologist ’ is a strong guiding principle, my work is not

similarly structured around a few well-identified guiding hydrologic questions. In fact, the

example questions above highlight a large diversity of situations, that will also be reflected in

the applications presented in this document: analyses may focus on one hydrometric station

or cover thousands of catchments all over the country or the world, use a couple of short

time series or entire databases of long records, range from droughts to floods, study one given

variable or several variables together, etc. The quantity to be estimated may also be in the

present (question 1), the past (2-3), the future (4-5) or even in an hypothetical counterfactual

world (6). Depending on the context but also on domain-specific usages, the estimation may

be called an estimate, a reconstruction, a forecast, a projection, etc. Throughout this report, I

will use the word prediction in a fairly liberal way to refer to any of these situations.

In order to address the questions above, Hydrologists have several strategies at their dis-

posal. Measuring streamflow may be sufficient to answer questions 1-2. Understanding the

dominant hydrologic processes that govern streamflow generation may be required to answer

questions 4, 5 or 6, and such understanding is typically embedded into hydrologic models.

Questions 3 and 5 require probabilistic models to describe hydrologic variability in time,

space and even between variables. These three strategies define the structure of this manuscript:

1. Chapter 1 Uncertainty in streamflow data focuses on the production of streamflow time

series, and in particular on the uncertainties affecting the rating curve used for this

purpose. It describes the development of the generic BaRatin method (Bayesian Rating

curve), along with other tools addressing hydrometric challenges such as rating shifts or

complex rating curves for stations influenced by e.g. vegetation or backwater effects.

2. Chapter 2 Uncertainty in and around Hydrologic Models turns the focus to hydrologic

models, and in particular the input, response and structural uncertainties that affect

them. It revolves around the development of the BATEA framework (Bayesian Total
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Error Analysis) to decompose the total predictive uncertainty into its constitutive sources,

and the many challenges that accompanied this development.

3. Chapter 3 Hydrologic variability describes the development of probabilistic models of

increasing flexibility to describe hydrologic variables. These models may vary in time,

vary conditionally on some predictor, vary in space, be multi-variable or a combination

of these properties. An underlying motivation behind these developments is to make

the best possible use of available data to better understand the natural hydro-climatic

variability.

Each chapter is structured in the same way. It starts with an introduction section containing

a short and non-exhaustive review of the relevant literature (excluding the papers I contributed

to). The aim of this section is to outline the scientific context into which my own work took

place. The next few sections then describe the works I contributed to, ending with a specific

section describing how this research work was transferred as operational tools. Finally, a last

section concludes the chapter by outlining the most important research perspectives in my eyes.

These three chapters follow what I considered as a logical order. In particular, streamflow data

form the basic material used throughout this manuscript (and arguably in most hydrological

studies), so it makes a natural starting point. Interestingly though, the chapters’ order does

not reflect the chronological order of the work. In particular, most of the work described in

Chapter 2 Uncertainty in and around Hydrologic Models was made before the one described in

Chapter 1 Uncertainty in streamflow data - which, in retrospect, was either optimistic or naive.

The work presented in this manuscript covers a 20-year period, since the beginning of my

PhD in 2003. It was performed for the most part at the Riverly research unit (formerly known as

Hydrology-Hydraulics), in the Lyon-Grenoble Auvergne-Rhône-Alpes regional center (formerly

known as Lyon-Villeurbanne) of the INRAE research institute (a merger between INRA and

Irstea, formerly known as Cemagref). Part of the work also took place during an 18-month

postdoctoral contract at the University of Newcastle, Australia (2007-2008), a 6-month visit

at Columbia University in the City of New York, USA (2013-2014) and a 2-year visit at the

University of Adelaide, Australia (2019-2021).
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Chapter 1

Uncertainty in streamflow data

1.1 Introduction: the production of streamflow time se-

ries

Streamflow time series are the cornerstone of hydrologic analyses. They are used to estimate

freshwater resources, perform low-flow or flood frequency analysis, detect changes in hydro-

logic regimes, calibrate and evaluate hydrologic models, etc. Yet, unlike many environmental

variables, streamflow time series are not direct measurements: they result from the transfor-

mation of continuously-measured water stages, by means of a model called the rating curve.

This process induces specific challenges to derive, calibrate and maintain rating curves [WMO,

2010] and to quantify the surrounding uncertainties [Kiang et al., 2018]. Figure 1.1 provides an

overview of the main steps needed to produce streamflow time series using rating curves and is

commented in detail in the following sections.

1.1.1 Formulating the rating curve

In its simplest form, a rating curve is a relation between stage h [m] and discharge Q [m3 s−1]

depending on a few parameters that can be grouped into a vector θ.

9
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Figure 1.1: Schematic overview of the production of streamflow time series using rating curves.
Note that the data shown in this figure are fake, as is the field hydrologist in the bottom left
picture ;-)

Q = fRC(h;θ) (1.1)

The formulation of rating curve equation fRC is site-specific and depends on the hydraulic

controls governing the stage-discharge relation at the hydrometric station. Textbook hydraulics

formula suggest that a power equation can be used for many standard hydraulic controls.

Q = fRC(h;θ) =

a(h− b)c if h ≥ b

0 otherwise
(1.2)

In this equation, the parameter vector θ = (a, b, c) includes the cease-to-flow level b [m,

also called offset], the exponent c [−] and the coefficient a [m3− c s−1]. This simple power

formulation is quite versatile and holds for many standard hydraulic controls, as illustrated by

the few formulas shown in Table 1.1.

In most cases, a single hydraulic control is not sufficient to describe the rating curve for

the whole stage range. Instead, different hydraulic controls may be active at different stage

ranges. As an illustration, the following situation is quite frequent: at low flows, the stage-

discharge relationship is controlled by a weir (natural or artificial). When the stage increases,

the weir gets drowned and the stage-discharge relationship is then controlled by the average

geometry and roughness of the main channel. For an even larger stage, part of the water may

flow in a floodway or over the banks of the main channel: the stage-discharge relationship is

then controlled by two channels: the main channel and the floodway. This leads to a piecewise
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Hydraulic control Control properties Q = fRC(h)

Rectangular weir Width B [m]
Crest elevation b [m]
Discharge coef. Cr ≈ 0.4 [−]

Q = Cr
√

2gB︸ ︷︷ ︸
a

(h− b)3/2

Triangular weir Opening angle ν [−]
Vertex elevation b [m]
Discharge coef. Ct ≈ 0.31 [−]

Q = Ct
√

2g tan(ν/2)︸ ︷︷ ︸
a

(h− b)5/2

Orifice Area A [m2]
Orifice elevation b [m]
Discharge coef. Co ≈ 0.6 [−]

Q = Co
√

2gA︸ ︷︷ ︸
a

(h− b)1/2

Wide rectangular
channel

Width B [m]
Bed elevation b [m]
Bed slope S [m]
Strickler coef. KS [m1/3s−1]

Q = KS

√
SB︸ ︷︷ ︸

a

(h− b)5/3

Table 1.1: Textbook hydraulics formula for a few standard controls. g ≈ 9.81 [m s−2] is the
gravitational acceleration. Apologies for the notation b vs. B or a vs. A that will certainly
confuse the statistically-inclined reader: Hydraulics has its reasons which Statistics does not
comprehend.

formulation of the rating curve, which in turn requires defining the activation stages of each

control.

1.1.2 Estimating the rating curve

Despite the formulas in Table 1.1 being based on measurable quantities, it is in general not

possible to define a rating curve by just analyzing and measuring the physical characteristics of

the river at the hydrometric station. This is because natural rivers do not strictly conform to

the hypothetical controls for which the formulas of Table 1.1 apply. For instance natural weirs

or channels are never strictly rectangular. For a natural channel, the width and slope may vary

along the controlling reach, and roughness (Strickler coefficient) cannot be precisely measured.

In the case of a multi-control rating curve, which is the rule rather than the exception, activation

stages can also be difficult to identify (think about the drowning of a weir for instance).

For these reasons, the rating curve must be estimated at each hydrometric station from

occasional stage-discharge measurements (or “gaugings”). At first sight this may sound like

a simple curve-fitting exercise, but a specific estimation strategy is needed to account for the

following important points:

1. Gaugings are uncertain, especially the gauged discharge. Moreover, this uncertainty may

strongly vary between gaugings, depending on the measurement technique, the gauging

procedure, the flow condition, etc. [Herschy, 1999]. For instance, the standard uncertainty

for a gauged discharge may be may be as low as 1.5% with the tracer dilution technique

in good flow conditions, but as high 20% with surface-only measurements (e.g. floats,

video, radar). Ignoring this varying uncertainty may result in some gaugings exerting an

unduly large leverage on the inference.
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2. While the rating curve parameters are not perfectly measurable quantities, they are still

related to physical attributes, and it is important to respect at least the order of magnitude

that these attributes imply. Failing to do so may result in hugely uncertain predictions

when the rating curve is extrapolated beyond the gauged range - even if the fit within

this range is good.

3. Like any model, the rating curve in an approximation of the reality and the discharge

values it predicts are therefore affected by errors. These ‘structural errors’ exist irrespec-

tive of the quantity and quality of gaugings, and it is hence important to identify their

properties and to quantify the resulting uncertainty.

1.1.3 Using the rating curve to estimate streamflow time series

The streamflow time series can be derived by applying the estimated rating curve to the mea-

sured stage series (Figure 1.1). The resulting uncertainty originates from the various sources

of uncertainties affecting the rating curve as discussed above, but also from the uncertainties

affecting the stage series itself [e.g. Petersen-Øverleir and Reitan, 2005]. There exist many po-

tential sources of stage uncertainty, as discussed by Sauer and Turnipseed [2010]: sensor errors,

waves, calibration drifts over time, etc. In order to deliver streamflow time series accompa-

nied by a quantified uncertainty, the dominant sources of stage uncertainty at the hydrometric

station need to be identified, quantified and propagated together with rating curve uncertainty.

The production of streamflow time series is further complicated by the fact that the stage-

discharge relation may change in a variety of ways and for a variety of reasons [Herschy and

Herschy, 2002, Morlot, 2014]. For instance, a rating shift corresponds to the stage-discharge

relation suddenly changing, typically after a morphogenic flood inducing a modification of the

channel’s geometry. The stage-discharge relation may also change more continuously due to

progressive sand deposit, seasonal vegetation growth or tidal influence, among others. These

situations are encountered quite frequently in the operational practice and pose unresolved

challenges to estimate such changing rating curves and to quantify the resulting uncertainties

in streamflow series.

1.2 Rating curve uncertainties: the BaRatin framework

The BaRatin (Bayesian Rating curve) framework has been developed in a collegial way with

colleagues coming from hydrometry, hydraulics and hydrology backgrounds [Le Coz et al., 2013,

2014b]. Its overarching objective is to address the main challenges described in section 1.1 for

formulating, estimating and using rating curves.

1.2.1 BaRatin formulation of the rating curve

Given that most hydraulic controls can be approximated with a power relation between stage

and discharge (equation (1.2)), the formulation of the rating curve mostly boils down to iden-
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Figure 1.2: A few typical examples of control matrices.

tifying the number, type and succession of hydraulic controls at the hydrometric station. In

BaRatin, this specification is performed by means of the control matrix M(r, j) (also called

the Bonnifait matrix in honor of its creator), whose columns represent hydraulic controls, rows

represent stage segments and the 0/1 value at cell (r, j) indicates whether the jth control is

active for the rth stage range. Figure 1.2 provides examples of control matrices for fairly typical

configurations.

The control matrix is of interest because it closely follows the line of thinking of the field

hydrologist analyzing the hydraulic configuration of a site to formulate the rating curve. More-

over, it allows expressing most rating curves encountered in the operational practice using the

unique but versatile rating curve equation below:

Q = fRC(h;θ) =

Nsegment∑
r=1

(
1[κr;κr+1)(h)×

Ncontrol∑
j=1

M(r, j)× aj(h− bj)cj
)

(1.3)

In this equation, the parameter vector θ that needs to be estimated comprises the activation

stage, the coefficient and the exponent of each control (θ = (κj, aj, cj)j=1,...,Ncontrol
). It does not

include the offsets bj because they can be calculated from the other parameters due to the

continuity of the rating curve [see Le Coz et al., 2014b, for details].

1.2.2 Bayesian estimation of the rating curve

As discussed in section 1.1.2, the parameter vector θ is made of physically interpretable quanti-

ties for which information or constraints may exist. For instance, the coefficient a is a function

of the geometric properties of the control (see Table 1.1), for which at least orders of magnitude
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can be given, and possibly more precise values in the case of artificial controls (low-flow weirs

typically). Alternatively, the exponent c only depends on the type of control and should remain

close to the theoretical values shown in Table 1.1. In this context, the Bayesian framework is a

logical choice to estimate the parameter vector θ because the prior distribution p(θ) provides

a natural way to specify the constraining information discussed above. From an operational

perspective, the most natural way to proceed is for the user to specify a prior distribution

for each physically interpretable quantity, and to deduce the resulting prior distributions in

terms of (κ, a, c) parameterization. For instance, consider the case of a rectangular weir (first

row in Table 1.1): the user specifies individual prior distributions for the width B, the dis-

charge coefficient Cr and the gravitational acceleration g, and the resulting prior for parameter

a = Cr
√

2gB can be computed analytically if possible (e.g. if lognormal priors are used),

approximately otherwise (e.g. Gaussian approximation or Monte Carlo propagation).

The prior distribution quantifies the information on the rating curve that can be gained

from an hydraulic analysis of the controls prevailing at the station. The second main source

of information is the gaugings dataset containing occasional stage-discharge measurements

(h̃i, Q̃i)i=1,...,N . The use of this information to estimate the rating curve is based on the following

error model: 
Q̃i = fRC(h̃i;θ)︸ ︷︷ ︸

Q̂i

+δi + εi

δi ∼ N (0, ui)

εi ∼ N (0, σi);σi = γ1 + γ2Q̂i

(1.4)

Equation (1.4) assumes that the discrepancy between the gauged discharge Q̃i and the

rating-curve-estimated discharge Q̂i is due to two errors:

1. δi is the measurement error affecting the gauged discharge. In BaRatin this error is

assumed to be a realization from a Gaussian distribution with mean zero and known

standard deviation ui. The latter represents the uncertainty affecting the gauged dis-

charge: it depends on the measurement procedure and conditions and it can and should

be estimated before rating curve estimation by means of an uncertainty analysis.

2. εi is thought of as the structural error affecting the rating curve. Like the measurement

error δi, it is assumed to be a realization from a zero-mean Gaussian distribution, but

unlike it, its standard deviation σi is assumed unknown and therefore needs to be esti-

mated. This standard deviation is further parameterized as an affine function of the rating

curve discharge to reflect the empirical observation that rating curve uncertainty tends

to increase with discharge, without necessarily collapsing to zero for near-zero discharges.

The different treatment of measurement and structural errors is due to their fundamentally

different nature: the former exists independently of the rating curve, while the latter is by

definition related to the rating curve and its properties can hence hardly be known before
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rating curve estimation. Moreover, it has to be acknowledged that the estimated σi does not

exclusively represents structural uncertainty in most cases, since its estimation may compensate

for any misspecified or ignored source of uncertainty (typically, underestimated measurement

uncertainty or ignored rating shifts). The structural error is therefore also termed the remnant

error, or the uncertainty garbage collector.

Further assuming independence within and between both types of errors, the error model

of equation (1.4) induces the following likelihood:

p
(
Q̃|θ,γ

)
=

N∏
i=1

fN

(
Q̃i; Q̂i(θ),

√
u2
i +

(
γ1 + γ2Q̂i(θ)

)2
)

(1.5)

where fN (x;m, s) is the probability density function (pdf) of a N (m, s) normal distribution

with mean m and standard deviation s evaluated at value x. The likelihood encapsulates

the information brought by the gaugings to estimate the rating curve parameters θ and the

structural error parameters γ. In a Bayesian context, it can be combined with the hydraulic

information encapsulated in the prior distribution to derive the posterior distribution:

p
(
θ,γ|Q̃

)
∝ p

(
Q̃|θ,γ

)
p (θ) p (γ) (1.6)

The posterior distribution quantifies the uncertainty in estimated parameters (θ,γ). In

practice, it is explored by means of a Markov Chain Monte Carlo (MCMC) sampler described in

details in Renard et al. [2006a], leading to a large number of parameter vectors
(
θj,γj

)
j=1,...,Nsim

that are realizations from the posterior distribution. In addition, the parameter vector
(
θ̂, γ̂

)
maximizing the posterior pdf can be used as a point-estimate and is called the maxpost pa-

rameter vector. This allows defining the following quantities, illustrated in Figure 1.3:

1. the maxpost rating curve Q̂(h) = fRC(h, θ̂) represents the ‘best’ estimate of the rating

curve.

2. the many rating curves (fRC(h,θj))j=1,...,Nsim
represent the parametric uncertainty

around the rating curve, due to the imperfect estimation of parameters θ. For a given

stage h, a 95% uncertainty interval can be obtained by computing the 2.5% and 97.5%

empirical quantiles from the Nsim realizations.

3. the many rating curves
(
fRC(h,θj) + εj(γj)

)
j=1,...,Nsim

, where εj is a structural error sam-

pled from the Gaussian distribution in equation (1.4), represent the total uncertainty

around the rating curve, combining parametric and structural uncertainties.

The representation of uncertainties using many rating curves in points 2-3 is referred to as

the ‘spaghetti approach’ for reasons that should be apparent from Figure 1.3.

1.2.3 Uncertain streamflow time series

The derivation of uncertain streamflow time series follows the same spaghetti-based approach

as the one explained above for the rating curve: given a time series h(t), which is typically
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MCMC Sampling Streamflow time series

Rating Curve

Figure 1.3: Use of MCMC samples from the posterior distribution to estimate the rating curve
and the streamflow time series, with uncertainties.

measured at a fine and variable time step, a large number of streamflow time series can be

computed as follows:

Qj(t) = fRC(h(t),θj) + εj(t,γj) for j = 1, . . . , Nsim (1.7)

The representation of streamflow uncertainty using spaghetti has one key advantage: it

allows computing the uncertainty of time-averaged streamflow series (e.g. daily or monthly

series) in a straightforward way. Indeed, this can simply be achieved by computing e.g. the

monthly-averaged series for each individual strand of spaghetti, leading to Nsim monthly series

that can be further processed to derive an uncertainty interval for instance. By contrast, it

would not be possible to deduce the uncertainty interval around a monthly series from the sole

knowledge of the uncertainty interval around a finer-time-step series.

Moreover, two important remarks can be made on equation (1.7):

1. The structural error εj(t,γj) needs to be defined for each time step. In section 1.2.2, the

assumption that structural errors are independent between successive gaugings was made

to derive the likelihood. In order to remain consistent with this assumption, there is no

choice but to resample εj(t,γj) from its Gaussian distribution in equation (1.4) inde-

pendently at each time step. Admittedly, this is not a satisfying treatment of structural

errors, and this point will be further discussed in section 1.5.

2. Using a single time series h(t) implies assuming that there is no uncertainty in the mea-

sured stage time series. This is unrealistic and is discussed next.

In the spirit of the spaghetti approach, the propagation of stage uncertainty poses no tech-

nical difficulty. Indeed, if Nsim stage series hj(t) are available, they can all be passed through

equation (1.7) to propagate uncertainty from stage to streamflow. The key question, however,

is how to generate these Nsim stage series to realistically represent uncertainty. This question



1.3. RATING CURVE AND OTHER HYDROMETRIC CHALLENGES 17

was addressed by Horner et al. [2018b], who proposed a stage error model composed of two

components: a non-systematic term representing errors independent from one time step to the

next (waves, instrumental noise) and a systematic term typically representing the unknown

bias induced by the occasional (e.g. monthly) re-calibration of the stage sensor against the

reference staff gauge. Results highlighted that while non-systematic errors have in general a

negligible effect, systematic stage errors may have a much more pronounced effect and may even

be one of the main contributors to streamflow uncertainty. More precisely, the contribution of

systematic stage errors to the total uncertainty was found to strongly depend on the flow range

and the averaging interval. For instance, Figure 1.4 shows a case where stage uncertainty due

to systematic errors is the main contributor to the uncertainty of weekly to monthly streamflow

series during low flow periods. This was further related to the sensitivity of hydraulic controls

in subsequent work [Horner et al., 2018a, 2022].

1.3 Rating curve and other hydrometric challenges

1.3.1 Complex rating curves

In some hydraulic configurations, discharge cannot be computed from stage alone. The rating

curve does not take the form of a simple stage-discharge relation Q = f(h) but becomes

Q = f(h, x) where x denotes another variable (or possibly several variables) needed to compute

discharge. Such cases pose significant operational challenges and were studied in the PhD

work of Mansanarez [2016]. The case of hydraulic hysteresis was addressed first: for a given

stage value, discharge may be greater during the rising limb than during the falling limb of

a flood event. Hysteresis can have noticeable effects when floods with large stage gradients

propagate in a flat channel. Unduly ignoring hysteresis may result in biased streamflow time

series, including an underestimated flood peak and a delayed flood hydrograph (Figure 1.5).

Mansanarez [2016] studied several equations Q = f(h, ∂h/∂t) including the stage gradient

∂h/∂t as secondary variable needed to compute discharge and hence called Stage-Gradient-

Discharge (SGD) models. These equations were embedded in the same Bayesian framework

as described in section 1.2 for BaRatin to perform parameter estimation. It was shown that

providing prior information is necessary to overcome the strong interactions affecting several

parameters and make the problem well-posed, but that order-of-magnitude priors are sufficient

for this purpose. Several gauging strategies were also compared in order to suggest an optimal

strategy to estimate rating curves at stations where hysteresis occurs or is suspected to occur.

Some stations are affected by variable backwater effects due to an unsteady downstream

boundary condition, corresponding to stage fluctuations typically induced by a reservoir, a lake

or the tide. Computing discharge in such a case requires measuring the fall, i.e. the water

surface slope. This is generally achieved by installing a second auxiliary gauge (measuring

h2) usually located along the same river reach as the main gauge (measuring h1) but further

downstream. The water surface slope can then be estimated as (h1 − h2)/L, where L is the

distance between the two gauges. This leads to Stage-Fall-Discharge (SFD) models of the form
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Figure 1.4: Example of uncertainty decomposition into different sources arising from the rating
curve or the stage measurement (Blies River at Bliesbruck station). From top to bottom, the
hourly MaxPost streamflow time series, the total uncertainty (in %) for various time averaging
intervals, and the uncertainty decomposition for the same time averaging intervals. Reproduced
from Horner et al. [2018b].
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Figure 1.5: Stage-Gradient-Discharge (SGD) model applied to a flood event for the Ebro River
at Ascó. The figure compares the streamflow computed from the SGD model to the one com-
puted from a simple stage-discharge (SD) model that disregards stage gradients. (a) Streamflow
time series; (b) rating curve. Reproduced from Mansanarez [2016].

Q = f(h1, h2) that were studied in details by Mansanarez et al. [2016, 2017] under various

hydraulic configurations. As with SGD models, it was found that the precise estimation of

SFD rating curves is possible in an operational context (Figure 1.6) but requires informative

priors and/or specifically adapted gauging strategies.

The seasonal growth and decay of aquatic vegetation affects rating curves for many rivers

in France and in the World. Vegetation induces a continuous variation of the stage-discharge

relation that is difficult to track because, unlike in the SGD and SFD cases above, there

exists no bio-physical model that can be applied with the information typically available at

hydrometric stations. The operational practice in France (and possibly elsewhere) is to keep

the rating curve unmodified but to correct the stage time series to estimate the stage that

would be observed if there were no vegetation. This approach has many limitations. First, it is

manual and hence strongly relies on the expertise of the station manager that is in general not

formalized and documented, making corrections hardly reproducible. It also heavily relies on

the availability of many gaugings to track the evolution of the stage correction in time. Finally,

and most importantly, it is conceptually unsatisfying: vegetation affects the stage-discharge

relation, and it is therefore more logical to act on the rating curve rather than on the measured

stage. To address these issues, Perret et al. [2020b] proposed a time-varying rating curve model

Q = f(h, t) based on the following premises:

1. aquatic vegetation primarily affects friction, i.e. the flow resistance of a channel;

2. the effect of vegetation on friction can be expressed as a function of the vegetation density

and its ability to reconfigure (i.e. to bend and align in the flow direction);
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Figure 1.6: Stage-Fall-Discharge (SFD) rating curve for the Rhône River at Valence, compared
with a simple stage-discharge (SD) rating curve that only uses h1 and hence disregards variable
backwater effects. (a) Natural scale; (b) logarithmic scale. The SFD rating curves are plotted
for 5 values of h2 corresponding to available gaugings (h2 = 1.34, 1.93, 2.40 and 2.76 m) and
to the maximum recorded value (3.04 m). Reproduced from Mansanarez [2016].

3. The growth and decay of vegetation can be parameterized as a deterministic function of

time d(t).

Perret et al. [2020b] demonstrated the applicability of this model in an operational context,

provided that the parameters of the function d(t) are re-estimated every year to account for

the fact that the vegetation cycle, while always following a similar pattern, strongly varies

in intensity and duration between years (Figure 1.7). An original aspect of this work was

the incorporation of qualitative observations on the plant development state (e.g., no plant,

growing phase, decaying phase), in addition to the usual stage-discharge gaugings. This addi-

tional information was found to be helpful for the identification of parameters varying every

year. Subsequent work attempted to move from a time-varying to a dynamical model incor-

porating a biological component that describes the evolution of plant biomass as a function of

environmental forcings such as irradiance and water temperature [Perret et al., 2022]. While

promising, this model still requires adaptations and simplification to make it usable in the

operational practice.

1.3.2 Rating shifts

Natural rivers are not static environments and their morphology may change for a variety of

reasons, natural (e.g. large flood) or man-made (e.g. channelization). The resulting rating

shifts constitute one of the most widespread challenges facing hydrometric data producers.
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Figure 1.7: Vegetation model applied to the Ill River at Colmar-Ladhof station over a 22-
year period. (a) Streamflow time series Q(t) with uncertainties, and available gaugings; (b)
estimated vegetation cycle function d(t) with its parametric uncertainty, showing large inter-
annual variability; (c) streamflow time series Q(t) for year 2015 obtained with the temporal
vegetation model and with a standard model with no vegetation module. Blue lines in (a) and
(c) represent a change in hydraulic control occurring for h > 3 m: the vegetation model is not
valid above this line. Reproduced from Perret et al. [2020b].
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Figure 1.8: Stage-Period-Discharge (SPD) rating curve applied to the Ardèche River at Meyras
station. Reproduced from Mansanarez [2016].

Two aspects need to be considered: how to estimate shifting rating curves, without restarting

a new curve from scratch at the beginning of each stability period? And how to detect rating

shifts?

The first question was addressed in the PhD thesis of Mansanarez [2016], who proposed a

Stage-Period-Discharge (SPD) model Q = f(h, k) to estimate shifting rating curves, assuming

the stability periods k (or equivalently, the shift times) are known [Figure 1.8, Mansanarez et al.,

2019]. The model is based on an hydraulic analysis of the changes affecting the river, which

leads to a distinction between two types of rating curve parameters: ‘static’ parameters remain

constant throughout all stability periods, while the value of ‘varying’ parameters change after

each shift. For instance, if shifts only affect the elevation of the riverbed in the main channel,

then the corresponding offset parameter b (see equation (1.2)) should be declared as ‘varying’,

while the coefficient a (related to the channel width, slope and friction) and the exponent c

(related to the channel shape) may remain ‘static’. This distinction is important because it

allows using a single model for all periods, and all rating curves can therefore be estimated

in one go, using all available gaugings. This is to be compared with the awkward operational

practice of repeatedly using gaugings for several periods. Another original aspect of the method

is that prior specification is not directly performed on rating curve parameters, but rather on

incremental changes, i.e. changes between two successive periods: the station manager is in

general able to make at least an order-of-magnitude statement about the possible magnitude

of a shift after a morphogenic flood. A change-of-variable then allows deducing the joint prior

distribution of ‘varying’ rating curve parameters, which tend to be highly correlated: this favors

the transfer of information between highly-gauged periods and poorly-gauged (or even possibly

ungauged) ones.

The detection of rating shifts was studied as part of the PhD work of Darienzo [2020],

who explored the use of several sources of information for this purpose. The most widely
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used approach to detect rating shifts is based on gaugings through an analysis of the residuals

between the gauged and the rating-curve discharges: rating shifts materialize as step changes

in this residual series. Darienzo et al. [2021] proposed the recursive segmentation procedure

schematized in Figure 1.9 to detect these step changes. It improves on existing segmentation

methods by explicitly accounting for the uncertainties affecting both the gaugings and the

rating curve. Its Bayesian nature allows accessing to the posterior distributions of shift times:

this is useful because it allows searching for a large flood event within the time window covered

by this posterior distribution, and allocating the precise shift time to the date of this flood.

Finally, its recursive nature allows progressively refining the estimation of rating curves on each

sub-period, which enables the detection of small shifts that may have been hidden by a large

rating curve uncertainty at the preceding recursion step. Note that the previously-described

SPD approach of Mansanarez et al. [2019] is used for multi-period rating curve estimation,

which allows considering subperiods with a relatively small number of gaugings.

Using gaugings to detect rating shifts arguably constitutes the most natural approach, but

its usefulness is limited by the frequency of gaugings: for instance, it is not possible to detect

several shifts occurring in between distant gaugings. The measured stage series constitute an

alternative, and possibly overlooked, source of information to detect rating shifts. Darienzo

[2020] proposed to use the stage series in two different ways. First, some shifts may be visible

in the lowest part of the stage series. Indeed, when streamflow tends to zero, stage tends

to the offset b of the lowest hydraulic control, so that a change affecting this offset (strongly

related to the riverbed) should materialize in the stage recessions. This idea was formalized

in the procedure illustrated in Figure 1.10. It is based on the estimation of a decreasing

curve for each recession event, with one parameter of this curve representing the asymptotic

recession level, and the application of the segmentation procedure to this parameter. The second

approach rather focuses on the highest part of the stage series and borrows ideas from sediment

transport modeling. Its basic principle is that a minimum water depth is needed to trigger

sediment transport and hence a potential morphological change in the riverbed. Moreover, the

potential amplitude of the change is expected to be proportional to the duration and the peak

of this triggering threshold excess. A retrospective analysis of the changes detected with other

approaches allows estimating this triggering threshold and relating it to physical quantities used

in sediment transport models. The main interest of this approach is that it can in principle be

used in near-real-time, enabling the early detection of a potential rating shift without waiting

for new gaugings or long stage recessions. The main difficulty is that it only allows detecting

potential, not actual changes, because significant scour and fill processes may occur successively

during the flood but compensate each other, potentially resulting in a small difference before

and after the flood.

1.3.3 Uncertainties in gauging methods

While most of the work described in this chapter is directly related to the estimation of the

rating curve, I also contributed to two studies aimed at quantifying the uncertainties affecting
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Figure 1.9: Schematic representation of the recursive segmentation procedure. Colored ribbons
and error bars represent 95% uncertainty intervals for rating curves (pink), shift times (blue),
gaugings (black dots), and residuals (empty dots). Reproduced from Darienzo [2020].
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Figure 1.10: Stage recession analysis applied to the Ardèche River at Meyras station. (a) Esti-
mation of recession curves; (b) segmentation applied to the time series of recession parameter
β representing the asymptotic recession level; (c) detected shifts represented on the stage time
series. Horizontal red lines denote the values of β estimated in (b), blue areas represent the
posterior pdfs of shift times. Modified from Darienzo [2020].

specific gauging methods. The first study aimed at decomposing the sources of uncertainty af-

fecting Acoustic Doppler Current Profiler (ADCP) streamflow measurements by analyzing the

results of an ‘ADCP regatta’ - that is, repeated measurements of the same discharge by several

operators using different instruments at several cross-sections [Despax et al., 2019]. My contri-

bution restricted to helping in the interpretation of the two-way analysis of variance (ANOVA)

that was applied to quantify the cross-section effect, the team (operator + instrument) effect,

and their interaction. This type of analysis is interesting because it suggests practical strategies

to reduce measurement uncertainties. Here for instance, it was found that for a given number

of transects (i.e. measurement effort), exploring several cross sections is more efficient to reduce

uncertainty than increasing the number of transects at the same cross section. Allowing several

teams to explore these different cross sections is even more efficient, although it does represent

a larger measurement effort.

I also contributed to the development of a method to estimate the uncertainty of video-based

flow velocity and discharge measurements [Le Coz et al., 2021]. Video-based hydrometry is an

area in rapid development since it allows performing contactless discharge measurements, which

is particularly interesting in flood conditions. It also allows taking advantage of crowd-sourced

videos to reconstruct flood discharges at ungauged locations. An important component of the

process used to estimate discharge from videos is the orthorectification step, i.e. the transfor-

mation of the images so that each pixel has the same known physical size (Figure 1.11). Two

approaches are typically used to estimate the parameters of this transformation: (i) calculate

them from intrinsic (focal length, sensor size) and extrinsic (position, angles) parameters of the

camera, which of course requires knowing these parameters quite precisely; (ii) calibrate them
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Figure 1.11: Schematic workflow from Bayesian camera calibration (top) to orthorectification,
image velocimetry and discharge computation using Fudaa-LSPIV solvers [Le Coz et al., 2014a].
Reproduced from Le Coz et al. [2021].

from ground reference points (GRPs) with known image and real-world coordinates, which

completely disregards the physical and optical meaning of the orthorectification parameters.

Bayesian estimation offers a natural middle ground, taking advantage of both the availability

of GRPs and the existence of prior knowledge on the parameters. Results show that combining

observational and prior information is generally beneficial to get precise estimates, especially in

edge cases where GRPs are not numerous and camera parameters are not all precisely known.

An uncertainty propagation experiment also suggested that orthorectification is an important

contributor to the uncertainty affecting video-based streamflow measurements, although not as

important as the surface velocity coefficient (i.e. the ratio between the velocity measured at

the water surface and the depth-averaged velocity).

1.4 Operational tools and applications

Given the practical significance of streamflow data, turning the methods developed in this

chapter into operational tools has been - and still is - a permanent objective (Figure 1.12).

BaRatin tools1 are therefore released as open-source codes and software. BaRatin computa-

tional engine2 takes the form of a FORTRAN-based cross-platform executable that performs all

the Bayesian computations, in particular MCMC simulations exploring the posterior distribu-

1https://github.com/BaRatin-tools
2https://github.com/BaRatin-tools/BaRatin

https://github.com/BaRatin-tools
https://github.com/BaRatin-tools/BaRatin


1.4. OPERATIONAL TOOLS AND APPLICATIONS 27

tion. The graphical user interface BaRatinAGE3 (BaRatin Advanced Graphical Environment)

makes the method usable in the operational practice. BaRatinAGE v1 was developed as a

Tcl/Tk tool by Laurent Bonnifait in 2013, and given the interest expressed by early users,

it was re-implemented in Java and further developed in 2016 by Sylvain Vigneau and myself

(BaRatinAGE v2.0). The current version BaRatinAGE v2.2.1 is a cross-platform and multi-

language software that has reached maturity and is widely used by hydrometry services in

France. This adoption is in part due to the existence of the BaRatinAGE software, but also

to the many informal training sessions (a.k.a ‘BaRatinades’) organized over the years by Lau-

rent Bonnifait, and the regular training now included in the continuous education plan of the

Ministry of Environment [Renard et al., 2017]. BaRatin tools have also been tested by several

hydrometry services abroad, such as the US Geological Survey [Mason et al., 2016] and the

Instituto Nacional del Agua in Argentina [Kazimierski et al., 2021]. They are also used by

other research groups for releasing datasets from experimental catchments [e.g. Tolsa et al.,

2013, Lundquist et al., 2016, Francke et al., 2018, Gouy et al., 2021] or for addressing various

hydrological questions [e.g. Zeroual et al., 2016, Ocio et al., 2017, Garcia et al., 2020, Qiu et al.,

2021, Kastali et al., 2021, 2022, Ahrendt et al., 2022]. Finally, BaRatin was included into an

international comparison of existing approaches to estimate rating curve uncertainties [Kiang

et al., 2018].

While developing models other than the simple Q = f(h) rating curve (see section 1.3), it

became apparent that changing the model does not require fundamentally changing the statis-

tical framework used in BaRatin. This led to the development of BaM (Bayesian Modeling),

a generalization of BaRatin where the rating curve equation can be replaced by ‘any’ model

[Renard, 2017a], including models for variables other than streamflow [e.g. constituent loads

and sediment, Moatar et al., 2020, Perret et al., 2023]. Like BaRatin, BaM tools4 are released

as open-source codes and software. Compared with BaRatin, BaM’s computational engine5 has

been generalized so that any model could be plugged in the same statistical framework. The

R package RBaM6 is available to pilot BaM engine, and an online interface7 was developed

by Ivan Horner to handle simple models that can be typed as simple formulas in a text box.

Moreover, the v3 of BaRatinAGE is currently under development (by Ivan Horner8) and will

use BaM as computational engine: this paves the way for the integration of complex rating

curve models (SGD, SFD, SPD, vegetation) and tools for detecting rating shifts. Finally, BaM

computational engine is already used in an operational context by the Compagnie Nationale

du Rhône (CNR9) for managing twin-gauge stations with the SFD model, and by the US Na-

tional Ecological Observatory Network10 [Cawley, 2018, Harrison et al., 2018] for producing

streamflow series.

3https://github.com/BaRatin-tools/BaRatinAGE
4https://github.com/BaM-tools
5https://github.com/BaM-tools/BaM
6https://github.com/BaM-tools/RBaM
7https://hydroapps.recover.inrae.fr/BaMit/
8https://www.ihdev.fr
9https://www.cnr.tm.fr/

10https://data.neonscience.org/

https://github.com/BaRatin-tools/BaRatinAGE
https://github.com/BaM-tools
https://github.com/BaM-tools/BaM
https://github.com/BaM-tools/RBaM
https://hydroapps.recover.inrae.fr/BaMit/
https://www.ihdev.fr
https://www.cnr.tm.fr/
https://data.neonscience.org/
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Figure 1.12: Logos for some operational tools: BaRatin, BaM! and BaMit!

Lastly, Matteo Darienzo implemented an R tool for the BAYesian Detection and Estimation

of Rating Shifts (BayDERS11) based on the methods he developed during his PhD thesis (see

section 1.3.2). It has been used in particular in the context of analyzing long hydrometric series

[Lang et al., 2022, Lucas et al., 2023]. Work aimed at further developing operational tools for

managing rating shifts is still ongoing.

1.5 Conclusion and perspectives

River streamflow is the most fundamental variable for surface hydrology, and streamflow time

series are the starting point of many hydrological studies. The stakes are many: managing

water resources and risks, evaluating water quality, assessing the impact of climate change and

human disturbances on hydrologic regimes, or more fundamentally understanding the water

balance and the associated fluxes in catchments. The need for reliable streamflow time series

has therefore long been recognized. Moreover, there is a growing demand, arising from both

data producers and downstream users, for a quantitative evaluation of the uncertainties involved

in the process of producing streamflow series.

In this context, my main contribution has been the development of methods to estimate

rating curves and to quantify the associated uncertainties. This includes the general framework

BaRatin, built on simple principles from hydraulics and Bayesian statistics, and more special-

ized developments to address specific issues such as complex rating curves or rating shifts. This

methodological work has been accompanied by operationally-oriented developments in the form

of open-source codes and software, along with continuous education training modules. I hope

this work contributed to demystifying uncertainty quantification and encouraging its routine

application in hydrometric services. This may contribute to a virtuous circle: quantitative

uncertainties enable data users to propagate them in subsequent analyses or decisions, which

in turn further encourages data producers to communicate uncertainties.

The time-varying vegetation model described in section 1.3.1 constitutes a practical solution

to the management of rating curves affected by vegetation, especially when completed with the

ability to use qualitative observations of the vegetation development state. However this model

is not used operationally yet. I believe this is not related to the model itself, but rather to the

lack of a user-friendly interface to specify and use it, which can certainly be improved. Attempts

at building dynamical models, where plant evolution would be predicted from environmental

11https://github.com/MatteoDarienzo/BayDERS

https://github.com/MatteoDarienzo/BayDERS
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forcings based on biological principles, have been more frustrating so far, but remain an area

worth further investigations [Perret et al., 2022].

Stage-Fall-Discharge (SFD) models proved to be efficient in operational cases where the

variable backwater influence is induced by a reservoir. SFD models were also trialed for tidal

rivers by Camenen et al. [2017], with mixed results. In particular, SFD models struggled to

reproduce the discharge dynamics with strong tidal gradients, or when complex hydraulics phe-

nomena such as floodplain overflow occur. The most promising research direction to overcome

these issues is to replace the SFD model by a 1D hydrodynamic model such as MAGE [Perret

et al., 2020a]. This represents a challenging but interesting test for BaM, which is supposed to

be able to host ‘any’ model. The integration of MAGE into BaM is still under active develop-

ment but a first successful attempt was performed recently [Mendez-Rios, 2022]. This opens an

important research avenue for the analysis of uncertainties affecting complex and distributed

hydrodynamics models, well beyond the specific case of tidal rivers.

From a methodological standpoint, two specific issues need to be further analyzed. The

first one is the treatment of systematic errors affecting some gauging methods. In particular,

video-based methods are able to provide high-frequency estimates of discharge during floods,

but all these estimates rely on the same coefficient representing the ratio between surface and

depth-averaged velocities. If this coefficient is wrong by e.g. 10%, all discharge estimates are

affected by the same 10% error. Dedicated analyses suggested that ignoring the systematic

nature of these errors was not an acceptable option, while a Monte-Carlo propagation approach

provided a viable alternative [Renard, 2018]. The latter approach remains to be integrated in

operational tools, with a RBaM-based workflow being currently developed by colleagues from

Tenevia12.

The second methodological challenge to be addressed is related to the assumption that

structural errors are independent. This is probably not a major issue for rating curve estimation

given that gaugings are generally far apart in time, but this is much more problematic when

propagating structural uncertainty to streamflow time series having a high temporal resolution.

In this case, structural errors are certainly not independent from one time step to the next.

Since the uncertainty induced by independent errors quickly decreases with temporal averaging,

unduly making an independence assumption may lead to an underestimation of the structural

uncertainty affecting e.g. daily or monthly streamflow series. This is particularly problematic

when structural uncertainty is large and dominates parametric uncertainty. Our practical

advice to users in this case is to try reducing structural uncertainty, e.g. by investigating if

rating shifts may have been missed or by trying alternative formulations of the rating curve.

More satisfying methodological solutions to this problem remain to be found. In theory, it

would be perfectly possible to use a time series model (e.g. of the ARMA family) to avoid

this independence assumption. In practice, however, identifying such a temporal dependence

structure is difficult because gaugings are performed too sporadically. Alternatives based on

the modeling of conditional bias (i.e. a non-zero mean expressed as a function of stage) could

12https://www.tenevia.com/

https://www.tenevia.com/
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be explored.

More generally, given the vitality of modern hydrometry and the regular introduction of new

(or sometimes newly-rediscovered) technologies to measure streamflow [Le Coz, 2017], I trust

my imaginative colleagues to never fall short of new challenges to tackle. The recent launch of

the SWOT altimetry satellite13 in December 2022 is worth a particular note. SWOT provides

snapshots of water levels in lakes and large rivers, which is of immediate interest to estimate

streamflow in large, poorly-gauged or trans-boundary catchments [Biancamaria et al., 2016,

Durand et al., 2016, 2023]. In places where a dense hydrometric network exists, SWOT is not

going to replace it [Fekete et al., 2015], but it might be able to bring interesting complementary

information [Le Coz et al., 2018]. In particular, SWOT snapshots provide water surface slopes

at a spatial resolution than can not be obtained with hydrometric stations, and which could

be exploited to calibrate hydrodynamic models which, in turn, could be used for hydrometric

purposes.

13https://swot.cnes.fr

https://swot.cnes.fr


Chapter 2

Uncertainty in and around Hydrologic

Models

Taken from: https://www.xkcd.com/2311/

2.1 Introduction: uncertainty in hydrologic modeling

Hydrologic models translate our understanding of the dominant processes and fluxes in the

catchment into a system of mathematical equations, generally accompanied by a computer

code that implements them. They can be viewed as scientific tools to formalize and evaluate

competing hypotheses on the catchment functioning [Clark et al., 2011]. They are also highly
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practice-oriented tools and are used in a myriad of applications: flood and drought forecasting

[Cloke et al., 2013], flood frequency analysis [Paquet et al., 2013], quantifying the response of

river streamflow to changes in the catchment or the climate [Vidal et al., 2016], etc. How-

ever, hydrologic models are, like any model, simplified and imperfect representations of the real

world, and they are hence uncertain. Hydrologic models also use uncertain forcing and calibra-

tion data. Understanding and quantifying these various sources of uncertainty is necessary to

properly evaluate hydrological functioning hypotheses and to make well-informed decisions.

2.1.1 Sources of uncertainty

Generally speaking, hydrologic modeling is affected by three main sources of uncertainty [Kucz-

era, 1982], as illustrated in Figure 2.1:

1. input uncertainty, typically due to sampling and measurement errors in estimates of

spatial or catchment-averaged precipitation;

2. response uncertainty, in particular rating curve errors affecting streamflow time series;

3. structural uncertainty, arising from the simplified representation of hydrological processes

in hydrologic models.

Moreover, most hydrologic models have parameters that are not directly measurable and

must hence be estimated from the observed data: this constitutes a fourth source of uncer-

tainty called parametric uncertainty [Kuczera, 1983, Kuczera and Parent, 1998]. Note that this

decomposition of uncertainty sources is in fact quite generic and may apply beyond the case of

hydrologic models [e.g. Nagel and Sudret, 2016].

Since streamflow (response) uncertainty has been treated in the previous chapter, the follow-

ing paragraphs review the other three uncertainty sources. Input uncertainty arises from errors

affecting the input variables of the model, typically precipitation, potential evapotranspiration

and temperature. Precipitation uncertainty may be the most important input uncertainty to

consider since precipitation is the main driver of streamflow response in many catchments.

Precipitation over the catchment (either averaged or spatialized) is often estimated using rain

gauges [Moulin et al., 2009] which are subject to various types of measurement errors, including

mechanical limitations, wind effects, evaporation losses, etc. [Molini et al., 2005]. Moreover,

precipitation is highly variable in both space and time: a small set of gauges may hence be

poorly representative of the entire areal rain field, inducing a large sampling uncertainty [Vil-

larini et al., 2008]. Weather radar provide a better representation of the spatial variability of

rainfall and hence can reduce sampling uncertainty, but this comes at the cost of introducing

new sources of uncertainty related to the radar data themselves and to their merging with rain

gauges data [Severino and Alpuim, 2005]. Standard errors in estimating an areal precipitation

may be of the order of 25% in unfavorable situations [Linsley and Kohler, 1988].

Even if there were no errors in the observed forcings and responses, the hydrologic model

would still fail to exactly reproduce the response due to the structural errors resulting from
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Figure 2.1: Model vs. reality: schematic representation of the three main error sources in
hydrologic modeling.

modeling approximations [Beven and Binley, 1992, Beven, 2005, Kuczera et al., 2006]. Such

approximations may arise from the use of conceptual stores representing complex 2-D or 3-D

features of the catchment in a highly simplified way, from the flux equations that are often

empirical in nature, or by ignored sub-grid variability [Andréassian et al., 2004, Ching et al.,

2006]. There latter problem is particularly pronounced for lumped or semi-lumped models

defined at the scale of catchments or sub-catchments: for given initial conditions and areal

rainfall, these models will always produce the same response, whereas in reality streamflow

may strongly depend on where the rain falls (saturated or unsaturated part of the catchment).

Parametric uncertainty refers to the inability to specify exact values for the model param-

eters. The first cause of this uncertainty is the finite length of the series used to estimate

parameters (a.k.a. ‘sampling uncertainty’ in statistical terminology). In general, sampling

uncertainty decreases with the length of calibration data [Mantovan and Todini, 2006], and

may hence tend to zero when long series are available. In practice, the rate of this uncer-

tainty decrease depends on the statistical model used for calibration, and may even be null

under specific assumptions (e.g. presence of unknown biases). Some authors have argued that

the declining contribution of parametric uncertainty to the total uncertainty is an undesirable

property [Beven et al., 2008]: the principle of equifinality under data and structural uncertain-

ties [Beven, 2006] suggests that many parameter sets should lead to indistinguishable model

performances, even with hypothetical infinite calibration series.

Note that there is a fundamental difference between data uncertainties (input and response)

and structural uncertainty. Data errors arise and exist independently from the hydrologic
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model, and their properties (e.g., means and variances of rainfall and streamflow errors) can

hence be estimated prior to model calibration. By contrast, structural uncertainty is an inherent

feature of the hydrologic model: it depends on the model formulation, on the specific catchment

it is applied to, on the spatial and temporal scale of the analysis, etc. It can therefore hardly

be estimated before model calibration.

2.1.2 Methods for uncertainty quantification

Characterizing the uncertainty in hydrologic models has attracted the attention of hydrologists

over many years. Numerous methods have been proposed for this purpose, including the Gen-

eralized Likelihood Uncertainty Estimation (GLUE) [Beven and Binley, 1992], instrumental-

variable methods [Young, 1998], frequentist approaches [Montanari and Brath, 2004], standard

Bayesian approaches [Kuczera and Parent, 1998, Krzysztofowicz, 2002, Feyen et al., 2007],

Bayesian Recursive Estimation [Thiemann et al., 2001], Bayesian hierarchical models [Kavetski

et al., 2006a,b, Kuczera et al., 2006, Huard and Mailhot, 2006, 2008], Bayesian model averaging

[Duan et al., 2007, Marshall et al., 2007] and others. In spite of this methodological diversity,

the implementation of uncertainty quantification methods still faces many challenges, both

practical and theoretical [Wagener and Gupta, 2005].

It is useful to distinguish between the quantification of predictive uncertainty and its decom-

position into elementary sources (input, response, structural). The former essentially entails

deriving a realistic statistical model to describe the residuals between simulated and observed

streamflow. Such a model typically needs to include components representing the correlated,

heteroscedastic, and non-Gaussian nature of residuals [Schoups and Vrugt, 2010, McInerney

et al., 2017]. Alternatively, the GLUE approach relies on performance metrics rather than

explicit probabilistic models to quantify parametric uncertainty and transform it into predic-

tive uncertainty [Beven and Binley, 1992]. However, this lumped residuals-based approach is

questionable because errors affecting model calibration and prediction are often different. For

instance, in a forecasting context, errors affecting the observed rainfalls used for calibration are

different from errors in forecasted rainfall. Likewise, the rating curve errors affecting residu-

als should not be propagated in the forecast because the aim is to predict the actual future

streamflow, not the observed one. The following drawbacks can also be mentioned:

1. parameters may be biased by unrecognized data errors, confounding regionalization at-

tempts;

2. the best strategy to reduce predictive uncertainty is difficult to identify without knowing

its main causes (improve the model or get better data?);

3. discriminating between competing model hypotheses is difficult because the precise causes

of poor model performance are unclear.

Uncertainty decomposition methods aim at quantifying the individual contributions of in-

put, response and structural uncertainties to the total predictive uncertainty [Moradkhani et al.,
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2005a, Kuczera et al., 2006, Huard and Mailhot, 2008]. Achieving this decomposition poses sig-

nificant challenges and requires developing dedicated statistical techniques. Most importantly,

decomposition approaches require specifying error models for each source of uncertainty. De-

veloping realistic error models and identifying the prior knowledge necessary to achieve a well-

posed inference are significant challenges, as reviewed next.

Regarding input uncertainty, Kavetski et al. [2006a,b] proposed a simple model based on

rainfall multipliers to account for the effect of rainfall errors on model calibration. Since the

spatialized or catchment-averaged precipitation used as input of the hydrologic model is often

based on some geostatistical analysis of rain gauge and/or radar data, prior information on the

amount of rainfall uncertainty can be derived from geostatistical approaches such as kriging

[Kuczera and Williams, 1992, Goovaerts, 2000, Leblois and Creutin, 2013, Delrieu et al., 2014]

and conditional simulation [Onibon et al., 2004, Clark and Slater, 2006, Gotzinger and Bar-

dossy, 2008, Vischel et al., 2009], or by analyzing dense rain gauge networks [Willems, 2001,

Villarini et al., 2008]. Regarding response uncertainty, the streamflow data used to calibrate

the hydrologic model generally comes from a hydrometric station and is therefore affected by

rating curves errors: models for describing such errors have been extensively discussed and

described in Chapter 1 and are therefore not repeated here.

Models for structural errors are arguably the most challenging: there is currently no agree-

ment on how best to describe them and several options are available. They can be roughly

classified as follows:

1. Exogenous treatment: structural errors are modeled as an (usually additive) streamflow

error term [Huard and Mailhot, 2008]. The use of independent and identically distributed

(iid) Gaussian errors represents the simplest case, but more complex models are needed

in general to account for autocorrelation, heteroscedasticity etc. This error term can be

combined with a second error term representing the uncertainty in streamflow data (this

is identical to the approach used in BaRatin, see Chapter 1 section 1.2.2)

2. Endogenous treatment: structural errors are represented by a stochastic component

within the hydrologic model. This can be achieved by perturbating internal model states

[Bras and Rodriguez-Iturbe, 1984, Moradkhani et al., 2005b], by making some model pa-

rameters stochastic [Kuczera et al., 2006, Reichert and Mieleitner, 2009] or by formulating

internal relationships within the model as a joint probability density function [Bulygina

and Gupta, 2009].

In addition to the approaches discussed above, alternatives that are not based on formal

probabilistic models have also been proposed [Beven and Binley, 1992, Jacquin and Shamseldin,

2007]. Lastly, Bayesian Model Averaging has also been used to generate structural uncertainty

from a collection of models [Duan et al., 2007, Marshall et al., 2007, Schöniger et al., 2014,

Valdez et al., 2022]. This complements, but does not replace, the characterization of the

structural uncertainty affecting one given model.
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Figure 2.2: Schematic of the Bayesian Total Error Analysis (BATEA) framework.

2.2 Developing the Bayesian Total Error Analysis frame-

work

My work revolving around uncertainties in hydrologic models started during an 18-month post-

doctoral position at the University of Newcastle (Australia) in the research team of George

Kuczera, who developed the Bayesian Total Error Analysis (BATEA) framework.

2.2.1 Overview of the Bayesian Total Error Analysis framework

The BATEA framework was developed to explicitly represent each source of uncertainty affect-

ing calibration and prediction of hydrologic models [Kavetski et al., 2006a,b, Kuczera et al.,

2006]. In a nutshell, it transforms the schematic of Figure 2.1 into a probabilistic hierarchical

model, with submodels for describing each type of error (Figure 2.2). BATEA therefore allows,

even requires, modelers to explicitly hypothesize, infer and evaluate assumptions regarding each

source of uncertainty, and generates model predictions accounting for all uncertainties included

in the analysis.

More formally, BATEA assembles the components described below. The hydrologic model

can be viewed as a function H that simulates the streamflow response Q̂t given parameters θ

and precipitation input R1:t:

Q̂t = H (R1:t,θ) (2.1)



2.2. DEVELOPING THE BAYESIAN TOTAL ERROR ANALYSIS FRAMEWORK 37

The time subscript reminds that for simulating responses at the tth time step, the whole

history of precipitation up to time t is needed, reflecting the dynamical nature of an hydro-

logic model. Moreover, the dependence on initial state conditions S0 and on input variables

other than precipitation (potential evaporation, temperature) is made implicit for simplifying

purposes. Finally, the notation in equation (2.1) is adapted to a lumped model rather than a

distributed one.

The input error component is a probabilistic model p(Rt|R̃t,Φ) relating true (Rt) and

observed (R̃t) precipitation, with Φ denoting the parameters of this model. Kavetski et al.

[2006a,b] proposed using rainfall multipliers to derive a possible rainfall error model as follows:

Rt = R̃t exp(φt); φt ∼ N (µR, σR)

⇐⇒ Rt ∼ LN (µR + log(R̃t), σR) (2.2)

Likewise, the response error component is a probabilistic model p(Q̃t|Q̂t,Ξ) relating ob-

served (Q̃t) and simulated (Q̂t) streamflow. The following model is the simplest possibility:

Q̃t = Q̂t + εt; εt ∼ N (0, σQ)

⇐⇒ Q̃t ∼ N (Q̂t, σQ) (2.3)

An original aspect of the BATEA framework is that it allows describing structural errors

by means of stochastic parameters. To achieve this, at least one component of the parameter

vector θ is allowed to vary in time according to some distribution [Kuczera et al., 2006]. For

instance, if a parameter λ corresponds to the maximum capacity of a model’s store, one may

assume that it changes in time according to:

λt ∼ LN (µΛ, σΛ) (2.4)

Note that equations (2.2) to (2.4) are just examples of possible error models. In particular,

the response error model (2.3) might be further developed to make σQ increase with streamflow

Q̂t, to include autocorrelation or variable transformation [Engeland et al., 2010], or to add

a second error term representing streamflow data errors (as done in BaRatin, see Chapter 1

section 1.2.2). Likewise, the stochastic parameter model (2.4) might describe an autocorrelated

stochastic process as done in Reichert and Mieleitner [2009].

Once these error models are defined, unknown quantities such as the parameters θ of the

hydrologic model and the parameters (Φ,Λ,Ξ) of the error models need to be inferred. Since

running the hydrologic model requires knowing the values taken by the stochastic parameter

λt and the true rainfall Rt (or equivalently, the rainfall multiplier φt, see Figure 2.2), these

two time series are treated as latent variables that also need to be inferred. This results in

a Bayesian hierarchical model which itself leads to the following posterior distribution, whose
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(a) (b)

Figure 2.3: Examples of post-processing tools. (a) Diagnostic qq-plot to test the normality of
a latent variable; (b) contributions of individual sources of uncertainty to the total predictive
uncertainty.

factorization closely follows the schematic shown in Figure 2.2:

p
(
R,Φ,θ,λ,Λ,Ξ|Q̃, R̃

)
∝

p

Q̃| R,θ,λ︸ ︷︷ ︸
allows computing Q̂

,Ξ


︸ ︷︷ ︸

Response error model

× p
(
R|R̃,Φ

)
︸ ︷︷ ︸

Input error model

× p (λ|Λ)︸ ︷︷ ︸
Stochastic parameter model

× p (Φ,θ,Λ,Ξ)︸ ︷︷ ︸
Prior

(2.5)

2.2.2 Specific developments

My first contribution to the development of BATEA was its implementation in the form of a

flexible and efficient code. More specific objectives were as follows [Renard et al., 2007]:

1. allowing rainfall errors and stochastic parameters to vary at the scale of storm epochs

rather than at each time step;

2. implementing pre-processing sensitivity analyses to determine which parameter(s) of the

hydrologic model should be made stochastic;

3. designing a code architecture that would allow building the BATEA model by simply

selecting error models and distributions from existing plug-in catalogs;

4. designing and implementing an efficient and robust MCMC strategy;

5. implementing post-processing tools to visualize posterior estimates, implement diagnos-

tics, perform predictions etc. (Figure 2.3).

A particular difficulty associated with BATEA is that, like many hierarchical models, it leads

to a high-dimensional inference. In principle, it is possible to drastically reduce dimensionality

by integrating out the latent variables, rather than conditioning on them. However, this merely
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replaces a high-dimensional sampling problem by a high-dimensional integration problem which

is, in general, not easier to solve. We evaluated a third alternative proposed by Ajami et al.

[2007], based on resampling a new realization of the latent variables at each model evaluation,

but we concluded that this approach did not allow solving the dimensionality issue [Renard

et al., 2009].

A dedicated MCMC algorithm was then implemented to explore the posterior distribution of

equation (2.5) [Kuczera et al., 2010a]. The standard Metropolis algorithm is not well suited to

such a high-dimensional posterior because it attempts to update the whole parameter vector at

once, which makes it fast but very difficult to tune. Instead, ‘Metropolis-within-Gibbs’ samplers

are commonly used in Bayesian hierarchical inference: they update the parameter vector one

component at a time and are hence much easier to tune because the jump distributions are

uni-dimensional. Moreover, the increase in computational cost is limited because in most

hierarchical models, a latent variable only affects a small subset of the data, so that updating

a single latent variable does not involve recomputing the whole likelihood - only a small part

of it. Unfortunately, this does not apply to dynamical models such as hydrologic models:

modifying, for instance, a rainfall multiplier φt will affect all simulated streamflow located in

the future with respect to t. Consequently, a Metropolis-within-Gibbs sampler accounting for

this memory involves many long re-runs of the hydrologic model, leading to a computational

cost that grows quadratically, and hence prohibitively, with the length N of calibration series.

We proposed a workaround that exploits the fact that this memory is decaying, so that only

re-running the model on a few future time steps provides an acceptable approximation, which

can be controlled by a user-defined tolerance. This ‘limited-memory’ trick is able to bring the

computational cost down to being almost linear with N , with negligible differences in terms of

posterior estimates compared to a ‘full-memory’ sampler (Figure 2.4).

Case studies were also performed in order to better understand how the model used to

describe data errors could influence parameter estimates. In Thyer et al. [2009], we compared

three competing hypotheses on the temporal structure of input errors: (1) daily rainfall multi-

pliers; (2) identical rainfall multipliers for time steps within the same storm event; (3) a single

rainfall multiplier for the whole period. The second is more parsimonious and less dependent

on the chosen time step than the first. The third corresponds to a constant bias and is prob-

ably too simplistic - the amount of rainfall error strongly depends on where the rain falls, and

hence varies from storm to storm. In addition, a response error model arising from a rating

curve analysis was also specified. Results showed that calibration schemes ignoring data un-

certainty or treating it too simplistically led to precise but very unstable parameter estimates

(Figure 2.5): very different values were obtained when changing the rainfall calibration data,

suggesting that the parameters were ‘fitting to rainfall errors’ to some extent. By contrast,

BATEA schemes that recognized rainfall uncertainty provided consistent, albeit more uncer-

tain, parameter estimate. This can roughly be described as being ‘vaguely correct rather than

precisely wrong’. Such uncertain but stable parameter estimates can be used more confidently

in regionalization studies or when the model is extrapolated or forced with forecasted or pro-
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(b)(a)

Figure 2.4: Evaluation of the ‘limited memory’ trick to speed up MCMC sampling. (a) CPU
time to generate 10,000 MCMC samples from BATEA posterior, as a function of the calibration
data length (2.0 GHz laptop CPU with 1 GB of RAM); (b) posterior distributions of the first
hydrologic model parameter estimated using different MCMC samplers(100,000 samples). Note
that differences between the limited-memory and the full-memory samplers are barely notice-
able, while a 1-epoch memory leads to a markedly different posterior distribution. Modified
from Kuczera et al. [2010a].

jected rainfall. Despite these encouraging results, this paper ended with a note of caution: we

found that the estimated amount of rainfall errors was unrealistically large, suggesting that the

inferred rainfall errors were compensating for the simplistic treatment of structural errors. Un-

derstanding such interactions between data and structural errors is important if a meaningful

uncertainty decomposition is to be achieved.

2.3 Interactions between data and structural uncertain-

ties

2.3.1 Diagnosing the non-identifiability of input and structural er-

rors

The first applications of the BATEA approach [Kavetski et al., 2006a,b, Thyer et al., 2009]

focused on the treatment of rainfall errors and lacked a separate characterization of structural

errors. The work by Kuczera et al. [2006] was the first to implement the full BATEA model

illustrated in Figure 2.2, including the use of stochastic parameters to characterize structural

errors. However, this study was based on maximum-posterior estimates of the parameters

and did not implement a full Bayesian treatment of the posterior distribution, including its

exploration through MCMC sampling. Attempts to achieve this latter approach proved to be

challenging: MCMC sampling systematically failed to converge when both input errors and

stochastic parameters were included. We investigated the reasons for this behavior through

several synthetic and real-life case studies [Renard et al., 2010, Kuczera et al., 2010b], and
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Figure 2.5: Boxplots of marginal posterior distributions of three GR4J parameters, depending
on the calibration setup. Labels on the y-axis have the form (calibration scheme) (rain gauge
used as input) (length of calibration period). SLS = ‘Standard Least Square’, iid Gaussian re-
sponse error model as given in equation (2.3); WLS = ‘Weighted Least Square’, heteroscedastic
Gaussian response error model arising from a rating curve analysis; ‘BATEA STORM’: WLS
+ stochastic rainfall errors acting at the scale of storm epochs; ‘BATEA DAILY’: WLS +
stochastic daily rainfall errors.

concluded that convergence failures had nothing to do with the efficiency of the MCMC samplers

we used. Instead, they were due to the intrinsic non-identifiability of input and structural errors,

which led to a ill-posed problem.

A very simple example is useful to better understand non-identifiability and its symptoms.

Consider the model Y ∼ N (θ1 + θ2, 1), and suppose that a sample of 20 values is observed,

with a mean approximately equal to 1. This sample provides information on the mean assumed

by the model, i.e. on θ1 + θ2, but it does not say anything about individual θ1 and θ2 values:

(θ1 = 0, θ2 = 1) is indistinguishable from (θ1 = −99, θ2 = 100). Figure 2.6(a) shows the

likelihood function, which is proportional to the posterior pdf when flat priors are used: it is

characterized by an infinite ridge elongated along the line θ1 + θ2 = 1. An attempt at applying

a MCMC sampler to this (improper) pdf leads to non-convergence (Figure 2.6(b)): the chains

for θ1 and θ2 diverge as they may walk indefinitely along the ridge with no information to favor

any particular region. This situation corresponds to a model that is non-identifiable from the

data, leading to a ill-posed problem [see Renard et al., 2010, for formal definitions].

Although extremely simple, the example above is of interest because it closely corresponds

to the symptoms we encountered in both synthetic and real-life case studies [Renard et al.,

2010, Kuczera et al., 2010b]. As an illustration, Figure 2.7 highlights near-perfect negative

correlations between latent variables for rainfall multipliers and stochastic parameters: each

correlated pair has a bivariate posterior pdf similar to the improper one shown in Figure 2.6(a).

MCMC sampling in such a case never converges. So in a nutshell, a key conclusion of these

studies was that decomposing the total uncertainty into its components is impossible based on
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Figure 2.6: Symptoms and cure for non-identifiability. (a) Posterior pdf associated with the
model Y ∼ N (θ1 + θ2, 1), using n = 20 observations generated from a N (1, 1) distribution
and flat priors. (b) MCMC sampling from the posterior in (a); (c) same as (a), but using an
informative prior distribution θ1 ∼ N (0.7, 0.15).

observed streamflow data alone: the discrepancy between observed and simulated streamflow

only provides information about total errors.

What are the available options to overcome non-identifiability and ill-posedness? Using

longer series does not solve the problem: the ‘infinite ridge’ aspect of Figure 2.6(a) remains

irrespective of sample size. Improving the MCMC sampler, although a legitimate first reaction

to non-convergence, is pointless: no sampler will be able to sample properly from a posterior

like the one shown in Figure 2.6(a). In fact, we even found that MCMC non-convergence was

a systematic symptom so that it should rather be used as a clear warning to go back to the

model and understand the reason for ill-posedness. This leaves the following options:

1. Reparameterizing: in the simple non-identifiability example, summing the two non-

convergent chains for θ1 and θ2 leads to a perfectly convergent chain for θ1 + θ2 (Fig-

ure 2.6(b)). This means that using a model parameterized in terms of η = θ1 + θ2 solves

non-identifiability, but at the cost of abandoning the decomposition objective, which is

not a satisfying solution.

2. Using prior information: in the simple non-identifiability example, using a prior informa-

tion on only one component leads to a well-posed posterior (Figure 2.6(c)). We similarly

found in case studies [Renard et al., 2010, Kuczera et al., 2010b] that providing precise

priors on the properties of rainfall errors (typically their mean and variance) led to a

much better-behaved posterior. Note, however, that this does not make rainfall uncer-

tainty identifiable from the data: the information rather comes from the prior, and its
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Figure 2.7: Illustration of the reason for the non-identifiability of input and structural errors
together: the figure shows posterior correlations between latent variables for rainfall multipliers
and stochastic parameters in a full BATEA model as schematized in Figure 2.2. Dark cells
near the diagonal highlight near-perfect correlations between rainfall multipliers and stochastic
parameters acting on the same time steps.

specification is hence of paramount importance.

3. Changing the treatment of structural errors: we tried to represent them through a dedi-

cated error term in the response error model (in addition to the streamflow data error),

rather than with stochastic parameters [Renard et al., 2010]. The resulting posterior was

indeed well-posed, but we found that rainfall uncertainty was strongly overestimated,

unless constrained by precise priors. In other words, what was labeled as ‘rainfall uncer-

tainty’ was in fact a mixture of rainfall and structural uncertainties, as already suspected

by Thyer et al. [2009].

Overall, the results presented in this section lead to a conclusion that ‘there is no free lunch

in hydrology ’ [Kuczera et al., 2010b]: providing precise priors on data uncertainty is an absolute

necessity if a meaningful decomposition of the total predictive uncertainty is to be achieved.

2.3.2 Ways forward

The uncertainty affecting the spatialized or catchment-averaged precipitation used as input of

the hydrologic model can be quantified by means of conditional simulations, as explored in

Renard et al. [2011] thanks to the rainfall simulator SAMPO developed by Etienne Leblois

[Leblois and Creutin, 2013]. Figure 2.8(a) illustrates the principle of this technique: after a

geostatistical model has been specified and estimated, several realizations of the rainfall fields

are generated. These realizations have the same values at rain gauges, but different values
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Figure 2.8: Use of rainfall conditional simulations in hydrologic modeling. (a) Three conditional
simulations on four consecutive hourly time steps, with identical values at rain gauges but dif-
ferent values in between. (b) Several realizations of the catchment-averaged daily precipitation
time series. (c) Comparison between prior rainfall uncertainty (estimated from conditional sim-
ulations before model calibration) and posterior rainfall uncertainty (estimated as part of model
calibration with BATEA). Note that for most time steps, the prior and posterior intervals are
similar.

in between rain gauges, thus representing the sampling uncertainty affecting spatial rainfall.

Each realization can be aggregated in space and time to provide one possible realization of the

rainfall series used as input of the hydrologic model (Figure 2.8(b)). The multiple realizations

can finally be used to specify a prior distribution of rainfall errors. Note that conditional

simulations hence provide information at each time step, not merely on the mean and variance

of rainfall errors.

A case study based on the Yzeron catchment (France) showed that the inclusion of this

information was sufficient to overcome the ill-posedness problems described in the previous

section: simultaneous estimation of rainfall multipliers and stochastic parameters (representing

structural errors) in BATEA was achieved with no MCMC convergence issue. This indicates

that the prior information provided by conditional simulations exerts a strong influence on the

inference (Figure 2.8(c)). By contrast, estimating the same ‘full’ BATEA model without prior

rainfall information led to non-convergent MCMC sampling. The simultaneous estimation of

rainfall multipliers and stochastic parameters allowed isolating the contributions of input and

structural errors to the total predictive uncertainty (Figure 2.9): in this particular case study,

it appeared to be dominated by structural errors. We also found that the ‘full’ BATEA model

yielded more reliable streamflow predictions than approaches that ignore or lump different

sources of uncertainty.

The work described in the previous paragraph represented an important step forward in

the inclusion of rainfall uncertainty in model calibration. However, the inclusion of streamflow

uncertainty still relied on an overly simplistic response error model that did not recognize the

partly systematic nature of rating curve errors. This shortcoming was an important motivation

to the development of the BaRatin method described in Chapter 1. Moreover, a collaboration

with Anna Sikorska, from the University of Zurich, allowed exploring the impact of parametric

and structural rating curve errors on the calibration of hydrologic models [Sikorska and Renard,
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Figure 2.9: Contributions of structural (a) and rainfall (b) uncertainties to the total predictive
uncertainty.

2017]. The basic idea behind this work was to couple the hydrologic model with the inverse

rating curve, leading to a ‘rainfall-runoff-stage’ model (Figure 2.10(a)). This coupled model

is parameterized with both hydrologic and rating curve parameters, and accounts for both

hydrologic and rating curve structural errors: this allows acknowledging the various sources of

uncertainty (coming from hydrologic and rating curve models) and assessing their contribution

to the total predictive uncertainty. Calibration is made in two steps: the rating curve is first

calibrated on gaugings with the BaRatin approach of Chapter 1. The rainfall-runoff-stage

model is then calibrated on the observed stage series, with the prior on rating curve parameters

(θRC and γ in Figure 2.10(a)) being defined as the BaRatin posterior of step 1.

A case study in the upper Ardèche catchment in France indicated that the structural uncer-

tainty of the hydrologic model largely dominated other uncertainty sources (Figure 2.10(b)). It

was also found that the inclusion of rating curve parametric uncertainty led to marked changes

in some parameters of the hydrologic model compared with calibration schemes ignoring it.

Some rating curve parameters were also markedly modified by the calibration of the rainfall-

runoff-stage model to the observed stage series (step 2). The extent to which the rating curve

was modified is hardly defensible (see inset in Figure 2.10(b)) and does not correspond to a

meaningful improvement of the rating curve in our eyes. Instead, it is a sign that the error

models we used do not convincingly weight the information brought by the gaugings and the

stage time series. A first direction to improve this is to avoid re-estimating the rating curve

during calibration stage 2: this can be achieved by means of a Monte-Carlo propagation ap-

proach, where the hydrologic model is estimated many times for many possible realizations of
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(a) (b)

←  calibration validation →

Figure 2.10: Uncertainty decomposition in a rainfall-runoff-stage model. (a) Coupling between
an hydrologic rainfall-runoff (RR) model and an inverse rating curve (RC) model. B represent
the structural errors of the RR model, E those of the RC model. (b) Total uncertainty in
the predicted stage, and decomposition into contributing sources. The top left inset shows
the rating curve estimated with gaugings (red), and the rating curve after calibration to the
observed stage time series (blue). Modified from Sikorska and Renard [2017].

the streamflow series (i.e. the BaRatin ‘spaghetti’ of section 1.2.3). The second approach is

to improve the error models. In particular, the structural error models of both the hydrologic

model and the rating curve assume independant Gaussian errors, which is probably too sim-

plistic (see discussion in section 2.5). Moreover, rainfall errors were completely ignored in this

case study, and this may have played a role as well.

Finally, a collaboration during the PhD work of David Wright [2017], from the University of

Adelaide, offered the opportunity to study and develop influence metrics that allow identifying

data points that have a disproportionate impact on model parameters, performance and/or pre-

dictions. Such metrics are widely used in regression, and we implemented some modifications to

make them applicable to nonlinear and dynamical hydrologic models. Moreover, further modi-

fications were also required to make them applicable to general objective functions derived from

posterior distributions, which are characterized by possible heteroscedasticity, autocorrelation,

non-normality and the use of prior information. The resulting Generalised Cook’s Distance

[Wright et al., 2019] was found to be a computationally cheap and reliable tool to identify

influential data in a wide variety of hydrological and environmental modeling problems. This

identification is useful not only to question the reliability of the data, but also to critically

evaluate some key assumptions made in the hydrologic and probabilistic models.
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2.4 Operational tools and applications

Given that the decomposition of predictive uncertainty still faces several unresolved challenges,

operational applications of the work described in this chapter are very few. The Australian

Bureau of Meteorology uses an operational version of BATEA for seasonal streamflow forecast1

[Tuteja et al., 2011], but it is a version distinct from the code described in section 2.2.2. More-

over, the operational BaM tool described in the previous chapter (see section 1.4) incorporates

code libraries and general ideas that were developed as part of the BATEA work described in

this chapter. BaM can hence be applied to hydrologic models and already includes the GR4J

model [Perrin et al., 2003]. Finally, we released as part of the BATEA development the RFor-

tran library2 to call R from FORTRAN code [Thyer et al., 2011], but development and support

have been stopped due to issues with the underlying COM3 technology.

2.5 Conclusion and perspectives

Hydrologic models are widely used for a variety of purposes, both scientific (understanding the

dominant processes at play in the catchment) and operational (flood and low flow forecast-

ing, water resources management, etc.). However, several sources of uncertainty affect their

estimation, testing and predictions: quantifying and accounting for these uncertainties is an

important research endeavor. This chapter described my contribution to the development of a

Bayesian Total Error Analysis approach. An important conclusion from this work is that the

rainfall–runoff record on its own is insufficient to decompose the total predictive uncertainty

into its constitutive sources. Stated in a more optimistic way, this means that the following

ingredients need to be gathered to achieve a meaningful decomposition of uncertainty:

1. An estimation of data uncertainties prior to model calibration (they exist independently

of the hydrologic model!);

2. Realistic error models describing data errors, both input (precipitation) and output

(streamflow) data;

3. Realistic error models describing structural errors.

The work presented in this chapter allowed to move forward on each of these three points,

but without ticking all three boxes together so far. Regarding the first point, we explored

specific tools to quantify data uncertainties: conditional simulations for rainfall uncertainty and

BaRatin for streamflow uncertainty. Both are mature approaches and provide viable solutions

to the estimation of data uncertainty, but they are certainly not the only ones and alternative

approaches exist and could be further evaluated. Regarding the second point, the description

1http://www.bom.gov.au/water/about/publications/document/dynamic_seasonal_streamflow_

forecasting.pdf
2https://code.google.com/archive/p/rfortran/
3https://en.wikipedia.org/wiki/Component_Object_Model

http://www.bom.gov.au/water/about/publications/document/dynamic_seasonal_streamflow_forecasting.pdf
http://www.bom.gov.au/water/about/publications/document/dynamic_seasonal_streamflow_forecasting.pdf
https://code.google.com/archive/p/rfortran/
https://en.wikipedia.org/wiki/Component_Object_Model
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of rainfall errors by means of a latent variable representing rainfall multipliers was found to

be a viable approach as long as it is associated with informative priors (typically derived from

conditional simulations). The search for an adequate streamflow error model in BATEA has

been less conclusive so far. Early applications of BATEA made an unrealistic assumption of

independent streamflow errors, which disregards the systematic errors induced by the rating

curve. The approach of calibrating the hydrologic model in stage space described in section 2.3.2

precisely aimed at addressing this shortcoming, and it certainly holds some promises. However,

the case study we performed also raised issues that need to be addressed, in particular regarding

the weighting of information brought by a few dozens of gaugings vs. a stage time series that

may comprise hundreds or thousands of values.

The biggest challenge to be addressed in my opinion is the derivation of realistic models for

structural errors. With BATEA we mostly focused on an internal representation by means of

stochastic parameters. We demonstrated that this is a viable approach as long as informative

priors on rainfall errors are available - otherwise the problem is ill-posed. Alternative internal

representations of structural errors could be evaluated, in particular the use of state (rather

than parameter) perturbations, as done in some data assimilation approaches [Moradkhani

et al., 2005a].

The external representation of structural errors, by means of a dedicated error term in the

response error model, should also be further appraised. The challenge in this case is to derive a

probabilistic model that properly describes the complex nature of structural errors, in particular

their heteroscedasticity, autocorrelation, non-normality [Schoups and Vrugt, 2010] and partly

systematic nature. The latter point is due to the fact that structural errors arise from model

deficits that will systematically manifest themselves for given inputs and initial conditions: this

leads structural errors to have a non-zero mean (a.k.a. a conditional bias) for given inputs and

initial conditions. Developing error models that explicitly account for such a conditional bias

is an important avenue for improvement in my opinion.

Finally, an important research perspective is the adaptation of the BATEA approach de-

scribed here for distributed or multi-scale hydrologic models [Braud et al., 2010, 2014], or even

other types of distributed models such as hydraulic models [Roux and Dartus, 2005, 2008]. This

raises many questions: how to spatialize model parameters? if a parameter is to be treated as

stochastic, how to induce stochasticity in a whole spatial field? how to regionalize the proper-

ties of structural errors in order to quantify uncertainty everywhere, not just where streamflow

calibration series are available? Beyond streamflow series, what other types of data can be used

to constrain the estimation problem? How to weight these different types of data that may

strongly differ in terms of sparsity, space-time resolution, quality and even nature?



Chapter 3

Hydrologic variability

Taken from: https://xkcd.com/2701

3.1 Introduction: hydrologic variability and probabilis-

tic models

The management of water resources and risks requires a good knowledge of the temporal

variability of hydrologic regimes, especially in the extreme domain. As an illustration, a dam

spillway is designed so that it can pass a T -year flood event without overtopping: this requires

estimating a quantile from the interannual distribution of streamflow extremes. In a climate

change context, the capacity of the spillway may need to be modified if future flood projections

suggest significant changes [Hirabayashi et al., 2013, Arnell and Gosling, 2014, Dankers et al.,

2014, Li et al., 2022]: this involves evaluating the time-varying distribution of floods. Moreover,

dam operation can benefit from seasonal streamflow forecasts (e.g. keeping the dam below its

level setpoint if higher-than-usual flows are forecasted): such forecasts arise from the conditional

49
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distribution of streamflow given some predictor [e.g. Sea Surface Temperature (SST), Lima and

Lall, 2010a,c]. Many applications also require understanding the spatial variability of hydrologic

extremes. For instance, large hydroelectricity companies, national water agencies, insurance

companies or international humanitarian institutions are interested in the spatial aspects of

flood and drought hazards [Wilhelmi and Wilhite, 2002, Uhlemann et al., 2010, Braman et al.,

2013, Ward et al., 2015, Coughlan de Perez et al., 2016]. Finally, some applications require the

joint description of several variables. For instance, renewable energy production depends on the

joint variability of wind, solar radiation and river streamflow [Engeland et al., 2017], while the

wildfire hazard results from drought, heat wave and high wind hazards [Barbero et al., 2014,

Sharples et al., 2016].

The situations described above are quite diversified but they share one common aspect: they

all require a probabilistic model to describe the distribution of the target hydrologic variable(s).

This distribution may be as simple as the interannual distribution at one given site, but it may

also vary in time, vary conditionally on some covariate, vary in space, be multi-variate or a

combination of those. The following sections provide an overview of the development of such

distributions in the literature.

3.1.1 Frequency analysis: estimating a marginal distribution

Frequency analysis (FA) refers to the set of methods used to estimate the nonexceedance prob-

ability (generally expressed as a return period) associated with a given streamflow value, or

inversely, the streamflow value associated with a given return period. It has many important

applications: inundation mapping for urban planning, natural disaster declaration, water us-

age restrictions, design of at-risk structures such as dams, levees, power plants, and many more

[Botto et al., 2017]. The most basic FA approach assumes that at a given site, data are indepen-

dent and identically distributed (iid) realizations from a distribution with unknown parameters.

Such a model therefore focuses on the marginal (a.k.a. interannual) distribution of data. The

choice of the distribution depends on the target hydrologic variable. It may be suggested

by official guidelines [Interagency Advisory Committee on Water Data, 1982], but it is also

sometimes guided by local usage or empirical adequacy. For extreme variables characterizing

floods and droughts, extreme value theory offers a strong theoretical foundation [Coles, 2001,

Katz et al., 2002, Naveau et al., 2005]. The Generalized Extreme Value (GEV) distribution

is hence often used for floods characterized with annual maxima variables [Martins and Ste-

dinger, 2000]. Likewise, the Generalized Pareto Distribution (GPD) is the natural distribution

for flood peaks above a high threshold [Rosbjerg, 1985, Lang et al., 1999, Mailhot et al., 2013].

Parameter estimation and uncertainty quantification can be achieved in many well-documented

ways [e.g. Interagency Advisory Committee on Water Data, 1982, Commonwealth of Australia,

2019, Ramachandra Rao and Hamed, 2019].

Put simply, FA hence corresponds to estimating the marginal distribution of the target

hydrologic variable in order to use its cumulative distribution function (cdf) or its quantile

function. But this apparent simplicity hides a genuine practical challenge: the sampling un-
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certainty affecting FA estimates is in general large, or even huge when high return periods

(T ≥ 100 years) are sought, which is the case for many applications. It follows that uncertainty

quantification is an integral part of the FA exercise [Coles et al., 2003]. Moreover, develop-

ing strategies to reduce this uncertainty has been an important focus in the research literature.

Three main directions can be considered for this purpose: temporal, causal or spatial expansion

of information [Merz and Bloschl, 2008a,b, Viglione et al., 2013]:

1. Temporal expansion is mostly based on the use of historical or paleoflood information that

may date back several centuries [e.g. Benito et al., 2004, Brázdil et al., 2006]. The typical

workflow involves reconstructing flood peaks using available information, and using them

in combination with systematic data from hydrometric stations. Specialized statistical

techniques are required to account for the censored nature of historical series [Stedinger

and Cohn, 1986, Naulet et al., 2005, Payrastre et al., 2011] and the large uncertainty

affecting flood peak reconstructions [Reis and Stedinger, 2005].

2. Causal expansion refers to deducing the distribution of floods from the distribution of

its main forcings [precipitation in particular, Eagleson, 1972, Fiorentino and Iacobellis,

2001, Sivapalan et al., 2005]. While earlier approaches attempted to achieve this in the

form of analytical formulas, more recent developments tend to use a hydrologic model

coupled to a rainfall generator to achieve this transformation by means of a large number

of simulations. In France, several methods widely used in the engineering practice are

based on this approach, in particular the GRADEX [Guillot and Duband, 1967] and its

successor the SCHADEX [Paquet et al., 2013] methods, or the SHYREG method [Arnaud

and Lavabre, 2002, Arnaud et al., 2016].

3. Spatial expansion refers to the joint use of data from several sites and will be discussed

in section 3.1.3.

3.1.2 Modeling variability in time

The assumption of identical distribution underlying the approaches described in the previous

section may be unrealistic because of some trend affecting the data [e.g. Nogaj et al., 2006,

Slater et al., 2021]. Alternatively, this assumption does not allow using external information

from climate covariates, for instance. To address these issues, a time-varying conditional distri-

bution can be obtained by assuming that the parameters vary as a function of some temporal

covariates. Time itself can be used as a covariate, resulting in a non-stationary distribution

[Perreault et al., 2000a,b]. Other typical covariates include large-scale climate information such

as global temperature [Westra et al., 2012] or climate indices [Steirou et al., 2019], synoptic-scale

information such as weather type [Garavaglia et al., 2010] or airflow descriptors [Maraun et al.,

2010], paleoclimate information [Devineni et al., 2013, Ho et al., 2015] or even non-climatic

information [Prosdocimi et al., 2015, Slater et al., 2019]. Note that these distributions may or

may not be stationary, depending on the stationarity of the covariates themselves.
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The use of covariate-based models to describe time variability is now a well established

approach, with generic tools available [e.g. Stasinopoulos and Rigby, 2007, Carpenter et al.,

2017], but it still faces several methodological challenges, as reviewed by Slater et al. [2020]. In

particular, the limited length of many station series induces a large sampling uncertainty and

hence limits the power to detect trends or covariate effects [Bertola et al., 2020]. To overcome

this limitation, the use of historical data in time-varying models has been explored [e.g. Machado

et al., 2015, Xiong et al., 2020], along with regionalization approaches, as described next.

3.1.3 Spatial models

It is sometimes necessary to analyze the variable of interest at multiple sites. In particular,

the spatial expansion of information mentioned in section 3.1.1 is based on the joint use of

data from several sites in an attempt to reduce estimation uncertainty. This is known as

Regional Frequency Analysis (RFA) in hydrology [Dalrymple, 1960, Cunnane, 1988, Bobée and

Rasmussen, 1995, Hosking and Wallis, 1997]. The basic principle is to assume that within an

homogeneous region, some parameters are the same for all sites (typically the shape parameter

of a GEV distribution or its coefficient of variation) while other are site-specific. The estimation

of regionally-constant parameters is hence informed by data from several sites, which should

reduce estimation uncertainty. Research on RFA methods has initially focused on the definition

of homogeneous regions [e.g. Burn, 1990] and on methods to estimate site-specific parameters

at ungauged locations [Stedinger and Tasker, 1985]. Covariate-based models have also been

used to describe the spatial variability of parameters by means of a regression with spatially-

varying covariates [Panthou et al., 2012]. Finally, hierarchical models have been introduced

as a general and flexible way to implement RFA schemes. The principle is to use a 2-level

model, where the first level describes the distribution of data and the second level describes

the spatial hyperdistribution of parameters, typically with a Gaussian spatial process which

may also include a regression with spatial covariates [Cooley et al., 2007, Dyrrdal et al., 2015].

Moreover, approaches to explicitly model inter-site data dependence have been proposed, based

on spatial copulas [Sang and Gelfand, 2010, Ghosh and Mallick, 2011, Bracken et al., 2016a] or

on max-stable processes for extremes [Padoan et al., 2010, Westra and Sisson, 2011, Blanchet

and Davison, 2011, Ribatet et al., 2012, Le et al., 2018].

Note that spatial models can also be combined with the approaches discussed in preceding

sections. In particular, when historical and systematic data are available at several nearby

stations, it is possible to use historical information within a RFA procedure [e.g. Jin and

Stedinger, 1989, Gaume et al., 2010, Nguyen et al., 2014], hence combining the strength of

spatial and temporal expansion of information. Alternatively, it is possible to apply the basic

regionalization idea to time-varying models, by making assumptions on the spatial variability

of parameters controlling the effect of temporal covariates. For instance, one may hypothesize

that a trend is identical for all stations within a region, or varies smoothly in space. The

resulting model produces distributions that vary in both space and time [Cunderlik and Burn,

2003, Aryal et al., 2009, Lima and Lall, 2010b, Gregersen et al., 2013, Panthou et al., 2013,
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Sun et al., 2015a, Steinschneider and Lall, 2015, Ossandon et al., 2021, Le Roux et al., 2021].

3.1.4 Modeling of several variables

Multivariate models can result from multiple types of variables [Zscheischler et al., 2018], rather

than multiple sites. Multi-variable models have also become a well-established approach, with

inter-variable dependence being typically described using copulas [Favre et al., 2004, Salvadori

and De Michele, 2004] or extreme-specific models [De Haan and De Ronde, 1998, Heffernan

and Tawn, 2004]. They have also been combined with other approaches: multi-variable time-

varying models have been proposed for drought management [Sarhadi et al., 2016] or dam safety

[Bracken et al., 2018]; multi-variable spatial models have been used to build stochastic weather

generators [Ailliot et al., 2015, Ahn, 2020]; ‘full’ multi-variable space-time models have even

been derived for studying air pollution [De Iaco, 2011] or merging rainfall and radar data [Sideris

et al., 2014], albeit within a Gaussian geostatistical framework that may be too restrictive for

extreme or discrete variables, for example.

3.2 Frequency analysis of hydrologic extremes

My contribution on the topic of hydrologic variability has revolved around the development of

probabilistic models to describe the space-time variability of one or several hydrologic variables,

with a particular focus on flood frequency analysis.

3.2.1 Local and regional frequency analysis models

It is useful to start this section by introducing the notation that will consistently be used

throughout the chapter. Let Y (s, t) denote the random variable of interest - for instance, annual

maximum streamflow - at time t and site s, and y(s, t) denote the corresponding observed value.

A probabilistic model can be viewed as an assumption on the distribution that generated these

observations. For instance, focusing on a single site, the basic frequency analysis model assumes

that y(s, t) are independent and identically distributed (iid) realizations from a distribution D
parameterized by a vector with C components θ = (θ1, . . . , θC):

Y (s, t) ∼ D (θ) (3.1)

Typically, for annual maxima:

Y (s, t) ∼ GEV (µ, σ, ξ) (3.2)

For most contributions described in this chapter, Bayesian inference was used for parameter

estimation and uncertainty analysis [Renard et al., 2013b]. Two contributions were made in the

field or regional frequency analysis (RFA). The first one addressed the question of accounting

for spatial inter-site dependence and illustrated the feasibility of using a Gaussian copula for
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Figure 3.1: Schematic of the hierarchical model proposed for regional frequency analysis. Re-
produced from Renard [2011].

this purpose [Renard and Lang, 2007]. The second one proposed a general framework for RFA

based on hierarchical modeling [Renard, 2011]. The originality of this work at the time was

that it underlined a common modeling framework for several works it was inspired from [Cooley

et al., 2007, Aryal et al., 2009, Lima and Lall, 2009, 2010b, among others], and it included an

explicit treatment of spatial dependence based on elliptical copulas. The description of spatial

variability in this framework can be described as follows (see also Figure 3.1):
Y (s, t) ∼ D (θ(s))

gc (θc(s)) = hc (x(s),βc) + εc(s), ∀c = 1 . . . C

(εc(s1), . . . , εc(sM)) ∼ GP (0,Σc(vc))

(3.3)

The first line of equation (3.3) states the assumed distribution of the data, with parameters

varying in space (but not in time). The second line is the spatial regression part of the model:

for each component of the parameter vector, the parameter value is derived from a regression

with spatially-varying covariates x(s) describing site or catchment properties (e.g., elevation,

distance to sea, catchment size). The regression function hc(., .) may be linear or more complex.

Also note that similar to generalized linear models [McCullagh and Nelder, 1989], the link

function gc is used to map the range of parameter θc to (−∞,+∞). For instance the logarithm

function can be used if θc > 0, or the logit function if θc ∈ (0, 1). Finally, the third line of

equation (3.3) states that the regression errors εc(s) are realizations from a zero-mean spatial

Gaussian process, with a covariance function parameterized by vc. Lines 2 and 3 essentially
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Figure 3.2: Estimation of the 100-year daily rainfall using a hierarchical model. The left panel
shows the raingauges location in Southern France, the right panel shows the map of estimated
quantiles (posterior median) based on a constant-mean (a) and an elevation-dependent (b)
Gaussian spatial process. Modified from Renard [2011].

correspond to the ‘external drift kriging’ geostatistical model embedded into the second level of

the hierarchical model. This allows interpolating between calibration sites and hence deriving

maps of estimates, as illustrated in Figure 3.2. Moreover, such a 2-level hierarchical model

avoids performing RFA estimation in two steps (local estimates first, then regression between

local estimates and site properties), which enables a seamless propagation of sampling and

regression uncertainties.

The ExtraFlo1 research project (2009-2013), led by Michel Lang, aimed at comparing the

main FA methods used in France for estimating extreme rainfall and floods - essentially, it was

an FA competition. This required defining the spirit and the rules of the game, which in turned

required addressing the following questions [Renard et al., 2013a]:

1. What is a good FA method? FA is a predictive exercise, not a curve-fitting one (is a dam

designed so that it can withstand upcoming floods, or so that it would have withstood

past floods?). Consequently, FA methods need to be judged on their predictive ability,

not their goodness-of-fit.

2. What strategies can be used to compare methods fairly? Strategies based on simulated

data are useful and handy since FA results can be compared against a known truth.

However, conclusions entirely depend on the simulation setup: how realistic is it? Is it

fair or might it favor specific types of methods? To avoid these questions, we opted for a

data-based comparison, which is by essence more realistic but creates challenges due to

the fact that the underlying truth is unknown.

3. How to deal with the limited length of existing series? Unless it is blatantly wrong, a 100-

year flood estimate cannot be falsified at a single site. However, repeating the evaluation

on many sites might be able to reveal shortcomings of the underlying estimation method.

1https://extraflo.inrae.fr

https://extraflo.inrae.fr
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4. How to accommodate a wide variety of methods? Split-sample schemes adapted to local,

regional or model-based FA methods were defined, so that methods could all be compared

based on exactly the same validation data.

5. What criteria can be used? We defined criteria to judge the reliability of estimated

quantiles based on validation data from many sites.

6. How to compare not only estimates but also their uncertainty? We proposed to inte-

grate uncertainties into a predictive distribution, that can then be compared using the

previously-defined strategy.

The project’s results yielded interesting insights into the performance of methods used oper-

ationally [Kochanek et al., 2014, Lang et al., 2014, Neppel et al., 2014]. For floods in particular,

two methods dominated their competitors in terms of predictive performances, namely the local

version of the SHYPRE continuous simulation method and the mixed local+regional estima-

tion of a GEV distribution. The Gumbel distribution is still widely used in the operational

practice but the results demonstrated that it underestimates flood quantiles in Mediterranean

catchments. On the other hand, using a locally-estimated GEV distribution and ignoring its

uncertainty is not recommended either, because the difficulty in estimating the shape param-

eter results in frequent predictive failures. Interestingly, the predictive distribution is able to

solve most of these failures, and it has been used in subsequent flood studies [Alliau et al.,

2015]. Finally, all the purely regional methods displayed a quite poor reliability, suggesting

that prediction in completely ungauged catchments remains a challenge.

Finally, all analyses discussed so far in this section were based on streamflow time series,

but the associated uncertainty has been ignored. This might appear surprising considering

that an entire chapter was devoted to this topic (Chapter 1). The impact of data uncertainty

on low-, medium- or high-flow frequency analyses was investigated by Horner et al. [2016] by

means of a Monte-Carlo propagation of data and sampling uncertainties. In a nutshell, the

results of this study suggested that sampling uncertainty is by far the main contributor to the

uncertainty around flow quantiles for floods and medium flows, at least with the typical sample

sizes currently available (∼30-60 years). By contrast, the contribution of data uncertainty is

much more noticeable for low flow frequency analyses.

3.2.2 Using historical data

The use of historical data requires a specific statistical treatment to account for the censored

nature of the historical flood sample and the large uncertainty around the reconstructed flood

peak discharges. The Bayesian method we developed in Neppel et al. [2010] contributes to a

more realistic characterization of the latter by distinguishing between independent errors (typ-

ically resulting from imperfectly-known water levels) and systematic errors (resulting from the

imperfect rating curves used to reconstruct peak flows). Figure 3.3(b) illustrates a historical

flood dataset consisting of a mixture of points y(t) and intervals [l(t);u(t)], with the latter
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corresponding to floods for which the water level reached at the peak is poorly known. Impor-

tantly, Figure 3.3(b) disregards the fact that all discharge values (points, intervals but also the

perception threshold q0) have been obtained by means of rating curves. For ancient data, these

rating curves have not been established at hydrometric stations as described in Chapter 1, but

rather with a hydraulic model affected by large and non-negligible uncertainties (in particular

in terms of bathymetry and friction). To account for this, Neppel et al. [2010] introduced sys-

tematic multiplicative errors γk: all discharges related to the kth rating curve may be affected

by the same multiplicative error γk. If Ỹ (t) denotes the unknown true discharge, this can be

formalized as:

Ỹ (t) = γkY (t) (3.4)

A value γk = 1.2 hence means that the true discharge values are systematically 20% higher

that the ‘observed’ ones shown in Figure 3.3(b) during the whole period of validity of the kth

rating curve. Prior distributions can be specified for each term γk to represent the possible

range of under/overestimation, typically based on a sensitivity analysis of the hydraulic model.

Priors for recent γk will hence tend to be concentrated around 1, while priors for ancient γk

will be less precise.

The objective is to estimate the distribution of the unknown true discharge. Under a

GEV assumption Ỹ (t) ∼ GEV (µ, σ, ξ), the likelihood associated with the observed dataset

(composed of the perception threshold, point and interval data) is as follows:

p(q0,y, l,u|µ, σ, ξ,γ) =
K∏
k=1

[FGEV (q0|µ/γk, σ/γk, ξ)]nk ×∏
t∈Pk

fGEV (y(t)|µ/γk, σ/γk, ξ)×

∏
t∈Ik

FGEV (u(t)|µ/γk, σ/γk, ξ)− FGEV (l(t)|µ/γk, σ/γk, ξ)
u(t)− l(t)

(3.5)

The first line of equation 3.5 corresponds to the nk below-threshold values within the period

of validity of the kth rating curve. The second and third lines correspond to point and interval

data, respectively, within the period of validity of the kth rating curve. Note that systematic

errors γk affect all three terms.

Figure 3.3(c) illustrates the quantile curve resulting from the application of this Bayesian

approach to the data shown in Figure 3.3(b), and assesses how estimates vary with the analyzed

period. A more thorough analysis suggested that when systematic errors are taken into account,

the final uncertainty in estimated quantiles does not necessarily decrease when the analysis

period increases [Lang et al., 2010]. The method was also subsequently applied to a case study

in New Zealand by Griffiths et al. [2017], and also to other case studies performed by operational

services in France (see section 3.5).

The four sub-catchments shown in Figure 3.3(a) were also used as part of the PhD work
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(a)

(b)

(c)

Figure 3.3: Historical case studies in the Gardons catchments. (a) Location of four sub-
catchments of the Gard River where historical data are available; (b) historical dataset for
the Anduze sub-catchment (the horizontal line is the perception threshold); (c) corresponding
quantile curves and 90% uncertainty intervals obtained using the whole period 1741–2005 (thick
black lines) or the systematic period 1892–2005 only (thin gray lines). Modified from Neppel
et al. [2010].

of Anne Sabourin [2013] to develop a multivariate joint model for analyzing floods at all four

sites. The objective was twofold: mixing regional estimation and the use of historical data,

and studying how inter-site dependence evolves for very large floods. Results first indicated

that approaches that either use historical floods or perform regional estimation or both lead to

similar estimates. By contrast, a local estimation ignoring historical floods leads to markedly

different estimates: this illustrates the benefit of extending the at-site sample using either

historical or regional information or both to improve the robustness of estimated quantiles.

Moreover, the availability of exceptionally large historical floods in several nearby catchments

allowed demonstrating the existence of significant asymptotic dependence, calling for adapted

multivariate statistical models [Sabourin and Renard, 2015].

More recently, we started to investigate the use of long stage records for frequency analy-

sis, in particular during the PhD work of Mathieu Lucas [2023]. The motivation behind this

work is the existence of several long, multi-century daily stage series in hydrometric archives,

that are currently not used. The historical context is quite different from the one discussed

up to now: historical information does not take the form of a censored sample of flood peak

discharge, but rather of a systematic daily stage series. The challenge to address is therefore to

build a chain of uncertainty estimation methods to move from the stage series to a discharge

series that can be used for frequency analysis. This chain should account for many sources

of uncertainties: uncertainty in stage values that were recorded once a day at a fixed time by

observers, hence potentially missing flood peaks; uncertainty in reconstructing a whole history



3.3. MODELING VARIABILITY IN TIME 59

of rating curves based on limited information and gaugings; uncertainty in correctly detecting

rating shifts; uncertainty in estimating the frequency analysis distribution. Figure 3.4(a) illus-

trates the reconstruction of a more-than-200-year-long streamflow series for the Rhône River

at Beaucaire, and highlights the highly variable uncertainty around this series [from about

30% during the XIXth Century to 5% in the last decades, Lucas et al., 2023]. Figure 3.4(b)

shows the resulting quantile curve and its uncertainty. In this particular case, streamflow and

sampling uncertainties contribute roughly equally to the final uncertainty affecting high flood

quantiles. A similar analysis has been initiated for the Rhine River [Lang et al., 2022], and

others could follow (e.g. the Garonne River). This work contributes to giving a second life to

this rich limnimetric heritage.

3.3 Modeling variability in time

3.3.1 Trend detection

Determining the impact of climate change on hydrologic regimes is an important endeavor

that attracted a lot of attention in the scientific literature. It may be addressed in a variety

of ways, but one of the facets of this question it to determine if changes can be detected in

observed streamflow series. This was the main topic of my PhD thesis [Renard, 2006]. More

specifically, my PhD work addressed the following questions: how to detect changes in hydro-

climatic series? What are the observed changes affecting hydrologic regimes, and in particular

floods and droughts, in France?

The first question regarding the methodology for detecting trends was addressed at two

spatial scales. At the local scale, many existing at-site tests for change were compared by

simulations, leading to a selection diagram identifying the most suitable test given the properties

of the target variable [Renard et al., 2006c]. At the regional scale, two aspects were studied:

field significance and regional consistency [Renard et al., 2008]. The former aspect arises from

the fact that when a test is repeated on many sites, some amount of false detection is bound to

occur. Field significance tests therefore aim at evaluating the H0 hypothesis: ‘data from ALL

sites are stationary’, given the number of sites and the local significance level. Several existing

methods were compared, and the False Discovery Rate approach of Benjamini and Hochberg

[1995] was found to be both easily applicable and efficient. Regional consistency, on the other

hand, aims at assessing whether trends are consistent within a homogeneous hydro-climatic

region. A specific method was developed to test the hypothesis that, after normalization of all

local series, an identical trend is affecting all sites. This method accounts for the existence of

spatial dependence.

These local and regional testing procedures were then applied to a number of hydrologic

variables describing several facets of floods, droughts and mean flows for nearly 200 hydrometric

stations in France. These stations were selected on the basis of several requirements including

the absence of a significant direct human influence (dam, water withdrawal, etc.). This dataset

of ‘near-natural’ stations was updated several times in subsequent years [Giuntoli et al., 2012,
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Figure 3.4: The Rhône River at Beaucaire, 1816-2020. (a) Reconstructed series of annual
maximum discharge (bottom) and associated relative uncertainties associated with three sources
of error (top); (b) quantile curve and associated uncertainties. Modified from Lucas et al. [2023].
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(b)(a)

Figure 3.5: Two examples of analyses where significant trends were detected. (a) Drought
duration in France, 1968-2008 [Giuntoli et al., 2013]; (b) Start of snowmelt flows in the Alps,
1961-2006 [Bard et al., 2015]. Color indicates the change direction (blue = decrease, red =
increase), crosses denote non-significant changes.

2013] and has been made freely available through international databases [Hall et al., 2015] such

as the GRDC2. Overall, no generalized change was found at the national scale on the basis of

at-site tests and field significance assessment. Homogeneous hydro-climatic regions were also

defined, and for most of them the regional consistency test did not reveal consistent trends.

There were, however, three exceptions: in the northeast flood peaks were found to increase;

in the Pyrenees high and low flows showed decreasing trends; in the Alps, earlier snowmelt-

related floods were detected, along with less severe drought and increasing runoff due to glacier

melting.

Throughout the years I contributed to several trend analyses as summarized in Table 3.1.

It is difficult to shortly summarize the results given that these studies differed in the target

variables, the spatial scale of analysis and the underlying objectives. However, a few common

threads emerged. Significant changes were generally detected in catchments strongly influenced

by snow (Figure 3.5(b) for instance). This can be explained by the fact that temperature is

a major driver for such catchments, and temperature changes are strong and widespread. At

the opposite, flood changes were very few, which is consistent with the literature and may be

explained by the diversity and complexity of flood-generating mechanisms [e.g. Sharma et al.,

2018]. Clear patterns of change were also sometimes found for low flow variables (Figure 3.5(a)

for instance), but in many cases these patterns turned out to be highly sensitive to the analyzed

period, suggesting that multidecadal variability might play a role.

3.3.2 Conditional modeling

Modeling time-varying distributions is a natural follow-up to the analyses described in the

previous section: it may be used to describe a trend or the effect of some climate covariate

2https://www.bafg.de/GRDC/EN/Home/homepage_node.html

https://www.bafg.de/GRDC/EN/Home/homepage_node.html


62 CHAPTER 3. HYDROLOGIC VARIABILITY

R
eferen

ces
F

low
C

om
p

on
en

t
S
p
atial

E
x
ten

t
P

ecu
liarities

an
d

key
fi
n
d
in

gs

G
aléa
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within a framework that allows making probabilistic statements and hence goes beyond trend

detection. The most basic approach to build a time-varying probability model is to assume that

data are realizations from a given distribution D (e.g. Gumbel, GEV, etc.) whose parameters

vary in time [Renard et al., 2006b, 2013b]:

Y (t) ∼ D (θ(t)) (3.6)

The temporal variations of parameter θ(t) can be described by setting up, for each compo-

nent c of the parameter vector, a regression with time-varying covariates x(t) (Figure 3.6(a)):

gc (θc(t)) = hc (x(t),βc) (3.7)

Notation is similar to the one used in section 3.2.1 for a spatial regression: gc is the link

function used to map the range of parameter θc to (−∞,+∞). hc(., .) is the regression function

and βc its parameters that need to be estimated. Bayesian inference is performed which allows

including some prior knowledge and using Bayesian model averaging of multiple candidate

models [Renard et al., 2006b, 2013b].

While quite simple, the approach embodied in equation (3.7) is flexible and allows covering

a variety of situations. The regression might just be a constant for a time-invariant parame-

ter, or take the form of a linear trend or a step change or a more complex structure [Renard

et al., 2006b]. The time-varying covariate x(t) may be time itself, or climate indices such as

ENSO/IPO [Westra et al., 2015]. Finally, changes may affect any parameter of the distribution,

which in particular allows evaluating changes in variability and not just in mean. This was

investigated during the PhD work of Maleki Badjana [2018], who analyzed trends in streamflow

and rainfall variables within the Kara River catchment in West Africa. A variety of distribu-

tions was used depending on the target variable, with trends affecting both location and scale

parameters. For some variables, trends in variability were found to be more noticeable than

trends in mean [Figure 3.7, Badjana et al., 2017].

In spite of this flexibility, the local approach presented here is limited by the strong sampling

uncertainty that results from a single-site analysis, thus restricting the ability to identify time-

varying components. As previously with frequency analysis (section 3.2.1) or trend detection

(section 3.3.1), a natural approach to address this limitation is to move to a regional scale.

3.4 Modeling variability in space and time

3.4.1 Space-time probabilistic models

When multiple sites are analyzed together, the parameters of the parent distribution may vary

in both space and time:

Y (s, t) ∼ D (θ(s, t)) (3.8)
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Figure 3.6: Schematic of time-varying models. (a) local model; (b) regional model.

Figure 3.7: Annual rainfall time series at three stations and estimated trends expressed on
rainfall quantiles. The green, blue and red solid lines represent 0.1, 0.5 and 0.9 quantiles
respectively. Dotted lines represent 95% posterior intervals. Reproduced from Badjana et al.
[2017].
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A simple strategy to describe the space-time variability of parameters is to use the time-

varying model of section 3.3.2 (Figure 3.6(a)) at each site, and assume that some parameters are

constant across sites, while others are site-specific. This strategy was applied to a time-varying

GEV model for annual maximum streamflow in Renard et al. [2006a], with the trend and the

shape parameters µ1 and ξ being treated as spatially constant:

Y (s, t) ∼ GEV (µ0(s)(1 + µ1t), σ(s), ξ) (3.9)

Such a model is of interest to obtain a precise estimation of parameters that are typically

difficult to estimate locally, but it is affected by two limitations. First, the assumption of con-

stant parameters is quite strong and may be unrealistic in large regions. Second, the existence

of spatial dependence needs to be accounted for.

During his PhD thesis, Xun Sun [2013] therefore defined a more complete framework for

building space-time models. The basic idea was to merge the time-varying model of section 3.3.2

(Figure 3.6(a)) and the regionalization approach of section 3.2.1 (Figure 3.1), leading to the

space-time modeling framework schematized in Figure 3.6(b). This framework first describes

temporal variability or trends by means of a regression with time-varying covariates, and then

describes how the covariates effects vary in space with a spatial hierarchical model. Going back

to the simple GEV model above, this framework would allow for instance that the trend varies

as a function of the site elevation and/or stochastically in space. Moreover, the framework

includes a description of spatial dependence based on elliptical copulas. This module was

carefully implemented to allow for missing values, which are unavoidable in regional datasets

where data availability varies between sites.

This framework was used to build a model describing the influence of ENSO on precipitation

extremes. The model was first developed at a small regional scale, using 16 raingauges located

in Southeast Queensland, Australia [Sun et al., 2014]. This case study allowed setting up the

nonlinear regression model and demonstrated the interest of regionalizing, with uncertainties

around quantile estimates being divided by a factor of two (Figure 3.8(a)). A similar study

was then performed at the global scale, by repeatedly applying the regional model on ‘regions’

defined as 5 × 5 degrees cells [Sun et al., 2015b]. The effect of ENSO was found to vary in

space and between seasons, with the strongest effect generally occuring in boreal winter (DJF,

Figure 3.8(b)). Importantly, the effect of ENSO on extreme precipitation was found to be

asymmetric, with most parts of the world experiencing a significant effect only for a single

ENSO phase (El Niño or La Niña).

3.4.2 Hidden Climate Indices models

The approach described in the previous section allows modeling temporal variability by means

of known time-varying covariates. Standard climate indices (SCIs) such as the Southern Oscil-

lation Index (SOI), the North Atlantic Oscillation (NAO) index and many others3 are typically

3https://climatedataguide.ucar.edu/climate-data/overview-climate-indices

https://climatedataguide.ucar.edu/climate-data/overview-climate-indices
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(b)  DJF, 0.99-quantile, Strong La Niña (SOI=20) vs. Neutral phase(SOI=0) (a) DJF, 0.99-quantile
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Figure 3.8: (a) Summer maximum daily rainfall at one site in Southeast Queensland plotted
against the Southern Oscillation Index (SOI), and corresponding 0.99-quantile estimated with
local and regional models. Gray areas represent 90% credibility intervals; (b) effect of La
Niña on 0.99 precipitation quantile during the DJF season. Grey dots denote cells with too
few stations to perform a regional analysis, yellow dots denote dry regions with frequent zero
precipitations during DJF. Modified from Sun et al. [2014, 2015b].

chosen for this purpose. However, identifying relevant SCIs in France proved to be difficult:

relationships with floods or rainfall extremes were for the most part non significant, while re-

lationships with droughts were at best moderate [Giuntoli et al., 2013]. However, relationships

with the frequency of weather patterns specifically derived for France were stronger [Garavaglia

et al., 2011, Giuntoli et al., 2013]. This motivated the need for a different approach: instead of

relying on standard climate indices, which are essentially predefined time series summarizing

atmospheric or oceanic space-time fields, we proposed to treat the time-varying covariates as

unknown temporal latent variables that need to be inferred from the target data. In other

words, we proposed to uncover the hidden climate indices (HCIs) that govern the temporal

variability of the target data.

The development of the HCI modeling framework was made in several steps. The first one

was implemented during a 6-month research visit at the Water Center of Columbia University

(US). This first model started with the space-and-time-varying distribution of equation (3.8),

and further assumed that a single component of the parameter vector θ varies in time as follows

[Renard and Lall, 2014]:

g (θ(s, t)) = λ(s)(1 + τ(t)) (3.10)

In this equation, λ(s) can be interpreted as the ‘normal’ parameter value at site s, and

τ(t) is the deviation from this value at time t: τ(t) = +0.2, for instance, means that the

parameter is 20% above normal. Note that this formulation hence implies that the relative

effect of τ(t) is the same on all sites. Importantly, τ(t) is treated as an unknown time series

and is therefore estimated from the data. This first HCI model was applied to 16 gauging

stations in Mediterranean France (Figure 3.9(a)). The target variable was the number of flood

events recorded at each station during the autumn season (OND), modeled with a Poisson
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(b)

(c)(a)

Figure 3.9: First application of a Hidden Climate Index (HCI) model. (a) Location of the
gauging stations used in the case study; (b) estimated HCI (boxplots represent the posterior
distribution, the line and points represent the modal estimate); (c) predictive distribution of
the number of floods for site 5, conditional on the observed geopotential height anomalies for
the years 1975, 1992, and 2000. Triangles represent the observed number of floods. Modified
from Renard and Lall [2014].

distribution. Figure 3.9(b) shows that the HCI τ(t) could be estimated quite precisely. In

addition, this HCI could be related to specific spatial patterns of atmospheric pressure in the

North Atlantic, which could be used to predict the distribution of the number of floods from

geopotential heights anomalies (Figure 3.9(c)).

This first model made strong assumptions (a single HCI leading to a spatially constant

relative effect) which restricted its application to fairly small regions. This was addressed

during a 2-year research visit at the University of Adelaide (Australia) as part of the HEGS

project4 (Hydrologic Extremes at the Global Scale). Renard and Thyer [2019] first enabled

the use of several HCIs with spatially-varying effects, but within the restrictive context of

occurrence 0/1 data modeled with a Bernoulli distribution:Y (s, t) ∼ B (θ(s, t))

logit (θ(s, t)) = λ0(s) + λ1(s)τ1(t) + · · ·+ λK(s)τK(t)
(3.11)

Estimating parameters in equation (3.11) requires imposing identifiability constraints. An

easy glimpse into this problem can be obtained by remarking that multiplying λk(s) and dividing

4https://globxblog.github.io/hegs

https://globxblog.github.io/hegs


68 CHAPTER 3. HYDROLOGIC VARIABILITY

τk(t) by the same number does not change anything to equation (3.11). Consequently, each

HCI time series τk(t) is constrained to have mean 0 and standard deviation 1. In addition, a

stepwise inference is adopted, i.e. the model is first estimated with a single component, then

the second component is estimated conditionally on the previously-estimated component 1, etc.

Finally, a spatial Gaussian process is used to model HCI spatial effects λk(s), in the spirit of

the hierarchical models described in the previous sections (Figure 3.1 and Figure 3.6(b)).

The formulation of the model is completed by assuming that all Y (s, t) are independent,

conditionally on the values taken by the temporal HCIs τ and their spatial effects λ. Note that

this is not equivalent to assuming space-time independence: nearby sites similarly affected by

the same HCIs will have similar temporal variations, i.e. they will show inter-site dependence.

From this standpoint, the use of a common set of HCIs to describe temporal variability in a

set of stations can even be viewed as an indirect approach to model spatial dependence. This

indirect treatment is of great practical interest for the following reasons:

1. the treatment of missing values is straightforward, which is a major advantage for highly

irregular station-based datasets.

2. discrete variables can easily be handled, which offers advantages over copula-based ap-

proaches for which specific difficulties arise with discrete variables [e.g. non-uniqueness,

non-identifiability, see Genest and Nešlehová, 2007, Faugeras, 2017].

Several synthetic and real-life case studies were conducted to study the properties of this

multi-HCI model [Renard and Thyer, 2019]. The first conclusion was that estimating several

HCIs and their effects from a multi-site dataset of flood occurrences was feasible and not prone

to overfitting when the number of sites is large. A case study in France (Figure 3.10) allowed

identifying several HCIs that did not correspond to any preexisting climate index, but that

were nonetheless linked with specific spatial patterns in atmospheric variables, making them

interpretable in terms of climate variability and opening the way for predictive applications. A

case study in Australia showed that the first estimated HCI was strongly correlated with the

NINO4 index, indicating that the model correctly identified the ENSO-related climate drivers

of floods in this area.

The full generalization of this model was finally described by Renard et al. [2021]. In

particular, this general framework enables the use of any user-specified distribution. It can also

be used in a multi-variable case, where several distinct distributions are needed to model several

variables [François et al., 2014]. Formally, let Yv(s, t) denote the random variable representing

variable v (= 1, . . . , V ) at time t and site s. The assumptions made when building an HCI

model are illustrated in Figure 3.11 and start by the data model:

Yv(s, t) ∼ Dv (θv(s, t)) (3.12)

The distribution Dv is variable-specific. For instance if Y1 denotes an annual number of

flood events and Y2 denotes an annual average flow, then it would be sensible to use the Poisson

distribution for D1 and the lognormal distribution for D2. The parameter vector θv(s, t) is also
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Figure 3.10: Three Hidden Climate Indices (HCIs; τ1, τ2 and τ3) and their effects (λ1, λ2 and
λ3) identified from flood occurrence data in France. The increasing uncertainty as one moves
back in time is due to the decreasing data availability. Reproduced from Renard and Thyer
[2019].

variable-specific. Each component θv,c of the parameter vector is allowed to vary in space and

time as follows (box 2 in Figure 3.11):

gv,c (θv,c(s, t)) = λ0,v,c(s) + λ1,v,c(s)τ1(t) + · · ·+ λK,v,c(s)τK(t) (3.13)

This is very similar to the previous equation (3.11), except that the link function gv,c and

the spatial HCI effects λk,v,c depend on the variable v. Note, however, that the temporal HCIs

τk are assumed to be the same for all variables. The motivation is that using a common set of

HCIs for all variables can induce inter-variable dependence, in the same way as it can induce

spatial dependence as previously discussed.

The formulation of the model is completed by assuming that each spatial HCI effect λk and

temporal HCI τk is a realization from a spatial or temporal Gaussian process (boxes 3 and 4

in Figure 3.11). Non-identifiability is handled as previously by assuming that each HCI time

series τk(t) has mean 0 and standard deviation 1 and by performing stepwise inference. Finally,

full conditional independence is assumed.

Three case studies were used to evaluate the HCI modeling framework. The first one

focused on ‘hot-and-dry’, fire-prone summer conditions in Southeast Australia. In this study,

three physical variables (temperature, precipitation and streamflow) were measured on three

distinct station networks, with varying data availability and representing hundreds of sites

in total (Figure 3.12(a)). Four statistical variables were defined from these times series: the
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Figure 3.11: Schematic of the hidden climate indices (HCI) modeling framework. Reproduced
from [Renard et al., 2021].
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number (Tn) and maximum intensity (Tx) of heatwaves, the dry duration (Pd, % of days

during the summer with near-zero precipitation) and the drought duration (Qd, % of days

with streamflow being below a low-flow threshold). The joint modeling of these four variables

is challenging because, apart from the highly variable data availability, it includes continuous

(Tx), discrete (Tn) and even mixed continuous+discrete variables (Pd and Qd, which may

both reach values of 0% and 100% with a non-zero probability). The HCI model set up for

this case study used Generalized Pareto, Poisson and censored Gaussian distributions for each

variable type. Figure 3.12(b) illustrates some of the HCIs that were identified. The first HCI

has a positive effect on all four variables over the whole region, and hence describes the general

‘hot-and-dryness’ of each year. In contrast, the third HCI has a positive effect on temperature

variables but a small effect on dry and drought durations: this can hence be interpreted as a

‘temperature-only’ HCI, and the increasing trend that can be discerned in the recent decades as

a warming signal. Finally, Figure 3.12(c) illustrates the time-varying distributions arising from

the HCI model, and how the co-variability in this distributions creates dependence, both inter-

site and inter-variable in this case since the two variables Pd and Qd are measured at distinct

locations. Finally, an interesting aspect of Figure 3.12(c) is that predictions can be made for

the variable Qd even during no-data periods: this is because the HCIs have been estimated

during the whole study period, and since they are common to all variables, equation (3.13) can

be used to estimate Qd even before the availability of any streamflow data. This represents a

transfer of information between variables that may have interesting applications.

The second case study aimed at taking advantage of this ability to transfer information

between variables [Renard, 2023]. More precisely, it was based on the joint analysis of annual

maxima at hydrometric stations and flood marks at sites (Figure 3.13), the latter being recorded

in the recent national database ‘repères de crues’5. The idea was to use flood marks, available

over the period 1705–2015, to reconstruct flood probabilities at stations over this whole long

period, i.e. well before the stations even existed. The usual historical approach based on using

the flood marks to reconstruct peak discharge using hydraulic modeling (see section 3.2.2) is

difficult to apply to such a large number of stations. We therefore opted for a simpler HCI-

based approach, preserving the original localization of flood marks at sites and their original

nature as time series of occurrence/non-occurrences. The following model was used:
Q(s, t) ∼ GEV

(
eµ0(s) ×

(
1 +

K∑
k=1

µk(s)τk(t)

)
, eµ0(s) × eγ(s), ξ(s)

)
O(r, t) ∼ B

(
logit−1

(
λ0(r) +

K∑
k=1

λk(r)τk(t)

)) (3.14)

The idea behind this model is the same as in the previous case study: using the same set

of HCIs τk(t) to model the temporal variability of flood peaks at stations Q(s, t) and flood

marks at sites O(r, t) is an indirect way to model dependence between them, and can be used

as a device to transfer information. Results demonstrated that flood marks allow estimating

the time-varying probability of exceeding some high discharge threshold at stations during the

5https://www.reperesdecrues.developpement-durable.gouv.fr/

https://www.reperesdecrues.developpement-durable.gouv.fr/
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Figure 3.13: Two sources of data to characterize floods in France: (a) Annual maxima at
hydrometric stations, 1904–2015; (b) Flood marks at flood sites, 1705–2015. Reproduced from
Renard [2023]. For a sonified animation of this case study, see https://vimeo.com/815008124

whole period 1705–2015. The resulting probability maps, illustrated in Figure 3.14, provide

quantitative information on the extent and spatial structure of ancient floods.

The third and last application of the HCI framework aimed at studying heavy precipitation

and floods at the global scale [Renard et al., 2023], using HadEX [Donat et al., 2013, Dunn

et al., 2020] and GSIM [Do et al., 2018, Gudmundsson et al., 2018] datasets (Figure 3.15). The

analysis was based on the joint modeling of seasonal maxima of streamflow Q(s, t) and precip-

itation P (s, t) at more than 3,000 stations over a 100-year period. All series were transformed

into nonexcedance probabilities using locally-estimated GEV distributions, making the Beta

distribution a natural choice for modeling the resulting data belonging to the interval (0; 1):


P (s, t) ∼ Beta (µP (s, t) , νP (s, t)) ;Q (s, t) ∼ Beta (µQ (s, t) , νQ (s, t))

logit (µP (s, t)) = ζµP (s) +
K∑
k=1

λk,P (s)τk(t) +
K∑
k=1

θk,P (s)δk(t)

logit (µQ (s, t)) = ζµQ(s) +
K∑
k=1

λk,Q(s)τk(t) +
K∑
k=1

θk,Q(s)ωk(t)

(3.15a)

In this equation, the distribution Beta(µ, ν) is parameterized so that µ is the mean and ν is

a concentration parameter. As previously, a common set of HCIs τk(t) is used to describe the

co-variability between P and Q. However, unlike in previous case studies, we also use specific

HCIs δk(t) and ωk(t) to describe the variability that is unique to P and Q. Estimation of this

model allowed identifying strong and wide-ranging trends in precipitation-specific HCIs, while

trends affecting flood-specific HCIs appeared weaker and with much more localized effects.

Another probabilistic model was also derived as part of this case study to link HCIs and

large-scale atmospheric variables (pressure, wind, temperature) from the long 20CRv3 reanal-

https://vimeo.com/815008124
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Figure 3.14: Probability maps estimated by transferring information from flood marks sites to
hydrometric stations. For each selected year, the map on the left shows occurrences of flood
marks and site status, and the map on the right shows the probability of exceeding a 10-year
flood at stations. Reproduced from Renard [2023].

Figure 3.15: Location of stations used to study heavy precipitation (P, left) and floods (Q,
right) at the global scale, and evolution of the number of available stations with time. For a
sonified animation of this case study, see https://vimeo.com/802751683.

https://vimeo.com/802751683
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Figure 3.16: Reconstruction of flood probabilities since 1836. Top left: Hidden Climate Index
(HCI) reconstructed from atmospheric data (pressure, wind, temperature) for the first com-
ponent (SON season). The red line corresponds to the HCI estimated from floods and heavy
precipitation data, each thin black line is a reconstruction based on one member of the 20CRv3
reanalysis. Maps show examples of reconstructed probability maps at the global scale or for
specific regions.

ysis (1836-2015). This allowed reconstructing HCIs since 1836, and in turn estimating the

probability of occurrence of floods and heavy precipitation at the global scale. This 180-year

reconstruction is illustrated in Figure 3.16 with a few flood probability maps that highlight

flood hot-spots and hot-moments in the distant past, well before the establishment of perennial

monitoring networks.

3.5 Operational tools and applications

Several codes developed as part of the work described in this chapter have been released and are

used either operationally or by research colleagues (Figure 3.17). The R package HydroPortail-

Stats6 [Renard, 2022] performs the statistical computations proposed by the HydroPortail7, the

French online portal to access data from the national hydrometric network. A 2-day training

session is organized annually to explain and discuss these computations [Renard, 2017b]. The

main task of this package is to estimate a user-selected distribution and the associated uncer-

tainty using a data sample extracted from the HydroPortail database. A few other utilities are

available, e.g. to implement basic trend or step-change tests. Several methods are available

for parameter estimation (moments, L-moments, maximum likelihood, Bayesian) and uncer-

6https://github.com/benRenard/HydroPortailStats
7https://hydro.eaufrance.fr/

https://github.com/benRenard/HydroPortailStats
https://hydro.eaufrance.fr/
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tainty quantification (bootstrap, parametric bootstrap, asymptotic Gaussian approximation,

Bayesian), but preliminary analyses suggested that the combination L-moments + parametric

boostrap was by far the most robust [Renard, 2016a,b]: its is hence used as the default choice

in the HydroPortail. Note that the package can also be used off-line as a standard R package,

which is in my eyes of great interest for hydrometry or hydrology services who wish to integrate

it within their own workflow. As an illustration, the DREAL PACA8 (regional environment

agency in Southeastern France) is using the Bayesian estimation utility to constrain the GEV

distribution for floods with some order-of-magnitude prior information for the shape parameter;

the DREAL IdF9 (Paris Region) is building a user interface around it; the DREAL Normandy10

has integrated it in its statistical analyses. Finally, another R package called disTRIMbution11

[Renard, 2021a] has been developed to estimate trimmed distributions, i.e. distributions having

either reachable or unreachable bounds, but it is not yet used operationally as far as I know.

Before its integration into the HydroPortailStats R package, the Bayesian estimation of a

distribution had been implemented in a tool called JBay12, composed of a FORTRAN-based

executable embedded in a Java user interface. This software was primarily used as part of a

continuous education module on uncertainty quantification [Renard et al., 2017], but it has also

been used for operational purposes, in particular for updating flood quantiles estimates in the

Rhône catchment13 [Bard and Lang, 2018]. A related code called HBay14 was devoted to the

integration of historical data, following the method developed in Neppel et al. [2010]. It was

used for a New Zealand case study by Griffiths et al. [2017], and in a more operational context

it has been used by colleagues from Cerema15 in collaboration with DREAL ARA16 (center-east

France) to develop a systematic workflow for integrating historical information [Fromental and

Bonnifait, 2018]. Note however that JBay and HBay will not be further developed in the future

because they are superseded by the tool presented in the next paragraph.

STooDs17 [probabilistic models for data varying in Space, Time or other Dimensions, Re-

nard, 2021d] is a FORTRAN-based computational engine that can be considered as a synthesis

of most developments described in this chapter. Indeed, STooDs allows building and esti-

mating a wide range of models: models based on any distribution (continuous or discrete),

multi-variable models, models varying in space, time or even in other dimensions (e.g. duration

for rainfall), models using covariates, latent variable models, etc. It allows using censored his-

torical data and enforcing identifiability constraints that are needed in Hidden Climate Indices

models for instance. It comes with the R package RSTooDs18 [Renard, 2021c] to help the user

8https://www.paca.developpement-durable.gouv.fr/
9https://www.drieat.ile-de-france.developpement-durable.gouv.fr/

10https://www.normandie.developpement-durable.gouv.fr/
11https://github.com/benRenard/disTRIMbution
12https://forge.irstea.fr/projects/thebay/news
13https://www.plan-rhone.fr/publications-131/actualisation-de-lhydrologie-des-crues-du-rhone-1865.

html
14https://forge.irstea.fr/projects/thebay/files
15https://www.cerema.fr/
16https://www.auvergne-rhone-alpes.developpement-durable.gouv.fr/
17https://github.com/STooDs-tools/STooDs
18https://github.com/STooDs-tools/RSTooDs

https://www.paca.developpement-durable.gouv.fr/
https://www.drieat.ile-de-france.developpement-durable.gouv.fr/
https://www.normandie.developpement-durable.gouv.fr/
https://github.com/benRenard/disTRIMbution
https://forge.irstea.fr/projects/thebay/news
https://www.plan-rhone.fr/publications-131/actualisation-de-lhydrologie-des-crues-du-rhone-1865.html
https://www.plan-rhone.fr/publications-131/actualisation-de-lhydrologie-des-crues-du-rhone-1865.html
https://forge.irstea.fr/projects/thebay/files
https://www.cerema.fr/
https://www.auvergne-rhone-alpes.developpement-durable.gouv.fr/
https://github.com/STooDs-tools/STooDs
https://github.com/STooDs-tools/RSTooDs
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Figure 3.17: Logos for some operational tools: HydroPortailStats, STooDs and JBay.

build the model and handle computations. The development of this tool is fairly recent and

it has hence mostly been used in a research context so far: all HCI case studies described in

section 3.4.2 rely on STooDs, and it has also been used by colleagues Michel Lang and Mathieu

Lucas for analyzing long historical series [Lang et al., 2022, Lucas, 2023, Lucas et al., 2023].

3.6 Conclusions and perspectives

Describing the space-time variability of hydrologic variables with a probabilistic model is at

the core of many important applications such as water resources management, flood and low

flow frequency analysis, seasonal forecasting and more. My main contribution to this topic

has been the development of models of increasing flexibility (and hence complexity) to move

from the local to the regional scale, to include historical information, to enable the modeling

of trends of other forms of temporal variability, and to enable the joint use of several variables.

An underlying and continuous motivation behind these developments has been to make the

best possible use of available data.

Several avenues for future works can be identified in terms of applications. First, a low-flow

equivalent of the global floods and heavy precipitation analysis [Renard et al., 2023] could be

implemented, building on a recent global low-flow trend analysis I participated to [Hodgkins

et al., 2023]. This analysis would also be an opportunity to integrate data relevant to the wildfire

hazard, which is highly related to droughts and for which new collaborations are emerging.

More generally, the latest case studies I have performed point toward several directions I will

follow in the future: the integration of several sources of information (multi-variable space-

time station datasets, historical information, reanalyses or climate model outputs) and the

move toward global-scale analyses. The latter direction will require participating to initiatives

aimed at collating and documenting global streamflow datasets, and in particular to identify

near-natural vs. heavily influenced catchments (see e.g. the ROBIN19 initiative).

From a more methodological standpoint, I plan to explore in further depth the similarities

existing between HCI models and several approaches from the statistical and machine learning

literature. To start with, HCI models can be viewed as a continuous extension of Hidden

19https://www.ceh.ac.uk/our-science/projects/robin

https://www.ceh.ac.uk/our-science/projects/robin
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Markov models: indeed, the temporal latent variable takes the form of a categorical variable

describing the unknown climate state in the latter, with a hyperdistribution controlling the

probability of transition between states [Thyer and Kuczera, 2003a,b, Bracken et al., 2016b].

Moreover, the potential of HCI models to indirectly represent dependence is highlighted by

similarities with standard methods such as Principal Component Analysis (PCA) or Canonical

Correlation Analysis (CCA), which have been re-interpreted as Gaussian models with unknown

latent variables [Tipping and Bishop, 1999, Bach and Jordan, 2005, Klami et al., 2013]. In

the case of a space-time dataset, these latent variables play a similar role to the HCIs (but

within a restrictive Gaussian framework). Alternatively, many machine learning methods can

be interpreted as latent variable models [Murphy, 2022, 2023]. Finally, the max-stable spatial

model of Reich and Shaby [2012] also uses time-varying latent variables to describe spatial

dependence between extreme data. Understanding all these approaches under the unifying

view of probabilistic models may highlight important connections between seemingly unrelated

methods. In turn, this may help identifying practical solutions found by others (e.g. the

reparameterization proposed by Pourzanjani et al. [2020] to solve the non-identifiability of

latent processes) or suggest new directions (e.g. using the HCI approach to derive spatial

models for extremes).

Finally, several important challenges I shied away from are worth mentioning in this con-

cluding section. The first one is the quantification, or even the modeling, of human influences.

The work described in this chapter (with the exception of a small participation to the work of

Dudley et al. [2019]) was indeed entirely based on selections of ‘near-natural’ stations where

human influences could simply be discarded. I followed this admittedly not fully satisfying

approach because I felt the modeling of human influences was too complex and case-specific to

be applicable - for the moment at least - to the large-scale analyses I was heading toward. I also

did not address the trend attribution problem, which is the logical step after trend detection.

The first explanation is that in many cases trend analyses on hydrologic extremes revealed

no strong trend, but it is a false excuse because attributing the absence of trends is actually a

valid and interesting question20. A more fundamental reason is the complexity of the attribution

process: it relies on a counterfactual world build by means of Global Climate Models (GCMs)

and hydrologic models, and where anthropogenic greenhouse gas emissions have been removed

[Hannart et al., 2016]. The conclusions of chapter 2 highlight many open questions on the quan-

tification of uncertainties in hydrologic models that I feel should be addressed first. Moreover,

the use of GCMs is also challenging due to the their poor ability to reproduce key variables

for hydrology, especially extremes. Bias-correction is a possible approach to circumvent (but

not solve) this difficulty. Another approach is to weight GCMs according to their ability to

reproduce these key variables. We worked with Jean-Philippe Vidal on such an approach as

part of the COMPLEX research project21, but the papers were left unpublished [Renard and

Vidal, 2017a,b]. For similar reasons, my participation to projects aimed at future projections

of hydrologic variables has been very limited [Thirel et al., 2019].

20“If precipitation extremes are increasing, why aren’t floods?” [Sharma et al., 2018]
21https://cordis.europa.eu/project/id/308601

https://cordis.europa.eu/project/id/308601
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Summary of my research activity

My scientific activity revolves around the development of probabilistic models enabling the

production of uncertain hydrologic predictions. This activity stretches from applied statistics

to hydrology, but with a clear asymmetry: the former provides the toolbox while the latter is

the objective. As a consequence, nearly all articles I contributed to are in hydro-climatology

journals (with two exceptions in entomology [Sauvion et al., 2005] and civil engineering [Gia-

comini et al., 2009]), while I am still to co-author my first paper in a statistics journal. This

79
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simply reflects the strategy I follow to build my contribution: using well-established statistical

methods and adapting them to address hydrological questions.

My activity can be structured in three parts. The first one aims at developing methods

to quantify the uncertainty affecting streamflow series, which form the raw material used in

many hydrologic analyses (Chapter 1). The main outcome of this part is the development

of the BaRatin method to estimate and propagate rating curve uncertainties. It is by now a

mature tool that is largely used operationally and that provides, I hope, a satisfying solution

to estimate and use simple stage-discharge rating curves and their uncertainties. The problem,

however, is that such simple rating curves are the exception rather than the rule. To start with,

virtually all stations on natural rivers are subject to rating shifts that need to be detected and

managed. The PhD works of Darienzo [2020] and Mansanarez [2016] offered solutions to these

challenges, but they still need to be streamlined and integrated into operational tools (this is

work in progress). Moreover, complex rating curves are often required in situations where stage

alone is not sufficient to determine discharge. Significant progresses have also been achieved

in this area with the development of models accounting for hydraulic hysteresis, backwater or

vegetation influences, while other cases like tide-influenced stations remain challenging. Work

is still ongoing to either improve the operational transfer or further develop complex rating

curve models. The BaM framework plays an important part in this work: it has indeed been

developed with the double objective of being operational and of allowing other researchers to

easily test new models. Indeed, the infrastructure for parameter estimation and uncertainty

quantification built into BaM allows focusing on the model formulation rather than on technical

difficulties.

The second part of my research activity is to develop a framework to quantify the different

sources of uncertainty (input, response and structural) that affect hydrologic models (Chap-

ter 2). This work is largely unfinished and constitutes the number one challenge I wish to tackle

in the upcoming years. A key conclusion we achieved is that decomposing the total predictive

uncertainty into its constitutive sources requires estimating data uncertainties prior to model

calibration. Moreover, the accuracy of this decomposition entirely relies on the accuracy of the

specified data uncertainties. This is one of the reasons why the quantification of streamflow

uncertainty (Chapter 1) took such a prominent role in my research activity. Having achieved

acceptable solutions for data uncertainties allows turning the attention to the remaining grand

challenge, which is the treatment of structural uncertainty. Defining structural errors as the dif-

ference between true and simulated responses leads to characterizing structural uncertainty with

an additive response error term. This is arguably the most natural approach but it is affected by

the difficulty of deriving a realistic error model. More precisely, the partly systematic nature of

structural errors needs to be recognized by means of a non-zero mean representing conditional

bias. How to model this conditional bias, and with which conditioning variables (streamflow

itself? inputs? state variables?), remain open questions. Model-internal approaches based

on parameter or state stochastic perturbations represent a promising alternative because even

perturbations arising from a very simple probabilistic model transit through the dynamic hy-
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drologic model and may result in highly-structured perturbations in the streamflow response.

However, many open questions also remain regarding the choice of the parameter or state to

be made stochastic, the temporal scale at which this stochasticity operates, etc. Finally, the

adaptation of the work made so far to the case of distributed models will represent an impor-

tant part of my future research activity. This is in line with the activity of the research team

RHAX22 (hydro-meteorological risks) I joined in June 2022 and which develops the SMASH23

distributed model. This will also allow considering other types of model such as hydraulic

models, with possible applications in hydrometry or flood risk management, just to name a

few. This new direction raises many questions in terms of modeling the various sources of

uncertainty in a spatially distributed context, and may require resorting to specific techniques

such as surrogate models [Sudret, 2008, Rouzies et al., 2023] to make computations feasible.

The third part of my research activity is the development of probabilistic models to de-

scribe the space-time variability of potentially several hydrologic variables (Chapter 3). This

very general description hides a variety of more specific purposes or topics that provided the

original motivation for many of the developed models: flood frequency analysis, regionalization,

integration of historical data, detecting and modeling trends or climate effects in hydrologic

variables, etc. A general modeling framework progressively emerged from these elementary

developments. In particular, the PhD work of Sun [2013] allowed integrating techniques for

time-varying models and for regionalization into a unique space-time modeling framework. The

development of Hidden Climate Indices models and of the associated computing code STooDs

went one step further by also enabling the joint modeling of several variables and the use of

censored data. This provides a flexible platform to integrate several sources of information such

as stations datasets, historical information, climate model outputs, etc. In the upcoming years,

I wish to focus on applications of this platform rather than on new methodological develop-

ments. A first possible direction would be to pursue the analysis of multi-century daily stage

series that exist in French hydrometric archives. These series cannot be transformed into a

streamflow times series of homogeneous quality and therefore need to be analyzed with specific

methods, along the lines of the PhD work of Lucas [2023]. Hopefully, such analyses may high-

light the value of these long series when treated with adequate methods. In the longer term,

the joint analysis of long series, flood marks and hydroclimatic reconstructions may shed more

light on the historical variability of hydrologic regimes in France over the last few centuries.

A second direction I wish to pursue is the analysis of low flows at the global scale, in relation

with other variables that drive the wildfire hazard (humidity, temperature, etc.). The research

unit RECOVER24 (risks, ecosystems, vulnerability, environment, resilience) I now belong to

includes a research team specialized on the wildfire risk25, which offers promising collaboration

opportunities.

22https://www6.paca.inrae.fr/recover/Qui-sommes-nous/Nos-equipes/RHAX
23https://smash.recover.inrae.fr/
24https://www6.paca.inrae.fr/recover
25https://www6.paca.inrae.fr/recover/Qui-sommes-nous/Nos-equipes/EMR

https://www6.paca.inrae.fr/recover/Qui-sommes-nous/Nos-equipes/RHAX
https://smash.recover.inrae.fr/
https://www6.paca.inrae.fr/recover
https://www6.paca.inrae.fr/recover/Qui-sommes-nous/Nos-equipes/EMR
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Miscellaneous methodological thoughts

The word cloud of this document shown at the beginning of the chapter is of interest because

it offers an opportunity to reflect on some important aspects of the work described in this

manuscript.

The most frequently used word is model, which should come at no surprise since the whole

manuscript revolves around the search of models that could realistically have generated the

data. Unlike rating curve or hydrologic models, probabilistic models are not deterministic,

but despite this fundamental difference the underlying strategies are remarkably similar: (i)

formulate hypotheses and formalize them as mathematical equations; (ii) estimate the model

based on available data; (iii) assess the adequacy of the initial hypotheses, and if needed (iv)

modify them by going back to point (i) to formulate alternative hypotheses. Once hypotheses

are considered satisfying, the model can be used to make uncertain predictions.

During discussions with colleagues, I found it interesting that different people were more

comfortable with either a model view or an algorithmic view of statistical methods. I am

definitely of the first kind: I am lost without a model, and I struggle to develop intuitions on

algorithms - but this seems to be nothing more than a personal preference. This is probably

the reason why I have not made an heavy use of methods from the machine learning (ML) or

artificial intelligence (AI) communities so far, as I generally came across algorithmic-oriented

presentations of their functioning (and this is also the way they were taught at the University).

However, the books by Murphy [2022, 2023] show that there is a probabilistic model (often a

Gaussian one) behind virtually all ML/AI methods. This is quite enlightening to me, and it

is also an important vector of innovation - for instance, knowing the Gaussian model behind

Principal Component Analysis makes it easier to adapt it to 0/1 occurrence data by switching

to a Bernoulli model. In fact I may have used ML/AI methods without even knowing it: for

instance, the HCI approach of Chapter 3 can be interpreted as a non-Gaussian encoder-decoder

in ML terms.

The word data only comes in tenth position, but combined with words like streamflow and

series it goes back to the top rank. Again, this is not surprising for an hydrology manuscript

heavily based on applied statistics - a different outcome would have been a disgrace! An

important part of my work has been to quantify uncertainties in streamflow data, but in doing so

my aim has been to serve them, not to raise suspicion. Quantifying uncertainty allows escaping

this binary view that a data is either good enough to make the cut or has to be dropped. It

also places responsibility to account for this uncertainty on the modeler or the decision-maker,

not implicitly on the data producer. In my opinion, uncertainty is not a problem - ignoring it

is.

Another motivation underpinning the probabilistic models developed in this manuscript

is to adapt them to the properties of available data, and not the other way around. For

instance, restricting trend analyses to a common period is a strategy I’ve never come to terms

with (although I did implement it): it represents a huge waste of data mostly justified by

the inadequacy of a linear trend model. Likewise, gridded datasets make the modeler’s life



GENERAL CONCLUSION 83

easier, but in some cases I feel that going back to station data and adapting the model to

its idiosyncrasies (missing values, varying availability, irregular spatial sampling) is a better

solution. This is the case for extremes in particular, since gridding induces some form of spatial

smoothing that may strongly affect extremes’ properties. Overall, I consider that the effort

made by a modeler like me to adapt the model to the data is negligible compared with the

efforts made by generations of data producers to get the data in the first place - it is hence a

duty to make this effort if it allows making a better use of existing data.

The word cloud is also of interest for the words that do not appear as prominently as could

have been expected. In particular, the word Bayesian is surprisingly hard to find given that

Bayesian estimation was used throughout this manuscript. It is admittedly an approach I en-

joy and enthusiastically advertise [Renard et al., 2013b, Kuczera et al., 2017], because when

it comes to uncertainty quantification, I find it very practical and easier to understand than

frequentist approaches. Typically, I find MCMC sampling from a posterior distribution easier

to understand and manipulate than e.g. asymptotic approximations of the sampling distribu-

tion of estimates. Alternatively, properly defining the concept of a predictive distribution is

straightforward in the Bayesian paradigm, but surprisingly tricky in the frequentist one [see

discussion and references in Renard et al., 2013a]. However, this is again a personal preference,

and in any case I see the Bayesian approach as a means (estimation) to an end (the probabilistic

model), not an objective in its own right. In fact, I believe many of the analyses presented

in this manuscript could have been performed with an alternative estimation approach - but

almost none could have been performed without a probabilistic model.

Words attempting to define a taxonomy of uncertainty, such as ‘epistemic’ or ‘aleatoric’

(among many others), do not appear at all in the word cloud. This may seem surprising given

that many texts treating with uncertainty start by defining some form of classification into

various uncertainty types. Moreover, there exists a long-lasting debate in hydrology about the

adequacy of probabilistic models to describe epistemic uncertainty [e.g. Di Baldassarre et al.,

2016, Nearing et al., 2016, and references therein]. In all honesty, I never fully understood any of

these general-purpose taxonomies26, and the arguments used in the aforementioned debate are

largely beyond my grasp. I am therefore following a pragmatic and technically-oriented road:

I take it for granted that probabilistic modeling is an adequate way to represent uncertainty,

whatever its type, and I am trying to address some of the technical challenges rising up on the

way. At least this approach has not been proven wrong yet, and if one day it does, it will still

have been an interesting and hopefully useful journey, and I will have made a living out of it!

Concluding remarks on doing research

This manuscript ends with a few thoughts on the way I conducted my research activities in the

past and what this way might look like in the future. I am purely expressing personal views and

preferences here, and I am in no way suggesting that this is an optimal approach everyone should

26It seems I am not the only one, see e.g. discussions in
https://statmodeling.stat.columbia.edu/2022/02/03/epistemic-and-aleatoric-uncertainty

https://statmodeling.stat.columbia.edu/2022/02/03/epistemic-and-aleatoric-uncertainty
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follow - in fact, quite the contrary. Observing and discussing with colleagues made it clear that

there exists a huge diversity of research paths, with different people putting different emphasis

on various facets of the researcher’s work (performing analyses and experiments, supervising,

teaching, reviewing, managing, consulting, doing operational transfer, communicating, taking

scientific or administrative leadership roles, etc.). This diversity of positioning is a necessity

as it is impossible for a single individual to tick all those boxes, but it is also an asset in my

opinion and should therefore be preserved and respected.

It is very important for me to keep doing technical work, and I cannot conceive a future where

I would stop coding, analyzing datasets, etc. This implies a need to find a balance between

supervising and doing analyses myself, and I am hence regularly making conscious (and maybe

selfish) decisions to keep tasks for myself. This also implies the need to consciously manage

time. I had a few difficulties in this respect at the beginning of my research career, mostly

because I ended up being overwhelmed by too many supervising and project commitments. I

have since learned to say no and to live with the frustration of giving up on interesting things

- which I find much easier to manage than the frustration of having to do things superficially.

Coding is an important part of my activity, first because I really enjoy it, and second because

I find it extremely useful and efficient in structuring ideas. In turn, this helps moving from

case-specific approaches to more general modeling frameworks. In my experience, there is a

surprisingly strong link between the framework’s equations and the code that implements them.

Every attempt I made to implement a general model without having properly worked out the

equations resulted in complete failure. Alternatively, implementation difficulties often resulted

in the realization that there was in fact something wrong in some equation. Equations and

code are therefore two sides of the same coin, and I’m only comfortable when I have achieved

both a coherent set of equations and a robust working code - which, in general, takes quite a

few iterations.

Operational transfer is another important part of my activity, and it is based on two main

pillars: software development and continuous education. The former is the natural end product

of the codes discussed in the previous paragraph, but developing a computing code and devel-

oping a graphical user interface are two different things. I took part to the development of the

BaRatinAGE software and, while it was a very interesting and rewarding experience, it was also

very time-consuming. I will probably restrict to developing computing codes and non-graphical

interfaces such as BaM, STooDs or HydroPortailStats in the future. Continuous education is

in my eyes an efficient way to make operational practice closer to the current scientific state

of the art, especially when accompanied with operational software. It is also a very enjoyable

and rewarding activity given the enthusiasm of participants, and it allows identifying salient

operational challenges and getting feedback on released tools. Finally, another ‘non-research’

activity I recently took up is scientific communication, with the creation of a blog27 based on

the visualization and sonification28 of the hydro-climatic datasets I use as part of my activity

[Renard, 2021b,e, Renard and Le Bescond, 2022].

27https://globxblog.github.io/
28https://blogs.egu.eu/divisions/hs/2023/02/01/

https://globxblog.github.io/
https://blogs.egu.eu/divisions/hs/2023/02/01/


GENERAL CONCLUSION 85

Finally, I think scientific research is a very rewarding and fulfilling activity, and I am trying

my best to preserve the positive sides of it and to disregard the occasional annoyances and

frustrations. Such positive aspects include the continuous opportunity to learn, the freedom

to take directions out of curiosity and interest, the sheer fun of the problem-solving process

and even the occasional ‘eureka’ moments. Most importantly, I highly value the collective

dimension of research and the diversity that comes with it: while I am the sole author of this

manuscript, it is the result of collaborations with many colleagues having different backgrounds,

interests, cultures and personalities. It therefore seems fitting that I conclude this manuscript

by thanking them all.
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83–89, 2007.

M. Lang, T. B. M. J. Ouarda, and B. Bobée. Towards operational guidelines for over-threshold

modeling. Journal of Hydrology, 1999.



BIBLIOGRAPHY 99

M. Lang, K. Pobanz, B. Renard, E. Renouf, and E. Sauquet. Extrapolation of rating curves

by hydraulic modelling, with application to flood frequency analysis. Hydrological sciences

Journal., 55(6):883–898, 2010.

M. Lang, P. Arnaud, J. Carreau, N. Deaux, L. Dezileau, F. Garavaglia, A. Latapie, L. Neppel,

E. Paquet, B. Renard, J.-M. Soubeyroux, B. Terrier, J.-M. Veysseire, Y. Aubert, A. Auffray,

F. Borchi, P. Bernardara, J.-C. Carre, D. Chambon, T. Cipriani, J.-L. Delgado, H. Doumenc,

R. Fantin, S. Jourdain, K. Kochanek, A. Paquier, E. Sauquet, and Y. Tramblay. Résultats

du projet ExtraFlo (ANR 2009-2013) sur l’estimation des pluies et crues extrêmes. La houille
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2016.

V. Mansanarez, J. Le Coz, B. Renard, M. Lang, G. Pierrefeu, and P. Vauchel. Bayesian analysis

of stage-fall-discharge rating curves and their uncertainties. Water Resources Research, 2016.

doi: 10.1002/2016WR018916.

V. Mansanarez, R. Le Boursicaud, J. Le Coz, B. Renard, M. Lang, I. Horner, G. Pierrefeu, and

K. Pobanz. BaRatin-SFD, analyse bayésienne des courbes de tarage à double échelle et de
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extrêmes hydrologiques en France. Ph.D Thesis, INPG / Cemagref, Lyon, France, 2006.
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et des modèles hydrologiques. Technical report, Irstea, 2018.

B. Renard. benRenard/disTRIMbution: DisTRIMbution v0.1.0 (beta version), 2021a. URL

https://zenodo.org/record/4905580.

B. Renard. benRenard/musicXML: musicXML r package v0.1.0 (beta version), 2021b. URL

https://zenodo.org/record/4924680.

B. Renard. STooDs-tools/RSTooDs: RSTooDs package v0.1.1, 2021c. URL https://zenodo.

org/record/5075760.

B. Renard. STooDs-tools/STooDs: STooDs engine v0.1.0, 2021d. URL https://zenodo.org/

record/5075586.

https://zenodo.org/record/4905580
https://zenodo.org/record/4924680
https://zenodo.org/record/5075760
https://zenodo.org/record/5075760
https://zenodo.org/record/5075586
https://zenodo.org/record/5075586


106 BIBLIOGRAPHY

B. Renard. benRenard/sequenceR: sequenceR v0.1.0 (beta version), 2021e. URL https://

zenodo.org/record/4924597.

B. Renard. benRenard/HydroPortailStats: HydroPortailStats r package v1.0.0, 2022. URL

https://zenodo.org/record/6769234.

B. Renard. Use of a national flood mark database to estimate flood hazard in the distant past.

Hydrological Sciences Journal, 2023. doi: 10.1080/02626667.2023.2212165.

B. Renard and U. Lall. Regional frequency analysis conditioned on large-scale atmospheric or

oceanic fields. Water Resources Research, 2014. doi: 10.1002/2014WR016277.

B. Renard and M. Lang. Use of a gaussian copula for multivariate extreme value analysis: some

case studies in hydrology. Advances in Water Resources, 30(4):897–912, 2007.

B. Renard and C. Le Bescond. The Music of Water. Vienna, Austria, 2022. doi: 10.5194/

egusphere-egu22-9759.

B. Renard and M. Thyer. Revealing hidden climate indices from the occurrence of hydrologic

extremes. Water Resources Research, 2019. doi: 10.1029/2019WR024951.

B. Renard and J.-P. Vidal. Performance weighting of GCMs. Part 1: A method based on

explicit probabilistic models and accounting for observation uncertainty. unpublished, 2017a.

B. Renard and J.-P. Vidal. Performance weighting of GCMs. Part 2: Daily atmospheric vari-

ability across Europe. unpublished, 2017b.

B. Renard, V. Garreta, and M. Lang. An application of bayesian analysis and markov chain

monte carlo methods to the estimation of a regional trend in annual maxima. Water Resources

Research, 2006a. doi: 10.1029/2005WR004591.

B. Renard, M. Lang, and P. Bois. Statistical analysis of extreme events in a non-stationary

context via a bayesian framework. Stochastic Environmental Research and Risk Assessment,

21:97–112, 2006b.

B. Renard, M. Lang, P. Bois, A. Dupeyrat, O. Mestre, H. Niel, J. Gailhard, C. Laurent,

L. Neppel, and E. Sauquet. Evolution des extrêmes hydrométriques en france à partir de
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