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Chapter 1

Parcours et contributions

1.1

Curriculum Vitae

1.1.1 Parcours universitaire

2014-... : Chargé de recherche INRAE (ex. INRA) Montpellier - UMR
Mistea

2014-2015 : Membre de 1’équipe projet INRA-INRIA Modemic

2013-2014: Post-doctorant a l'Institut Mathématique de Toulouse a
I"'Université Paul Sabatier, financé par le Labex CIMI, supervisé par A.
Joulin.

2010-2013 : Doctorat de mathématiques a 1'université Paris-Est Marne-la-
Vallée, au sein du LAMA avec D. Chafai.

2009-2010: Master 2 de mathématiques a l'université de Lille et Agréga-
tion de mathématiques.

1.1.2 Responsabilités administratives et scientifiques

2020 -2024 : Membre élu de la Commission Scientifique Spécialisée (CSS)
Mathématique, Informatique, Sciences et Technologies du numérique
(MISTI) de 'INRAE.

2018- ..: Membre du comité de pilotage de Key initiave Muse (KIM) Data for
life science de l'i-site Montpellier Université d’excellence (MUSE)

2018-... : Co-organisateur du séminaire de probabilités et statistiques de
Montpellier.
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* 2016-2020 : Membre élu du conseil de département Mathématiques et In-
formatiques Appliquées (MIA) de 'INRA.

1.1.3 Membre de jurys

En plus de plusieurs soutenance de master, en 2021, j'ai été examinateur
pour la thése de Josué Corujo-Rodriguez sur les processus de Moran, et rap-
porteur pour la thése de Benedetta Cavalli sur les processus de croissance-
fragmentation.

1.1.4 Projets de recherche

Je suis ou ai été acteurs dans les projets financés ci-dessous.

¢ 2020-2024: Membre du projet européen H2020 TechCare, sur les nouvelles
technologies pour le bien étre animal.

e 2021-2025: Porteur du projet ANR JCJC NOLO, sur les processus de
branchement non-locaux (156 029 euros).

¢ 2018-2021: Membre du projet ANR JCJC MESA, sur la méthode de Stein.

¢ 2015-2020: Membre du projet ANR franco-chinoise ANSWER, sur la pro-
lifération des micro-algues dans les lacs.

¢ 2013-2017: Membre du projet ANR JCJC PIECE, sur les processus de
Markov déterministes par morceaux.

® 2015-...: Membre de la chaire Polytechnique-Veolia MMB, sur les modeles
mathématiques pour la biodiversité.

Plusieurs financements complémentaires provenant de I'INRAE, de labex,
etc. m’ont permis de financer des évenements ot1, de maniere plus importante,
des encadrements. Ces derniers sont donc listés dans la section ci-dessous.

1.1.5 Encadrements

Durant la période que couvre ce rapport, j’ai encadré plusieurs personnes listées
ci-apres.

Les résultats obtenus lors de ces encadrements ont donné lieu a des publi-
cations de I'étudiant seul, des publications communes ou plus communément
a I’absence de publication. Dans la section [1.2]sur mes publications, les auteurs
en gras correspondent aux personnes sous mon (co-)encadrement.

Tous les résultats de ces stages sont décris dans ce rapport.
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Masters

2021: Adrien Cotil, co-encadré par Jean-Baptiste Menassol, financé par
I'institut de convergence # DigitAg, sur la modélisation pour des données
de déplacements de bovins et ovins.

2021: Adil el Abdouni, co-encadré par Pierre Gabriel, financé par I’ANR
NOLO, sur des équations de sélection-mutation inhomogene en temps.

2020: Cyril Robert, co-encadré par Bénédicte Fontez et Patrice Loisel , fi-
nancé par le budget récurrent de MISTEA, sur un modéle de mélange pour
la croissance d"un palmier.

2020: Marine Perrier, co-encadré par Bénédicte Fontez et Patrice Loisel,
non-financée, sur de 'apprentissage non-supervisé (clustering) pour des
données déplacements de bovins.

2018: Jun Zhang, co-encadrée par Réza Akbarinia, Bénédicte Fontez et
Florent Masseglia, financée par l'institut de convergence # DigitAg, sur la
modélisation et la détection de motifs pour des données de déplacements
de bovins.

2018: Max Zinsou Débaly, co-encadré par Meili Baragatti et Céline Case-
nave, financé par le budget récurrent de MISTEA, sur la méthode ABC
appliquée a des modeles déterministes de prolifération d’algues

2017: Marion Kerioui, co-encadrée par Bénédicte Fontez, financée par le
budget récurrent de MISTEA, sur la viabilité des ours pyrénéens.

2016 : Maud Joubaud, co-encadrée par Benoite de Saporta, financée par le
budget récurrent de MISTEA, sur des schéma d’Euler pour des processus
de Markov déterministes par morceaux (PDMP).

Doctorant-e-s

2021-...: Adrien Cotil, co-encadré par Jean-Baptiste Menassol, financé
par l'institut de convergence # DigitAg et le département MathNum de
I'INRAE, sur la modélisation mathématique et la détection précoce pour
des données de déplacements de bovins et ovins.

2021-.... Adil El Abdouni, co-encadré par Pierre Gabriel, financé par
le Labex de Mathématique Hadamard, sur des équations de sélection-
mutation inhomogene en temps a noyaux non-locaux.
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* 2016-2019: Maud Joubaud, co-encadrée par Benoite de Saporta, financé
par 1’école doctorale 125 de Montpellier, sur des PDMP a valeurs mesures
et des problemes d’arrét optimal.

Post-doctorants

¢ 2018-2021: Tristan Roget, co-encadré par Benoite de Saporta, financé par le
projet FEDER Promesse et la chaire MMB, sur 1’asymétrie dans la division
de la cellule E-Coli.

¢ 2018-2020: Alvaro Mateos Gonzalez, co-encadré par Matthieu Alfaro et

Guillaume Martin, financé par les labex NUMEV-CEMEB-AGRO, sur des
modeles de mutation-sélection pour I’adaptation de micro-organismes.

1.2 Productions scientifiques

Ci-dessous se trouve la liste de toutes mes publications. Dans ce mémoire, je
ne détaille cependant pas les travaux [A10, P9, A17] issus de ma these [T1], ni
[A11] qui en est fortement relié, ni des livres [L2, L1] qui, méme s’ils sont en
adéquation avec mon travail de recherche, ont une vocation de vulgarisation
ou d’enseignement et non de recherche.

Contrairement aux références a la fin du document, ces derniéres ne sont
pas classées par ordre alphabétique mais par ordre chronologique décroissant.
Je rappelle que les autrices et auteurs de la section[I.1.5sont en gras.

Prépublications

[P1] Bertrand Cloez and Coralie Fritsch. Quasi-stationary behavior for an hybrid
model of chemostat: the Crump-Young model. 2022.

[P2] Bertrand Cloez and Pierre Gabriel. Fast, slow convergence, and concentra-
tion in the house of cards replicator-mutator model. Mar. 2022. arXiv: 2203.
07924 [math.AP].

[P3] Francesco Piccioni, Céline Casenave, Meili Baragatti, Bertrand Cloez,
and Brigitte Vingon-Leite. Automated calibration of a complex aquatic eco-
logical model through Approximate Bayesian Computation and random forest.
2022.

[P4] Vincent Bansaye and Bertrand Cloez. From the distributions of times of
interactions to preys and predators dynamical systems. 2021. arXiv: 2103 .
16303 [math.DS].


https://arxiv.org/abs/2203.07924
https://arxiv.org/abs/2203.07924
https://arxiv.org/abs/2103.16303
https://arxiv.org/abs/2103.16303
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[P6]

[P7]
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[P9]

Bertrand Cloez and Josué Corujo. Uniform in time propagation of chaos for
a Moran model. 2021. arXiv:2107.10794 [math.PR].

Reza Akbarinia and Bertrand Cloez. Efficient matrix profile computation
using different distance functions. 2019. arXiv: 1901.05708 [cs.LG].

Bertrand Cloez, Tanguy Daufresne, Marion Kerioui, and Bénédicte
Fontez. Galton-Watson process and bayesian inference: A turnkey method for
the viability study of small populations. 2019. arXiv:/1901.09562 [stat.AP].

Bertrand Cloez and Benoit Henry. Markovian tricks for non-Markovian
trees: contour process, extinction and scaling limits. 2018. arXiv: 1801.03284
[math.PR].

Bertrand Cloez. Wasserstein decay of one dimensional jump-diffusions. 2012.
arXiv:1202.1259 [math.PR].

Articles publiés

[Al]

[A2]

[A3]

[A4]

[A5]

[A6]

Vincent Bansaye, Bertrand Cloez, Pierre Gabriel, and Aline Marguet.
“A non-conservative Harris” ergodic theorem”. In: Journal of the London
Mathematical Society (2022). To appear.

Bertrand Cloez, Benoite de Saporta, and Tristan Roget. “Long-time
behavior and Darwinian optimality for an asymmetric size-structured
branching process”. In: Journal of Mathematical Biology 83.6 (2021), pp. 1-
30.

Bertrand Cloez and Pierre Gabriel. “On an irreducibility type condition
for the ergodicity of nonconservative semigroups”. In: C. R. Math. Acad.
Sci. Paris 358.6 (2020), pp. 733-742.
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Chapter 2

Introduction

Ce document résume mes activités de recherche depuis ma soutenance de these
de doctorat en 2013. Etant maintenant chercheur en mathématique dans un in-
stitut de recherche spécialisé dans les sciences du vivant, ces derniéres sont cen-
trées sur des applications en biologie et principalement en dynamique des pop-
ulations. Elles sont axées autour de deux thémes principaux qui structureront
ce rapport :

1. I'étude du comportement en temps long de modeles aléatoires

2. les propriétés de quelques algorithmes stochastiques pour la biologie.

De plus, dans la lignée de mes travaux de these, qui s’intéressaient princi-
palement a des modéles déterministes par morceaux, a la fois les modeéles et les
algorithmes que j’ai étudiés sont majoritairement non-diffusifs.

Donnons dans ce chapitre introductif, une vue d’ensemble des résultats
présentés dans ce manuscrit. En particulier, le contexte bibliographique sera
décrit plus en détail dans les parties [II| et Il Nous reprenons le plan de ces
dernieres, c’est-a-dire deux parties comportant chacune deux chapitres. Chacun
de ces chapitres finit par une section de perspective. En guise de conclusion, ces
dernieres sont résumées dans mon projet de recherche & moyen terme dans le
chapitre[7] Le manuscrit finit par un chapitre sur mon projet de recherche.

2.1 Partie I : modele aléatoire en dynamique des
population

La partie|l| est consacrée aux modeles aléatoires en dynamique des populations
que j’ai étudiés. Ils sont principalement issus de modeles de branchement, et

17
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sont développés dans le chapitre[3] Dans le chapitre[d je décrirai d’autres mod-
eles que j'ai étudiés. Ces derniers ne satisfont pas la propriété de branchement
et la structure d’interaction y est centrale.

2.1.1 Chapitre 3 : processus de branchement

Durant ma these de doctorat, j’ai établi des résultats de type loi des grands
nombres pour des processus de branchement. Ces résultats [A10, I'1] sont dans
la lignée de [17, 136, 137]] et donnent la convergence de répartition des traits.
Les hypotheses et la démonstration de ces précédant résultats reposent sur
I'existence préalablement connue d’éléments propres principaux d'un certain
opérateur associé a ce processus de branchement. J’ai continué a travailler sur
ce sujet, mais au contraire de mon travail de these, 1’existence et la convergence
vers ces éléments propres a été la question centrale. Ce chapitre décrira donc
les travaux [A1] P2, A2-A4, P7, P8, A8|] en collaboration avec Vincent Bansaye,
Tanguy Daufresne, Benoite de Saporta, Bénédicte Fontez, Pierre Gabriel, Benoit
Henry, Maud Joubaud, Marion Kérioui et Tristan Roget. Il reprend aussi les
résultats issus des encadrements d’Adil el Abdouni, Alvaro Mateos Gonzélez,
Maud Joubaud, Marion Kerioui, Cyril Robert et Tristan Roget.

Dans les modeles issus de ces recherches, nous considérons une popula-
tion d'individus possédant chacun un trait. Entre les évenements de branche-
ment, ces traits évoluent de maniere indépendante et markovienne, typique-
ment en suivant une équation différentielle ordinaire. On pourrait aussi cepen-
dant imaginer une dynamique diffusive de type brownienne. Pour chaque indi-
vidu, les événements de branchement arrivent a des temps aléatoires dépendant
des traits selon des lois de type exponentielle mais indépendamment des autres
individus. A ces temps, chaque individu posséde un nombre entier de descen-
dants dont le nouveau trait dépend de celui du parent. Aprés la naissance, ces
individus évoluent de maniere indépendante et ainsi de suite. Voir la figure
pour une illustration.

Ce type de modeéle inclut naturellement les modeles de Galton-Watson
multi-types. Dans ce modele, le trait est constant entre les divisions et 1’espace
des traits est fini. Ce modeéle est simple et bien connu. En temps discret, les tran-
sitions du nombre d’individus correspondent a des lois multinomiales. Dans la
section je détaille rapidement deux exemples concrets d’applications util-
isant cette propriété. Le premier utilise la propriété de conjugaison bayésienne
entre la loi multinomiale et la loi de Dirichlet pour étudier simplement la via-
bilité de la population d’ours pyrénéens. La deuxieme application concerne la
croissance du palmier Babassu. Nous posons un modéle de mélange et un test
de ratio de vraisemblance pour comprendre l'effet de goulot d’étranglement
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Figure 2.1: Exemple d’une trajectoire d'un processus de branchement.
L’abscisse représente le temps, I’'ordonné le trait des individus. Les pointillés
désignent les liens de filiations.

dans sa croissance.

Comme pour le modeéle discret, en dimension infinie, le comportement des
processus de branchement repose principalement sur la valeur des vecteurs
propres principaux et la valeur propre principale (au sens de Perron). Dans
plusieurs travaux, j’ai donc étudié I’existence de ces éléments propres ainsi que
les convergences associées. Ces problémes dépassent le cadre des probabilités.
Ils concernent 1’'étude des semi-groupes ou semi-flow positifs en analyse fonc-
tionnelle; c’est-a-dire des suites d’opérateurs (M t)=s>0, agissant sur des fonc-
tions (mesurables bornées par exemple) vérifiant

MS,M O Mu,t - MS,t

et Ms¢(f) = Msf > 0 pour toute fonction positive f > 0 et réels positifs t >
u > s > 0. Ils concernent aussi 'étude des équations aux dérivées partielles
linéaires du type

ou(t, x) + Vy(u(t,-)F)(x) +au(t,x) = J u(t,y)K(x,dy), (2.1)
X
ou u(t, x) représente la densité de population possédant le trait x au temps f,

F est un champs de vecteurs et K un noyau de saut. Je me suis intéressé a des
asymptotiques du type

u(t, x) ~ Moy (x) fxum, y)h(y)dy, 2.2)

ot (h, vy, A) sont justement les éléments propres associés a ce probleme. Ce type
de résultats est la premiere étape pour montrer que si A > 0 alors la distribu-
tion des traits converge vers une loi de densité vy et que le nombre d’individus
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se comporte comme e {hdy, ol y est une mesure représentant la répartition
initiale des traits.

Dans la section 3.3, nous introduisons clairement la définition du semi-
groupe associé a un processus de branchement, et nous décrivons les résul-
tats qui établissent 'existence des éléments propres, ainsi que l'asymptotique
(2.2). Les démonstrations sont basées sur la généralisation de méthodes de
type Meyn-Tweedie ou Doeblin-Lyapunov aux semi-groupes non-conservatifs.
Cela permet de se passer des méthodes de type Krein-Rutman qui nécessitent
souvent 'utilisation d’hypotheses plus fortes (propriété de Feller forte, espace
d’état compact...). Ces résultats sont établis pour des modeles non homogenes
en temps ol la convergence vers des éléments propres est remplacée par une
contraction traduisant un oubli de la condition initiale.

Par la suite, ces résultats sont appliqués pour quelques modeles particuliers
que sont des modeles structurés en age, en taille ou des modeles de mutation-
sélection.

Les modeles structurés en taille (modele de McKendrick, von Foerster, Bell-
man, Crump-Mode-Jagers, renouvellement ...) sont tres étudiés depuis rela-
tivement longtemps. Je me suis principalement intéressé a des modeles in-
homogeénes en temps et certaines propriétés du processus aléatoire. Nous avons
travaillé sur la convergence en temps long du comportement moyen ainsi que
d’autres propriétés spécifiques (loi au temps t > 0, probabilité d’absorption...).
Nous obtenons en particulier de nouveaux taux de convergence explicites,
méme dans le cas homogeéne. Dans le cas périodique, nous obtenons la crois-
sance exponentielle de la population et la convergence vers un état qui évolue
de maniere périodique. Nous avons aussi étudié plusieurs autres propriétés du
processus aléatoire via la méthode du contour des arbres. Cette méthode con-
siste a plonger I’ensemble des arbres binaires dans un ensemble de fonctions
puis de travailler sur ces fonctions. Ici, le processus de branchement structuré
en age devient un processus de Markov déterministe par morceaux (PDMP)
particulier. Tous ces résultats sont décrits dans la section [3.4]

En terme d’opérateurs, le type de générateur A associé a un processus de
branchement structuré en age a la forme:

Af(x) = f'(x) + B(x) (2f(0) — f(x)),

pour x € [0,0) et une fonction f réguliere. On peut lire la croissance linéaire
de I’dge dans le premier terme, le terme de transport, et le renouvellement dans
le terme d’ordre 0. L'espace d’état est non compact mais le fait que les ages
des nouveaux nées soient nuls permet d’utiliser des techniques généralement
adaptées aux espaces compacts. La situation est différente pour les problemes
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structurés en taille dont le générateur sur le méme espace a la forme :

Af(x) = xf'(x) + B(x) (2f (x/2) - f(x)).

Encore une fois, le terme de transport x f’(x) retranscrit la croissance exponen-
tielle des cellules et le terme intégral B(x) (2f(x/2) — f(x)) , le fait qu'a un cer-
tain taux, noté B(x) ici, une cellule de masse x se divise en deux cellules de
tailles x /2.

Ces modéles structurés en taille ont été particulierement tres étudiés ces dix
derniéres années. A l'aide des résultats présentés dans la section nous
obtenons de nouveaux résultats du type (2.2), sous différentes hypotheses,
décrits dans la section 3.5 Cela nous permet, entre autres, d’apporter des pistes
de compréhension sur les raisons de l'asymétrie dans la division de la cellule
E-coli. Cette bactérie a une forme tubulaire. Durant sa croissance, elle crée
de la masse au centre de ce tube puis se divise en deux. La cellule fille est
donc constituée d’un pole nouveau issu du centre de 1’ancienne cellule et un
poOle ancien issu du bord de cette cellule mere. En conséquence, lorsque celle-
ci se divisera, elle aura une fille issue du pdle nouveau et une du podle ancien.
De récentes études ont montré que la dynamique des cellules nouvelles et des
cellules anciennes était différente (alors que ces dernieres sont génétiquement
identiques). Pour aider a la compréhension de ce phénomene, nous avons mon-
tré qu'une dynamique asymétrique est meilleur d"un point de vue évolutif (sous
notre modele et nos hypotheses). La démonstration repose sur 1'étude des vari-
ations de la valeur propre, non explicite, en fonction des divers parametres du
modele.

Finalement, le chapitre sur les processus de branchement se termine par les
modeéles de mutation-sélection. Ces modeles sont encore beaucoup plus étudiés
que les modeles de croissance-fragmentation évoqués plus haut. En partic-
ulier, il existe une grande variété de modeles. J'en ai étudié trois différents
dont le point commun repose sur la sélection. La sélection ajoute en général
de l'interaction dans les modeéles et est donc, en principe, incompatible avec les
méthodes de branchement. Cependant, les modeles de la section (3.6 sont de
type replicator-mutator, ou modéle de Kimura, qui permettent justement de se
ramener a de tels processus. En particulier, dans un des modeles étudiés, les
mutations sont réduites au cas le plus simple : le modele du chateau de cartes.
Ce modele est tres simple, car nous obtenons beaucoup de résultats explicites
de taux de convergence, dans des distances variées, exponentielles ou sous-
exponentielles. Il peut étre aussi relativement complexe, car malgré que sa loi
soit a densité pour tout temps, elle converge vers une mesure mélangeant masse
de Dirac et densité. Plusieurs questions sont toujours ouvertes sur cette conver-
gence. Il semble que ce type de convergence soit particuliére aux semi-groupes
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conservatifs et cet exemple représente donc un comportement remarquable et
intéressant. Ce phénomene de concentration n’arrive pas lorsque 1'on considere
un environnement changeant. En effet, nous avons aussi étudié un modele de
mutation-selection dans un environnement in-homogeéne. Le dernier modele
étudié concerne la prise en compte d’un taux de naissance dépendant du trait
pour mieux comprendre la survie évolutionnaire. Finalement, j’ai aussi travaillé
sur des modéles de Moran dans [P5]. Une partie des résultats est décrite dans
un cas particulier avec une vision plus algorithmique dans la section

2.1.2 Chapitre 4 : modeles de population avec interaction

Les processus de branchement sont des processus tres complets et tres utiles
pour la modélisation en biologie (et dans beaucoup d’autres contextes) mais ils
ne retranscrivent pas tous les comportements possibles.

J'ai donc étudié divers modeles incluant de la dépendance entre les indi-
vidus. Ces résultats ont été valorisés dans les articles [P1, P4, /A5, |A12] en col-
laboration avec Vincent Bansaye, Coralie Fritsch et Claire Delplancke, ainsi que
larticle de type survey [A15]. Ils seront exposés dans le chapitre 4 avec les ré-
sultats des encadrements d”Adrien Cotil, Marine Perrier et Jun Zhang.

D’un point de vue biologique, on peut modéliser deux types d’interaction:
une interaction directe et une interaction indirecte.

Dans une interaction indirecte, les individus n’interagissent qu’a travers
une autre quantité. On peut penser naturellement au célebre modéle proie-
prédateur de Lotka-Volterra et donc plus généralement aux modeles de
consommateur-ressource. Un des modéles de consommateur-ressource le plus
étudié, et en particulier dans mon unité et équipe de recherche, est le modele du
chémostat. Dans ce dernier, une population évolue dans un volume fixe, appelé
bioréacteur, dans lequel on ajoute de la nourriture a taux fixe et, pour garder un
volume constant, on extrait une partie de ce volume. Ce modele biologique
a majoritairement été étudié a 'aide d’équations déterministes. J’ai étudié une
version stochastique de ces modéles, le modéle hybride de Crump-Young, et ses
généralisations en dimension infinie. Dans ce modele, la population est mod-
élisée par un processus de sauts a valeur entiere et 1’évolution de la ressource
par une équation différentielle ordinaire. C’est donc un processus de Markov
déterministe par morceaux dont la dynamique est complétement couplée. Voir
la figure 2.2| pour une illustration d’une trajectoire de cette dynamique. Nous
avons étudié le comportement en temps long et en grande population de tels
modeles. Le comportement en temps long est particulierement délicat du fait
de la dynamique hybride. La limite grande population est plus classique mais
relativement technique.
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Figure 2.2: Une trajectoire du processus de Crump-Young.

Dans ce type de modeéles (chémostat, consommateur-ressource, proie-
prédateur), un parametre important est le taux de consommation de la
ressource et sa conversion en nouvel individu. Dans le modele de Lotka-
Volterra, ces derniers sont linéaires. Pour le chémostat, ils sont souvent mod-
élisés par des fonctions concaves, croissantes et convergentes, depuis la these
de Jacques Monod. En écologie, depuis des travaux de Holling, cette fonction
est appelée réponse fonctionnelle et sa forme souleve plusieurs controverses (no-
tamment autour de la question de ratio-dépendance, voir [7]). Dans [40], ils
démontrent méme, en particulier, I'importance de sa calibration pour les con-
clusions biologiques. Dans la section nous justifierons certaines formes
de réponses fonctionnelles a partir d'un modele reposant sur des hypotheses
microscopiques. D’un point de vue mathématique, nous faisons une limite
d’échelle, ot le consommateur et la ressource ne sont pas a la méme échelle
de temps. On parle de modéle lent-rapide. Cela donne lieu a l'utilisation
de nouvelles techniques originales sur les objets que I'on manipule (mesures
d’occupations) et les topologies associées.

Les interactions directes peuvent étre modélisées simplement a partir de
processus de naissance et mort. Ces derniers sont trés bien connus et beau-
coup de résultats existent sur leur comportement en temps long. Dans la sec-
tion 4.4, nous utilisons ces processus non pas pour modéliser un phénomene bi-
ologique mais pour établir de nouveaux résultats mathématiques dans d’autres
contextes. En effet, depuis les travaux de Stein et Chen, les solutions des équa-
tions de Poisson (ou de Stein) associées a ces processus permettent d’avoir des
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bornes précises de convergence dans des théoremes d’approximation du type
binomiale/Poisson. Nous donnons des bornes sur ces solutions et une applica-
tion pour des modeles de mélange a partir de nouvelles propriétés sur certains
processus de naissance et mort.

Finalement, sur les modéles avec interactions, je me suis intéressé a
I'influence des réseaux sociaux dans des déplacements d’animaux afin a terme
de détecter en avance des mal-étres chez les animaux d’élevage. Ces travaux,
surtout issus d’encadrements divers, sont encore en cours d’élaboration et sont
décrits dans la section Les outils mathématiques sont variés: 1'utilisation
d’algorithmes de clustering pour des graphes de proximités, l'inférence d"une
chaine de Markov a espace d’état fini ou I'étude mathématique d’un modele
déterministe d’alignement.

2.2 Partie Il : algorithme stochastique

Motivé par les applications en biologie et par la proximité mathématique de
certains algorithmes avec certains modeles biologiques, j’ai étudié divers al-
gorithmes stochastiques. La majorité concerne 1'approximation des distribu-
tions quasi-stationnaires, d’autres sont des algorithmes proches souvent issus
d’algorithmes dit d’approximation stochastique.

2.2.1 Chapitre 5: Approximation des états quasi-stationnaires

Les éléments propres et les résultats limites évoqués par 1'équation sont
aussi importants pour 'étude des processus de branchement en dimension in-
fini que pour des processus (X;);>o possédant un état absorbant ¢. En effet,
avant d’étre absorbé, ces processus peuvent converger vers un état d’équilibre
que 'on appelle état quasi-stationnaire. Si on note x — u(t, x) la densité de
probabilité de la variable aléatoire X;, au temps t > 0, et que I'équation est
vérifiée, alors on a

Py (X¢ # 0) ~ eMh(x),  Py(X;edx|X; #0) ~ y(x)dx,

avec A < 0. La connaissance de ces quantités est donc tres importante pour la
compréhension du comportement de (X¢)=o.

Dans la section B} je décris les résultats sur les différents algorithmes que j'ai
étudiés pour 'approximation de ces éléments propres. Il reprend mes collabo-
rations [P5, /A6, A13, |A14, |A16] avec Michel Benaim, Josué Corujo Rodriguez,
Fabien Panloup et Marie-Noémie Thai. Ces articles portent sur les processus de
Fleming-Viot et d’Aldous-Flannery-Palacios.
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Figure 2.3: Exemple d"une trajectoire d"un processus de Fleming-Viot avec deux
particules. Il y a deux particules, représentées en rouge et en bleu. Lorsqu’elles
se situent au méme endroit, leur valeur superposée est représentée par un trait
noir. Les redistributions aux instants d’absorption sont représentées par des
lignes pointillées verticales.

L’algorithme de Fleming-Viot a été introduit indépendamment par Burdzy,
Holyst, March [53] et Del Moral, Guionnet Miclo [106,113]]. Celui-ci est basé sur
un systéeme de particules évoluant indépendant entre les instants d’absorption
comme (X¢)¢=0. A ces temps, au lieu d’étre absorbées, ces derniéres sont redis-
tribuées uniformément sur les autres particules. La figure 2.4 représente une
trajectoire.

Dans la section nous détaillons divers résultats pour ce type de mod-
ele sous des hypotheses tres générales. La difficulté de ce type d’algorithme
est qu’il repose sur deux parametres (le temps et le nombre de particules) que
nous souhaitons prendre les plus grands possibles. Cependant, rien ne garantit
que les deux limites, en temps et en particules, commutent. Pour le garantir,
il faut démontrer des bornes fines de convergences. Certaines bornes quanti-
tatives sont décrites dans la section dans des cadres généraux, dans le but
d’assurer cette commutation de limites et donc la justesse de ’approximation.
Nous évoquerons aussi I'exemple particulier du modele a deux points qui il-
lustre tres bien quelques difficultés. Nous évoquerons aussi rapidement le lien
avec les chaines de Markov cachées ainsi qu’un travail en cours autour du filtre
de Kalman pour des données comprenant un grand nombre de données aber-
rantes.

Un algorithme alternatif pour simuler les distributions quasi-stationnaires
est de simuler une seule trajectoire, au lieu d"un systéme de particules, et de re-
distribuer le processus sur son passé aux instants d’absorption. Ce modele perd
la propriété de Markov. Il a été introduit par Aldous, Flannery et Palacios [2].
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Figure 2.4: Exemple d’une trajectoire d’un processus d’Aldous-Flannery-
Palacios (en trait plein). Les redistributions aux instants d’absorption sont
représentées par des lignes pointillées. Les lignes pointillées verticales montrent
le saut instantané de la particule absorbée et les lignes horizontales représentent
les nouveaux points de départ de ce processus et les points du passé associés
qui ont été tiré uniformément au hasard.

Voir la figure pour un exemple de trajectoire.

On peut montrer que la mesure empirique d"un tel processus suit ce que
I'on appelle un algorithme d’approximation stochastique. En particulier, on
peut le considérer comme le schéma d’Euler a pas décroissant d'une certaine
équation différentielle ordinaire. On peut donc utiliser la méthode de I'EDO
qui consiste a déduire de ce modele déterministe le comportement du modéle
aléatoire. Dans la section je décris comment cette méthode donne des ré-
sultats pour cet algorithme lorsque 1'espace d’état de (X¢);>p est un compact
quelconque. La méthode de I'EDO est donc appliquée en dimension infinie.
L'équation différentielle ordinaire sous-jacente est donc une équation a valeurs
mesures.

En dimension finie, nous obtenons divers taux de convergence explicites.
En particulier, des vitesses de convergence presque-siir et un théoreme central
limite.

Nous l'appliquons a deux exemples : 'exemple a deux points et le schéma
d’Euler associé a un processus de diffusion absorbé au bord d’un compact. Le
premier est intéressant d"un point de vue théorique, et le second pour les appli-
cations.
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2.2.2 Chapitre 6 : autres algorithmes stochastiques

La derniére section de ce manuscrit reprend les travaux [P3, |P6, A7, /A9]. Les
travaux [A7, |A9], en collaboration avec Michel Benaim et Florian Bouguet, ont
une visée plus théorique et portent sur des méthodes d’approximation stochas-
tique en dimension infinie. Les travaux [P3| |P6], en collaboration avec Reza Ak-
barinia, Meili Baragatti, Céline Casenave, Francesco Piccioni et Brigitte Vingon-
Leite, sont des applications d’algorithmes mathématiques.

Comme évoqué précédemment, la section décrit le comportement
asymptotique d"une chaine de Markov in-homogeéne a partir du comportement
d’une équation différentielle ordinaire a valeurs mesures.

Dans la section nous décrivons un cadre général similaire ot cela est
possible et I'EDO correspond a la loi d"un processus de Markov.

Prenons un exemple inspiré de [228] pour montrer le cadre dans lequel
s’applique les résultats de la section[6.1]

Soit (Uk)k=1 une suite de variables aléatoires indépendantes et uniformé-
ment distribuées sur [0, 1]. La suite associée aux maximums empiriques va triv-
ialement converger vers 1. Pour établir une vitesse de convergence, posons,
pourn > 0,Y, = (1 — maxj<r<, Ux)n. Conditionnellement a Y, on a facilement

Y41 = ”nilYn avec probabilité 1 — Y, /n
Yo ~U [O, %] avec probabilité Y, /n

La suite (Yy),>1 est donc une chaine de Markov non homogene en temps. Via
un développement limité et une limite, la formule précédente donne

HE [F(Yos1) — £(Ya) | Ya = ] — yf' () + (5 ) ' fl2)iz —f<y>) ,

pour tout y > 0 et fonction f suffisamment réguliére. A droite de I'équation
précédente, on observe le générateur d'un processus de Markov dont la dy-
namique est de croitre exponentiellement et d’avoir des sauts uniformes entre
sa position et 0 a des temps aléatoires aussi rares que le processus est proche de
0. On peut montrer que ce processus converge vers un état stationnaire 77. Avec
les arguments de [A9], et quelques résultats techniques supplémentaires, cela
montre que la suite (Y},) tend vers 7. On a alors le bon ordre de convergence
ainsi que la loi limite (et donc par exemple la possibilité de faire des intervalles
de confiance).

Dans la section nous détaillons divers exemples sur lesquels cette ap-
proche se généralise. Ceci inclut des algorithmes de bandits et des schémas
d’Euler a pas décroissant.
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Nous étudions aussi en détail le cas particulier de chaines de Markov inho-
mogenes en temps discret dont les noyaux de transition (Qy),>0 vérifient

lim plQu = Q,

pour une certaine suite de réels (p,) et un noyau fixé Q. Le comportement
en temps long de cette chaine est relativement simple et converge vers une
valeur fixe presque stirement ou en loi vers la mesure invariante de Q selon
la sommabilité ou non de (p;). Nous avons cependant étudié la convergence
de sa moyenne empirique en temps long. Si la suite (p,) tend lentement vers 0
alors on retrouve les résultats classiques du cas homogene. C’est-a-dire que 1'on
a une convergence presque-stir de la moyenne empirique vers la loi invariante
associée a Q et, aprés une bonne renormalisation, la convergence de l'erreur
vers la loi normale. Cependant, lorsque p, ~ a/n alors la moyenne empirique,
sans renormalisation, converge vers une variable aléatoire dont on peut car-
actériser la loi comme la mesure invariante d’un certain processus de Markov
déterministe par morceaux.

La section |6.2| évoque les autres algorithmes (non nécessairement stochas-
tiques) sur lesquelles j’ai travaillé.
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Chapter 3

Branching processes

3.1 Introduction : the finite dimensional case

To motivate our goals, we first present some well-known results on discrete-
time branching processes on finite state space, also known as multitype Galton-
Watson processes.

Those processes model the dynamics of a population where each individual
is of a given type belonging to the finite space E = {1,...,d}. At each gen-
eration, all individuals produce independently offspring whose type are dis-
tributed according to some fixed random variable { = (g; )i jce- At each time
t € N, we can represent the population through a vector X; such that X;(i) rep-
resents the number of individuals of type i. The dynamics is as follows: for all
jeE

d X(i)
Xiv1(j) = Z Z Gijktr (3.1)
i=1 k=1
where the random variables ¢; ; x s are independent and distributed as ¢; ;, which

correspond to the number of offspring of type j of the kth individual of type i at
time t. Taking expectations in (3.1) gives the linear relation

E[X;11] = E[Xi]M = E[Xo]M"",
where M is the matrix whose entries are M; ; = E[{; ;|. The long-time behav-
ior of (X;) is then related to the convergence of M!. Under an irreducibility
assumption, Perron-Frobenius theorem [10, Theorem 1 page 185] entails that
Mf; = Mujvj+O(p"), (3.2)

where u,v are respectively the right and left eigenvectors of M and A the
associated eigenvalue. The constant p is related to the so-called spectral gap
A — p. This entails the convergence of the mean normalized by A'.

31
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It is well known (see [10, Theorem 2, page 9] and [10, Theorem 1, page 192]
for instance) that using a martingale argument, one can in addition prove the
following convergence

b X0 Y
f=0 Z:‘L Xi(k) Zi:lvk

which holds almost-surely on the non-extinction event (which is non-empty if
and only if A > 1). This Law of Large Number (LLN) type result states that the
empirical discrete measure converges towards the same limit of its mean (as in
the Glivenko-Cantelli or Varadarajan theorems). More precisely, we can set

(3.3)

d
. Ut
= X:(1)0;, v = ,
e X0 G

for all t € IN, where ¢; is the Dirac mass, and (3.3) became the alsmot-sure con-
vergence of the sequence of discrete measures (v¢) to 7y defined by

d .

Yj

d
j=1 2k=1Yk

O

7= j

A main part of my research was to generalize this picture to continuous-time
and infinite dimensional branching processes. That is in the case where time ¢
belongs to R ;. and trait i belongs to R¥.

Before introducing an equivalent of the for this more general setting, let
us outline two simple concrete applications of multi-type Galton-Watson pro-
cesses. There are given in Section[3.2] Then, we present general results to study
infinite dimensional branching processes in Section We then describe par-
ticular cases that are age-structured model in Section 3.4} size-structured model
in Section 3.5 and mutation-selection model in Section 3.6 We end this chapter
by a perspective section.

3.2 Two applications

Let us briefly present here two applications in ecology of the finite cases. Both
examples are from research internships that I have supervised, which have
given results not yet published. The first concerns the question of the viability
of brown bears in the Pyrenees and the second, the question of the homogeneity
of a Brazilian palm population.
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3.2.1 Viability of Pyreneans brown bears

The Pyrenean brown bear (Ursus arctos) population is considered as one of the
most seriously threatened with extinction in Western Europe. In the 90’s and
early 2000s, the reinforcement of the population by the introduction of a few
individuals from Slovenia allowed to avoid population extinction. Yet, the pop-
ulation remains fragile, and the introduction of new individuals gives rise to
tumultuous debates in France.

During the stage of Marion Kerioui in 2018, supervised by Benedicte Fontez,
Tanguy Daufresne and myself, we modelled this population with a Galton-
Watson process in a Bayesian framework; see [P7]. We used the data from [58].
It corresponds to the exhaustive supervision of all the population between 2005
and 2016 of the French Pyrenean brown bears. This population is split into two
different isolated subpopulations. In the western part of the Pyrenees, before
2018, there were only two males (of which only one is indigenous), therefore
we will focus on the subpopulation living in the central part of the Pyrenees.
We considered the same structure model as [78]]. Namely, we only consider the
evolution of the number of females and we consider a population structured by
age, with d = 5 classes. For classes i € {1, ..., 4}, this corresponds to bears whose
age is i — 1 years. For i = 5 this corresponds to the bears whose age is greater
than or equal to 4 years. The life of a bear is modelled as follows: during its
first 4 age stages, it can either die or pass to the next age. When it is in the last
fully developed stage, it can die, survive and reproduce. See [78] for biological
motivations.

For the calibration, we consider a Bayesian framework : we assume that all
entries of matrix M (as surviving probabilities for instance) are random and
distributed according a prior distribution. We consider both uninformative pri-
ors or uni-modal laws centered on previous estimates in other contexts. As
Galton-Watson transitions are essentially a multinomial law, we can compute
explicitly the posterior distribution (that is the law of parameter conditioned on
the observed data) after one generation. For instance, the surviving probability
are Beta distributed. Markov property and Bayes Theorem enable to generalize
this for all generations. As application, we can thus have access to various in-
formation (extinction probability, abundance) without greedy algorithm of the
MCMC type.

This is for instance illustrated in Figure [3.1/and Figure

3.2.2 The paradoxical growth of the babassu palm tree

During the stage of Cyril Robert, we work on babassu palm tree. This one is an
endemic specie of the Amazonian forests, and is one of the economic resources
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rediction

Figure 3.1: Red circles represent the total number of female bears at each
year. Boxplots and diamonds both represent prediction of the number of fe-
males at each year considering data available on the previous years and a non-
informative prior. The boxplot represents the law of the prediction and dia-
mond represents the mean estimator.

Figure 3.2: Posterior distribution of A with a non-informative prior. Note that
we have P(A < 1) = 0.0044
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of Brazil. Its related activity involves people among the most disadvantaged
and their management is a context of conflict between these people and the
owners of pastures. Understanding babassu life cycle is therefore of primary
importance.

During its PhD thesis [251, [250], Nikolay Sirakov calibrated an age-
structured Galton-Watson processes (even if it is not exactly written on this
form). The types did not consist exactly of biological ages but of certain eas-
ily identifiable stages of development. He discovered a bottleneck between two
particular stages that leads to the following paradox: some plot owners con-
sider the species invasive while the model describes a passage to adulthood in
157 years (See Figure[3.3).

To understand this paradox, Cyril Robert’s internship consisted in testing if
a mixing model was more likely and thus explain the presence of two distinctly
evolving groups. We have worked in a frequentist framework. Without mixing,
the maximum likelihood leads to the study of the stage passage ratios. In con-
trast, adding a mixture assumption leads to non-explicit and non-asymptotic
Gaussian estimators. Cyril has therefore set up a computational strategy to per-
form a likelihood ratio test. He find a negligible p—value, which can be under-
stood as the probability of a result that is at least as "extreme" as the observed
result.That means that it is more reasonable to think that there two different
populations of palm tree in the data which have different stage passage rates
over stage passages 2 — 3 and 3 — 4. Nevertheless, with this data, we do not
know if these populations differ genetically, due to their location, due to agri-
cultural practices...

3.3 Branching processes and non-conservative semi-
groups

The results that follow are based on publications [A1, /A3, |A8] in collaboration
with Vincent Bansaye, Pierre Gabriel and Aline Marguet.

Let us consider a population whose individuals have a trait belonging to
some (now non-necessarily finite) Polish space X. Individuals can die or give
birth to some offsprings with a rate which depends on their trait and indepen-
dently one from each other. Conditionally on the moments of birth, the subtrees
of descendants of individuals are independent; this is the branching property.
Moreover, traits may vary in an time in-homogeneous way but without mem-
ory (Markov property). See for instance [135, 204].

For a time t > 0, we write V; for the set of individuals at time t and X; € X for
the trait of individual i € V;. As in Section 3.1}, we study the empirical measure
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Figure 3.3: Passage frequencies for the six developmental stages in different
years of study for the babassu palm tree. The boxes correspond to the variances
of the probabilities of the different years (six points per box).

defined by pr = >y, 5X£. For all t > s > 0, we associate to this measure the
operator M;; defined by

M f(x) = Mt (f)(x) = E[ue(f) [ ps = 0] =B | ), f(X}) | Vs = {1}, XI = x

i€ Vt

This operator is called the first moment semi-group in [173] and at least acts on
non-negative functions f. However, we will study examples where we are able
to prove that sup,_, + Ms+(V) < +oo for some positive function V and then
consider that (M;;);=s>0 is a family of linear operators on the space B(V) of
measurable functions such that f/V is bounded.

The branching and Markov properties ensure that the sequence of operators
(Ms ¢)¢=0 is a positive semigroup or a semi-flow. Namely, for t > s > u, we have

Mu,t = Mu,sMs,t = Mu,s o Ms,t (3-4)

and if f > 0 then M;f > 0. Under sup,_,_r M; (V) < +oo, it is a bounded

operator on the Banach space B(V) embedded with the norm | f|v = ||f/V| -
Through these properties, we can also define a left action of M;; on the

space of positive measures (or on measures integrating V' when moreover
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sup, ;.1 Mst(V) < +). Indeed, setting yi(f) = § fdu for a positive measure y,
we can defined pM;,f, for any positive function f, by

UMof = (May) f = 1 (Mg f) = j M f (x)pu(d).

When = Y'X_| 6.; then tM;; describes the behavior of the population at time
t when the population at time s consists of K individuals with traits x!, ..., xX.
When the dynamics at a certain time f only depends on the current state at
this time and not on this time, we say that the dynamics is (time) homogeneous.
Mathematically, that means that s — M; ;s does not depend on t > 0. In this
case we set Mg = My ;.
From Relation (3.4), and analogously to the discrete case of Section

(where the mean is described through the iterated power of a matrix M), we

t
can thin that M, is of the form els Audit for some family of linear operators
(A,). For this reason, we define

. My f—f
— lim 2ttth) )
Arf hlircl) h ’

for every t > 0 and some function f. The previous limit can be taken point-
wisely or in norm. The generator can also be defined through a martingale
problem as in [103| 216, |142]. The choice of the definition involves different
properties that we will not detail here. At least at the formal point, the last limit
implies that

8tMs,t = Ms,tAt = Ms,t o -At/ as]\/fs,t‘ = _AsMs,t = _As o Ms,t-

In particular, when X c R“ and the measure uMs; has a density u(s, t) with
respect to the Lebesgue measure, then it is solution to the following P.D.E. :

owu(s, t) = Afu(s,t),

where A is the adjoin operator of A; with respect to the Lebesgue measure.
This equation has, in our application, the form (2.I). It is for this reason that
most of the next results can completely go out of the framework of probabilities,
both on the scope of results and for the demonstrations.

In general, the semigroup (M) is not conservative, since its mass (the mean
number of individuals)

Mg (x) = 6xMss1 = M 1(x) = E [#{i € Vi} | ps = 0« ]

1But it does not hold in general, even in discrete space. Operators (.A;) have to commute.
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can decrease due to the deaths of individual or increase by births. Here 1 de-
signs the constant function equal to 1.

This particularity is a drawback because there is a rich base of tools to study
conservative semigroups. One of them, is for instance, the Doeblin contraction
argument in total variation distance. Let us describe it rapidly in the homoge-
neous and conservative setting. We say that a semigroup (P;) satisfies the Doe-
blin minorization condition if there exists fp,e > 0 and a probability measure
such that for all x € X

OxPry = ev. (3.5)

This induces,

—tin(1=
=0, |uP—qPlry < ——e 0" =yl (3.6)

1—¢

for any probability distributions y, 7 and time ¢ > 0. Then, by contraction, there
exists a unique stationary measure 7t and lim;_,, uP; = 7T exponentially fast.
When the state is not compact Assumption generally does not apply
on all the whole space. In general this assumption is only supposed to hold on
compact set and an additionally assumption is added to prove that the process
remains in a compact set for sufficiently long times. This tightness condition is
often verified through the existence of a so-called Lyapunov function. This one
reads as follow: there exists a positive function V, such that for a certain t > 0

PV <CV+D,
for some C, D > 0. This is often verified by the drift condition:
LV < —cV +d, (3.7)

where L is the generator of (P;) and c¢,d > 0. With this assumption, Doeblin
minorization only need to hold on the sublevel set of V to obtain exponential
convergence to an invariant measure.

For conservative semigroups, these aspects are well known; see for instance
[127,1215,[169, 216].

Recently, several works try to generalize these impressive techniques for
non conservative semigroups. Let us cite for instance [223, (190, 191] in a gen-
eral and continuous-time setting or works on discrete-time Feynman-Kac semi-
groups [109,[108]. Some works associate Doeblin-Harris techniques with Krein-
Rutmann theorem and then often need strong Feller properties [201} 146, 166].
Early but related, Hilbert metric and Birkhoff contraction yield another pow-
erful method for analysis of semigroups, which has been well developed [246,
226, 41]. Unfortunately, these results do not apply or are difficult to apply for
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piecewise deterministic dynamics (see our differents examples in sections that
follow). For growth-fragmentation equations, Articles [34, 36] develop an ad
hoc Feynman-Kac approach with Krein-Rutman theorem that seems difficult to
generalize.

In the homogeneous case, when the existence of a positive eigenvector / is
known, we can introduce the so-called & —transform semi-group (P}");~ defined
by

Pif = M](/ﬂ). (3.8)

It is a conservative semi-group on which we can apply the classical techniques.
Unfortunately, bounds like Equation then requires explicit knowledge or
sharp bounds on h. See for instance [T1].

In [Al, /A3, |A8], we developed some theoretical results to generalize
Doeblin-Harris methods for some motivated applications in inhomogeneous
setting or without knowing the existence of eigenelements. These results are
related to [69, |75 85, 86, (117].

Let us detail our main results in the time homogeneous setting to not dot
add technicalities. We will come back later on to the inhomogeneous aspects
for the applications.

Theorem 3.3.1 (Theorem 3.5 of [A8])). Let us assume that

* there exist constants ¢ > 0, r > 0 and a probability measure v such that for any
xe X,
oxM, = c M,1(x)v. (H1)

* there exists a constant d > 0 such that for any t > 0,

vM;1 > d HMtlHoo/ (H2)

* The function
b mioo (H3)

is locally bounded on R ;..

Then, there exists a unique triplet (7y,h,A) € P(X) x B(1) x R such that h = 0
and S hdy = 1and forall t > 0,

YM; =My and M;h = eMh. (3.9)

Additionally h > 0 and there exists C > 0 such that for all t > 0 and y € M(X),

e MMy~ ()| < Clplry (1 - ) (3.10)
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By differentiating (3.9), the triplet (7,4, A) is a triplet of eigenelements for
the infinitesimal generator of (M;);>o, thatis vA = Ay and .Ah = Ah where the
(unbounded) operator A is defined by A = lim;_,o %(Mt —1).

Assumptions of Theorem holds when (M;) admits a (upper and lower)
bounded density with respect to a fixed measure v. It is known since the 60’s,
by Birkhoff [41] for instance, that this type of regularity hypothesis implies the
existence of eigen-elements and the convergence. This condition is for instance
used in [173, Theorem 10.1] to study infinite dimensional branching processes.

Unfortunately, assuming bounded density does not include simple exam-
ples such as the age-structured model of Section Briefly (see details in Sec-
tion 3.4), this model is generated by A given by

Af(x) = f'(x) + B(2f(x) - £(0)),

for smooth function f and x > 0. Therefore 6, M; > e B5, 1. We then cannot
find a reference measure for any starting distribution.

Assumption overcomes this problem and permits to treat such exam-
ple. This type of condition seems to appear for the first time in [117]. Indeed,
[117, Proposition 3.1] is the analogous of Theorem and even of its associ-
ated time inhomogeneous version [A8, Theorem 2.3]. It only states a contraction
inequality, similarly to (3.6), but this is the main step of the proof for such re-
sults. In [75], Champagnat and Villemonais highlight this condition and prove
that they are in fact equivalent to the exponential convergence (3.10). They de-
duce the existence of eigenelements in the context of absorbed Markov pro-
cesses (sub-conservative semigroups). Again results of [75] excludes the age-
structured model :, we cannot find a constant ¢ > 0 such that (e "' M;);>¢ is
sub-conservative and [117] does not prove the existence of eigenelements.

In [A8], we propose a time-inhomogeneous version of Theorem In
addition to a general theorem, we study two particular cases. In the first, one,
we consider the case where the generator A; converges to some operator A
when t — oo, that we called asymptotically homogeneous. See for instance
[16] for an application where this type of model arises naturally. We also study
the case where t — Ay is periodic. In this case, we can show that, there exists
a periodic family of functions (k;), a periodic family of measures () and a
number A such that

UM = M) (g ) ys s + O (e“‘p)(t‘s)> ,

for some p > Oetall t > s > 0 and initial measure p. This result is reminiscent of
the Floquet Theory [147]. To our knowledge, even in the conservative setting,
there is no general theorem stating this behavior. Nevertheless, it is known for
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some P.D.E., see for instance [81, 83]. These last behavior will be detailed in
Section 3.4

As said before, requiring a Doeblin type minorization assumption on the
whole space is often too strong when the state space is not compact, we then
also extended Harris theorem for non-conservative semi-groups in [Al]. Our
result reads:

Theorem 3.3.2 (Theorem 2.1 of [A1])). (i) If there exist a couple of positive functions
V,¢), >0, >a>0C >0, (cd) € (0, 1]2, a subset K and v a probability
supported by K such that supy V /¢ < oo and

(A1) M.V < aV + Clky,

(A2) My = By,

(A3) for all positive and measurable function f,

inf M-+ (f9)(x) > cv(f)

(A4) for all positive integers n

then, there exists a unique triplet (vy, h, A) of eigenelements of M with y(h) = 1,
i.e. satisfying for all t = 0

M =eMy  and  Mh = eMh. (3.11)

Moreover, there exist C,w > 0 such that for all t > 0 and measure u,

sup |e MMy f — u()y(f)] < Cu(V)e ", (3.12)
If/V<1|<1

(ii) Assume that there exist a positive measurable function V, a triplet (7y,h,A) and
constants C,w > 0 such that (3.11) and (3.12)) hold. Then, the couple (V, h) satisfies
Assumptions|(A1)|(A2)|(A3)| and [(A4)|

The main difference between Theorem and Theorem (whenyp = 1)
is the existence of Lyapunov functions. Note that when (M;) is a conservative
semigroup, we recover the classical Harris Theorem by taking ¢ = 1. This
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Lyapunov assumption seems to appear for the first time in [87, Theorem 4.2]
and in the proof of [85, Theorem 4.1]. However, combining this assumption
with the assumptions and to obtain uniqueness of eigenelements
and exponential convergence comes from [69]. This significant result has been
demonstrated in the framework of sub-conservative semigroups. We gener-
alized theirs result for non-conservative semi-groups, and non-bounded func-
tions 1, and prove that these assumptions are in fact necessary. In a follow up
paper [76], they proved that results of [69] can cover these two aspects. How-
ever, Assumption (A4) of Theorem seems more simple to verify that the
analogous of [76] and our proof leads some estimates on function /.

With this theorem in hand, we are able to handle different examples. Let
us comment how to verify the assumptions. From [A1} Section 2.2], Lyapunov
conditions hold under the following drift conditions: there exist & < f_ < B4
and ¢ > 0 such that

AV <aV+ly, B-p < Ap < By

We will see in the following sections that, for our examples, these conditions are
easily demonstrated by a simple calculation from simple functions. However,
they could, of course, be a difficulty. In [A3]], we bypass the bound Ay < B 1.

Assumption is the usual Doeblin condition and is usually not difficult
to prove under irreducibly type assumption. We will nevertheless see in Sec-
tion by citing [151} 31]], that this assumption also hid an aperiodicity as-
sumption and that aperiodicity can naturally emerge from piecewise determin-
istic dynamics.

Finally Assumption is maybe the more original and difficult assump-
tion. In Section we will give an example where this assumption is not sat-
isfied and for which the dynamics is somewhat degenerated. The simple non-
irreducible example on a two point space also may not satisfy this assumption;
see Section[5.1.2]and Subsection[5.2.Ton stochastic algorithms. This assumption
leads to a homogeneous growth of the population and thus to the uniqueness of
the principal eigenvalue. To our knowledge, there is no an easy way for proving
it. For instance, for diffusion processes, it is proved by using Harnack inequal-
ity in [69]] or by showing that the laws have bounded densities in [70]. In [A3],
we show a simple condition which is particularly suitable for one-dimensional
type dynamics : starting from one particle of type x, we can have a descendant
of type y at a finite random type depending of x, y, for any x, y in some compact
space. More rigorously, this reads : there exists t > 0, and ¢ > 0 such that for
any x,y € K, there exists a probability measure oy, on [0, t] such that

t
J 0xMs1y 0yy(ds) > c. (3.13)
0
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In sections that follow, we detail some examples of model for which we ap-
ply these conditions and develop some others properties. These models are the
age-structured model, the size-structured model and some evolutionary trait-
structured models.

3.4 Age-structured models : the renewal equation
and the contour process

In the present section, we present some results of [A8] and of the work [P§],
with Benoit Henry, both on age-structured models. More precisely, in these
models, the traits X! of particles correspond to their ages. We then work on
X = [0,0). Between branching events, the ages grow linearly with speed 1 :
X; s = X; + 5. In [A8], we study the case of cell division : at a random time,
individuals divided into two new individuals. That means that at branching
event, an individual dies and is removed of the population and we add two new
individuals in the population. This branching event arises at a rate B which may
depends on the current time. Formally, if T* is the division time of individual u

having age a at time f, we have

S
P(T" > t+s| X} =a) =exp <—J B(t+u,a+u)du>.
0

For this model, the generator reads

Aif(x) = f'(x) + B(t, x)(2f(0) - f(x)),

and the associated P.D.E. is called the renewal equation and reads:

Otus,t(a) + Oatis¢(a) + B(t,a)us(a) =0, t>s,a>0,

us(0) = 2§ B(t, a)us(a) da, >, (3.14)

This model has been introduced by Sharpe and Lotka [249] in a more general
context, namely with a birth rate not necessarily equal to twice the death rate.
Since then, it has become a very popular model in population dynamics (see for
instance [212,232, 259, 8, 182, 274]).

See also [[152] which defines solution measures for this P.D.E., shows the link
with the semigroup and use Doeblin minorization argument in the conservative
case.
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When B(t,a) = B(a), the eigenelements are explicit. The so-called Malthus
parameter A is characterized as the unique real number which satisfies the char-
acteristic equation

12 f " b(a)e BOB@) g,
0

the asymptotic probability measure y has an explicit density with respect to the
Lebesgue measure

v(da) = e~ oA +b@))dd g,

where « is a normalization constant and the harmonic function / is explicitly
given by

Q0 /
h(a) = 2h(0) f b(a')e $ U@ g1
a

Consequently several sharp results are known such that necessary and suf-
ficient condition to have convergence, see for instance [168) (167, 232, (187, (159,
273|253, 144]. Nevertheless, no such condition is already known for exponen-
tial convergence and with the help of Theorem we proved a new suffi-
cient condition for exponential convergence. Indeed, even if the state space is
not compact, the dynamics is concentrated enough to not need Lyapunov func-
tions.

Theorem 3.4.1 (Theorem 3.8 of [A8]). Assume that there exist ag > 0, p > 0,
le(p/2,p],and b > O for which

VkeIN,Va e [ag +kp,a0 +kp +1], B(a) = b.

Then there exists a unique triplet of eigenelements (y,h,A) € P(Ry) x By(R4) x Ry
verifying y(h) = 1 and

VE=0, M =eMy, Mih = eMh.

Moreover there exist C > 0 and an explicit p > 0, such that for all y € M(IRy.) and all
t=0,

e M — ()| < Clry e,

The condition I > p/2 is only a technical assumption which simplifies the
computations and can be removed. The main novelty comes from proving a
result of exponential convergence for a rate that can vanish infinitely often.

We also consider the periodic case: there exists T > 0 such that B(t+ T,-) =
B(t,-) for any t > 0. This model is for instance used for circadian rhytms (see [81,
83] and the references therein).
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Figure 3.4: In the left, we have the chronological tree and in the right its asso-
ciated Jump Chronological Contour Process. This one is constructed by going
along the tree (following the color gradient) from left to right and by writing
a decreasing, linear (with slope 1) function when we are going down (namely
we follow the life of an individual) and writing a jump at birth (of size the new
lifetime).

Theorem 3.4.2 (Theorem 3.17 of [AS8]]). Assume that there exist A > 0and b > 0
such that
Vt=>0, Va= A, B(t,a) = b.

Then there exists a unique Floquet family (Ap, st Nsit)o<s<t for the semigroup
(M t)o<s<t, some explicit constants C,p > 0 such that for all t > s > 0 and all

pe M(Ry),
H[AF(FS)P‘MSJ - V(hs,S)'Ys,fHTV < C|pfrv e P=9),

When B(t,a) = B(t) is a continuous T-periodic function, which is not identi-
cally zero, we even show that

t
HefAF(tfs)VMs,t - l‘(hs,S)'Ys,tHTv < C|pfrv efzgsb(T)dT/

with Ap = % Sg b(t)dt. We then recover the spectral gap 2b when b is constant.

In [P8], we study the probabilistic properties of the underlying branching
process for a slighty different model. In this model birth and death does not
arise in the same time. Each individual gives birth at a rate B(t,4) and dies at a
rate D(t,a). When B and D are time homogeneous, it correspond to the (binary)
Crump-Mode-Jagers model [155]. In [194], it was shown that when B is fur-
ther constant (in ages) then the contour of the process (see Figure is a Levy
process. Consequently, several properties were derived such as a backward
representation of the tree through a coalescent point process, the age structure,
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the probability of extinction... Using contour process for coding random trees
seems to date from [1] and is now widely used; see for instance [200] and refer-
ences therein. However, the definitions of contour differ and Figure [3.4| repre-
sents a Jump Chronological Contour Process, which was firstly defined in [194]

In [P8]], we follow this approach to understand the time-inhomogeneous dy-
namics. We also assume that B(t,a) = B(t) does not depends on the age but
varies in time and we show that the contour process is no longer a Lévy pro-
cess but remains a Markov process. This is the piecewise deterministic Markov
process generated by

Q0
LF(H) = ~f(1)+ B) [ (F(t+9) ~ £() DIt a)e BP9
0
Consequently, we are also able to recover several properties. We give an
equation satisfied by the probability of extinction and necessary and sufficient
condition or tractable sufficient condition to almost-sure extinction. This is
based on the generalization of the notion of scale function (defined for Lévy
and diffusion processes) for process generated by L.
Using also the approach of [195], we also obtain some new scaling limit re-
sults.

3.5 Growth-fragmentation models and the asym-
metrical division of the E-coli bacteria

The results that follow are based on the publications [A1l, /A2, A4] and a work
in progress in collaboration with Benoite de Saporta, Nathalie Krell and Tristan
Roget.

Since my thesis [I'1], I have been working on size-structured population
models, especially on growth-fragmentation processes. In the latter, I used the
results of [233] (giving the existence of the principal eigenelements) to demon-
strate a law of large number; that is the convergence in probability in time of
the empirical distribution.

In such model, between branching events, the traits X; evolve on X = [0, )
according to an ordinary differential equation of the type :

VE=0,  Xi=g(XD),

for some non-negative growth rate function g. Typically g : x — gx, for some
g>0,0org:x— 1

At branching event, an individual divides. It gives birth to a finite number
of descendants which share its size. We denote by p the fragmentation measure
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on (0,1) : an individual of size x produces smaller individuals of size zx, with z
distributed by p. We assume mass conservation :

fzp(dz) =1

For instance, we have p(dz) = 26;/,(dz) in the binary equal mitosis model. Fi-
nally, as in Section 3.4 we assume that division events arise at rate B.
For this model, the generator then reads

1
Af(x) = g(x)f'(x) + B(x) (L f(zx)o(dz) — f (X)> , (3.15)

for smooth enough function f and x > 0. The dual, and well-studied, associated
partial differential equation is given by

1
Opue(x) + Ox (g(x)ur(x)) + B(x)us(x) = fo B(x/z)ui(x/z)p(dz)/z.

This model was first investigated in [160, 121, 174] on compact space. This
non-local PDE appears in the modeling of various physical or biological phe-
nomena [15, 244, 212, 232]. From a probabilistic point of view, it was studied
in [35, 208, |A10, [I1} [17] for instance. Probabilistic questions for this type of
model is large : existence/non-explosion, long-time behavior of the empirical
measure or largest particle, functional estimates, statistical estimation, numeri-
cal simulation... For this last question, I co-supervised, with Benoite de Saporta,
the master internship and the PhD of Maud Joubaud. She studied the construc-
tion of this process as a branching Piecewise Deterministic Markov Process in
line with Davis’ construction [103]]. In the non-branching case, she studied the
construction of an Euler scheme with jumps and studied its long time behavior.
She was thus able to deduce sharp bounds of weak and strong errors for this
approximation scheme. On this subject one can also consult the works [32, 203,
241]. On the branching process, she has, with B. de Saporta and me, general-
ized the approach of [164] (see also [245]) for the optimal stopping problem to
branching processes. The aim was to calculate

V(u) = sup  E[g(us) | po =ul,

stopping times S

where (j1;) is the empirical measure defined in Section 3.3} j is a punctual mea-
sure and g is a reward function. This problem is solved classically through the
associated dynamic programming operators. Thanks to the embedded chain,
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the latter are easily calculated (numerically) by iterating some appropriate op-
erators. These results are described in more details in [A4]].

From now on, we will focus on the spectral properties of A. When g : x —
gx, the situation is simple because the right eigenvector is explicit. It is given
by h : x — x and the associated eigenvalue is A = g. We can then use an
h—transform, defined in (3.8), and obtain the existence of ¢ and exponential
convergence throught classical techniques, as in [216] for instance, applied on
the h—transform semi-groups. This type of approach was done in [151} 31, {105,
13,156]. When B is moreover constant, the associated Markov process is a Lévy
process, using known results [33]], we can then obtain sharp asymptotic results.
See for instance the unpublished Chapter 6 of [T1]. Surprisingly, when p(dz) =
261, and B is general then there is no convergence; see [151) 31]. This is because
in this case the underlying process is aperiodic.

The constant case g = 1 is more challenging because there is no closed for-
mula for the right eigenvector. It captures the difficulties that general growth
functions can present while keeping simpler expressions in the calculations be-
cause the underlying ODE solutions are explicit. Using the results of Section[3.3]
and in particular Theorem and Condition (3.13), we can show

Theorem 3.5.1. Assume p(dz) = codp or
c
p(dz) = ?Ol(zofs,zo)@)dz

for some zg € (0,1), € € (0,z9] and ¢y > 0, and one of the following assumptions
1. Bis C1, non-null and increasing;
2. B(x) = 0in a neighborood of the origin and lim,_,,, xB(x) = +0o0;

3. limy_,0xB(x) = 0,limy_,o xB(x) = +o0 and there exists k > 0 such that

éz*kp(dz) < 4;

then the conclusion of Theorem i) holds true for some V, .

See [A1, Theorem 5.3] and [150, Theorem 3.1] for details. This result is part
of a rich list of results on the existence of eigenelements and convergence. In
contrast with the previous theorem, existence of eigenelements is traditionally
proved through Krein-Rutman theorem (generalization of Perron-Frobenius
Theorem for operators on non finite but compact space). The first such result
was obtained in [233] where B was supposed to be restricted to small interval
of values. This result for existence of eigenelement was extended in [131]. The
convergence was proved in [61, 105, 22, 56| 67, 199, 218] on the conservative
equation (after normalization or not).
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More recently, [34, 38, 36, 37] applies Krein-Rutman Theorem for another
operator leading to not use a truncation argument as in [131} 233].

Let us finally cite [267] which now establishes one of the more general re-
sult on existence of eigenelements and convergence. As Theorem below,
proofs are based on generalized Harris Theorem [A1, 69], but with a careful
construction of the processes and the Lyapunov function. Note that however
Theorem leads to consider non-irreducible dynamics on (0, +o0), which
may be a difficulty as illustrated in Section (and especially that prevents
from using criteria like to show (A4) in Theorem [3.3.2).

For an applied point of view, populations are subject to a time heterogeneous
dynamics due, for instance to circadian rhythm [82, |84]. For that purpose, it is
interesting to investigate how time variation of the coefficients may modify the
population size. See also [186] for an experiment where the temperature is vol-
untarily regulated at different periodic frequencies to evaluate the impact on
the population. On these question, Adil el Abdouni began its PhD with Pierre
Gabriel and me. In addition to the modeling application, he will investigate
application of this type of convergence result in optimal control in infinite di-
mension inspired from [88].

Another interesting generalization from an application point of view is the
consideration of the asymmetry in the division. Recent biological experiments
[235| 272, 255] measured asymmetry in cell division for the species Escherichia
coli. E. coli is a rod shaped bacterium growing exponentially (¢ : x — gx) and
divides roughly in the middle. Each daughter cell therefore creates a new pole
at division and inherits the other pole from its mother. After two divisions,
it is possible to distinguish sister cells: one has inherited the old pole of its
mother while the other one has inherited the new pole of its mother. The for-
mer is called the old pole cell, and the latter the new pole cell. It is possible to
track experimentally the status (old pole or new pole) of each cell together with
their sizes along time and lineages. These experiments showed that there is a
statistically significant difference between the elongation rates of the old pole
and new pole cells, even if they are genetically identical; see also [118]. With
Benoite de Saporta, I co-supervised the post-doctoral student Tristan Roget on
this subject. The aim was to better understand these asymmetry from model-
ing. For that purpose, in [A2], we propose a size-structured model which takes
into account it. In this model, at a certain time t > 0, each cell i have a trait
Y! = (X, P*) € (0,+0) x {0,1} composed to its size X € (0, +0) and its pole
P} € {0,1} (new or old but denoted by 0 or 1). The dynamics is generated by

Af(x, p) = gpxdxf(x) + B(x) (f(60x,0) + f(61x,1) — f(x,p)),

where g, g1 > 0 are the growth rate and 1 > 6y = 1 — 6; > 0 are the proportion
of size inherited at birth. See [A2] for details. This is a simple modification of
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(3.15). We show that if oy # a1 and

lim B(x) = 0, lim B(x) =+,

x—0 X—+00
then the conclusion of Theorem [3.3.2]i) holds. Note that, we do not consider that
division kernel has a density part as in Theorem Even if this assumption
is not necessary for the symmetric growth-fragmentation with constant growth
rate, it is necessary when it is linear [151, 31]. However, here the asymme-
try prevents aperiodicity and then prevents periodic behavior. We then have a
principal eigenvalue A, which depends in particular in € = g; — go. We then
set A = Ac. This parameter represents the rate of the exponential growth of the
number of individuals. From an evolutionary point of view, this Malthusian
rate A is called the fitness and determine if a mutant population can invade a
resident one: a mutant with a larger fitness should invade the resident popula-
tion. We proved that when B(x) = x and 6y > 60; then

aeA‘ezo < 0;

That is population, whose the largest cells, at birth, grow faster than the small-
est ones, have a larger fitness. In particular, the asymmetry is optimal in a Dar-
winian sense. The proof is based on several semi-explicit expression for the
limiting measures <y in the symmetric case extending then some known results
[275, 165,171} 170]. It can surely be extended to B(x) = x?, with p < 1.

Finally, all models that I introduce were structured by size, in the present
section, and by ages, in the previous section. Understand the mechanism of
cell division is an active subject of research [213} 272, 12]. From a statistical
point of view, let us cite the works [176, 129, 130] which give some estimator
of the division rate B. Size-structured models seem to be more accurate than
age-structured models [239]. See [128] for a recent survey on the subject. How-
ever, biological experiments shows that modeling divisions by size increments
rather than by age or size fits the data even better [269]. This is called the adder
or incremental model. Some estimators was for instance proposed in [128]. In
a work in progress, with B. de Saporta, N. Krell and T. Roget, we work on sta-
tistical estimation of an asymmetric model allowing to discriminate if the adder
model is more efficient.

3.6 Evolutionary models

This subsection regroups my works [P2, A3] and the unpublished post-doc re-
sults of Alvaro Mateos Gonzalez.
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Simple evolutionary model are often driven by two main forces: the selec-
tion and the mutation. The individuals in the population are characterized by
some trait x, typically x € R?, which can represent its size, growth, reproductive
capacity, lifestyle...

The selection part models how a trait translates into competition between
individuals for reproduction and death. The latter can, for instance, be sim-
ply represented by a function W(x) describing the growth rate as a function of
the trait; this is the fitness function. By definition, selection imposes interaction
terms in the models. They cannot be directly represented by linear PDEs or
branching processes. An example of PDE is given by the following model

ron(x) = [(oly) — 0K y) + 01w (w<x> - W<y>v<y>dy) . (316)

where v represent the density of individuals having trait x at time t > 0, mod-
eling the mutation and W is the fitness function. The integral under the kernel
K represents the mutations and we will come back on this aspect a little further.
The right term represents the selection term. We can easily see in Equation
thatif W(x) > { W(y)v(y)dy then trait x is more adapted and the associated pop-
ulation will increase and conversely.

This type of model can be derived from individual based models taking into
account stochastic interaction [268, 71, |72]. However, this latter model can also
be derived from the following linear equation:

dun(x) = [ (a(y) ~ (K (x, iy + W), (3.17)
by (at least formally) considering

ot o wy(x) = vp(x)elo Tos()dvds,

Ut
~ fu(x)dx
As seen in Section Equations of the type are linked to branching
processes whose traits evolve as jump processes and where individuals repro-
duce at rate max(W,0) and dies at rate max(—W,0). In what follow, we will
study selection-mutation with this type of non-linearity which is often called
replicator-mutator or Kimura model [188].

Let us now comment the mutation part. During their life or at the time of the
reproductions, a mutation can occur. This results in the creation or replacement
of an individual of trait x by an individual of trait y. A classical framework is
that this new trait y is a close variation of the previous one x, so it is drawn
randomly according to the kernel K(x, y) = J(x — y)dy for some density of mea-
sure J; namely y = x + € with € ~ J. See [96} 157, 158, [94] for instance. It is
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also often assumed that mutation have a small and infinitesimal impact on the
trait, this leads to consider a Laplacian, as in instead of a kernel K, as in
[4, 3, 219] for instance. On the contrary, Kingman proposes in [189] that we can
neglect infinitesimal mutations and consider that only large mutations, which
change totally the trait, have an impact on the dynamics. He then proposes to
consider that the new traits y are choose uniformly at random by a fixed law Q
which does not depend on x. This is the so-called house-of-card model (a single
mutation can destroy the biochemical house of cards built up by evolution).
This house-of-cards model is then represented by the two following P.D.E. :

oru(t,x) +a(x)u(t,x) = (JX u(t, y)dy) Q(x) (3.18)

and

oro(t, x) +a(x)o(t, x) = (Q(x) —o(t, x)) + (Ja(y)v(t, y)dy) o(t,x). (3.19)
or equivalently the semigroup (M;):>o generated by

Af(x) = Q(f) —a(x)f(x).

We used the notation 2 = —W and then a may be understood as a death rate.
When 7 is constant (even equal to 1) then A is the generator of a Markov process.
It is even maybe the more trivial Markov process to study. It is direct to see that
its law converges at rate 1 in many distances (total variation, Kullback-Leibler,
[%..) to Q. Even if we can generalize this result for certain non constant a
(and obtaining again the optimal rate of convergence), this simple dynamics
encompasses a rich class of different behavior.

Assume that a has only one minimum and, without loss of generality, we as-
sume that infa = a(0) = 0. In [P2], we show the following exhaustive overview
of the possible behaviors:

e If {Q/a > 1 then (1) and (v;) converges, up to scaling, exponentially
fast in various senses (total variation distance, L”, entropy/Kullback-
Leibler distance), with an explicit optimal rate, to a unique invariant mea-
sure 7. This measure is explicit and admits a density with respect to Q.
This case is a textbook case to learn log-Sobolev, Poincaré, Doeblin, the
h—transform... See [64], 65, 5].

e If{Q/a = 1and 1/a € L*(Q) then (u;) and (v;) converges again to a prob-
ability measure admitting a density with respect to Q. The convergence is
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not at exponential speed. With additional assumptions on the integration
of 1/a and a, we can prove sub-exponential convergence bounds in vari-
ous metrics. To that end, we use weakened, seemingly new, versions of
Poincaré and log-Sobolev inequalities (see nevertheless [49, 242]) but also
the more usual approaches in total variation [126, 261].

o If {Q/a = 1 and 1/a ¢ L?(Q) then if ug is a measure then u; tends to
up({0})do. In particular, if u( is/has a Lebesgue density or is equal to Jy,
with x # 0 then u; — 0. In contrast, (v;) converges weakly to a measure
admitting a density in any cases.

o If p = {Q/a < 1 then if uj is a measure then it tends to uo({0})(do + (1 —
0)~1Q/a). In particular, if ug is/has a Lebesgue density or is equal to Jy,
with x # 0, then u; — 0. In contrast %Sé vsds converges weakly to ((1 —

p)oo + Q/a).

In the last case, if ug, vy are Lebesgue density then so are u;, v;. The appari-
tion of the Dirac masses, that is the the concentration phenomenon, is abrupt in
the sense that the convergence can not hold in total variation distance. These
results are proved by ad hoc arguments. The fast convergence in total variation
could surely have been shown by using Theorem or Theorem How-
ever, we need to prove criterion A4. The sufficient condition given in does
not apply here. This example, and counter-example in some cases, illustrates
the significance of this assumption. Indeed A4 does not hold in case of concen-
tration and slow convergence. When the initial concentration is to concentrated
around 0 then the individuals are fitter and are then more represented in the
population. That leads to not have a regular convergence to a regular measure.

Even if the form of ¥ was known in different contexts [95, 94, 55| 54] and con-
vergence and exponential convergence expected, these convergence results was
not complete. Result of [P2] addresses a full portrait of this equation. In partic-
ular, the difference of behavior when { Q/a = 1 and 1/a € L? was unexpected in
view of the literature.

To our knowledge, such type of concentration result were only established
under explicit formula of the solutions; see [157, 4,158, 3]. Note that we could
have chosen to put the argmin of a at infinity rather than 0, and the concentra-
tion becomes a result of acceleration as in [4, 3].

Let us compare this result with the pioneer work of Kingman [189]. Instead
of our four different regimes, he finds three that he names democracy, meritoc-
racy and aristocracy. The democracy pattern represents the exponential conver-
gence (without precision in which distance) to a smooth equilibrium, as in case
§Q/a > 1. In this case, the effect of the selection is simply to modify the form
of the distribution. In the meritocracy pattern, he shows that the convergence
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to a distribution having a Dirac mass similarly to our last case. In this case, the
Dirac mass emerges from the growth of new class of highly fit individuals. The
smooth part consists of the descendant of these mutants. Finally, if 0 ¢ Supp(Q)
but is in the support of the initial condition then a Dirac masses always remains
in the law. Initial individuals are always fitter than mutant, consequently, the
final population consist of these individuals plus their descendants. We do not
treat this case but it is a relatively simple case to deal with. Finally, we see
that the model we consider is richer because there are two other behaviors that
emerge.

We study this particular choice of mutation kernel because it enables to use
explicit limiting eigen-elements. However, due to the theoretical result [95] 94,
55| 54], supported by the simulation [43], we can think that this convergence
portrait is similar when K(x,y) = J(x —y). Let us now continue with this type
of kernel. A slight variation of this model, which makes sense for applications
[93, 96, 30] is described by a model of mutation-selection in a varying envi-
ronment. Indeed, when we assume that the environment change at a constant
speed, leading to a thinning of the trait. This corresponds to change W(x) into

W(x — ct) in (3.16) or (3.17).
Up to a time change, this leads to the study of the PDE

oru(t, x) + coxu(t, x) + a(x)u(t, x) = J}R u(t,x+v)J(y)dy

Due to the transport term, it is easy to see that our irreducibly criterion (3.13)
applies and then concentration is impossible. We can apply Theorem or
Theorem and show exponential convergence under reasonable assump-
tion. For instance, in [A3], we show that if | is continuous and positive in a
neighborhood of 0 and lim,|_,, 4(x) = +00 then we have existence of eigenele-
ments and exponential convergence. This result was used in [175, 57, 229] to
study, in reversed time, the associated branching process leading new prop-
erties on the ancestral lineage. Without convergence results, [93] established
weaker conditions for existence and uniqueness of a familly of main eigenele-
ments.

Finally, with Matthieu Alfaro and Guillaume Martin, we supervised the
post-doctorate of Alvaro Mateos-Gonzales. We were motivated by considering
K(x,y) = B(x)](x —y) in to understand evolutionnary rescue problems:
when a bacterial population is affected by a biocide, what are the differences in
evolutionary responses if the biocide acts on death rates (more deaths) or births
(birth limitation). We considered that W(x) = x and B(x) = max(x,0) but we
studied the following (mean-field type) approximated equation :

oro(t,x) = J xv(t, x)dx JR(v(t,x +y)—o(t,x))J(y)dy +o(t, x) (x - Jyv(t, y)dy) :

R
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As in [157, [158], we were able to derive the solution of the associated cumu-
lative generative function leading some estimates on the mean of the fitness
§ yo(t, y)dy over time. These results are unpublished.

3.7 Perspectives

There are several possibilities to go further than the results of the present chap-
ter. In Section we present a model that perfectly fit with the data. How-
ever, it is possible that on slightly longer time scales, genetic depression due to
low numbers of males takes place. One approach may be to use bisexual mod-
els [181, 220, [102] but in a multi-type context with a latent variable to model a
deleterious trait. The difficulty is to make the data talk more than the model.
For example in the modeling of the Section we do not model hunting,
accidents... They are naturally calibrated from the data.

In Section we prove that there is different populations of palm tree. A
main question should be to identify them but it seems to me that more detailed
data is needed.

From a theoretical point of view. Theorem generalizes the condition
CD3 of [216], which gives exponential convergence. It will be very useful to
generalize all the drift conditions of [216] for non conservative semi-groups. For
instance, having a very simple drift conditions (plus a small set one / Doeblin
minorization on compact spaces) to have only existence of main eigenelements
(when there is no exponential convergence as in Section 3.6) would have several
applications. All the behaviors described for the house of cards model in the
Section |3.6| should be easy to check on the generator, this is currently not the
case. Such conditions may be weaker than usual Krein-Rutman Theorem.

In the same way, Assumption A4 is currently a difficult assumption to deal
with and we have to understand how it may be simplified. Criterion is
not enough to treat the age-size structured model for instance. A key is maybe
to adapt the approach of [263} 264].

Closely related, we have to understand how we can prove the concentration
phenomenon. That is convergence to the main eigenelements, when there is
no convergence in total variation distance. This problem seems to me to be
particular to non-conservative semi-groups.

From the application point of view, understand the dependence of the
eigenelements with respect to the parameters, as studied in Section or in
[227,217], is of prime interest. See for instance [96] for evolutionary problems
as in Section 3.6

Finally, all the associated statistical procedure is an interesting prolongation
of my contributions.



56

CHAPTER 3. BRANCHING PROCESSES



Chapter 4

Population models with interaction

4.1 Introduction: thelinear and branching birth and
death process

To introduce what follow, let’s go first back to branching process and especially
to the simplest one. Consider a mono-type Galton-Watson process in contin-
uous time. In this model each individual gives birth and dies at exponential
times. We also assume that individuals give birth to only one new individual at
reproduction time. The process (X;):>0, representing the number of individuals,
has generator given by

Lf(n) = bn(f(n+1) = f(n)) +dn(f(n —1) = f(n)).

Several general results exist for this process. Let us expose some of these when
d > b. In such case, we have

Text = inf{t > 0| X; = 0} < o0.

What is more, for every x € IN¥,

lim e =P, (Tye > t) = (1 - é) X,
t—00 d

where [P, designs classically the probability conditional on {Xy = x}, and, for

every k e IN*¥,
IimP, (X =k|1 t) = — . 1—-=
tl ‘ x( t ‘ Ext ~ ) ] 7 )"
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See [211] for details. In short, the process extincts almost-surely after a random
time, which has an explicit exponential tail, and before extinction, the num-
ber of individuals follow a geometric distribution. This latter is called a quasi-
stationary distribution because it remains stationary when conditioning on non-
extinction. This liminting behavior is related to results exposed in Section
and in particular Theorem 3.3.2] Indeed, setting

Mtf(X) = [Ey [f(Xi>1TExt<t] ’

for x € IN*, bounded function f and time ¢ > 0, the family of operators (M;)
is a positive non-conservative semigroup. With the notation of this section, we
have

A=b—d, h:xH(l—g)x, ry—];[(g)k_l (1-2)@].

Results of Section is then also useful for the study of finite-dimensional
process. See for instance [76, 75] for which this type of spectral properties is
developed for the study of quasi-stationary behavior. See also [109, [117, 113]]
where these techniques are also used in a finite-dimensional setting related to
Feynman-Kac formulas. This latter approach is discussed in Section [5.1.3|

The linear birth and death process is often too simple for application. In
Chapter 3| we made the individual birth and death rates depend on a trait.
However, assuming independence at birth is often an unrealistic assumption
for applications.

A natural way to introduce interaction in this simple model is to consider
indirect interaction : individual does not interact directly but all depend on
the same resource. Let us motivate and describe this type of interaction on the
deterministic approximation of the linear birth and death process : the solution
x of the equation

X = gx,
where x designs the proportion of individuals and ¢ ~ b — d its associated
growth rate. We let ¢ depends on a new variable y which designs the resources

that need the individuals to live and reproduce. This resource is also consumed
(with the same rate, to be simple) so we have a model of the type:

{{c = g(y)x
y = —gyx

In such model, the population dynamics is trivial: the resources vanish and
the population eventually stabilizes. To have a more interesting behavior, it is
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necessary to continuously increase the input of resources. A simple way to do
this is to use the framework of a bioreactor: we consider that the population is
in an environment in which we add at a fixed rate D some resources y;, and
extract uniformly what is in this environment (without this last condition, the
behavior is also trivial, the population tends to infinity). This gives

{ ¥ = (g(y) - D)x
¥y = D(yin—y)—8y)x

This deterministic model is called the Chemostat model [172, 252] and is
based on the modeling of the continuous culture of bacteria developed for in-
stance by Monod [222]]. Even if this process is mainly studied by ODE systems
[172, 252], a lot of stochastic processes have been proposed or studied in finite
[85, 60, 100] and infinite dimension [A12} 59, [73]]. See for instance the survey
paper [A15] on which I slightly contribute. In what follow, we answer some
questions posed in this article. In particular, as resources dynamics and bacte-
ria reproduction may be considered at a different scaling, keeping a birth-death
type dynamic have an interest in practice; see [60, (100]. Namely, we have to
study the processes (Xt, Y;) on IN x R generated by

Lf(x,y) = gy)x(f(x +Ly) — f(x,y)) + Dx(f(x — Ly) — f(x, ) (4.1)
+[D(yin —y) — §W)x]0yf (x,y).

Omitting the biological consideration, this stochastic process is mathematically
challenging. Indeed, it is a piecewise deterministic Markov process [A11} [103]]
and consequently, this makes difficult the understanding of its long-time behav-
ior. This one is developed in Section 4.2 below.

Another interesting point raised by this model is the form of the function g.
This function is often called reponse function because it encodes how consumers
respond as a function of the number of resources. The determination of g is
fundamental in ecology and microbiology and is the subject of the Section [4.3|

Another way to consider interaction is to assume that these rates b and d are
not constant and depends on the population. We can consider a direct competi-
tion and thus these rates depend on the total number of individuals. This leads
to a process generated by L, given for a bounded function f and n € N by

Lf(n) = bu(f(n+1) = f(n)) + du(f(n = 1) = f(n)),

where (b,) and (d,) are two positive sequence on IN* and dy = 0. These rates
are therefore no longer "individual" rates. These processes are called birth and
death processes. When by = 0, these processes have a positive probability of
extinction (to be absorbed at 0). Extinction and quasi-stationary behavior have
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been well studied for quite a while; see for instance [125, 211, (124} 262]. We
contribute to these studies in [A1, Section 5.1] : we exhibit an explicit exponen-
tial convergence to the quasi-stationary distribution (and gives bounds of the
associated eigenelements) in the case where these rates are constant for n > 2.
We will not describe this result more than this in this manuscript. When by > 0,
these processes can no longer be absorbed at 0. Either they tend to infinity or
converges to some stationary distribution. Condition to convergence and ex-
plicit formulas for stationary distributions are well known; see for instance [80,
Section 9.3]. Due to their simplicity, these processes are well used in many oth-
ers contexts than biology. Let us cite for instance the study of queuing system
in computer science [240]. In Section we will introduce some of these ba-
sic properties and the original results we developed in [A5]. The sharp bounds
we have demonstrated allow, using Stein’s method, to obtain fine quantitative
bounds for limit theorems on discrete laws of the type of the law of rare events.
The present chapter is now structured as follow : in Section we intro-
duce our results on chemostat model, in Section on functional responses, on
Section [4.4)on birth-death processes and Stein’s method. Then we rapidly evoke
some results on collective displacement and end by a perspective section.

4.2 Chemostat : a consumer-resource population
model

Let us come back to the model generated by to expose the works [P1, 59]
with Coralie Fritsch. In the chemostat modeling, the resource is often called sub-
strate and then denoted by s and the growth rate is denoted by u (for Monod).
We then study the process (X;, S¢) generated by

Lf(x,s) = u(s)x(f(x+1Ly) — f(x,y)) + Dx(f(x —Ly) — f(x,y) (4.2)
+[D(Yin —y) — u(8)x]0y f(x,y).

This model was introduced by [100]. Even if it can be considered as a switch-
ing dynamical system as studied in [29, 27, |A17], any general results apply di-
rectly due to some particularities including the possible absorption of the dis-
crete chain (X¢) or the different equilibria of (S;) when X; remains constant.

Consequently, as many stochastic processes, the first approach can consist
to the approximation by scaling limit. To our knowledge, it was first done in
[60]. This paper introduces different models at different scales from the two-
dimensional jump and discrete process to deterministic by passing by some
hybrid process as or two coupled diffusion processes. In the continuity
of this work, in [59] they introduce an infinite dimensional model, where all
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Figure 4.1: Quasi-stationnary distribution of the Crump-Young process. In the
middle, we have several simulations of the process after a long time (and being
not absorbed). The x—axis represents the continuous component and the upper
graph is an histogram and a smooth estimation of the associate marginal distri-
bution. The y—axis and the righter graph represent the discrete component.
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individuals are structured by their mass, as in Section but with indirect in-
teraction as in (4.2). They show the convergence of the empirical distribution to
an integro-differential equation which was already introduced for itself in [236),
149].

All these results give a deterministic approximation of the stochastic pro-
cesses generated by or its associated infinite dimensional size-structured
model. To better take into account and understand the random dynamics of
this process, in [A12], we go one step further in the approximation by proving
some central limit theorems. We show that both the finite and infinite dimen-
sional chemostat model converge, after re-normalization, to a Gaussian process
in large population. Although the proof for the finite-dimensional process is
relatively classic [142], the convergence of the infinite dimensional process is
more tricky. Indeed, after re-normalization, we do not study a positive measure
but a signed one for which the state space is not metrizable. Consequently, we
follow the now well used approach of [210, 260, 209]. We consider the fluctua-
tion process as an element of some appropriate Sobolev space and use Hilbert
techniques. The proof was then relatively classical, even technical, but some
points were nevertheless tricky and original.

These results then gives a first hint of the long time behavior of this process.
Indeed, in large population, the finite dimensional process converges to some
degenerate two-dimensional Ornstein-Uhlenbeck process. Consequently, we
can expect that its law quickly approaches the normal distribution and remains
stationary. However, we can easily prove that the process extincts in finite time
(in the sense that the first component is absorbed in 0). These two antagonists
behavior are not incompatible. Indeed as for the linear birth and death process
of Section we can expect that (X, S¢) is absorbed after a large time and
that before extinction, it converges to a quasi-stationary distribution (close to a
normal distribution). Although this result can be expected, no classical result
applies. Indeed, the study of birth and death process [124, 262] or diffusion
processes [63] generally relies on a reversibility assumption leading to work
on an appropriate Hilbert space. The hybrid form of the generator entails that
general spectral results do not apply here. Also, the right-eigenvector & is not
known as in [193] or in the example of Section The only result we know
on the quasi-stationary distributions of this or similar processes is [85]]. In this
work, it was proved, by a compactness argument (based on Lyapunov function
similar to those introduced in Section , that there exist at least one quasi-
stationary distribution. Moreover some properties of the form are the QSD are
described. In [P1], we show that the process (X}, S¢) admits a unique quasi-
stationary distribution v, which has exponential moment in its first component
and integrate s — 1/s in the second one. Moreover, for any (x,s) € N* x R,



4.3. FUNCTIONAL RESPONSES : HOW PREDATORS EATS PREYS 63

we have
Lim Pys) (Xt Se) € - [ Xe # 0) = 7.

We have a uniform exponential bound when the initial distribution is on some
compact space. Note that this process is not irreducible, and that even if this
does not generally pose a problem for the study of un-absorbed processes, it
sometimes generates strange quasi-stationary behaviors; see [77, 24, A6] or Sec-
tion The proof is based on Theorem and a careful study of the path
and several Lyapunov functions.

4.3 Functional responses : how predators eats preys

Let us detail here the results of [P4] with Vincent Bansaye.

Functional response is the number of preys/resources successfully at-
tacked/digested per predator/consumer as a function of prey/ressource den-
sity. It describes the way a predator responds to the changing density of its prey.
This corresponds to the function y in Section[4.2] Since the work of Holling [120)
178,/177], three main functional responses, called type I, Il and III are commonly
used. In the type I interaction, the consumption rate is linear y : s — cs, for some
c > 0. This was the functional response assumed independently by Lotka and
Volterra in their classic theoretical works on predator-prey interactions. The
type Il interaction has the form

as
b+cs’

s (4.3)
for some a,b,c > 0. This is one of the most used functional response in ecol-
ogy; see [183, Table 1]. It is also related to the famous Rosenzweig-MacArthur,

Monod and Michaelis-Menten equations. The type III interaction has the form

ﬂSZ

S — .
b+cs?
The form given to functional responses is largely debated for decades, and

since the work of Holling, a large number of functional responses has been pro-
posed in the literature depending on the interaction context (see for instance
[7]). Form of Equation was first derived from empirical study [177, 222]
and currently few studies mathematically derive forms of functional responses
from microscopic models. Indeed, let us cite [183} |180, 47] which derive such
rate by reducing some macroscopic ODE systems, [97] by a game-theoretical
approach or also [11] by using properties of random walks. Closer to what we
have in mind, [[185] [104] starts from a stochastic individual based model. They
derive a finite dimensional Markov chain and prove convergence to an ODE
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system involving the classical functional responses. They are based on exponen-
tial distribution for the interaction times but random times involved in ecolog-
ical or biological interactions are in general non-exponentially distributed, see
[40, 133] and references therein. Consequently, we have to consider an infinite-
dimensional process.

In [P4], we propose a microscopic model in the continuation of the "static"
model proposed in [40]. In such model, we model preys and predators at a
microscopic scale and model each interactions, births and deaths.

Let us describe informally the model. We write 7 € IN the number of preys
and np € IN the number of predators. There is two types of predators : preda-
tors that are researching a prey and predators manipulating a died prey. The
dynamics of predators is as follows:

* Predators search preys during a random time distributed as a random
variable Ts(n1). Typically the more 14 is large, the smaller Ts(n;) is.

* After this time, one prey is caught and the number of preys becomes n; —
1. The predator changes its status and now manipulates during a time
distributed as Tys(n7 — 1).

¢ At this time, the predator ends to manipulate and returns to the first step.

Several predators follow simultaneously and independently this dynamics, but
they live with a common number of preys and impact each other through this
common resource. This is the main contrast with [40] which assume that, as
the number of individual is large, the population density remains constant over
interactions.

Besides, each predator gives birth and dies with respective individual rates

v+(u) and B,(u), which depends on their status r € {S, M} and the time u from
which they are in this status. Typically, the fact that the predator does not find
a prey make its death rate Bs(u) increase with u. Preys also give birth and die,
with fixed rates 7y and B.
We assume that the size of the populations of preys is of order of magnitude
K; and the size of the populations of predators is of order of magnitude K, and
that Ky » K. That means that preys are much more numerous than predators.
A slow-fast dynamic is considered : the time scale of prey-predator interactions
is short compared to the time scale of birth and death of predators and preys.
It means that each predator eats many preys during its life and, if a prey is not
eaten by a predator then its life length is comparable to that of predators, up to
some factor.

After this scaling normalization, we show, that the couple of stochastic pro-
cesses describing the quantities of preys of predators converges in law in the
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Skorokhod space ID([0, ), R%) as K1, K, tend to infinity, to the unique solution
(x,y) of an ordinary differential equation:

{X’(f) = (v = B)x(t) —y()(x())
y'(t) = y()p(x(t),

where

(4.4)

and

E [175)(ys(u) ~ Bs()du + 27 (ypa(w) — Bpa()d]

P(x) = E[Ts(x) + Ty (@] . (45)

Here x denotes the density of preys and y of predators. Note that at the
macroscopic scale, it is no longer necessary to differentiate either the status
(searching or manipulating) or the associated residence times. We will not de-
scribe here all the details, some of which are technical, but rather describe the
main ideas. There is naturally some (uniform) moments assumption to guar-
anty the convergence. As we associate an age corresponding to the time spent
in the current status, we can also be interested by the convergence of the distri-
bution of ages. It converges law to the measure

yr(dt, da) = y(OP(T,(x(t)) > a)p(x(t)) dt da.

We easily recover the number of predators : SSO ys(dt,da) + SSO yr(dt,da) =
y(t)dt. The fact that the time of interactions is both density dependent and
non-exponentially distributed leads us to extend the state space. This proce-
dure to get the Markov setting is classical and consists here in an additional age
structure (as in Section 3.4). The problem arising is then an averaging in infinite
dimension. The strategy of proof follows the techniques developed in [185] in
finite dimension using the occupation measure. The averaging phenomenon in
finite dimension is classical [91, 185, 210, 14]. In infinite dimension, much less
work has been done up to our knowledge. See nevertheless [185, 210]. We con-
sider a punctual measure whose atoms give the status and the age of predators.
In our slow-fast dynamics, there is an averaging phenomenon and the number
of predators in each status are instantaneously at equilibrium. This leads to a
reduction of the infinite setting to a finite one describing the number of preys
and predators. We do not find such results for slow-fast dynamics.
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Classical setting and functional responses : memory less interactions

Let us give some examples and starts by the classical case where memory less
property is assumed for each component of the dynamic (interaction, birth,
death). Times involved are then exponential. This assumption is probably not
realistic for manipulating time in general. For searching time it can be justified
with the hypothesis of rapid mixing of the preys in the medium where preda-
tors live. In this case, the growth rate ¢ of predators simplifies as

(x) = ASE[Ts(x)] + ApmIE[Tam(x)]
~ E[Ts(x)] + E[Tp(x)]

We recover some classical functional responses with usual supplementary as-
sumptions :

i) No manipulation and search time inversely proportional to the density:

1
Tu(x) =0 E[Ts(x)] = -,

for some ¢ > 0. This assumption is justified for instance where rapid mix-
ing allows to say that each prey meets independently the predator with
a small probability after an exponential time, because the minimum of
independent exponential variables is exponentially distributed and its pa-
rameter is the sum of each parameter.

It leads to the classical Holling type I functional response and Lotka-
Volterra form for the consumption of preys

¢(x) =cx,  P(x) = (rs—Bs) (4.6)

We note that in that case, in contrast to the classical Lotka-Volterra model,
the functional response ¥ for predators does not increase linearly with
respect to the density of preys.

ii) Fixed mean manipulation time and search time inversely proportional to the den-
sity:
1

IE.[TM(X)] =ty >0, ]E[Ts(x)] = a,

for some ¢ > 0. It leads to the classical Holling type II :

cx cx
"1+ toex’ Plx) = As+ (Am — AS)tOl + toex”

$(x)

Constant (Ap; — Ag)tg is related to the "yield constant” in microbial ecology,
as in the chemostat equation for instance.
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iii) Fixed mean manipulation time and generalist predator. Another usual re-
sponse make the searching time of the prey increase faster with low den-
sity since the predator may dedicate more time to other species. This often
leads to the following assumption:

E[Tu()] = to>0,  E[Ts()] = —.

This ensures the Holling type III functional response. To describe this
generalist behavior of the predator more precisely, we should consider
additional species in our model, see e.g. [40].

Influence of distribution of time interaction

The consumption of prey at a first order macroscopic approximation is only
sensitive to mean time of interactions trough the function ¢. The impact of
predatory on the evolution of predators may be more subtle.

Let’s give an explicit example. Assume that the individual growth rate is
linked to the consumption of preys via the following age dependence

Ag:aw> —A+ Be “%.

for some A, B,C > 0. It models the fact that the more a predator is waiting for
a prey, the less it (successively) reproduces and/or the fastest it dies. For sake
of simplicity and, as before, we consider that Ts(x) has exponential distribution
with parameter Ax. This gives

i) Without manipulation, i.e. Tjs(x) =0,
(Ax)?
CAx+1°

In particular, p(x) - —A asx — 0 and P(x) ~y—x B—CAx. That is (x)
behaves as —A + B'x, with —A < 0 and B’ > 0 as in the Lotka-Volterra
model. The associated dynamical system has indeed a similar behavior.

P(x) = Ax, P(x)=—A+B 4.7)

ii) With fixed positive manipulation, i.e. tg = E[Tp(x)] and Apr(x) = A

(x) = — X (x) = — % A B
P =1 YW E o U T ear 1 b

Thus is (x) - —cA/A < 0as x — 0 and P(x) — A% + Apm/A > 0 as
x — 0. Then it behaves as classical Holling type II prey-predator model:

Px) = —A+p——.

We then recover here the two classical dynamical system without directly as-
suming a conversion of prey into predators as usual.
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4.4 Around birth and death process

In this subsection, I detail the result of [A5], with Claire Delplancke, on birth
and death processes. A birth and death process is a Markov process (X;) on IN
generated by

Lf(n) = bu(f(n+1) = f(n)) + du(f(n = 1) = f(n)),

for any bounded function f and n € IN, where (b,), and (d,), are two non-
negative sequence such that dy = 0. In this section, we will further assume that
(bn)n=0 and (d,),>1 are positive. This assumption prevents extinction and those
process is then different from processes studied in Section [4.2]for instance. This
family of processes is well known and has been studied for a long time; see
for example [18, 80]. In particular, they are irreducible, positive recurrent and
non-explosive when respectively

+00 n bk—l +00 1 "1 k dn—i+1
sz_:Ud—k<+oo, Z_] EJFZEU by = 400
n=1k=1 n=1 k=1 i=1

In this case, the unique stationary distribution 7 is reversible and is given, for
n =0, by

n

= (1+C) 1 b’;l——l, o= (1+C)~L (4.8)
k=1 “k

This means that the associated semi-group (P;) of (X;) is self-adjoin in L?(7).
Furthermore, the process is exponentially (or geometrically) ergodic, when ¢ =
sup, 0, > 0 where

. U,_ u
o = inf (dn+1—dn . Z”), (49)

n n

and the supremum runs over all positive sequence u = (u,). More precisely, for
every t > 0, we have

| Pef — ﬂ(f)HLZ(n) <e |f - ()2 (4.10)

for all function f € L?(7r). Moreover ¢ is the best constant in these two inequal-
ities; this is the so-called spectral gap.
In [66], they shown the following intertwining (commutation type) relation
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where 0, is the weighted differential operator defined for a function f by

Ouf s un(f(n+1) = f(n)),

for some positive sequence (u,). In Equation (4.11)), (P}') is a positive (non nec-
essary conservative) and explicit semigroup. For all t > 0, we have P}'1 < e™ %!
and consequently if 0, f < 1 then

m—1

[P{ f(m) = P f(n)] < e ) uy = = vty (m, )

k=n

for all m > n. This directly induces a quantitative bound in Wasserstein distance

Wdu(]/lpt’ 7-() < e*Uuthu (th/ 7-[)/

for every probability measure y, where we recall that

Wi () = inf E[du(X,Y)].

In [66], they also prove others consequences including (4.10), entropic inequali-
ties, hitting time estimates, convex domination etc. Since the use of this type of
relationship has been successful [44, 179,254, 9, 45| P9].

In [A5], we take this intertwining relationship one step further by showing
various relations of the type

auaszt - P;/l,vavau.

Similarly to the link between Wasserstein distance and gradient type estimates,
this new bound induced convergence bound in Zolotarev distance [237, 276].
However our main application was to the estimate of the so-called Stein’s magic
factors.

Let us rapidly, recall the Stein’s method. This is a general method to obtain
bounds on the distance between two laws y, 7t. Fixing any distribution 7, we
can find some sequences (by), (d,) such that 7t is given by (4.8). Then, setting (at
least formally) for function f

== | (Bf = (e,

it is solution to the Poisson equation : Lhy = f — 7t(f). Consequently

dr = supdey ffdn = sup p(Lhy), (4.12)
feF feF
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where F is any set of functions. We may then estimate the total varia-
tion, Wasserstein or Kolmogorov distance dr by considering respectively F
as {f |0 < f <1}, {f | |ouf| <1} or {f = 1jg, | m € N}. Equation (4.12)
is more often established with the Stein solution g verifying (usually up to a
shift) g = dhy. For many problems, we can bound the right-hand side of Equa-
tion by a quantity of the form

€olgflloo +€1]0ug oo

for some €p, €7 > 0 and positive sequence u,v. See for instance [19] or [20].
In [A5], we established this type of bound for mixture of negative binomial,
geometric or Poisson laws.

Also and most importantly, we give precise bounds on sup . » I8¢l and
sup g r 10ug |0, in the most general framework. This is based on the intertwin-
ing relations plus the identification of the argmax function f for each classes of
functions (generalizing the approach of [51]). These bounds depend on the laws
at time t of some birth-death processes that can be make precise for some exam-
ple such as for instance the Galton-Watson processes with immigration (whose
laws is explicit).

We compare precisely our results with the literature in [A5]. However, in
the well studied Poisson case, we mostly recover the well known bounds [20,
21]]. For the negative binomial case, we recover the bound on supy, fl<1 18 ¢llo0 of
[19] but improves the one on supy, < 108 flloo- We improves results of [50] for
|f| < 1. We gave some bounds for the Stein factor for geometric laws which, to
our knowledge, can not be compared to the literature. Note that this example is
more difficult since the law at time t of the M/M/1 process is less explicit.

To our knowledge, since then, there are no better results, even if [140] recov-
ers the same type of order for the negative binomial case.

To illustrate our results let us give our bounds on mixtures. If A is a positive
random variable and L(W | A) = P(A) where, P(A) is the Poisson law with
parameter A then we derived the new bound

W(LW), P(A)) < (1 A w%) Var(A)

where A = [E[A]. In particular, as the negative binomial law NB(r, p) is a mixed
Poisson law, we have

8 1-p)1-
WL(E), Plr(1 = p)fp) < 3oy [P E.

To finish this section, let us point out that a work is currently in progress
with Edouart Strickler for the numerical estimation of the spectral gap o. As
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this last one intervenes as the death rate of a coupling, it can be estimated with
the methods described in Part[Il

4.5 Collective behaviors

Adrien Cotil started his PhD in November 2021 with Jean Baptiste Menassol
and me on the subject of animal (sheep and cows) displacements through col-
lective behavior. This subject follows two different internships, those of Jun
Zhang and Marine Perrier, that I co-supervised on cattle movements in collab-
oration with several researchers of the UMR Herbivores, Inria Zenith and my
unity UMR Mistea.

Researchers of UMR Herbivores work since several years on the cow behav-
iors from their locations. These locations are monitored from a real-time loca-
tion system. They collect the position between 150 and 200 cows every seconds
in a building. See for instance [214]. In this work, they explain how they aggre-
gate this large amount of data in a shorter data set centered on the activities of
the individuals. Jun Zhang and Marine Perrier study these two data sets (exact
positions and activities). Jun Zhang proposed an in-homogeneous time Markov
chain in discrete time to model activity changes for individuals. There are 6
different activities and 168 cows representing a state space of around 5 - 1013°
elements. We then impose a certain form of transition highlighting the interac-
tion between individuals. We still need to improve the first results obtained, but
they suggest, for the moment, that the interaction between individuals is a sec-
ondary factor in the movement choices of individuals. Although uncertain, this
result does not surprise the experts because the size of the buildings constrains
the individuals. To extend this work, Marine Perrier used various clustering
methods on the proximity graphs from the location data.

We decided to work on more mathematically complex models. To this end,
Adrien Cotil started his thesis on the mathematical study of alignment models.
In particular, in [92], he studies the so-called Cucker-Smale system of equations
[101]. In this model, each individual i € [1, N] has a position x;(f) and a speed
v;(t) at each time t > 0. This model consists of the deterministic model:

X; = 0;
o= AYN 1 (o,
U= N2 e Y )

We observed that the speed verifies a Kolmogorov type equation. This al-
lowed him to reduce the flocking phenomenon (|v; — v;| — 0) to a problem
of convergence rate of time-inhomogeneous Markov processes. This property
has been generalized for more general interaction scheme of the Cucker-Smale
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model. The heart of the mathematical proof of [92] is then to quantify the rate of
convergence of Markov chain that are time-inhomogeneous, in discrete space,
but for which the topology of the transition graph does not change. See [92] for
details.

4.6 Perspectives

It was very successful to have obtained the convergence towards a QSD for a
very degenerated process in Section[4.2] We can hope to use the same approach
in other similar contexts as in [91]. However, the main challenging question is
to study processes in larger dimension. This question is closely related to the
problem evoked in Section A natural continuity of [P1] is also to give a
perfect portrait of the behavior of the Crump-Young model as in [79]. That is
to show that the population is large, then the process converges rapidly to its
QSD, which is close to a Gaussian, and then became extinct after a large time
(See Section [5.1.2]below for a more comprehensive description of [79]).

A challenging and related problem is also to understand the long time be-
havior of the infinite dimensionnal models [P4, A12] without approximation.

It was also a good step to justify the forms of functional responses used in
ecology. However, our first motivation was to go further and give new tools for
ecologists. Indeed, let us describe an interesting result of [40]. From data on
the vigilance of partridges, they compare two types of regression : the classical
one and a least-square estimation with an heteroscedastic noise. In this second
method, the variance of the noise take into account the number of individuals.
They show that the second method leads to a totally different biological con-
clusion. It is then of prime interest to establish a central limit theorem for the
microscopic model [P4] to build statistical estimators of functional responses.
Our approach should enable to consider that the noise in the data depend on
both the number of preys (as in [40]) and a temporal correlation.

Finally, due to the digitization of the breeding, several questions and data
are beginning to emerge. I would like to continue to study the influence of
social network on dynamical system.
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Chapter 5

Stochastic algorithms for
quasi-stationary approximation

Let us consider a continuous-time Markov chain (X});>g, on some state X,
which will be absorbed at some random time 7, in some cemetery point 0 ¢ X.
Some examples were developed in Chapter |4, Under some assumptions, as for
instance irreducibly on a finite state space (see also and again Chapter [4), we
have the existence of a quasi-stationary measure v which verifies

tlirn P(Xie-|19>1t) =v. (5.1)
—00

This distribution is also related to the time of absorption. It can then be of
prime importance to simulate it.

The first algorithm we can think of is a Naive Monte Carlo. Let
(X120, -, (XN)i=0 be N i.i.d. processes, distributed as (X;);o and consider

N N
5 2i=1 lx;e- 2i=1 5x;'
N =N ~ N
2li=1 1Xg¢a 2i=1 1X§¢a

as an estimator of v for a large time t. The problem is that this mean is based on
a very small Ny = Zfi 1 1xizo of individuals. Indeed, we have

lE[N()] = N]P(Ta > t) — 0.

t—+00

It is because we lose all the information of absorbed trajectories. To be efficient,
we need to keep a maximum of particles. An alternative is therefore to res-
urrect the particles lost due to the absorption. The question is then : how to
redistribute a particle when it is absorbed ? As we are motivated by making it
converge towards v, a natural choice is to redrawn it with v. It is not difficult

75



76 CHAPTER 5. QUASI-STATIONARY APPROXIMATION

to prove that a process (Y¢)t>0, which evolves as (X;);>0 between absorption
events and is redrawn according to v at each absorption events, admits v as
invariant measure and converges to it under (5.I). This process is called the
v—return process in [161, 145]. Unfortunately, we are not able to use v in a nu-
merical strategy. To overcome this problem, we have to use an approximation
of it. In this spirit, two main choices are used.

The first one is at the heart of the so-called Fleming-Viot particle system. Be
careful, however, as the latter is more of a Moran-type process than the well
studied different Fleming-Viot super-process [141]. When considering N inde-
pendent particles (X})=o, ..., (XN)i=0, evolving as (X;);>¢ until one them, say
i, is absorbed, then we can we redraw it by the (spatial) empirical measure
ﬁ D 5X{. Equivalently we choose j # i uniformly at random and we set

Xi = XJ. They are no longer independent but become so again when the num-
ber of particles increases. This algorithm was introduced in [53, 106, 113]] and
we worked on various rate of convergence to establish the commutation of the
limits between t — +c0 and N — . These ones are developed in Subsection5.]]
below.

Another natural choice is inspired from the ergodic theorem. By and
this theorem, we can think that % o) 0x.ds ~ v. Then, when a particle is ab-
sorbed then it is enough to redrawn it according to its (time) empirical measure.
Equivalently, we choose T uniformly at random in [0, 75) and we set X, = X7.
It is therefore no longer necessary to simulate several particles and one trajec-
tory is sufficient. However the process is no longer Markovian. This algorithm
was first proposed in [2] and brought up to date in [42, A16]. We will come back
to this algorithm in Section

5.1 Fleming-Viot particle system

In this section, we describe the results of [P5,|A13,|/A14] on quantitative results
for the Fleming-Viot particle system in discrete space.

5.1.1 General results

This model consists of finitely many particles, say N, moving independently
of the others as (X});>0, until one of them hits state 0. At that time, it comes
back immediately to X by jumping to the position of one of the other parti-
cles chosen uniformly at random. It is convenient to think of particles as being
indistinguishable, and to consider the occupation number 7 with, for k € X,
1(k) = nN) (k) representing the number of particles at site k. The configuration
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(1t)t=0 is a Markov process with state space E = EIN) defined by

Ez{ﬁ:X—»]N\ EU(i)zN}.

ieF*

Applying its generator to a bounded function f gives

LF) = £ F) = Sy [Z(f(n-ﬂm - 1) Qi+ Qung. ”)1)] , 62

ieX jeX
for every 17 € E, where, if 77(i) # 0, the configuration T;_, 7 is defined by
Tiojm(i) = (i) =1, Tioyn(G) = 7(j) +1, and T (k) = n(k) k& {i, j}.

Let uV be the associated empirical distribution of the particle system. It is de-
fined, for 17 € E, by

1
uN = N Z 17 (k) ky, t=>0.
keF*

In several works [P5,/A13,|A14], we aim to study the commutation relations
in the diagram in Figure

uy

P,(Xie-|1>t)

ul
(m %—’w
Vqs

Figure 5.1: Possible limits for the Fleming-Viot particle system
To prove such commutation, one way is to obtain uniform rates for one of
limits in (1) or (2) and then pass to the others one (3) or (4). Let us review our
results and nowadays known results for each according to each subcases.

Limit (1) : Propagation of chaos

The limit, at fixed time, when the number of particles tends to infinity is the
most classical one. When particles became numerous then they evolve as an
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independent system of particles : there is a propagation of chaos. This type of
asymptotic property is common to models with mean field interaction [68| 256].
The first articles on the Fleming-Viot algorithm established this result; see [53,
Theorem 1.3] or [106, Theorem 1.1].

With Josué Corujo, we show a propagation of chaos result with [66, Theorem
1.2]. Let us present it when the starting distribution consists of N i.i.d. particles,
the space X is discrete and the killing rate is bounded. For every T > 0 and
p = 1, there exists a constant C,, 7 > 0, such that we have

1/p

sup E | sup [ulN(¢) —me(p))P| <2,
Iplo<l [ te[0,T] ‘ VN

where iy = Py (X e - | 15 > t).

To our knowledge, this is the first result, and the only one, that guarantees a
uniform convergence, within the expectation, on compact interval of times, and
in L¥, at the good convergence speed. However, it does not capture all Markov
processes in contrast with [265] for instance. Finally, see also [114, 99, 98, [110,
111] for related results.

Unfortunately, even if this result guarantees a type of uniformity, it is not
enough to commute the limits as in Figure To that end, we need a result as
the following, which also come from [P5]].

Theorem 5.1.1 (Uniform in time propagation of chaos). Assume there exist a
distribution po, € Mq(E) and C,y > 0, such that for every initial distribution
1o € My(E) and for all t = 0:

e — poo|Tv < Ce ™, (5.3)
or every p = 1, there exists a constant C,, such that
yp p

C
sup supE[|u (@) — mi(9)P]"" < NIt

Ipllo<1 £20

Recall that Theorem [3.3.1| may be used to prove (5.3).

Theorem generalizes previous results which obtained a bound of order
N7%,a < 1/2 such as [113, Theorem 3.1] (in discrete time), [74, Theorem 2.3] or
[A14, Corollary 1.5]. It is strongly based on a generalization of arguments of
[243], as the recent work [6]. See [89] for an example where constant in the rate
of convergence was precised. Finally see also [109, 108, 115] for related results.

Finally note that results of [P5] are presented in a larger setting than those
presented here. Indeed, instead of considering a Moran particle system where
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selection only happens at death, we consider, selection at birth. This permits
to consider this model not only for approximation purposes but also for an
interacting population dynamics model for evolution problems similarly as in

Section 3.6

Limit (2) : Ergocidicity of the particle system

For countable space X, the ergodicity of the Fleming-Viot process is not guar-
anteed. In finite state space, under assumptions of irreducibly, the Perron-
Frobenius theorem gives the exponential convergence of the particle system to
an equilibrium state, at a speed which unfortunately should depend on N; see
for instance [A13| Figure 1]. In [A14], we show that under some conditions,
the particle system converges exponentially fast to equilibrium for a suitable
Wasserstein coupling distance. Let us recall this distance : for 17,4’ € E, let d be
the distance defined by

1) = 3 S~ 1 G), 54
jexX

and for any two probability measures p and ¢’ on E, let W, (1, ') be the Wasser-
stein coupling distance between these two laws defined by

Wap, ') = inf E [d(X,X)], (5.5)
X~p!

where the infimum runs over all the couples of random variables with marginal
laws u and /. Distance d is the L! distance for the number of particles but is
equal to the total variation distance of the associated empirical measures.

Theorem 5.1.2. Let A = infi,i/ex(Qi/Z’/ + Qi',i + Zﬁéi,i/ Qi,j A Qi/,j) and fOT i eX,

po(i) = Qio. If p = A — (sup(po) — inf(po)) then for any processes (1)~ and
(1) =0 generated by (5.2), and for any t > 0, we have

Wa(Law (1;), Law (17;)) < e~ W (Law (0), Law (170))-

In particular, if p > 0 then there exists a unique invariant distribution vy satisfying
for every t =0,
Wa(Law (17;), ) < e PWy(Law(no), vn)-

To our knowledge, even if there is several result stating a rate of convergence
in time for the particle system, as for instance [74, Theorem 2.2] or [266, Theorem
2.1], this is the first result having a bound uniform in N. Since, It seems that the
only another one is [90] where this rate of convergence is proved by the calculus
of all the spectrum of the particle system.
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Proof of Theorem is original and based on a sharp coupling between
two particles system with two different initial conditions. We obtain such rate
because we hoped to couple them after only one jump, which is a restrictive
assumption. See [184, 221] for similar approaches.

5.1.2 A stimulating example

In [A13]], we develop two particular cases of Fleming-Viot particle system.
The first one is the complete graph dynamics. That is the underlying Markov
chain has the same jump rate for any another state. This Markov chain is rela-
tively simple reducing the study of the Fleming-Viot processes to the interaction
mechanism. It is also a particular case of the inclusion process [163| 162, 156].
For this model, we are able to derive exact and closed formulas for the correla-
tions for the family (7;(k)) for every N, t, an explicit formula for the invariant
(and reversible here) distribution vy etc.

However, instead of detailing this example, I will develop the second exam-
ple of this paper. It concerns the general case where the non absorbing state
contains two points. In this case, Process (7;(1)) is trivially Markovian. More-
over it is a birth and death process (as detailed in Section [4.4). It is generated

by

Gftn) = (N= 1) ( Qa1 + Qoo™ ) (fln-+ 1) )
+r(Qua+ Quol ) (n=1) - )

Indeed, there are (N — n) particles in 2 which can either jumps to 1 directly or,
instead of being absorbed at rate Q,, has a probability n/(N — 1) to be redis-
tributed in 1. If it is redistributed on a particle on 2, this changes nothing. This
explain the form of the birth rate and the death rate is similarly build.

When Q; 9 = Q2,, it is easy to see that G transforms a polynomial function
into another polynomial function without increasing its degree. Consequently,
it admits an orthogonal basis of polynomial eigenvectors : all what we want is
explicit!

Unfortunately, the most interesting case is when Q19 # Q2. In this case,
Theorem gives exponential convergence for Q1 + Q21 — |Q10 — Q20| > 0.
In particular if [Qq 9 — Q20| = Q12 + Q21 then it does not give convergence. In
this case, up to our knowledge, it does not exist any result with an explicit rate
of convergence (in long time for the particle system or for this birth and death
process) and in particular a rate which does not depend on N. Even if Theo-
rem gives although that the invariant measure of Fleming-Viot focuses on
the QSD.
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Using Hardy’s inequalities in [A13], we show a lower bound for the spectral
gap and then a bound of the type

Wa(Law (17;), Law(17;)) < Cne "W (Law(1o), Law (17g)),

for a certain p which does not depend on N, and a constant Cy > 0 which
depends on N. There is no assumption apart Q1 2, Q21 > 0.

The case Q17 or Q,1 is equal to 0 is somewhat degenerate because the un-
derlying Markov chain is not irreducible in the non absorbing state. However,
it can be an interesting model to understand the behavior of the algorithm.

Let us consider that Q1 = 0,Q19 = 0 and Q29 > Q1. In this case there
is two QSD 4, and cdy + (1 —¢)é1, with ¢ = Q12/Q20. If we start in 1, then
the conditional law converges to ¢ + (1 — c¢)é,. In this other case, there is no
dynamics, the process, conditionally to not be absorbed, is constant equal to 2
(and converges to the other QSD).

The birth and death process of the associated Fleming-Viot process is now
absorbed at 0. As the state space is finite then it hits 0 at a finite time Ty what-
ever its initial condition. In particular there is no commutation of the limits : if
we let the time going to infinity and then the number of particles, we find J; as
QSD, while, if we let N — o first, then we find the conditional law which tends
to cdy + (1 —c)d.

Using [79], we can go further in understanding the failure of Fleming-Viot
algorithm. Our process does not exactly satisfy the assumption because, in part,
our process belongs to finite state space in contrast with [79]. However, results
of [79] may surely be generalizable and we can expect that, when all particles
start in 1, the Fleming-Viot evolves as follow : after a random time of order
Nlog(N) the process is close to its QSD, this ones is close to a Gaussian with
variance N centered in ¢d; + (1 — ¢)dp, remains close to this QSD during a very
long time (which is exponential on N) and then all particles are in 1.

This type of behavior is not completely proved. Proving and generalizing
such behavior is of great interest since the two point space example is a bench-
mark for more complex non irreducible dynamics [24, A6, 69].

5.1.3 Hidden Markov chain
Hidden Markov model and Fleming-Viot algorithm

As explained in Section absorbed Markov chain possesses a sub-
conservative semi-group, Fleming-Viot type algorithm can be used in a
more general setting than for approximating QSD but to simulate both non-
conservative semi-group and its asymptotic (eigenelements of a branching pro-
cesses for instance).
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It is then useful in Hidden Markov chain context. In this case, the Sequen-
tial Monte Carlo algorithm [112, |108] can be seen as a discrete time and time-
inhomegeneous version of the Fleming-Viot processes. Let us give more detail.

More precisely, assume that (X;)n is a (inhomogeneous time) Markov
chain. Instead of observing a sample path of this process, we observe one
of a process (Yi)ien. This process is not Markovian by itself but the couple
(Xt, Yt)ten is. For sake of presentation, we will assume that at every time t > 0,
variable Y; only depend on X; and is sampled with a law admitting a density
gt(Xt, -) for some reference measure; that is, for any positive function f

E[f(Y) | Fi] = f $(X, y)p(dy),

where (F})s>0 is the natural filtration associated to (X¢);>9. We could have as-
sumed an additional dependency in Y;_;. In this setting, an iterating argument
gives that for any positive function f and sequence (y)se[1, 1),

T
E [f((Xt)te[[l,T}] [ [s:(Xewe)
t=1

T
E [H gt(Xt, yt)
t=1

See for instance [62, Proposition 3.1.4] or [109, Section 8.4]. When in (5.6) we
consider a test function f that only depends on the last term, that is

f((X)ep,p) = f(X1),

estimating this functional is generally called a filtering problem. With this choice
of function the numerator of the right-hand side is a non-conservative semi-
group and the link with Fleming-Viot algorithm is clear (indeed, we can con-
sider the process which evolves as (X;) and is not absorbed at each time ¢ with
probability proportional to g:(Xt, yt)).

E [f(Xt)ep,) | Yiep,1) = Wo)iep,11] = . (5.6)

A simple hidden Markov chain and a variant of the Kalman filter

Let us detail a concrete example where we first try to use this algorithm to esti-
mate unobserved data but we finally find another simpler solution.
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Pesee

0 25 50 75 100
Tps

Figure 5.2: The signal (X;) is the green line and all points are our observations
(Y:). The blue points are sampled from the signal plus a Gaussian noise while
the black ones are sampled uniformly. The blue line is the result of our algo-
rithm. It contains the reconstructed signal (which is smoother because we re-
construct E[X; | (yx)] instead of X;).

For an agronomic application, we had a time series dataset (y)c[1,ny Whose
the structure is general. They came from some captors and are noised version of
the signal of interest, in continuous time, (x)[o,r]- This is the classical setting
of Kalman-Filter. A natural modeling choice is to assume that (x;) is a sample
path of a Gaussian process (Xt)ejo,7) and (Yk)se[1,n] are realization of a random
variable which correspond to X; at certain times plus independent Gaussian
noises. As the conditional laws of Gaussian are Gaussian, we can give an ex-
plicit representation of in terms of integrals with respect to normal dis-
tribution whose parameters can be calculated easily by an iterative argument.
This is the hearth of the Kalman-Bucy filter algorithm.

Unfortunately, our dataset contains some points y; which can not be seen
as noised version of our signal but as totally independent points. Of course,
we do not know which points k, it is about. See the points in Figure 5.2/ for a
numerical simulation of the type of data we have. In a work in preparation,
with I. Sanchez and B. Fontez, we propose a branching-type Kalman-Bucy filter
for this dynamics, relatively close to switching Kalman-Bucy filter variant [224]
to treat this type of data; see for instance the blue line in Figure
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5.2 The Aldous-Flannery-Palacios Algorithm

5.2.1 A general result

In [A6, |IA16], with Michel Benaim and Fabien Panloup, we study another al-
gorithm to approximate quasi-stationary distributions. We consider a discrete
time setting : let K be a (Feller) sub-Markov kernel on a compact metric space
X. Let 6 : X — [0,1] be associated killing rate defined by § : x — 1 — K1(x) =
1 —K(x,X). For a given law p, we let K,, denote the Markov kernel on X defined
by

Kiuf(x) = Kf(x) + 6(x)u(f)-

for all x € X and bounded measurable function f. The chain induced by K, be-
haves like the underlying Markov chain, now denoted by (Y},), until it is killed
and is then redistributed in X according to . An important feature of K, is that
u is a QSD for K if and only if it is invariant for K,,.

A natural discrete time version of the Fleming-Viot process defined in Sec-
tion 5.1 can be defined using this kernel. Conditionally on the particle system
(X}, ..., XN) at a certain time n, the new position X! niq are mdependtly dis-

tributed according K, n where uhl = & Zk:l xk- We should have that ul tends
to the solution of p,1 = Ky, which should converge to a solution of y = Ky,
which is here a quasi-stationary distribution. See |A16, Section 3] for an alter-
native version of a discrete-time Fleming-Viot particle system, or also [109].

Instead of using this particle system, we consider an X-valued random pro-
cess (Xy)n>o verifying

1 n
¥n=0, P(Xyedy|Xo..., Xn) =Ky, (Xn dy), NZ . (5.7)

To be more precise, in [A6, A16], we study a weighted occupation measure instead
of the uniform measure on the past, as y;, leading to large or weak weight on
the memory.

This process is a self-interacting Markov process [107, 116, [28]].

We then now study a single particle to approach the quasi-stationary dis-
tribution in contrast with the Fleming-Viot particle system. We bypass the use
of a large number of particles by using a temporal occupation measure instead of
a spatial occupation measure. From a simulation point of view, this is of poten-
tial interest, suggesting fewer computations (but more memory) and leading to
a recursive method which avoids (at least in name) the trade-off between the
number of particles and the time horizon induced by Fleming-Viot algorithm.
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We assume that there exists C, e > 0 and a probability measure ¥ on X such
that

DI(1=K(xX)">0, > K'(x,dy)=>e¥(dy), sup Féﬁnl) >C. (5.8)

n=1 n>1 n=0

The first assumption guarantees that the process is almost-surely absorbed,
the others are not unrelated to Theorem which is known to be equivalent
to exponential convergence to a QSD [75]. In [A6], we can replace the supre-
mum in 7 in the last term of by an inequality holding for any n and a non-
constant lower bound C(n) which can tends slowly to 0. Even if we do not write
it in this article, the part of the proof enabling this flexibility, may be adapted
to have a theorem stating sub-exponential convergence to a quasi-stationary
distribution. We are not aware of such result in the literature but weakening
this hypothesis seems less useful than weakening Lyapunov conditions on the
generator.

Under these assumptions, we prove

Theorem 5.2.1 (Convergence of the algorithm). Assume (5.8). Then, K has a
unique QSD v and the sequence (1in)n=0, defined in (5.7)), converges a.s. towards v.
Moreover, (X,,)y=0 converges in distribution to v.

When the state space is finite, we further give several rate of convergence in
[A16]. More precisely, we establish a bound of type

|pn —v|Ty < CnY as.

for some random variable C > and explicit 6 € (0,1/2]. Parameter 0 depends
on the whole spectrum of K (and not only on its spectral gap) and is a trade-off
between rate of convergence of the underlying dynamics (given by this spec-
trum) and the memory loss. We also prove that v/n(p, — v) tends to some Gaus-
sian distribution. In [A6], we also describe the approximation of the associated
eigenvalue, the reducible Markov chain case and an Euler scheme example. In
particular, the non-irreducible two point space example of Section is stud-
ied. We can show that if Xy = 1 then (y,) has a positive probability to hits
céy + (1 —c¢)é1. We do not know if it is, or not, equal to 1 when the memory is
uniform. However, when the memory is shorter then we are able to show that
07 has also a positive probability to be hit.

Let us now place this algorithm in the literature. It was introduced in [2]
and the almost-sure convergence was proved by coupling the dynamics with a
urn process. Simultaneously and independently, [42,|/A16] used stochastic algo-
rithm techniques [148, (192, 48| 23] to prove the convergence of (.,). Results of
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[A16] enables to use more general memory and exhibits some almost-sure rates
of convergence. Both these articles prove a central limit theorem but [42] investi-
gate a Ruppert-Polyak averaging which improve the rate of convergence. Up to
our knowledge, the first proof of convergence in a non-finite space as presented
here dates from [A6]. Then, due to its application in MCMC techniques [234,
270], several researcher worked on generalization of [A6]. Indeed, as Brown-
ian motions killed at weighted exponential time have explicit quasi-stationary
distributions, we can replace the simulation of the stationary distribution of a
Langevin process by the simulation of the quasi-stationary distribution of this
Brownian motion. The advantage is that we can use perfect simulation in case
of killed Brownian motion instead of an Euler scheme. For such application,
[271] proves the convergence of the algorithm for diffusion process on compact
space with smooth killing (i.e. absorption after an exponentially type random
time). Article [207] studies the same type of processes but on a non-compact
space. The case of hard killing, namely absorption when hitting the boundary
of the space, is more tricky. It was shown in [A6, Section 8.3] that the algo-
rithm is generally well defined, in contrast with Fleming-Viot particle system
(see [39] where it is shown that the particles can be closer and closer to the
boundary, causing a definition problem for the algorithm). The convergence
of (1n) was proved in [25] for diffusion process with hard killing. There is no
general results for the speed of convergence in the non-finite case. Let us nev-
ertheless cite the results of [107, 116] which exhibit a rate of convergence for
general self-interacting Markov process which reads, for the Aldous-Flannery-
Palacios algorithm, as a perturbative bound as in Theorem See finally
[52] which combine Fleming-Viot and Aldous-Flannery-Palacios algorithm for
discrete Markov chain.

5.2.2 A few word on the proof : the ODE method
The occupation measure verifies the following recursion formula
Hn+1 = (1 - ')’n+1),”n + ’Yn+1(5Xn+1r (5-9)

where 7, = 1/n. When K, admits a unique invariant probability IT,, we can
rewrite the evolution of () as:

Hut1 = Pn + Va1 (—pn + ) + Yur1€n (5.10)

where ¢, = dx,,, — I1y,. The process (uy) is therefore a stochastic approxima-
tion algorithm, as for instance the Robbins-Monro algorithm [238] or the SA-EM
algorithm [119].
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It can be studied through the ODE method, because, from (5.10), it is natu-
rally associated to the following ordinary differential equation (ODE):

i = —p+T1,. (5.11)

Indeed, Sequence (y,),>1 can be interpreted as a (noised by <,¢,) Euler
scheme discretization with decreasing step <,,. To study it, we then embed it
in a continuous-time process (jit)¢>o : forn > 1, weset T =0, T, = > f_; 7» and
for t € [1,-1,Tn), #t = Jir,_,- See for instance Figure Figure [6.2|or Figure
for this type of embedding.

The almost sure convergence of (i) towards p* (i.e. the QSD of K) can then
be achieved by proving by the two following steps :

(i) The asymptotic dynamics of (ji¢)¢>o matches with that of solutions of the
ODE (5.11): more precisely, (jit)i=0 is an asymptotic pseudo-trajectory of the
ODE (in the sense of Benaim and Hirsch [26], see [23]] for background).

(i) The set {y € P(X), u = I} reduces to p* and is a global attractor of the
ODE.

In finite state space, the sequence of measure (y,), belongs to finite-
dimensional space. There is then no topological difficulty to combine these
two points. In infinite dimension, the distance (or norm) on which we prove
these two points are in general not equivalent and is the main difficulty. we
nevertheless use the approach of [28].

Step (ii) is close to problems of Section Indeed, we can show that Equa-
tion rewrites
prA
,’I«lt.All

with A = 3}, ., K". In particular, this ODE is of Kimura type as in Section
and we can study it with linear techniques.

Oty = — Wt +

5.3 Perspectives

Commutation of limits for Fleming-Viot processes is not always perfectly un-
derstood and may be an interesting continuity of my previous works.

We are finishing the paper introduced in Section[5.1.3|for a variant of Kalman
filter algorithm. This algorithm is a variant of switching Kalman Filter, and this
last algorithm has been well used since its introduction [224]. Unfortunately,
some approximations are done in these two algorithm for which no mathemat-
ical justification is known. A work is in progress to obtain quantitative bounds.
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With Fabien Panloup, we are working on quantitative rate of convergence
for the Aldous-Flannery-Palacios algorithm in non finite space. As results of
Section this is difficult because the error term is no longer a measure and
we need sharp bound from the topological point of view. Nevertheless, in con-
trast with the Fleming-Viot processes, where we can naturally studied the limit
at fixed time for large particles, here we naturally have to combine these two
difficulties.

Finally, the behavior of the non-irreducible process is an interesting problem
related the trap problem of bandit problem; see Section [6.1.T|below.



Chapter 6

Others stochastic algorithms

6.1 A general result for inhomogeneous Markov
chain

Here are exposed results of [A7, A9] with Michel Benaim and Florian Bouguet.
In these work, we use the mathematical methodology used in Section
to other classical stochastic algorithms based on inhomogenous and freezing
Markov chain.

More precisely, let us consider an in-homogeneous Markov chain (Y ),>0 on
R? and a sequence (7,),>0 verifying

+0
lim 7, =0, ZO% = +oo. (6.1)
n=

We set, for continuous and bounded function f,

£ ) — EL Q) = F00) | Y = 4] 62)

Yn+1

We shown general quantitative asymptotic results when £, converges, in some
sense, to the generator £ of an ergodic Markov process (Y})s=o.

Rather than describe the technical general result of [A9], let us describe in
sections that follow, the main example for which these results were applied : A
penalized bandit algorithm, decreasing step Euler Scheme and the coin-turning
walk.

However, note that the idea to use pseudo-trajectories for in-homogeneous
Markov processes has been extended, under more easier and tractable condi-
tions, for continuous-time processes in [206]. These results were used to ana-
lyze a Hawkes type process and a Cox-Ingersoll-Ross type jump process. We

89
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can also see that [A9] permits to easily recover and extend some results of [228]]
which relates maximum of i.i.d. random variables to the invariant distributions
of some PDMP.

6.1.1 A penalized bandit algorithm

In [A9, Section 3.2], we slightly generalize the penalized bandit algorithm intro-
duced in [197], and we recover and extend their Theorem 4.

Let us consider two choices A and B, with respective unknown gain proba-
bilities 1 > pa > pp = 0.

Let us describe a player strategy to optimize the number of gain by doing
the better choices between A and B. Let x, € [0,1] be a measure of her trust
level in A at time n. She chooses A with probability xnﬂ independently from the
past, and updates x;, as follows:

e If she plays A then x,,11 = x; + ¥+1(1 — x5,) in case of gain and x,,;1 =
Xp — ’y% 41%n in case of loss.

o If she plays B then x,,1 = X, — Y, 41X, in case of gain and x,,,1 = x, +
’Y%H(l — X,) in case of loss.

This recursive procedure that we described was designed independently in
the fields of mathematical psychology [225], engineering [248], clinical trials
or finance [198]. In a financial framework x, can be related to the managed
fund although in a clinical setting x,, can be the proportion tested patient. From
a mathematical point of view bandit algorithm are important because they are
simple examples of stochastic algorithms with a trap [132, 231]. Namely it is
possible that x, does not converge to the attempted value. However, this type
of algorithm is not the best type of algorithm to maximize the gain. Indeed,
best algorithm are notably based on Upper Confidence Bound (UCB); that is we
build two confidence intervals of p4 and pp and you play the choice which have
the larger upper bound; see [154] and reference therein.

If we forgot the square on y and consider 7, = 1/n then it essentially consists
to attribute to A or B their mean gain. This is known to make the algorithm fal-
lible [198]. Replacing the 2 term is a penalization of the loss to improve the al-
gorithm. To improve further the algorithm, [153] introduces an over-penalized
version of this algorithm.

s(xy) in [A9] with s : [0,1] — [0,1] be a function, which can be understood as a player’s
strategy, such that s(0) = 0, s(1) = 1. Let us set s(x) = x as in [197] for sake of presentation here.



6.1. A GENERAL RESULT FOR INHOMOGENEOUS MARKOV CHAIN 91

38 40 42 44 45 42 S0 52 54 S0 68 60 ©2 64 68 62 70 72 74 76 78 80

Figure 6.1: Trajectory of an interpolated process of (y,) in case of penalized
bandit.

Theorem 2.8 of [A9] applies for v, = v, (1 — x,) and 7, = n~'/2. We obtain
that the sequence of operators (L, ),>1 converges to the one of a piece determin-
istic Markov process with generator

Lf(y) = —ypaf'(y) +ypp(fly +1) — f(y)).

Consequently, (y,,) converges to the associated invariant measure that have ex-
plicit polynomial and exponential moments. This also leads to a functional con-
vergence illustrated in Figure

We can read in the form of £ that we play a very high number of arm A
and that therefore x,, almost decreases in a deterministic way during long time
intervals but that at some random time longer and longer (because 7y, — 0), we
play the arm B, win and therefore we bias our trust in level A.

6.1.2 Decreasing step Euler scheme

Decreasing step Euler scheme is the classical Markov chain defined by

Yntr1 = Yn + Yne10n) + VY10 (Yn) Ensr,

where () verifies (6.1) and (E,) is a suitable sequence of reduced and cen-
tered random variables, aiming to approximate the stationary measure of the
diffusion process solution to

t t
X =x+ J b(Xs)ds + f o(Xs)dWs,
0 0
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Figure 6.2: Trajectory of an interpolated process of (y,) in case of decreasing
step Euler scheme.

where (W) is a Brownian motion. Parameter b, o will be described hereafter.

This model was studied in [202,196] and previously for a constant step size
in [258, 257].

In [A9, Section 3.3], we assumed that E, are sub-gaussian, b,c C* whose
bounded derivatives of any order and ¢ is bounded. Moreover, for large y, we
assume that

~bay? <b(y)ly < —biy?, o1 < o(y),

for some o7 > 0 and by > by > 0. In case of v, = 1/n, we obtain the convergence
of (y,) to the desired invariant distribution 7t. We moreover have a functional
result (illustrated in Figure and a rate of convergence of the type, for all
n=0

Elf) - [ fin| <

for some k > 0, explicit Cy > 0 and all compactly supported function f[} To our
knowledge, this was the first result and, from now on, the only result stating
a rate of convergence without supposing that ¢ is constant and b uniformly
convex (giving then a uniform contraction properties); see for instance [202,
Theorem IV.1], and [134, 196] for such cases.

2To be more precise, bounded functions with bounded derivative of order 1,2 and 3 may be
considered with a uniform constant Cy.
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6.1.3 Freezing Markov chain and the coin-turning walk

Let (i,),>1 be an inhomogeneous-time Markov chain with finite state space
{1,..., D} with the following transitions when i # j:

Pling1 = jlin = 1) = qu(i, ]) = pu(q(i, j) + 1ra (i, ),

where (pn),>1 is a decreasing sequence converging toward some p € [0, 1], the
remainders 7, (i, j) tend to O (fast enough) and g is the discrete generator of some
{1,..., D}-valued ergodic Markov chain. This model is related to the simulated
annealing algorithm, and the sequence (p;),>1 can be interpreted as the cool-
ing scheme of an underlying Markov chain generated by g. If p < 1, since
limy, 40 gn (i, j) = pq(i, j), the probability of (i,),>1 to move decreases over time,
from which the appellation freezing Markov chain.

The behavior of (i,),>1 is very simple and relies on the summability of the
sequence (p,)n>1. It shall converge in distribution to the unique invariant prob-
ability v associated to q if >;,_; p» = +co. Conversely, if >}, pn < +0, the
Markov chain shall freeze along the way, as a consequence of the Borel-Cantelli
Lemma.

In [A7], we investigate the study of the empirical distribution x, = 2 3 _, Ji,
in case of Zn>1 pn = +. In what follows, for sake of presentation here, we
assume r,; = 0.

Firstly, when (p,) decreases slowly to 0, we have the convergence of x, to
v. This convergence is in probability when lim;,, np, = +00 and almost-sure
when Y, 1/(n®py) < +oo (with an explicit rate of convergence). Moreover

when v ,
M=1+—+o<—),
Pn n n

then the sequence whose terms are y, = ,/np,(x, — v) converges to a normal
distribution. This includes for instance p, = 1/nY. These results may be ex-
pected since they generalize the classical setting of convergence of the empirical
mean of homogeneous Markov chain.

The situation is more surprising when p,, ~ a/n, for some a > 0. Indeed,
in this case, x, no longer converge to v. Indeed, the vector (x,,i,) converges
in law to some probability measure 7t on [0,1]” x {1,.., D}. This measure 7
corresponds to the invariant measure of the exponential zig-zag process that is
the Markov process generated by

Lf(x,1) = (e; = x) - Vi f(x, ) + D aq(i, ))(f(x,) = f(x,1)),

j#i
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Figure 6.3: Two paths of the exponential zig-zag process. Here R is represented
using a barycentric coordinate system. The vertices of the triangle represent
each element of the base of IR? and the process starts at the center of the triangle
(corresponding to the uniform distribution). We can see in the right that when
a is large, the process diffuses and is concentrated.

where (¢;)1<i<p is the canonical basis of [0,1]P. This process runs towards one
of the vectors of the base and then at exponential times changes its objective;
see Figure for a path of this process for D = 3. When ¢(i,j) = 6; does
not depend on i then the invariant measure is a mixture of Dirichlet distribu-
tions. When a tends to infinity the exponential zig-zag process converge to an
Ornstein-Uhlenbeck process and there is then a kind of continuity between the
two behaviors. Again due to the techniques of the proof, we have several addi-
tional results including rate of convergence and functional results as illustrated
in Figure[6.4]

The problem of Freezing Markov chain dated from the thesis of Dobrushin
[123]. Even if some results can be obtained from the general theory developed
in [230} 247], our results can be compared to [139} 138, [122]. Article [122] works
on the complete graph dynamics and [138] on the case D = 2. They obtained
the surprinsing limits of (x,) and (y,) in case of p, = 1/n% and inspired us to
study this model. Their proofs are based on the method of moments which
require explicit expression that is not possible for general kernel g and sequence
(pn). The follow up work [139] is also appealing because it studies another
scaling of the deviation sequence (y,) and obtain the convergence to a non-
ergodic linear zig-zag process. It is a Donsker type theorem. The link between
exponential and non-exponential zig-zag process is quite similar to the relation
between Brownian motion and Ornstein-Uhlenbeck process in the central limit
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Figure 6.4: Trajectory of an interpolated process of (x,(1)),=0 in case of freezing
Markov chain when D = 2.

theorem (see for instance [A9, Section 3.1]) . Some techniques we developed
in [A7] were used in other context [143] and applied for a stochastic multistate
promoter model of dynamic mRNA /protein interactions in [205]. Finally, even
if this type of problem seems simple, several questions pointed out in [138]
remain open.

6.2 Some others algorithms

I had some weak contribution in [P3] 6] to some works on some numerical
algorithm that I list here.

I work with for anomaly Detection in Time Series in [P6] by proposing a
new algorithm for calculating the so-called Matrix profile of a time series. See
[46] for an introduction on the subject. It mainly consists of visiting cleverly a
time series to calculate some best functional distances.

I also contribute marginally to [P3] on a variant of ABC algorithm using
Random Forest algorithm instead of nearest neighborhood one plus a sensi-
tivity analysis to reduce the number of variables. This is used to propose an
automated calibration for a complex aquatic model.

6.3 Perspectives

From a mathematical point of view, results of Section are interesting but a
current issue should be to estimate the dependence on the dimension for such
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discretization scheme as in [134] in larger dimension. Also, as already said,
several questions of [138]] remain unsolved.
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Chapter 7

Projet de recherche

Dans ce manuscrit, nous avons donné un apercu de la recherche en dynamique
des populations. Bien que les themes que j’ai abordés ne couvrent qu'une faible
partie des recherches sur le sujet, nous avons pu voir 1'étendue des questions
mathématiques qui restent ouvertes dans les sections de perspective. Je compte
donc travailler sur ces questions avec une articulation particuliére entre mod-
eles et algorithmes.

Plus précisément, deux projets de recherche structurent actuellement mon
activité : le projet ANR NOLO et le projet H2020 TechCare. Ces derniers re-
posent sur

¢ [’étude mathématique de modeéles de branchement tels que développés
dans le chapitre

* La mise en place d’algorithmes pour le bien-étre animal a partir de don-
nées de capteurs. Cette partie est liée aux travaux des sections et

Bien que ces financement ne couvrent environ que les deux prochaines années,
je compte suivre comme direction de recherche ces deux directions dans les
années a venir.

Pour les processus de branchement, je vais travailler sur des hypothéses sim-
ples et générales pour des lois des grands nombres et théorémes de la limite
centrale pour des processus de branchement, sur les liens entre des théoremes a
la Meyn-Tweedie et a la Krein-Rutman pour des semi-groupes non-conservatifs
positifs, ainsi que la mise en place d’outils pour leur utilisation pour des ques-
tions concretes.

Sur le deuxieme axe, jai déja entamé plusieurs travaux. Bien
qu’initialement, le but était d’apporter une expertise en statistiques pour les dif-
térents problemes, plusieurs questions mathématiques émergent naturellement
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du problémes. Citons par exemple les travaux d’Adrien Cotil exposés dans la
section 4.5/ ou la démonstration mathématique de 'efficacité d’algorithmes tels
que ceux utilisés dans la section[5.1.3]
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