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Abstract

IN wet ecosystems vegetation biome encompasses self organized physiognomies that describe com-

plex dynamical processes ranging from homogeneous distributions of forests, grasslands and sa-

vannas, to heterogeneous distributions of trees and grasses. Spatio-temporal patterns of vegetation are

characteristic features of wetland ecosystems and are observed on all continents. The development

of a better understanding of their spatial dynamics is an issue of significant ecological and socio-

economical importance for global climate regulation and the supply of necessary materials for human.

Mathematical modelling is a useful tool to describe dynamics of complex systems, and several math-

ematical models have been devoted to the study of tree-grass dynamics in savanna ecosystems, but

with a scarcely attention, of spatial mechanisms of tree and grass interactions. This work, dedicated

to the modelling and analysis via partial differential equations of tree-grass dynamics in humid savan-

nas, is divided in two main parts. In the first part, we propose and analyse a spatio-temporal model

of tree-grass interactions in humid savannas. This first model is based on two integro-differential

reaction-diffusion equations with, the reaction part of the model including intra and inter-specific

competition kernels as well as a kernel acting indirectly as facilitation term that describes the re-

duction in tree mortality related to fires. The diffusion part is modelled via the Laplace operators.

A qualitative analysis of this model reveals several ecological thresholds that shape the overall dy-

namics of the model. Thanks to linear stability analysis, the model accounts for the occurrence of

space inhomogeneous solutions. All of these lead us to conclude that, the interplay between nonlo-

cal competition and nonlocal facilitation can explain the spatial periodic physiognomy of vegetations

observed in humid savannas. In the second part of this work, we consider nonlocal seed dispersal in

order to describe the spatial propagation of both tree and grass biomasses. We therefore replace, the

Laplace operator by integral operators and focus on the existence of travelling wave connecting the

grassland homogeneous steady state to the forest homogeneous steady state . A qualitative analysis of

this reaction-dispersion model leads to the characterisation by a mathematical expression depending

on several model parameters of the minimal wave speed that controls the forest encroachment into the

grassland. We therefore find that, the length of tree seed dispersal and the fire frequency can control

the wave propagation.

Keywords : Savanna – Fire – Partial Differential Equation – Qualitative Analysis – Travelling

Wave – Nonlocal Competition – Nonlocal Facilitation.
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Résumé

DAns les écosystèmes humides le biome de végétation englobe des physionomies auto-organisées

qui décrivent des processus dynamiques complexes allant des distributions homogènes de

forêts, de prairies et de savanes, à des distributions hétérogènes d’arbres et d’herbes. Ces phys-

ionomies de végétations sont des traits caractéristiques des écosystèmes en zones humides et sont

observées sur tous les continents. Le développement d’une meilleure compréhension de leur evolu-

tion spatio-temporelle est un enjeu d’importance écologique et socio-économique considérable, pour

la régulation du climat mondial et de l’approvisionnement en matériaux nécessaires à l’homme. La

modélisation mathématique est un outil utile pour décrire la dynamique de systèmes complexes, et

plusieurs modèles mathématiques ont été consacrés à l’étude des dynamiques �arbres-herbes�dans

les écosystèmes de savanes, mais ceci, avec une attention limitée sur les mécanismes spatiaux entre

arbres et herbes. Ce travail, qui consiste en la modélisation et l’analyse via des équations aux dérivées

partielles des dynamiques arbres/herbes dans les savannes humides, est divisée en deux parties princi-

pales. Dans la première partie, nous analysons un modèle spatio-temporel d’interactions arbres-herbes

en zones de savanes humides. Ce premier modèle est basé sur deux équations de réaction-diffusion

intégro-différentielles avec, dans la partie réaction du modèle des noyaux de compétition intra et inter

spécifiques et un noyau agissant indirectement comme terme de facilitation en décrivant la réduction

de la mortalité des arbres liée aux feux. La partie diffusion est modélisée via l’opérateur de Laplace.

Une analyse qualitative de ce modèle révèle plusieurs seuils écologiques qui régulent la dynamique

globale du modèle. Grâce à l’analyse de stabilité linéaire, le modèle rend compte de l’existence de

solutions inhomogènes en espace. Ceci nous conduit à conclure que la présence conjointe de com-

pétition non-locale et facilitation non-locale conduit à une structuration spatiale périodique dans les

savanes humides. Dans la deuxième partie de ce travail, nous considérons la dispersion non locale

des graines pour décrire la propagation spatiale de la biomasse des arbres et des graminées. Nous

remplaçons donc les opérateurs de Laplace par des opérateurs intégraux et nous nous focalisons sur

l’existence d’une onde progressive reliant l’état stationnaire homogène de prairie à l’état stationnaire

homogène de forêt. Une analyse qualitative de ce modèle de réaction-dispersion nous permet de car-

actériser, par une expression mathématique dépendant de plusieurs paramètres du modèle, la vitesse

minimale de l’onde progressive qui contrôle l’avancée de la forêt dans la prairie. Ainsi nous par-

venons à la conclusion selon laquelle la longueur de dispersion des graines d’arbres et la fréquence

des feux peuvent contrôler la vitesse de l’onde progressive.
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General introduction

THe landscape structure in tropical ecosystems is principally characterized by three forms of phys-

iognomies: (1) grassland described by a total dominance of grass cover, (2) forest characterised

by a predominance of tree cover and (3) savanna defined as a mixture of tree and grass without one

species excluding the other. All of these physiognomies are economically and ecologically important.

For example, forests play a crucial role in regulating the global climate by storing carbon. Savan-

nas provides for human materials needs by producing a range of resources including : (i) fodder for

commercial agriculture and substance livestock farming; (ii) habitat for wildlife; (iii) a wide range

of products such a wild foods, medicinal plants, fuelwood, construction materials. Grasslands are

important because they provide the food base for grazing livestock. Moreover, such livestock also

provides products such as fertilizer, transport, fibre and leather. Therefore, all of these ecosystems are

typically important and then, the maintenance of each specificity is challenging due to anthropogenic

global changes.

Occurring in many regions around the world, savannas are observed in a large range of mean-

annual precipitation (MAP). In Africa, they particularly occur between 100mm and 1500mm (and

sometimes more) of total MAP and occupy around 50% of the land area. However, within specific

stretches of the rainfall, vegetation may sometimes exhibit, plausibly self-organized physiognomies

also termed as vegetation mosaics. The self-organization of plants can result in patterns of different

shapes including gap patterns, labyrinths, and spot patterns. Indeed as pointed out by Yatat Djeumen

et al. [123], there are several empirical evidence that highlight the existence of vegetation pattern

in wet ecosystems. These mosaics of vegetations display dense clusters of shrubs, grasses or trees

that can be interpreted as regular spot structures or localized structures. Many researches are there-

fore focus on explaining how spatial patterns in savannas appear. They involved either desert versus

herbaceous or woody vegetation in arid and semi arid regions (Lefever and Lejeune [62], Couteron

and Lejeune [19], Pueyo et al. [79]) or grassland/savanna versus forest in humid regions (Yatat Djeu-

men et al. [122], Tega II et al. [103]). Consequently, the different class of vegetation mosaics, which

can be characterized by how much rainfall they typically received should be affected by different set of

processes. Humid savannas for example are characterized by frequent and intense fires. Fire in humid

savannas, are know to prevent or at least delay the development on woody vegetation. Hence, they

prevent trees and shrubs to depress grass production though competition for light and nutriments. The

grass-fire feedback is widely acknowledged in literature as a force able to counteract the asymmetric

1



General introduction

competition of tree on grass, at least for climatic conditions within the savannas biomes that enables

grass production. According to Accatino et al. [3], fire is crucial for preventing canopy closure in site

where abundant mean annual rainfall would sustain forest. Additionally, fire can induce facilitation

mechanisms due to protection effect, more precisely where vulnerable juvenile trees placed near to

adults trees are protected from fire.

The Landscape structure is also correlated with tree-grass intra and inter-specific competition. It is

now acknowledged that, the interplay between positive and negative feedbacks, are the main process

for self-organisation (process leading to the appearance of spatial structures), principally in stressed

environmental areas like arid and semi-arid savannas. In humid ecosystems, the physiognomies of

vegetations should be jointly depend on facilitation mechanisms due to frequent/recurrent fires and

on intra and inter-specific competition between trees and grasses (Tega II et al. [103])

Different research teams have reached useful and meaningful results by modelling vegetation

dynamics via ordinary differential equation (ODE) and partial differential equation (PDE). Indeed,

tree-grass interactions in savanna ecosystem have been mostly modelled though framework that im-

plicitly acknowledge space (Tchuinte Tamen et al. [102], Yatat Djeumen et al. [125], Touboul et al.

[107], Yatat Djeumen et al. [124]). Nevertheless, most of works using PDE formalism, have been

carried out in relation to arid/semi-arid vegetation (where water is the most limited factor and fire are

infrequent), in order to explain emergence of spatially periodic vegetation pattern. Based on ecolog-

ical facts, and due to the scarcity of works taking into account spatial mechanisms for tree and grass

dynamics in humid savannas, this dissertation aims to build, study and discuss spatio-temporal
models of the tree-grass dynamics in wet savannas. We will specifically focus on :

(i) Self-organisation of vegetation, principally on the construction and analyse of a mathematical

PDE-like model, allowing to illustrate the spatial structuring of vegetation in wet savannas

zones where regular spot pattern (trees groves) have been causally reported in the presence of

regular and intense fires.

(ii) Boundary dynamics in humid savannas, notably by the phenomena of forest encroachment into

grassland area.

The works is organized follows:

• In the first chapter, we describe the context and motivation of our study. We therefore pro-

vide the ecological mechanisms recognized in literature to explain the tree-grass coexistence

observed in humid savannas. In this vein, we present a non exhaustive literature review of

mathematical works, that highlight the tree-grass dynamics in savannas, in order to show what

has already been done and what may remain to be done in this area of research.

• The second chapter deals with mathematical tools for the analysis of systems of two reaction-

diffusion equations. We put a particular emphasize on the monotone method (upper and lower

solution method) when in a first step the reaction term is quasimonotone and in the second step

when the reaction term does not satisfies any quasi-monotone property.
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• In the third chapter, we propose and analyse a spatial explicit model, allowing to reach spatial

pattern (namely regular spots and localized structures) which have been reported in fire prone

savannas. This model relies on two non-local reaction diffusion equations with kernels of in-

tra and interspecific interactions for woody and grassy biomasses. A qualitative analysis of

the model reveals that monostability of the forest, grassland and savanna space-homogeneous

steady states, and multistabilities are possible depending on some ecological thresholds. Thanks

to nonlocal biomasses interactions, the model account for the occurrence of space inhomoge-

neous solutions including a possible spatial periodic structuring. Specifically, we find a range of

nonlocal interactions (depending on model parameters) for the appearance of space inhomoge-

neous solutions. We therefore characterized the wavelength, when the inhomogeneous solution

is periodic. We finally present numerical simulations to illustrate our theoretical results and we

verify that the computed spatial wavelengths are in good agreement with the predictions from

the theoretical analysis.

• In chapter four, we focus on the process of forest encroachment in savanna/grassland due to

long seed dispersal. We therefore construct a reaction dispersion model, by considering nonlo-

cal dispersal terms in both dynamics of tree and grass biomasses. We focus, on the existence

of travelling wave and the minimal wave speed, connecting the forest and the grassland homo-

geneous steady state of the model. We mathematically establish the existence of the travelling

wave through the construction of a truncate problem combining the upper and lower solutions

method with the Schauder fixed point theorem. The characterisation of critical (minimal) wave

speed obtained, gives some information on model parameters that are able to control the prop-

agation of the wave. Our results imply that the increase of the length of tree-seed dispersal can

accelerate the wave speed and the increase of fire frequency can slow down the process of forest

encroachment.
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CHAPTER ONE

ECOLOGICAL BACKGROUND AND

LITERATURE REVIEW FOR MATHEMATICAL

MODELLING OF TREE-GRASS DYNAMICS IN

HUMID SAVANNAS

IN this chapter, we provide a non-exhaustive literature review of savanna models, theories, and field-

based observations and studies. Particular attention is paid to modeling methods and underlying

assumptions, and how these have evolved over time.

1.1 Physiognomies of vegetations in wet ecosystem

Savannas are widely defined as ecological vegetations systems characterized by the long term coex-

istence of continuous grass cover and scattered or clustered trees. They have been also identified by

biogeographers, as the biomes corresponding to warm mean annual temperatures (> 20◦C) and a

broad range of intermediate mean annual rainfall (100 − 2000 mm) (Sarmiento [86], Youta Happi

[126], Yatat Djeumen et al. [123], Abbadie et al. [1]). Covering a high proportion of the global terres-

trial land surface and thus have a significant role in earth-atmosphere feedback processes (Woodward

et al. [118], Bond [13]), savannas occupy ca. 12% of the global land surface (February and Higgins

[41]) and ca. 50% of the land area in Africa. Therefore, different classes of savannas, can be char-

acterized by how much rainfall they typically receive. Savannas receiving less than 650 mm mean

annual rainfall (MAR) has been classified as arid or semi arid savannas. Savannas areas receiving be-

tween 650− 1000 mm MAR are considered as mesic savannas and finally savannas receiving more

than 1000 mm MAR has been identified as humid savannas (Staver et al. [98]). All of these classes

of savannas should be affected by different modalities of tree-grass coexistence and these modalities

have been the subject of several researches in ecology known as savanna problem: "how trees and

grasses coexists over a wide climatic, edaphic and historical condition? ( see Sankaran et al. [84],

Higgins et al. [51], Yatat Djeumen et al. [125],Yatat Djeumen et al. [121]).

In humid tropical ecosystems, the structure of landscape is in majority composed by these three

types of physiognomies: forest characterized by a predominance of tree layer, grassland character-
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ized by a grass layer total dominance and finally savanna defined as the mixture (or coexistence)
of both trees and grasses species. However, due to external factors of disturbances like climatic

changes, fires , herbivory, human actions, the uniform distribution of these three different types of

physiognomies can appear in a non uniform way (like we can see in figure 1.1). In fact, in many

regions around the world, vegetation may sometimes exhibits spectaculars organized spatial features

that can either be periodic (see panel (a) of figure 1.1) or random (see panel (b) of figure 1.1) termed

as patchy vegetations or vegetation mosaics (patterns). Then, empirical evidences suggest that vege-

tation mosaics in humid regions barely feature periodic patterns and display dense cluster of shrubs,

grasses or trees that can be interpreted as regular spot structures or localized structures (Tlidi et al.

[106],Tega II et al. [103]). Most often, they are aperiodic but, with quite sharp boundaries like isolated

groves or savanna patches encircled by forests (Tega II et al. [103]). The study of vegetation patterns,

is motivated by their widespread occurrence in many humid landscapes cover around the world and by

the possibility to infer from their presence features, informations on the underlying process, including

the susceptibility of the system to abrupt shifts to savanna and/or grassland to forest.

(a) Pattern of spots of forest vegetation within a grassland ma-
trix as observable in Zambia (image from 01/05/2014 accessed
on Google Earth®).

(b) Pattern of spots of forest vegetation
within a savanna matrix as observable
in Cameroon (Mpem-Djim National Park)
from an UAV-borne photograph taken on
16/12/2019, P. Couteron).

Figure 1.1: Some vegetation mosaics of trees and grasses in Zambia and in Cameroon.

Also interesting phenomenon observed in wet ecosystem is woody encroachment. For example

Jeffery et al. [55] reported in �La Lopé National Park �in Gabon that without fire event, forest invade

the grassland mosaics of grassland-forest (see figure 1.2). This changing balance of trees relatively to

grasses has been classed as a form of land-degradation (Devine et al. [25]). In fact, the suppression

of grasses by encroaching tree species, which are often unpalatable to domestic livestock can have

negative impact on livelihoods. Large scale vegetations changes has also consequences for energy,

carbon and water budgets (Woodward et al. [118]). Moreover, changes in the composition of savan-

nas are particularly important in Africa, which hosts a large and rapidly growing proportion of the

world human population where, many of whom are pastoralists (Scholes and Archer [91]). Precisely
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woody encroachment for example, has profound implications for biodiversity: it decreases landscape

heterogeneity, reducing the diversity of invertebrates, birds and large mammals (Devine et al. [25]).

Figure 1.2: Forest encroachment in savanna patch in Lope National park

Vegetation transitions in tropical ecosystems are classically described as resulting from an inter-

play of process depending on: rainfall, soil moisture, herbivory and fire. In fact, below 650 mm

MAR, fire and rainfall are rare, there is not enough moisture in most year to produce continuous fuel-

beds. Then in this stressed environmental context, the vegetation physiognomies oscillates between

desert to tree or grass spot of vegetation physiognomies. In contrast, from above 1000 mm MAR, fire

are regularly frequent and intense. Then vegetation landscape principally shift from savanna/or grass-

land to forest. According to Archibald et al. [6], the dominant factors to control vegetation mosaics,

changes from soil moisture in arid savannas to fire and herbivory in mesic and humid savannas. It is

therefore acknowledged that, fire is one of the key factors that shape the physiognomy of savannas

vegetations, in general, and particularly, in humid savannas where rainfall is sufficient to promote

very high grass biomass production which in turn constitutes the principal fuel for fires. But, as a

response to the negative impact of fires, trees have developed ’defence’ or resilience mechanisms in

order to limit or to reduce the fire-induced tree mortality. Indeed the process of tree-tree facilitation or

cooperation by promoting the germination of tree’s seeds, the recruitment of new trees by improving

the conditions under canopy (shading, litter and nutriments, enhanced water infiltration) play a crucial

role for reducing or control tree fire mortality.
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1.1.1 Fires in humid savannas

Fire is an important process in savanna, acting like a facilitator for the co-existence of trees and

grasses. It is generally regarded as the dominant factor of disturbances, preventing canopy closure in

humid savannas where rainfalls are sufficiently abundant. In fact in wet savannas, rainfall promote

large accumulation of grass biomass, which constitute fuel load for fire in the dry season. According

to Goel et al. [45], fire experiments have repeatedly shown that, frequents fires can maintain savanna

in region where closed canopy is climatically possible. The overall effect of fire on woody vegetation

depends upon on the interaction elements defining the fire regimes including intensity, frequency and

season. Then, fire can influence woody and herbaceous vegetation biomass composition, structures

and dynamics. More precisely, the transition from a shrub to an adult tree is possible if the young tree

undergoes a long interval without fires, to allow it to reach a threshold beyond which he is no longer

likely to be killed. Note that trees in humid savannas are fire resistant. Thus once a rod crosses the

threshold of fire resistance, it probability of mortality will decline as the stem grows. However, the

trees that do not survive to fire have a high probability of regrowth.

The role of fire in the maintenance of structure and function in African savannas, is probably the

oldest issue in savanna ecology, but certain aspects remain contentious. One point of view, noting

the ubiquitous occurrence of fires in savannas and the tendency for woody plant density in savannas

to increase when fires are excluded, concludes that savannas are fire sub-climaxes to woodland or

forest. Another view stresses the long history of fire in Africa, with the numerous plant adaptations

to surviving fires observed in all the continents in spite of very different floras, and presents fire as

a modifier of savanna structure rather than a primary determinant of savanna distribution (Scholes

and Archer [91], Bond et al. [15]). According to Abbadie et al. [1], savanna fires are set by man for

various purposes (clearing, protection against uncontrolled fires, hunting, grazing management). As a

result, fires are frequent, usually occurring every 1−5 years in wet savannas. They can be considered

as relatively mild compared to forest fires. Fires burn the grass layer and the young trees included

in it, leaving adult trees alive, affecting tree recruitment but not significantly adult survival. Fuel

load typically ranges between 2 and 10 Mgha−1. Consequently, understanding the impact of fire on

the demography of savanna trees and shrubs is necessary for understanding human impacts in tropical

savannas (Hoffmann and Solbrig [54]). At low fuel load there is no fires while above a sufficient grass

biomass, fires intensity and potential impact on woody individuals increases rapidly before reaching

a saturation (Van Wilgen et al. [112], Scheiter and Higgins [90], Staver et al. [98], Yu and D’odorico

[127]).

Approaches to fire management have evolved over the past century and some protected areas have

been undergone multiple change of fire management. African savannas are dynamic ecosystem and

fire interacts with climatic cycles varying levels of herbivory and increasing pressures brought about

by rising human population. Fire characteristics such as the frequency, intensity, seasonality, extend

of burn and type of fuel describe the fire regime. In savannas, the intensity and the frequency of

fire are both generally what managers try to manipulate in order to maintain particular vegetation
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structure. Fires of higher intensity (flame length >2 m) caused greater mortality and topkill than fires

of lower intensity (flame length <2 m). In African savanna ecosystems, active fire management has

been practiced for many decades. Policies and practices have changed as new evidence on the role

of fire has emerged (Van Wilgen et al. [113]). Nevertheless, the implementation of a chosen fire

regime is difficult, even when agreement on its nature is reached (Van Wilgen et al. [113], Diouf

et al. [27]). Unplanned fires (often resulting from factors beyond the control of managers) burn large

areas, upsetting agreed-upon fire targets or policy decisions (Van Wilgen et al. [113]). Based on field

experiments conducted in the Kruger National Park, South Africa, Govender et al. [46] concluded

that the mean fire intensities showed no significant differences between annual burns and burns in the

biennial, triennial and quadrennial categories, despite lower fuel loads in annual burns, suggesting

that seasonal fuel moisture effects linked to season overrode those of fuel load. Mean fire intensity

in sexennial burns was less than half that of other burns. Therefore, managers of African savannas

can manipulate fire intensity by choosing the season of fire, and further by burning in years with

higher or lower fuel loads in concert to achieve specific vegetation structural objectives (Abbadie

et al. [1],Govender et al. [46], Smit et al. [93], Jeffery et al. [55]).

1.1.2 Herbivory in savannas

According to Staver and Bond [96] herbivory is one of the key process structuring vegetations in

savanna, especially in Africa where large mammal herbivores communities remain intact. It have

been generally proposed as a driver for woody encroachment. Specifically increase grazing reduces

grass cover, which will later decrease the fire intensity. Then it is now recognized that grazing may

be not detrimental, and even favorable for plants (i.e., the herbivory optimization hypothesis (HOH),

McNaughton (McNaughton [69], Abbadie et al. [1]). In particular, herbivory can promote grassland

soil nitrogen cycling which strongly influences plant responses to grazing. Furthermore, herbivores

can largely influence the temporal changes in tree/grass balance, directly through the reduction in

competition intensity or indirectly through the reduction in fire frequency and intensity (Scholes and

Archer [91], Van Langevelde et al. [110], Sankaran et al. [84], Sankaran et al. [85], Abbadie et al. [1]).

Indeed, browsing herbivores reduce woody vegetation, such that trees are either killed or reduced in

size, the effect of elephants being most profound and well known. The combined effect of fire and

browsing led to find that fire causes the decline in woody vegetation whereas browsers inhibit recovery

(Van Langevelde et al. [110]). On the other hand, grass biomass removal through grazing leads to

reduced fuel load, which makes fire less intense and, thus, less damaging to trees; consequently, it

may result in an increase in woody vegetation.
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1.1.3 Self-organization of vegetation in humid savannas induced by the inter-
play between competition and facilitation

The self-organization of plant systems in humid savannas relates to a set of processes or interactions

leading to the appearance of stable spatial structures of vegetation. These interactions are the result

of multiples interactions between trees and grasses, constituent elements of savannas. It is typically a

loop of positives and negatives interactions existing simultaneously between trees and/or grasses but

presenting different spatial ranges.

1.1.3.1 The concept of competition in humid savannas

The term competition is used in the sense of negative interferences of impacts of one plant over

another. In vegetation dynamic, it refers to the rivalry between plants for the use or consumption

of resources. The classical competition theory subdivides the process of competition between to

main angles: the intra and inter-specific competition, and tends to predicts that, the intra-specific

competition should be greater than the interspecific competition because plants of same species are

share same requirements of resources. In humid savannas, competition generally takes place for

access to light on the one hand, and for access to nutritive resources in the soil on the other hand.

Above the ground surface, the light resource is essential for the growth of plants, and becomes a

source of competition when it is limiting. This resource is essential to the growth of plants because

it allows them, through the process of photosynthesis, to produce carbon assimilates which are con-

stituents part of various aerial and underground organs. Light is a unidirectional resource. Although

the direction of light rays varies during a day, the plant which will be taller than the others, will cap-

ture the light while it will cause shading and therefore, a weaker resource availability for lower plants.

The plant position in the layers of the canopy, is therefore decisive for access to light resource and

gives them, a disproportionate advantage. Then, competition for light is said to be "asymmetrical" by

relation to the size of the plants.

Below the surface of the ground, there is a large of resources useful for the plant growth. It

contains macro and micro nutrients (such as nitrogen and phosphorus) and water resources. These

resources, are not present and accessible as a homogeneous way in the ground . Unlike the light plants

have a competitive advantage proportional to their occupation, of the soil by roots: competition for

soil resources is said to be "symmetrical" with respect to plant size. The acquisition and use of soil

resources, are based on four main processes: the demand of the plant, the transport of resources in the

plant, ground exploration in space and ground exploration in time. These processes depend essentially

on the structure of the roots system of plants, and their abilities to grow in depth, in breadth and to

extract the resource. The request of the plant is dependent on the aerial biomass produced and the

acquisition of water by the roots (wich depend on the leaf area deployed,and the evapotranspiration

caused by these leaves). Moreover, soil resources can vary in quantity, availability and they are not

located in the same way in a soil profile .
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1.1.3.2 The concept of facilitation in humid savannas

In the field of ecology, and more precisely in biological interactions, we speak of facilitation to de-

scribe the situations where, the presence of a species improves the installation, the life or the survival

of others without the relationship of interdependence don’t be very strong. The term facilitation en-

compasses a wide range of mechanisms modifying the availability of resources independent of their

direct uptake or influencing environmental conditions. A plant or a group of plants can modify the

availability of resources either locally via the improvement of the porosity of the soil or by interaction

with the climate.

Traditionally, ecologist have emphasized the role of competition between trees and/or grasses as

being the key determinants of savannas structures (Dohn et al. [29] and references therein). While the

importance of competition in structuring ecological communities is widely recognized, there is also a

growing appreciation of the role of facilitation in structuring social communities. Indeed facilitation

is a process that needs to me more integrate in vegetation dynamics, this in relation to the type on

environmental context. According to Dohn et al. [29], the higher mean annual temperature (i.e in-

creased environment stress) may increase the importance of facilitative mechanism. However due to

the abundance of precipitation that limit tress for plant in humid context, and according to Martinez-

Garcia et al. [68], who suggest that fire may be frequent and intense in humid savanna, the mechanism

of facilitation in wet area, may played in the process on controlling or reducing the fire effect on tree

mortality. Tega II et al. [103] have suggested a procedure based on the increase of tree biomass and

the reduction of grass biomass in the area, by the interspecific competition for light induced by tree

on grasses. These two process consequently reduce the fire effect on tree mortality.

To highlight the increased of tree biomass, Tega II et al. [103] referred to Li. et al. [66] (and refer-

ences therein), who suggested, facilitation of trees by other trees via hydrolic lift (movement of water

from wet to dry soil layers through tree roots ). In fact, tree canopy shade, reduce soil water, and plant

water loss, by reducing understorey temperature and evapotranspiration. To highlight the process to

tree-grass interspecific competition, Tega II et al. [103] have suggested that, tree canopy shade reduce

light availability for grasses. In fact, as water availability increase with increased rainfall, light may

begin to replace as the limiting factor in grass photosynthetic reactions, thus shading by trees may

begin to inhibit subcanopy primary production in wetter environment systems.

1.2 Mathematical modelling of Savanna dynamics

Different teams have reach useful results, by modelling vegetation dynamic via ordinary differential

equation (ODE), and partial differential equations (PDE). A line of modelling has addressed grass-tree

dynamics in presence of fire mediated interactions. A minimalistic two variables model (Yatat Djeu-

men et al. [124]) ODE, proved able to provide reasonable predictions of vegetations physiognomies

(savannas, grasslands, forests) along the entire rainfall gradient (from equatorial forest to desert).
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There has been little use of PDE models, for the topic of spatial vegetation pattern in humid

context (but see Yatat Djeumen et al. [122]). Most of the works done using PDE formalism, has

been carried out in relation to arid/semiarid vegetation, where patterns of vegetations spot (groves)

in flooding plain are observed and has been modelled with an integro-differential equation (Lejeune

et al. [65], Martinez-Garcia et al. [68]).

One may remark that, other works with impulsive differentials equations (Tchuinte et al. [100],

Yatat Djeumen et al. [121]), and stochastic equations (D’odorico et al. [28], Hanan et al. [48],

De Michele et al. [23], Beckage et al. [11]) have addressed the question of tree grass coexistence

but some of them are beyond the scope of our works.

1.2.1 Mathematical modelling of savanna dynamics with ordinary differential
equations

The question raised by observed or putative dynamics within savanna biome have triggered and in-

creased interest in term of modelling. Pioneering works Walker et al. [116] and Walker and Noy-Meir

[115], first used system of Ordinary Differential equations (ODE) to address the particular case of arid

fire immune savannas in which, excessive grazing fosters bush encroachment. This line of modelling

featured grass and woody biomasses as state variable and aimed at explicitly depicting their inter-

actions in relation to soil moisture dynamics. A such it became a paradigm for interaction model’s

involving a limited resource. Another line of ODE-based modelling build on the application to sa-

vannas of the initial concept of asymmetric competition (Tilman [105]) through a simple framework

that allows considering both direct and disturbance-mediated plant interactions. Tilman’s framework

reinterpretation used two states variables, namely cover fractions of grass (G) and tree (T) assumed

exclusive and summing between zero and one was done by Accatino et al. [2].

1.2.1.1 The Accatino et al. (2010) model [2]

Accatino et al. (2010) [2] focused on the domain of stability of tree-grass coexistence with respect

to influencing "biophysical" variables (climate, herbivory). Based on Tilman (1994) [105] works,

Accatino et al. [2] added additional terms in equations proposed by Tilman (1994) [105]. In fact,

Tilman [105] considered two species (P1 and P2) model, in which the competition is for habitat sites

and he assumed that:

1. The superior competitor P1 (tree) colonized area where there is not yet a superior competitor.

2. The inferior competitor P2 (grass) colonized only place not yet occupied by either superior or

inferior competitor.

3. The competition between a superior and an inferior competitor has a depressive effect on infe-

rior competitor.
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Thus, Tilman (1994) [105] obtained the following system
dP1

dt
= c1P1(1− P1)−m1P1,

dP2

dt
= c2P2(1− P1 − P2)−m2P2 − c1P1P2.

(1.1)

Therefore, the terms added by Accatino et al. [2] reflect the mortality of grasses and trees due to fires

fG and δffGT respectively where δf represents tree fire sensitivity. Moreover, to take into account

explicitly rainfall on savanna dynamics Accatino et al. (2010) [2] added a third equation which reflects

the dynamics of soil moisture and they assumed that the colonization rates of both trees and grasses

are linearly dependent on soil moisture. They proposed

dS

dt
=

p

w1

(1− S)− εS(1− T −G)− τTST − τGSG,

dT

dt
= γTST (1− T )− δTT − δFfGT,

dG

dt
= γGSG(1− T −G)− γTSTG− δG0G− fG.

(1.2)

From their model, Accatino et al. [2] obtained stability situations involving grassland, forest and sa-

vanna equilibria. They also obtained bistability situations involving also grassland and forest equilib-

ria, and involving savanna and forest equilibria which depend fires and rainfall parameters. Accatino

et al. [2] assumed that, vegetation component are mutually-exclusive which is not totally satisfactory.

Moreover, considering a linear function between grass and fire is not also in agreement with obser-

vations (Scheiter and Higgins [90], Staver et al. [98]). Another critic that can be done for the model

proposed by Accatino et al. [2] is that the direct depressive effect of grass on shrubs and seedlings as

evidenced in Scholes and Archer [91] is not taken into account.

1.2.1.2 The De Michele et al. (2011) model [22]

Extending the model of Accatino et al. [2] and taking into account considerations made by Van Langevelde

et al. [110], De Michele et al. [22] introduced two additional terms in the model proposed by Accatino

et al. [2]. In fact, according to Van Langevelde et al. [110], in savannas ecosystems, coexistence

between tress and grasses is controlled by fires, browsers and grazers. Then the terms added by

De Michele et al. [22] in the Accatino et al. [2] model, reflect the activities of grazers (gG) and
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browsers (bT ). Therefore, they proposed the following model

dS

dt
=

p

w1

(1− S)− εS(1− T −G)− τTST − τGSG,

dT

dt
= γTST (1− T )− δTT − bT − δFfGT,

dG

dt
= γGSG(1− T −G)− γTSTG− δG0G− gG− fG.

(1.3)

Using the linear stability analysis, De Michele et al. [22] found the same situations of stability and

bistability as identified by Accatino et al. [2] and these (multy) stabilities are regulated by fires,

rainfall and herbivory (browsing and grazing) parameters. Nevertheless, since the model proposed

and studied by De Michele et al. [22] is and extension of the model studied by Accatino et al. [2],

then the same critics done for Accatino et al. [2] model are still valid (see section 1.2.1.1).

1.2.1.3 The Tchuinte et al. (2014) model [102]

Tchuinte Tamen et al. [102] in this paper, questioned the assumption according to which the fire

frequency f could be constant like in Accatino et al. [2] and De Michele et al. [22] works. In fact, if

most fires start from human ignition (Govender et al. [46]), fire are strongly constrained by available

grass fuel and its distribution across space. Then in Tchuinte Tamen et al. [102], they keep the fire

frequency f constant and they modulated it by ω(G), which will stay its low branch as long grass

biomass is not sufficient quantity. They proposed and analysed the following simple model of tree-

grass dynamics by taking into account fire as continuous events:
dG

dt
= (γG − δG0)G− µGG− γTGTG− λfGfG,

dT

dt
= (γT − δT )T − µTT

2 − λfTfω(G)T,

(1.4)

with G(0) = G0, T (0) = T0, positive initial conditions and ω(G) =
Gβ

Gβ + αβ
, with α controlling

the location of the point where ω is half of its maximum and β controlling the rate of increase of ω.

ω is a function of grass biomass which express the causality between grass biomass and fire intensity.

Moreover ω is see as an indirect proxy of ignitable dry grass biomass available at the middle of the

dry season. In the mathematical analyses of their model, Tchuinte Tamen et al. [102] take ω(G) as

a generic monotonously increasing function of grass biomass and the case were it is on the form of

Holling type II or III function is also discuss on their paper.

Their model deals with tree-grass pattern in arid, semi arid and mesic ecosystem and is able to

predict several equilibria among which pure cover type i.e bare soil, grassland, forest along with

several levels of tree-grass mixtures. Their model featured various bistability situations: between
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forest and grassland, between forest and one of the tree-grass equilibrium with low tree biomass.

However, Tchuinte Tamen et al. [102] have considered fire as a forcing factor, whose effects

are independent of tree size development. In fact, they treated woody cover as a single factor with

no distinction between seedlings/sapling which are highly fire sensitive, and mature trees which are

largely immune to fire damage. This modelling choice on fire effect done by Tchuinte Tamen et al.

[102] is questionable.

1.2.1.4 The Yatat et al. (2014) model [125]

Yatat Djeumen et al. [125] constructed and analysed a mathematical model in order to study the inter-

action of tree and grass that explicitly makes fire intensity dependant of the grass biomass. Contrary

to Tchuinte Tamen et al. [102], and in order to take into account the role of fire in savanna dynamics,

Yatat Djeumen et al. [125] considered a tree-grass compartmental mood with one compartment for

grasses and two for trees, namely fire-sensitive individuals (like seedlings, sapling, shrubs) and non-

sensitive individuals mature trees. To build up their model, Yatat Djeumen et al. [125] considered the

following assumptions:

1. The grass vs. sensitive-tree competition has a negative feedback on sensitive tree dynamics.

2. The grass vs. non sensitive-tree has a negative feedback on grass dynamics.

3. After an average time expressed in years, the sensitive tree biomass becomes non sensitive to

fire.

Then, the Yatat Djeumen et al. [125] model is given by the following three coupled of nonlinear

ordinary differential equations where TNS denotes the class of non-sensitive tree biomass, TS , the

class of sensitive tree and, the class of grass biomass (G):



dTS
dt

= (γSTS + γNSTNS)

(
1− TS + TNS

KT

)
− (µS + ωS + σGG+ fηSω(G))TS,

dTNS

dt
= ωSTS − µNSTNS,

dG

dt
= γG

(
1− G

KG

)
G− (σNSTNS + fηG + µG)G,

(1.5)

with, TS(0) = TS0 , TNS(0) = TNS0 , G(0) = G0, and ω(G) =
G2

G2 + g20
, where g20 is the value of grass

biomass at which fire intensity reach to half saturation.

Their size structured model reveal three possible equilibria excluding tree-grass coexistence (desert,

grassland, forest) along with equilibria for which woody and grassy biomass show durable coexis-

tence (i.e savanna vegetation). They also identified ecological meaningful thresholds that defined in
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parameter space regions of monostability, bistability and tristability. However it is possible to make

this model of Yatat Djeumen et al. [125] more realistic by taking into account, on the one hand and

in explicit way, the role of precipitation in the dynamics of trees and grasses biomasses. On the other

hand, the factors of cooperation which can exist between trees to reduce the effect of fire.

1.2.1.5 The Yu and D’Odoricco (2014) model [127]

Yu and D’odorico [127] developed an ecohydrological framework to explain the mechanisms under-

lying grass displacement by woody plant encroachment. They investigated the interaction of woody

plants and grasses with soil water and light through a coupled energy and water balance model ac-

counting for the competitive advantage of woody plants over grasses. Yu and D’odorico [127] model

assumed that:

1. woody plants have preferential access to soil water and that in the absence of disturbances (e.g.,

fires) they would outcompete grasses.

2. bottleneck effects associated with the higher susceptibility of woody plant seedlings and saplings

to fires and drought affects vegetation dynamics only by slowing down the rate of woody plant

establishment and growth( Bond [13]);

3. fire frequency depends only on grass cover and all woody plants have the same susceptibility to

fire killings.

Yu and D’odorico [127] model couples the surface energy and soil water balance with vegetation

dynamics for two plant functional types: woody plant cover (fc) and grass cover (fg).

• The vegetation dynamics:

Yu and D’odorico [127] proposed the following ordinary differential equations according to

tree-grass interactions:


dfc
dt

= bfc

(
1− fc

fcmax

)
− dfcg(fg),

dfg
dt

= βfg

(
1− fc

fgmax(fc)

)
,

(1.6)

where b and β (per year) are growth coefficients of tree and grass respectively; fcmax and

fgmax(fc) are carrying capacities of tree and grass respectively; d (per year) is a parameter

determining the death rate of woody plants by fires; and g(fg) is the term defined by:

g(fg) =
ηf 2

g

1 + (η − 1)f 2
g

. (1.7)

In system (1.6) the carrying capacity fgmax(fc) is defined by the following expression:
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fgmax(fc) = (1− fc)dbgm + fcdcgm, (1.8)

where dcgm and dbgm are maximum density of grasses under and between canopies respectively.

• The soil moisture dynamics:

Rodriguez-Iturbe et al. [82] and Laio et al. [61], Yu and D’odorico [127] considered that the

soil moisture dynamics under and between canopies are expressed through soil water balance

equations:


nZR

dSc

dt
= Ic − Ec − Lc,

nZR
dSb

dt
= Ib − Eb − Lb,

(1.9)

where n (dimensionless) is the soil porosity, ZR (mm) is the effective rooting depth, Sc and Sb

are the relative soil moistures 0 < Sc, Sb < 1, Ic and Ib are the infiltration rates (mm.yr−1),

Ec and Eb are the sum of soil evaporation and transpiration, Lc and Lb are the drainage rates

(mm.yr−1). The subscripts c and b refer to sites under and between canopies, respectively. The

mean landscape soil moisture is then calculated as

S = (1− fc)Sb + fcSc. (1.10)

Systems (1.6) and (1.9) are analyzed using linear stability methods. Yu and D’odorico [127] showed

that the reduction in grass cover is likely an effect of woody plant encroachment. They found that in

arid environments grass cover is limited mainly by water availability with no major shading effects

because the tree cover is relatively low. Yu and D’odorico [127] also showed that the grass-fire

feedback can lead to the emergence of bistable dynamics both at the dry and wet sites. Moreover they

showed that bistable dynamics associated with grasslands and woodlands occur with the mean annual

rainfall (MAR) in the 450–1050 mm range. In their model, Yu and D’odorico [127] assumed that

woody plants are better competitors for soil water resources and therefore can outcompete grasses in

the absence of disturbances which is not undisputable considering empirical sources. Indeed, in some

ecosystems grasses are better competitors where they share the same belowground rooting space with

woody seedlings and saplings (e.g., Scholes and Archer [91], Bond [13]).

1.2.1.6 The Touboul et al. (2018) model [107]

Touboul et al. [107] have thoroughly explored the dynamic of a simple model for landscape dynam-

ics of grass, savanna trees and forest tree in interaction with savanna. Their model also assume fire

spread has a threshold response to tree cover and savanna tree can vary in the degree to which they

excludes fire and that fire, in turn, impact tree population dynamics by preventing savanna sapling
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from maturing into adult tree by killing forest trees regardless of their size.

Touboul et al. [107] base their model on units of aerial cover where, G, S and T represent the frac-

tional cover of grass, sapling and trees respectively. They incorporate the threshold response of fire to

grass cover G into the sapling-to-tree recruitment term ω. At hight G, fire spread and sapling to tree

recruitment ω is low; at low G fire cannot spread and ω is hight. All of these yields to the following

ODE system: 

Ġ = µS + νT − βGT,

Ṡ = βGT − (ω(G) + µ)S,

Ṫ = ω(G)S − νT,

(1.11)

where, µ and ν are the mortality rates of savanna saplings and adult trees respectively. β is the birth

rate of savanna saplings and the sapling-to-tree recruitment coefficient ω is a decreasing function

of grass. Touboul et al. [107] considers that, because G,S and T represent fraction of landscape

G+ S + T = 1, and this assumptions allowing them, by expressing one of variables as a function of

the two others two reduce the previous system in (1.11) .

The analysis of system (1.11) reveals that depending on parameter value, the system can have mul-

tiple equilibria resulting from general sigmoidal response of ω to G but largely independent of its pre-

cise functional form. Touboul et al. [107] also showed that depending on the birth and mortality rate

of tree, the landscape can develops into grassland or alternatively into a completely wooded landscape

and both state can coexist an be stable in a wide region of parameters delineated by codimension-one

saddle node bifurcations.

Touboul et al. [107] also consider an extension of system (1.11) by adding an additionnal forest

tree functional F . They allowed savanna tree (S and T ) to vary in the degree to which they excluded

grasses, thereby preventing fire to spread. Therefore they denoted this with γ ∈ [0, 1] with the con-

vention that γ = 1 corresponds to savanna tree allowing fire to spread as well grass alone and that,

γ = 0 corresponds to perfectly shady savanna trees:

Ġ = µS + νT − βGT + φ(G+ γ(S + T ))F − αGF,

Ṡ = βGT − (ω(G+ γ(S + T )) + µ)S − αSF,

Ṫ = ω(G+ γ(S + T ))S − νT − αTF,

Ḟ = (α(1− F )− φ(G+ γ(S + T )))F,

(1.12)

where, α is the forest tree birth rate and φ is the forest mortality rate. Touboul et al. [107] analysed

the dynamics of system (1.12) by investigating how the degree to which savanna trees and sapling

prevent fire spread qualitatively. Their analysis reveals that :
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(i) diverse cyclic behaviours, including limit and homo-and heteroclinic cycle can occur for broad

range of parameters space.

(ii) Large shifts in landscape structure can result from endogenous dynamics, not just from external

drivers.

Touboul et al. [107] like Accatino et al. [2] and De Michele et al. [22] assumed that vegetation com-

ponent are mutually exclusive but this modelling choice is questionable become sometimes grass

vegetation for example, develops under tree crow and thus it is therefore more adapted to model with

vegetation dynamics as biomasses.

1.2.1.7 The Yatat et al. (2021) model [124]

In Yatat Djeumen et al. [124] it is analysed a model aiming to recovering as dynamical outcomes

of tree-grass interactions, the wide range of vegetation physiognomies observables in the savanna

biomes along the rainfall gradients at regimal scales. This model is based on two ordinary differen-

tial equations for woody and herbaceous vegetations, explicitly express as functions of mean annual

precipitation with the aim to study model prediction in direct relation to rainfall and fire frequency

gradients.

In their model the following assumptions where done:

1. Limits puts by rainfall on woody and grass biomass development.

2. Asymmetric interactions between woody and herbaceous plant life forms.

3. Positive feedback between grass biomass and fire intensity and decreased fire impact with tree

height.

Precisely, they explicitly express the growth of both woody and herbaceous vegetation as a function

of the mean annual rainfall with the aim to study model predictions in direct relation to rainfall

and fire frequency gradients. They further assume that the carrying capacity of grass and tree to

be increasing and bounded functions of water availability. Similarly, the assumed that the effect of

tree biomass on grass biomass is modelled by a non-linear function of mean annual rainfall that take

either negative values (meaning facilitation) or positives values (for competition). Finally, contrary to

Tchuinte Tamen et al. [102], they split fire frequency from final impact fire on woody biomass in a

multiplicative way (f ×ω(G)×ϑ(T )) to highlight the fact that grass biomass control both fire spread

and local fire intensity which impacts differently small and large woody individuals.

Based on this assumptions, Yatat Djeumen et al. [124] proposed and analysed the following minimal

model, given by the set of two nonlinear ODE:
dG

dt
=

γGW

bG +W
G

(
1− G

KG(W)

)
− δGG− ηTG(W)TG− λfG(W)fG,

dT

dt
=

γTW

bT +W
T

(
1− T

KT (W)

)
− δTT − fϑ(T )ω(G)T,

(1.13)
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where:

(i) G and T (in t.ha−1) stand for grass and tree biomasses respectively.

(ii) W describes the mean annual precipitation.

(iii) ηTG(W) is the non-linear function described the tree effects on grass biomass.

(iv) The function ω(G) describe the fire intensity, and it is in on Holling type III form.

(v) ϑ(T ) express a function of fire induced woody biomass mortality and it is a decreasing function

of tree-biomass.

(vi)
γGw

bG +w
and

γTw

bT +w
are the annual production of grass and tress respectively, where γG and

γT (in yr−1) express the maximal growth of grass and tree biomass respectively.

(vii) The half saturation bG and bT express how quickly growth increase with water availability.

The Yatat Djeumen et al. [124] is fully tractable and sufficient to produce a realistic bifurcation

diagram rendering the picture of vegetation physiognomies in the savannas biomes. In fact, their

model delimited domains of monostability (forest, savanna), bistability ( e.g forest-grassland or forest-

savanna) and even tristability. This model differs fundamentally from existing tree-grass models in

that MAP is explicitly in the parameters of biomass logistic growth. However, Yatat Djeumen et al.

[124] did not take particular emphasis on the cooperation factors that may exist between trees de-

pending on whether one is in arid or humid environmental context in order to reduce fire effects.

1.2.2 Mathematical modelling of savanna dynamics with partial differential
equations

In wet savanna areas, vegetation may sometimes exhibit plausibly self-organized physiognomies also

termed as patchy vegetation or vegetation mosaics. Indeed, as pointed out by Yatat Djeumen et al.

[123], there are several empirical evidences that highlight the existence of vegetation mosaics. Patches

of vegetation display dense clusters of shrubs, grasses or trees and can be interpreted as regular spot

structures or localized structures (Tlidi et al. [106]). These mosaics involve either bare soil (“desert”)

versus vegetation (herbaceous or woody) in arid, semi-arid regions (Lefever and Lejeune [62]; Lefever

et al. [64]; Lefever and Turner [63]; Couteron and Lejeune [19]; Couteron et al. [20]; HilleRisLam-

bers et al. [52]; Rietkerk et al. [81]; Gilad et al. [43]; Pueyo et al. [79, 80]; Deblauwe et al. [24] ), or

grasslands/savannas versus forests in temperate as well as humid tropical regions (Youta Happi [126];

Hirota et al. [53]; Jeffery et al. [55]; Xu et al. [120]; Stall et al. [95] and references therein; see also

figure 1.1). Empirical evidences suggest that vegetation mosaics in humid regions barely feature pe-

riodic patterns. Most often, they are aperiodic but, with quite sharp boundaries like isolated groves or

savanna patches encircled by forests. According Borgogno et al. [16], the study of vegetation patterns

is motivated by their widespread occurrence in dryland landscapes and by the possibility to infer from
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their presence and features useful information on the underlying processes, including the susceptibil-

ity of the system to abrupt shifts as a result of climate change or anthropogenic disturbances.

To explicitly acknowledge spatial mechanisms within savanna-like ecosystems ecosystems of

tree-grass interactions such as seeds production and dispersion, vegetation propagation, life forms

competition, several authors proposed and studied savanna models that rely on partial differential

equations(PDE). Spatial mechanisms in savannas can further be classified into two different parts:

local mechanisms such as local vegetation propagation, local competition for ressources and non-

local mechanisms such as non-local seeds dispersal, non-local competition/facilitation for light and

nutrients. These two kinds of mechanisms induced two kinds of savanna PDE models, namely local

models (acknowledging only local mechanisms) and non-local models (acknowledging both local and

non-local mechanisms). We point out that non-local spatial mechanisms are expressed through kernel

functions.

Two main modelling directions was followed by the different research teams who addressed the

questions of predictions of spatio temporal dynamic in savanna area:

(i) Models featured coupled of reaction-diffusion type.

(ii) Models based on a single integro-differential equation depicting vegetation dynamics with non-

local kernel modelling of plant-plant interactions.

In fact, in order to built a mathematical model for savanna ecosystems, it is necessary to think about

the number of sate variable, the type of state variable and the resulting model.

1.2.2.1 The Martinez Garcia et al. (2013) model [68]

Martinez-Garcia et al. [68] proposed a model of tree density in Mesic savanna by considering the

long range competition among tree and the effect of fire indirectly acting as local facilitation mech-

anism. Then, they developed a minimalistic model of savannas, that consider two factors as already

mentioned, thought to be important to structure mesic savannas: tree-tree competition and fire, with a

focus on spatially nonlocal competition. They explored the conditions under which, their model can

produce non-homogeneous spatial distributions. Martinez-Garcia et al. [68], therefore proposed and

evolution equation in 1.14, for the space dependent density of tree cover ρ(x, t):

∂ρ(x, t)

∂t
=

bσ exp

(
−δ
∫
R
G(x− r)ρ(r, t)dr

)
σ + 1− ρ(x, t)

ρ(x, t) (1− ρ(x, t))− αρ(x, t). (1.14)

The corresponding grass cover can be deduced by assuming the constant unity.

The blue term in (1.14), described the probability of establishment of a tree and this latter, is related

to two independent phenomena: the probability of surviving the competition ( which depend on tree

crowding in a local neighborhood, decaying exponentially with the density of surrounding tree) and

the probability of surviving a fire event, where δ is the a parameter that modulates the strength of

competition and σ governs the resistance to fire.
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Their central result is that, the nonlocal competition promote the clustering of trees. Whether

or not this occur depends entirely on the shape of the competition kernel. Then, they showed the

different spatial distributions of trees that occur as competition becomes more intense.

However, Martinez-Garcia et al. [68] in this paper, have neglected the nonlocal mechanisms,

firstly for tree seed dispersion, secondly for protection induce by mature trees to limit fire effect on

sensitive tree (this later, play a crucial role in the process of tree growth and tree mortality). Another

critic is that, Martinez-Garcia et al. [68] proposed an evolution equation of density cover, but it is

acknowledged that, vegetation are not mutually exclusive.

1.2.2.2 The Yatat Djeumen et al. (2018) model [122]

In their paper, Yatat Djeumen et al. [122] have extended the previous temporal models, developed

in Yatat Djeumen et al. [125] and Tchuinte Tamen et al. [102], using diffusion operators into spatio

temporal model in order to study, the long term dynamics of mosaics of forest and grassland in a

humid context of central Africa. They developed, a space explicit tree-grass interaction model, taking

into account spatial aspects of tree-grass interactions by constructing, a system of partial differential

equations that belongs to the family of reaction-diffusion equation. Their resulting system of PDE

reads as:

∂TS
∂t

= DS
∂2TS
∂x2

+ (γSTS + γNSTNS)

(
1− TS + TNS

KT

)
− (µS + ωS + γGG+ fηSω(G)) ,

∂TNS

∂t
= DNS

∂2TNS

∂x2
+ ωSTS − µNSTNS,

∂G

∂t
= DG

∂2G

∂x2
+ γG

(
1− G

KG

)
G− (γNSTNS + µG + fηG)G

(1.15)

with ω(G) =
G2

G2 + g20
, x belong to the one spatial domain Ω = (−d; d), 0 ≤ TS(0, x) = TS0(x), 0 ≤

TNS(0, x) = TNS0(x), 0 ≤ G(0, x) = G0(x). In addition they also consider homogeneous Newman

boundary condition for three state variable, i.e:

∂TNS(x, t)

∂x
=
∂TS(x, t)

∂x
=
∂G(x, t)

∂x
= 0, at x = −d and x = d.

The main motivation of their model, is to depict or characterize the impact of fire events on possible

forest invasion, as bistable travelling wave solution for a context of humid savanna in central Africa.

Due to the lack of monotonicity of the previous system in (1.15), and for a mathematical simplifica-

tion, Yatat Djeumen et al. [122] proposed a reformulation of (1.15) by considering one compartment
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for tree biomass. Therefore the new system follow the Tchuinte Tamen et al. [102] model:
∂T

∂t
= DT

∂2T

∂x2
+ γT

(
1− T

KT

)
T − (µT + σGG+ fηTω(G))T,

∂G

∂t
= DG

∂2G

∂x2
+ γG

(
1− G

KG

)
G− (µG + σTT + fηG)G

(1.16)

The analytical treatment of system (1.16) highlight several stability and multi-stability results involv-

ing spatially homogeneous forest, grassland and savanna solutions. Yatat Djeumen et al. [122] have

also discussed for this system, the existence of monostable and bistable grassland forest travelling

wave solution. They have founded that depending of fire return time as well as difference in diffusion

potential of woody and herbaceous vegetation, fire events are able to greatly slow down or even stop

the progression of forest in humid regions.

Yatat Djeumen et al. [122] in this work, didn’t considered nonlocal interactions which are empir-

ically evidence as mechanisms of plant dispersal, plant competition for light and nutriment as well

plant protection from fires.

1.2.2.3 The Wuyst et al. (2019) model [119]

Wuyts et al. [119] have constructed, a reaction diffusion model of Amazonian tree cover in the purpose

to reproduce, the observed spatial distribution of forest versus savanna when, forced by heterogeneous

environmental and anthropogenic variables, even though bistability was underestimated. They per-

formed analytical analysis of their model, by deriving the Maxwel Point (MP) of the homogeneous

reaction-diffusion equation without savanna trees, as a function of rainfall and the showed that, the

front between forest and non-forest settles as this point as long as savanna tree cover near the front

remains sufficiently low. In fact, the MP is a well-understood concept in phase transition theory used

for example in physics and mathematical biology. In such application, it is the point of external con-

ditions (e.g pressure or temperature) where two separate equilibrium phases of the considering system

have the same free energy. In fact, when there is a gradient of external conditions, the front between

the stable steady state pins (i.e settles) at the MP and that is what Wuyts et al. [119] found their model.

Their full system of PDE representing cover type as a function af space and time in the given

space give:

∂tS = RS (1− S − T − T )T −Q0 (1− hΦ(T, F ))S −MSS −RFSF +DS∇2
S,

∂tT = Q0 (1− hΦ(T, F ))S −MTT −RFTF,

∂tF = RF (1− F−)F − bΦ(F, T )F −MFF − cF +DF∇2
F ,

(1.17)

where Φ(T, F ) =
τ−1Y 4

c

Y 4
c (T + F )

, and S is savanna sapling cover, T the savanna adult tree cover, F
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forest tree cover and Φ the fraction of area burnt, Y ∈ {S, T, F} . and Yc is the critical value below

when fire spread occur and T the maximum return time. Q0(1−hΦ) is the recruitment rate of savanna

saplings into adult savanna trees. b is the sensitivity of front tree cover.

From the homogeneous system without savanna tree (S = T = 0) and via numerical continuation, a

MP is derived.

However, the Wuyts et al. [119] model has a lack of mathematical tractability, due to the fact that,

authors deals principally with numerical simulations to have some information about their models.

Therefore it is not easy to use mathematical analysis to infer or either to understand the behaviours

and the properties of their models.

1.2.2.4 The Goel et al. (2020) model [45]

In Goel et al. [45], it is examined the contributions of dispersal to determine biome distribution, by

using a two dimensional (2D) reaction diffusion model . In fact, theoretical work on reaction diffusion

models show that, coupling diffusion with a mean-field bistable model in a one dimensional (1D)

landscape with a prediction gradient can yields spatially aggregated biome distribution. However,

one obvious limitation of that type of model is that they treat dispersal as a one dimensional process,

evenght though it is more realistic to model dispersal using two dimensional (2D) reaction diffusion

model. Goel et al. [45] assumed in their paper that, the landscape consists of fractional groups of

plants: forest trees and grasses. They designed by T (r, t) the density of forest in a spatial point r of

the domain at the time t and G(r, t) the density of grasses. Without loss of generality, they considered

the constant unity, i.e T (r, t) + G(r, t) = 1. Therefore, the instantaneous dynamic of biomes can be

represented in terms of single dynamical variable T , with grass represented as G = 1− T . Then, the

model studied in Goel et al. [45] is formulated by the following equation:

∂T

∂t
= P (1− T )T − ΦT +D∇2T. (1.18)

The study of equation (1.18) reveals that, the dynamic in the 2D reaction diffusion model with an

underlying precipitation gradient can in a first step reproduce the both overlap in the precipitation

ranges over which savanna and forest biomes occur and that is missing from the 1D diffusion model.

In a second step the Goel et al. [45] model reproduce the spatial aggregation properties of biome.

Moreover, the 2D diffusion model suggest that this precipitation overlap might not be maintained by

hysteresis. Dynamically, their model predicts that dispersal (via diffusion in 2D), may increase the

resilience of tropical biome in response to global change.

The same critics done for Wuyts et al. [119] model are still valid because the authors also deals

with numerical simulation to highlight spatial aggregation of biome in savanna-forest mosacis.
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1.3 Conclusion

Due to scarcely attention on the problematic that concern the prediction of the spatial dynamic of

vegetation in the humid savannah zone, two lines of research deserve to be addressed: (i) the pre-

diction, using a spatially explicit mathematical model, depicting possibly spatial periodic structures

observed in the humid savannah zone with particular emphasis on the period of the patterns observed;

(ii) The construction of a mathematical model allowing to predict the possible transitions of mosaics

observed with a particular emphasis on the speed of transitions between the mosaics observed. In

fact, a deep literature reviews allows us to observed that, spatial interactions mechanism traduced in

spaced have been scarcely taken into account in the study of tree grass dynamic. Indeed, tree-grass

interactions in savanna ecosystem have been mostly modelled though framework that implicitly ac-

knowledge space (Accatino et al. [2], Tchuinte Tamen et al. [102],Yatat Djeumen et al. [125], Yu and

D’odorico [127],Touboul et al. [107],Yatat Djeumen et al. [124]). Most of works done using PDE

formalism, where carried out in the arid and semi-arid environmental context (Lefever and Lejeune

[62], HilleRisLambers et al. [52], Couteron and Lejeune [19], Lefever et al. [64], Lefever and Turner

[63]). Only a few mathematical tractable and space explicit tree-grass interaction model have been

designated for wet savanna (Yatat Djeumen et al. [122], Wuyts et al. [119], Goel et al. [45]). Except

Yatat Djeumen et al. [122], most of PDE models relied on numerical treatment to render some spa-

tial structures and relate them to process. Then, mathematical PDE models that allows mathematical

tractability are thus more desirable in the context of wet savanna.
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CHAPTER TWO

MONOTONE ITERATIVE METHOD FOR

REACTION-DIFFUSION EQUATIONS

IN this chapter, we provide some mathematical basic knowledge in the prospect to help the read-

ability of our contributions in doctoral dissertation. We principally refer to the book of Pao [77]:“

Nonlinear parabolic and elliptic equations".

2.1 Derivation of reaction-diffusion equations

One of the basic theories in the formulation of governing equations for physical problems is the princi-

ple of conservation. When the problem under consideration involves a reaction process accompanied

by diffusion, this principle leads to a set of partial differential equation for the unknown quantities of

system. If we consider a single quantity u(x, t), called density function at time t and position x in a

diffusion medium Ω in Rn, the principle of conservation states that: “for any subdomain R of Ω with

boundary surface S, the rate of change of mass density is equal to the rate of flux across S plus the

rate of generation within R.” This statement is the balance relation in which the flux denoted by the

vector J , is the density flow per unit surface area per unit time. Let ν be the outward normal vector

on S and q0 the rate of generation per unit volume per unit time in R. Assume that u, J and q0 are

continuous in x, J has a continuous partial derivatives with respect to the components of x and u has

a continuous derivative in t. Then the balance relation may be expressed as:

d

dt

∫
R

a0udx = −
∫
S

J.νds+

∫
R

q0dx, (2.1)

where a0 is a constant. The negative sign in the surface integral in (2.1) represents the density flow

into the region R through the boundary surface S. Since the divergence theorem:∫
S

J.νds =

∫
R

∇.Jdx (2.2)

where ∇ is the gradient operator in x. Equation (2.1) is reduced to:∫
R

(a0ut +∇.J − q0) dx = 0, (2.3)
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where ut = ∂u
∂t

. The continuity assumption on ut and ∇.J and the arbitrariness of the subdomain R

imply that

a0ut +∇.J − q0 in Ω. (2.4)

This equation (2.4) is often referred to as the equation of the principle of conservation variation.

To relate the diffusion flux J to the density function u it is assumed that in absence of convection, the

flux is proportional to the negative gradient of density:

J = −D∗∇u, (2.5)

where D∗ is a strictly positive function in Ω. Substituting (2.5) in (2.4) yields to the following equa-

tion:

ut = ∇.(D∇u) + q, (2.6)

whereD = D∗/a0, q = q0/a0. The functionD is called the diffusion coefficient. The term ∇. (D∇u)
represents the rate of change due to the diffusion, and q is the rate of change due to reaction. In many

reaction-diffusion-type problems, q depends on the density function u and possibly on (x, t) explicitly.

Writing q = f(x, t, u), the equation in (2.6) leads to the reaction diffusion equation:

ut −∇. (D∇u) = f(x, t, u). (2.7)

2.2 Boundary Conditions

When the diffusion medium Ω is a bounded domain in Rn, the reaction diffusion equations are supple-

mented by suitable boundary on the boundary surface ∂Ω. The appropriate condition on the boundary

depends on the physical mechanism surrounding the diffusion medium. Then, the condition on the

boundary depends on the material properties both inside and outside the diffusion medium. If the

outside environment is know there are the following three basic types of boundary conditions:

1. Dirichlet boundary condition:

When the density function is specified on the boundary surface, the boundary condition is given

in the form:

u(x, t) = h(x, t) (x ∈ ∂Ω, t > 0), (2.8)

where h is a density function with which the diffusion medium is in contact.

2. Neumann boundary condition:

When the flux across the boundary surface is presented, the boundary condition becomes:

∂u/∂ν = h(x, t) (x ∈ ∂Ω, t > 0), (2.9)

where h represents the rate of flow of the density and ∂u/∂ν is the directional derivative of u
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in the direction ν. Precisely ∂/∂ν is considered as the outward normal derivative on ∂Ω.

One special interest is the homogeneous Neumann boundary condition

∂u/∂ν = 0 (x ∈ ∂Ω, t > 0), (2.10)

which plays a particular role in the qualitative behaviour of the solution. The physical meaning

of (2.10) is that the boundary surface is completely insulated so that there is no flow across the

boundary.

3. Robin boundary condition:

By considering the outward normal derivative on u on ∂Ω and denote the surrounding density

by h0(t, x), then :

∂u/∂ν = β(h0 − u), (2.11)

where β is a proportionality constant, which can vary from point to point on ∂Ω. Since h0 is

known, the boundary condition can be written as :

∂u/∂ν + βν = h(x, t) (x ∈ ∂Ω, t > 0), (2.12)

where h = βh0. This condition in (2.12) is called Robin boundary condition.

All of three types of boundary conditions can be cast into the general form :

Bu = h(x, t) (x ∈ ∂Ω, t > 0), (2.13)

and B is referred to the boundary operator defined by:

Bu = α0(x)∂u/∂ν + β0(x)u. (2.14)

2.3 Linear reaction-diffusion Equations

In this section we introduce some basic definitions and collect some facts for linear parabolic boundary-

value problems.

Let Ω be either a bounded or an unbounded open domain in Rn, and let ∂Ω be the boundary of Ω. For

each T > 0, let DT = Ω× (0, T ], ST = ∂Ω× (0, T ]. Denote by:

• Cm(Ω), the set of all continuous functions, whose partial derivatives up to the mth order are

continuous in Ω.

• Cm,l(DT ) the set of functions whose l-times derivatives in t and m-times derivatives in x are

continuous in DT .

• Cα(Ω) the set of all Hölder continuous functions in Ω.
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Similar notations are used for Cm(Ω) and C l,m(DT ), where Ω, DT are the respective closure of Ω

and DT . When m = 0 we denote by C(Ω), C(Ω), C(DT ), C(DT ) the set of continuous functions in

Ω, Ω, DT and DT respectively. The norms in C(Ω) and C(DT ) are defined by:

|u|Ω0 = sup
x∈Ω

|u(x)| and |u|DT
0 = sup

(x,t)∈DT

|u(x, t)|. (2.15)

Similar norms with respect to Ω, DT are defined for C(Ω) and C(DT ).

We next collect some facts concerning the linear time-dependant boundary value-problem:
ut −D∇2u+ c0u = q(x, t) in DT ,

Bu = ∂u/∂ν = h(x, t) on ST ,

u(x, 0) = u0(x) in Ω,

(2.16)

where D is a positive constant, c0 is a continuous function, and q, h, and u0 are given internal and

boundary data.

Definition 2.1. (Fundamental solution)(Pao [77])

A function Γ ≡ Γ(x, t) is called a fundamental solution of the parabolic operator ∂/∂t − D∇2 + c0

in Rn × (0;T ] if for any fixed (y, s) ∈ Rn × (0;T ], Γ satisfies the equation:

Γt −D∇2Γ + c0 = δ(x− y)δ(t− s), (2.17)

where δ is the Dirac δ-function.

If c0 is a constant function Γ is given by:

Γ(x, t) = (4πDt)−n/2 exp

[
−
(
c0t+

|x|2

4Dt

)]
. (2.18)

Proposition 2.1. (see also Pao [77]) Let q ≡ q(x, t) be a measurable function inDT and Φ ≡ Φ(x, t)

a bounded continuous function on ST . Then,

(i) the “volume potential"

V0(x, t) =

∫ t

0

∫
Ω

Γ(x− y, t− s)q(y, s)dyds, (2.19)

is a continuous function in DT if q is bounded in DT .

(ii) V0 is Hölder continuous in DT for every α ∈ (0, 1) if q is continuous in DT .

(iii) the “single layer potential"

V1(x, t) =

∫ t

0

∫
∂Ω

Γ(x− y, t− s)Φ(y, s)dyds, (2.20)
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is Hölder continuous on DT for any α ∈ (0, 1).

(iv) there exists α∗ ∈ (0, 1) such that the “double layer potential"

V2(x, t) =

∫ t

0

∫
∂Ω

∂Γ

∂νy
(x− y, t− s)Φ(y, s)dyds, (2.21)

is Hölder continuous on ST for any α ≤ α∗.

Theorem 2.1. (Integral representation)(see Pao [77])

Let q be Hölder continuous in x, uniformly in DT , then for any continuous function h on ST and u0 in

Ω the linear time-dependant boundary value-problem (2.16) has a unique solution u which is Hölder

continuous in x, uniformly in DT . Moreover, u can be represented by the formula:

u(x, t) =

∫
Ω

Γ(x− y, t)u0(y)dy +

∫ t

0

∫
Ω

Γ(x− y, t− s)q(y, s)dyds

+

∫ t

0

∫
∂Ω

Γ(x− y, t− s)Φ(y, s)dyds,

(2.22)

where Γ is the fundamental solution of the operator ∂/∂t −D∇2 + c0, Φ is governed by the integral

equation:

Φ(x, t) = 2

∫ t

0

∫
∂Ω

∂Γ

∂νy
(x− y, t− s)Φ(y, s)dyds− 2H(x, t), (2.23)

and H(x, t) is given by:

H(x, t) =

∫
Ω

∂Γ

∂νx
(x− y, t)u0(y)dy + h(x, t) +

∫ t

0

∫
Ω

∂Γ

∂νx
(x− y, t− s)q(y, s)dyds. (2.24)

A consequence of linear theory of parabolic equations concern the density Φ of the integral equa-

tion (2.22). By considering a sequence of functions
{
H(k)

}
which converges pointwise on ST to a

function H and if Φ(k) is the solution of the integral equation:

Φ(k)(x, t) = 2

∫ t

0

∫
∂Ω

∂Γ

∂νy
(x− y, t− s)Φ(y, s)dyds− 2H(k)(x, t), (2.25)

and Φ is verified equation (2.23), then we have the following result:

Proposition 2.2. (see Pao [77]) Let
{
H(k)

}
be a sequence of continuous functions that converges

pointwise on ST to H , and let Φ(k), Φ be the respective solutions of (2.25) and (2.23). Then
{
Φ(k)

}
converge pointwise on ST to Φ. Moreover if H is continuous on ST so is Φ.

A basic and important tool in the development of monotone method is the maximum principle for

parabolic operators.

Theorem 2.2. (see Pao [77]) Let w ∈ C2,1(DT ) such that

wt −∇2w + cw ≥ 0, (x, t) ∈ DT ,
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where c ≡ c(x, t) is a bounded and positive function in DT . If w attains a minimum value m0 ≤ 0

at some point in DT then w(x, t) = m0 throughout DT . If ∂Ω has the inside sphere property and

w attains a minimum at some point (x0, t0) on ST , then ∂w/∂ν < 0 at (x0, t0) whenever w is not a

constant.

Proposition 2.3. If w ∈ C(DT ) ∩ C1,2(DT ) and satisfies the relation:


wt −D∇2w + cw ≥ 0 in DT ,

Bw ≥ 0 on ST ,

w(x, 0) ≥ 0 in Ω,

(2.26)

where c ≡ c(x, t) is any bounded and positive function in DT , then w ≥ 0 in DT .

Proof. Assume by contradiction that there exists a point (x0, t0) ∈ DT such that w(x0, t0) is a

negative minimum. Because w(x0, 0) ≥ 0, (x0, t0) must be either in DT or on ST . Since w can not

be a negative constant, the maximum principle in Theorem (2.2) implies that (x0, t0) ∈ ST . Now by

the boundary inequality ∂w/∂ν ≥ 0 at (x0, t0), which contradicts the maximum principle in Theorem

(2.2). Then w(x, t) ≥ 0 in DT .

We address now the method to establish an existence theorem for reaction-diffusion equation

under Neumann boundary condition.

2.4 Monotone Iterative method for reaction-diffusion equation

The basic idea of this method is that by using an upper solution or an lower solution as the initial

iteration in a suitable iterative process, the resulting sequence of iterations is monotone and converges

to a solution of the problem.

To illustrate the method, let us consider the time-dependent problem:
ut −D∇2u = f(x, t, u) in DT ,

Bu = ∂u/∂ν = h(x, t) on ST ,

u(x, 0) = u0(x) in Ω,

(2.27)

where the functions f, h and u0 are assumed Hölder continuous in their respective domains. We

therefore have the following definitions.

Definition 2.2. A function ũ ∈ C(DT )∩C2,1(DT ) is called an upper solution of (2.27) if it satisfies

the relation 
ũt −D∇2ũ ≥ f(x, t, ũ) in DT ,

Bũ = ∂ũ/∂ν = h(x, t) on ST ,

ũ(x, 0) = u0(x) in Ω.

(2.28)
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Similarly, û ∈ C(DT ) ∩ C2,1(DT ) is called a lower solution if it satisfies all the reversed inequalities

in (2.28).

The functions ũ, û are called ordered upper and lower solutions if ũ ≥ û in DT . It is therefore

defined the sector ⟨û, ũ⟩ =
{
u ∈ C(DT ); û ≤ u ≤ ũ

}
.

Remark 2.1. Every solution of (2.27) is an upper solution as well lower solution. However upper

and lower solution exist unless the problem has no solution in DT .

To ensure the existence of a solution it is necessary to impose some condition on the reaction

function. A basic assumption is that for some bounded functions c ≡ c(x, t) and c ≡ c(x, t), f satisfy

the condition:

−c(u1 − u2) ≤ f(x, t, u1)− f(x, t, u2) ≤ −c(u1 − u2) for û ≤ u2 ≤ u1 ≤ ũ. (2.29)

Without loss of generality, we may assume that c(x, t) is Hölder continuous in DT . In view of (2.29)

the function

F (x, t, u) = cu+ f(x, t, u), (2.30)

is monotone nondecreasing in u for u ∈ ⟨û, ũ⟩ and Hölder continuous in DT × ⟨û, ũ⟩. Furthermore,

F satisfy the Lipschitz condition

|F (x, t, u1)− F (x, t, u2)| ≤ K|u1 − u2| for u1, u2 ∈ ⟨û, ũ⟩, (2.31)

where K may be taken as an upper bound of |c(x, t)|+ |c(x, t)| in DT . Clearly, (2.29) holds when f

is Lipschitz continuous in u. However, in the construction of monotone sequence only the left-hand

side Lipschitz condition in (2.29) is needed; the right-hand side Lipschitz condition is used to ensure

the uniqueness of the solution.

By adding cu on both sides of the differential equation in (2.27) and choosing a suitable initial iteration

u(0), it is constructed a sequence
{
u(k)
}
. successively from the iteration process:

u
(k)
t −D∇2u(k) + cu(k) = cu(k−1) + f(x, t, u(k−1)) in DT ,

Bu(k) = ∂u/∂ν = h(x, t) on ST ,

u(k)(x, 0) = u0(x) in Ω,

(2.32)

Since for each k the right-hand side of (2.32) is know, the existence theorem for linear parabolic

boundary-value problems implies that the sequence
{
u(k)
}

is well defined. Of particular interest is

the sequence obtained from (2.32) with an upper solution or a lower solution as the initial iteration.

Denote the sequence with the initial iteration u(0) = ũ by
{
u(k)
}

and the sequence with u(0) = û by{
u(k)
}

, and refer to them as upper and lower sequences, respectively. The following lemmas shows

that in a first step that the two sequences are well defined and in a second step gives the monotone

property of these two ones.
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Lemma 2.1. Let condition (2.29) be satisfied. Then the two sequences
{
u(k)
}

and
{
u(k)
}

are well

defined, and u(k), u(k) are in Cα(DT ) for each k.

Proof. Let
{
u(k)
}

be either the upper sequence or the lower sequence and let:

q(k)(x, t) = F (x, t, u(k)(x, t)).

u(k) is uniquely determined if the function q(k−1) is continuous in DT and is Hölder continuous in x.

Consider the case k = 1. The Hölder continuity of u(0) and F imply for (x, t) and (y, s) in DT that:

|q(0)(x, t)− q(0)(y, s)| ≤ |F (x, t, u(0)(x, t))− F (y, s, u(0)(x, t))|+ |F (y, s, u(0)(x, t))− F (y, s, u(0)(y, s))|
≤ Hα (|x− y|α + |t− s|α) +K|u(0)(x, t)− u(0)(y, s)|,
≤

(
Hα +KH

(0)
α

)
(|x− y|α + |t− s|α)

whereHα andH(0)
α are the Hölder constants (with exponent α) of F and u(0) respectively. This shows

that q(0) is Hölder continuous in DT with exponent α. In view of Theorem 2.1 page 29, a unique

solution u(1) to (2.32) exists and is in Cα(DT ). Replacing u(0) by u(1) the same argument shows that

q(1)(x, t) is Hölder continuous in DT with the same exponent α. Hence the solution u(2) to (2.32)

exists and is in Cα(DT ). An induction argument leads to the conclusion of the lemma.

Lemma 2.2. Let ũ, û ne ordered upper and lower solutions of system (2.27), and let f satisfy (2.29).

Then the sequences
{
u(k)
}

,
{
u(k)
}

possess the monotone property:

û ≤ u(k) ≤ u(k+1) ≤ u(k+1) ≤ u(k) ≤ ũ in DT (2.33)

for every k = 1, 2, ...

Proof. Let w = u(0) − u(1) = ũ−−u(1). By (2.28), (2.32), and u(0) = ũ,

wt −D∇2w + cw = (ũt −D∇2ũ+ cũ)−
(
cu(0) + f(x, t, u(0))

)
,

= ũt −D∇2ũ− f(x, t, ũ) ≥ 0,

Bw = Bũ− h(x, t) ≥ 0,

w(x, 0) = ũ(x, 0)− u0(x) ≥ 0.

In view of proposition 2.3, w ≥ 0 in DT , which leads to u(1) ≤ u(0). A similar argument using the

property of a lower solution gives u(1) ≥ u(0). Next, let w(1) = u(1) − u(1). By systems (2.29) and

(2.32), w(1) satisfies the relation:

w
(1)
t −D∇2w(1) + cw(1) =

(
cu(0) + f(x, t, u(0))

)
−
(
cu(0) + f(x, t, u(0))

)
,

= c (ũ− û) + f(x, ũ)− f(x, t, û) ≥ 0,

Bw(1) = h(x, t)− h(x, t) = 0,

w(1)(x, 0) = u0(x)− u0(x) = 0.
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Again, by proposition 2.3, w(1) ≥ 0. The above conclusion shows that u(0) ≤ u(1) ≤ u(1) ≤ u(0).

Assume, by induction:

u(k−1) ≤ u(k) ≤ u(k) ≤ u(k−1) in DT . (2.34)

Then by systems (2.29) and (2.32), the function w(k) = u(k) − u(k+1) satisfies the relation:

w
(k)
t −D∇2w(k) + cw(k) =

(
cu(k−1) + f(x, u(k−1))

)
−
(
cu(k) + f(x, u(k))

)
.

Since Bw(k) = 0 on ST and w(k)(x, 0) = 0 in Ω, proposition 2.3 implies that w(k) ≥ 0, that is

u(k+1) ≤ u(k). Similar reasoning gives u(k+1) ≤ u(k) and u(k+1) and u(k+1) ≤ u(k). The monotone

method property in 2.33 follows by the principle of induction.

Lemma 2.3. The pointwise limits

lim
k→+∞

u(k)(x, t) = u(x, t) and lim
k→+∞

u(k)(x, t) = u(x, t) (2.35)

exists and satisfy the relation:

û ≤ u(k) ≤ u(k+1) ≤ u ≤ u ≤ u(k+1) ≤ u(k) ≤ ũ in DT (2.36)

where k = 1, 2, ....

Proof. Since by the Lemma 2.2, the sequence
{
u(k)
}

is monotone nonincreasing and is bounded

from below and the sequence
{
u(k)
}

is monotone nondecreasing and is bounded from above, the

pointwise limits of these sequences exist and their limits are denoted by u and u. Moreover by (2.32)

the limits u and u satisfy the relation (2.36).

Lemma 2.4. If the limits u and u in (2.35) are solutions of (2.27), then u = u and is the unique

solution in the sector ⟨û, ũ⟩.

Proof. Let w = u− u ≤ 0. Then w satisfies the relation:

wt −D∇2w = f(x, t, u)− f(x, t, u) ≥ −c(u− u) = cw,

and the boundary and initial condition Bw = 0 on ST , w(x, 0) = 0 in Ω. By the proposition

2.3, w ≥ 0 in DT which ensure that u = u. Now if u∗ is any solution in the sector ⟨û, ũ⟩ then by

considering u∗, ũ and û, u∗ as ordered upper and lower solutions, since the sequence
{
u(k)
}

with

u(0) = u∗ consists of the same function u∗ for every k, the above conclusion implies that u∗ ≥ u.

Similarly, u∗ ≤ u. This implies that u = u∗ = u and u∗ is the unique solution of (2.27).

Now we show that u(k) and u(k) are ordered upper and lower solutions of (2.27).

Lemma 2.5. For each k, u(k) and u(k) are respectively lower and upper solution of (2.27) and u(k) ≤
u(k) in DT .
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Proof. By the iteration process (2.32) and the conditions (2.29) and (2.36), u(k) satisfies the relation:

u
(k)
t −D∇2u(k) = −c

(
u(k) − u(k−1)

)
+ f(x, t, u(k−1)),

= −
[
c
(
u(k) − u(k−1)

)
+ f(x, t, u(k))− f(x, t, u(k−1))

]
+ f(x, t, u(k)),

≤ f(x, t, u(k)),

and u(k) satisfies the relation:

u
(k)
t −D∇2u(k) = c

(
u(k−1) − u(k)

)
+ f(x, t, u(k−1)),

= c
(
u(k−1) − u(k)

)
+
(
f(x, t, u(k−1))− f(x, t, u(k))

)
+ f(x, t, u(k)),

≥ f(x, t, u(k)).

It follows from the boundary and initial condition that u(k) and u(k) are respectively lower and upper

solution of (2.27). The relation u(k) ≤ u(k) follows from Lemma 2.2.

Lemma 2.6. Let ũ, û be upper and lower solution of (2.27) and f be a C1-function in u. Then,

ũ ≤ û. In particular, if ũ is an upper solution (resp., û is a lower solution) and u∗ is the solution of

(2.27), then ũ ≤ u∗ (resp., û ≥ u∗).

Proof. Let w = ũ− û. Then by the definition of ũ, û and the mean value theorem,

wt −D∇2w ≥ f(x, t, ũ)− f(x, t, û) = fu(x, t, η̂)w,

Bw ≥ h− h = 0,

w(w, 0) ≥ u0 − u0 = 0,

where η̂ is an intermediate value between û and ũ. By proposition 2.3, ũ ≥ û. Since every solution

u∗ may be considered as a lower solution or an upper solution the relation ũ ≥ u∗ and û ≤ u∗ follow

immediately.

Now we justify that the limits u, u of upper and lower sequences coincide and yield a unique

solution of (2.27) by showing that this later satisfy the integral equation:

u(x, t) =

∫
Ω

Γ(x− y, t)u0(y)dy +

∫ t

0

∫
Ω

Γ(x− y, t− s)(F (u))(y, s)dyds

+

∫ t

0

∫
∂Ω

Γ(x− y, t− s)Φ(y, s)dyds

(2.37)

where Φ is the density given by (2.23).

Lemma 2.7. u, u defined in (2.35) satisfy the integral equation 2.37.

Proof. Let
{
u(k)
}

be either the upper sequence or the lower sequence and let u be the limit of
{
u(k)
}
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as k −→ +∞. By the integral representation in Theorem 2.1, the solution u(k) of (2.32) is given by:

u(k)(x, t) =

∫
Ω

Γ(x− y, t)u0(y)dy +

∫ t

0

∫
Ω

Γ(x− y, t− s)(F (u(k−1)))(y, s)dyds

+

∫ t

0

∫
∂Ω

Γ(x− y, t− s)Φ(k−1)(y, s)dyds.

(2.38)

The density Φ(k) which depends on k is given by (2.23) where H(t, x) replaced by H(k)(x, t) and:

H(k)(x, t) =

∫
Ω

∂Γ

∂νx
(x− y, t)ui,0(y)dy + h(x, t) +

∫ t

0

∫
Ω

∂Γ

∂νx
(x− y, t− s)

(
F (u(k))

)
(y, s)dyds,

(2.39)

Since F (u(k)) −→ F (u) as k −→ +∞, the dominated convergence theorem implies that
{
H(k)

}
converges to the function H in (2.23). The boundedness of F (u) and the continuity of h and u0

ensure that H is continuous on ST . Moreover, the sequence
{
Φ(k)

}
converge to a continuous function

Φ which satisfy the integral equation (2.23). It follows by letting k −→ +∞ in (2.38) that the limit u

of
{
u(k)
}

satisfies the integral equation (2.37).

Theorem 2.3. Let ũ, û be ordered upper and lower solutions of (2.27) and let f satisfy (2.29). Then

the sequences
{
u(k)
}

,
{
u(k)
}

converge monotonically to a unique solution u of (2.27) and :

û ≤ u(k) ≤ u(k+1 ≤ u ≤ u(k+1) ≤ u(k) ≤ ũ in DT (2.40)

Proof. By lemma 2.3 the sequences
{
u(k)
}

,
{
u(k)
}

converge to their respective limits u, u, which

satisfy the relation (2.36). In view of lemma 2.7, theses limits are solutions of the integral equation

(2.37). Following the Theorem (2.1), the solution of the integral equation (2.37) is a solution of

(2.27) if the function q(x, t) ≡ (F (u)) (x, t) is continuous in DT and is locally Hölder continuous in

x, uniformly in t. We have
∫
Ω

Γ(x − y, t)u0(y)dy is in C2+α(DT ) and the volume potential at the

right-hand side of (2.37) is continuous in DT . The density Φ and the function H are continuous on

ST then proposition (2.1), implies that the single layer potential :

V1 =

∫ t

0

∫
∂Ω

Γ(x− y, t− s)Φ(y, s)dyds,

is Hölder continuous in DT . By the integral representation (2.37), u is continuous in DT and so is

the function q. The continuity of q ensures that the volume potential in (2.37) is Hölder continuous

in DT , which leads to the Hölder continuity of u. It follows from the Hölder continuity of f(x, t, u)

that q is Hölder continuous in DT . An application of Theorem 2.1 shows that u is the solution of

Neumann boundary-value problem. Finally since u, u are solutions of (2.27) lemma 2.6 guarantees

that u = u and is the unique solution of 2.27. This completes the the proof of the theorem.
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2.5 Monotone method for Coupled systems of reaction diffusion

equations

The monotone method and its associated upper and lower solution leads to two monotone sequences

each of which converges to a unique solution of an integral equation. For coupled systems of equations

the definition of upper and lower solutions and the construction of monotone sequences depend on the

quasi monotone property of the reaction function system. To illustrate the basic idea of this method,

we consider a coupled system of two reaction-diffusion equations in the form

(ui)t −Di∇2ui = fi(x, t, u1, u2) in DT ,

Biui = hi(x, t) on ST (i = 1, 2),

ui(x, 0) = ui,o(x) in Ω,

(2.41)

where Bi is the operator in the form

Bi ≡ αi(x, t)
∂

∂ν
. (2.42)

It is assumed that for each i = 1, 2 that initial functions hi, ui,0 all satisfies the same conditions as the

corresponding functions in the scalar problem (2.27). The functions fi are assumed Hölder continuous

in DT × J1 × J2 for some bounded subset J1 × J2 ∈ R2.

Given any nonnegative constant γ and any regions Q (open or closed, such as DT or DT ) it is

denoted by Cγ(Q) the product function space of Cγ(Q) taken N times. This mean that for any vector

function u ≡ (u1, ..., uN) in Cγ(Q), the components u1, ..., uN of u are all Cγ(Q). The norm of u is

defined by:

||u||γ = |u1|γ + ...+ |uN |γ, (2.43)

where |u|γ is in the norm Cγ(Q).

Definition 2.3. A function fi ≡ fi(u1, ..., uN) is said to be quasimonotone nondecreasing (resp.

nonincreasing) if for fixed ui, fi is nondecreasing (resp., nonincreasing) in uj for j ̸= i.

Hence in the case of a vector function f ≡ (f1, f2) of two components there are three basic types

of quasimonotone functions. These are given by the following:

Definition 2.4. A function f ≡ (f1, f2) is called quasimonotone nondecreasing (resp., nonincreasing

) in J1 × J2 if both f1 and f2 are quasimonotone nondecreasing (resp., nonincreasing) for (u1, u2) ∈
J1 × J2. When f1 is quasimonotone nonincreasing and f2 is quasimonotone nondecreasing (or vice

versa), then f is called mixed quasimonotone.

Remark 2.2. If f is a C1-function or quasi C1-function, then the three types of quasimonotone

function in Definition (2.3) are reduced to the form

• ∂f1
∂u2

≥ 0,
∂f2
∂u1

≥ 0 (nondecreasing quasimonotonicity).
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• ∂f1
∂u2

≤ 0,
∂f2
∂u1

≤ 0 (nonincreasing quasimonotonicity).

• ∂f1
∂u2

≤ 0,
∂f2
∂u1

≥ 0 (mixed quasimonotonicity)

for (u1, u2) ∈ J1 × J2.

Definition 2.5. A pair of functions ũ = (ũ1, ũ2), û = (û1, û2) in C(DT )∩C1,2(D) are called ordered

upper and lower solutions of (2.41) if they satisfy the relations:

(a) ũ ≥ û and

(b) Biũi ≥ hi(t, x) ≥ Biûi on ST , ũi(0, x) ≥ ui,0(x) ≥ ûi(0, x) in Ω, and

(b1)

(ũ1)t −D1∇2ũ1 − f1(x, t, ũ1, ũ2) ≥ 0 ≥ (û1)t −D1∇2û1 − f1(x, t, û1, û2),

(ũ2)t −D2∇2ũ2 − f2(x, t, ũ1, ũ2) ≥ 0 ≥ (û2)t −D2∇2û2 − f1(x, t, û1, û2),
(2.44)

when (f1, f2) is quasimonotone nondecreasing,

(b2)

(ũ1)t −D1∇2ũ1 − f1(x, t, ũ1, û2) ≥ 0 ≥ (û1)t −D1∇2û1 − f1(x, t, û1, ũ2),

(ũ2)t −D2∇2ũ2 − f2(x, t, û1, ũ2) ≥ 0 ≥ (û2)t −D2∇2û2 − f1(x, t, ũ1, û2),
(2.45)

when (f1, f2) is quasimonotone nonincreasing, and

(b3)

(ũ1)t −D1∇2ũ1 − f1(x, t, ũ1, û2) ≥ 0 ≥ (û1)t −D1∇2û1 − f1(x, t, û1, ũ2),

(ũ2)t −D2∇2ũ2 − f2(x, t, ũ1, ũ2) ≥ 0 ≥ (û2)t −D2∇2û2 − f1(x, t, û1, û2),
(2.46)

when (f1, f2) is mixed quasimonotone.

Remark 2.3.

• In the above definition ũ and û are required to be in C(DT ) ∩ C1,2(DT ).

• The ordering relation ũ ≥ û is meant in the usual component-wise sense, that is, ũi ≥ ûi in DT

for each i.

2.5.1 Monotone sequences for coupled parabolic equations

Suppose for a given type of quasimonotone reaction function, there exist a pair of ordered upper and

lower solutions ũ = (ũ1, ũ2), û = (û1, û2). Define the sector
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⟨û, ũ⟩ ≡
{
(u1, u2) ∈ C(DT ); (û1, û2) ≤ (u1, u2) ≤ (û1, û2)

}
.

If ⟨û, ũ⟩ is contained in J1 × J2, then in the definition of quasimonotone function it suffices to take

J1×J2 = ⟨û, ũ⟩. In the following discussion we consider each types of reaction function in the sector

⟨û, ũ⟩. In addition, it is assumed that there exist bounded functions ci ≡ ci(t, x) such that for every

(u1, u2), (v1, v2) in ⟨û, ũ⟩, (f1, f2) satisfies the one-sided Lipschitz condition

f1(x, t, u1, u2)− f1(x, t, v1, v2) ≥ −c1(u1 − v1), when u1 ≥ v1,

f2(x, t, u1, u2)− f2(x, t, v1, v2) ≥ −c2(u2 − v2), when u2 ≥ v2.
(2.47)

To ensure the uniqueness of the solution, it is also assumed that there exist bounded functions ci ≡
ci(t, x) such that for every (u1, u2), (v1, v2) in ⟨û, ũ⟩,

f1(x, t, u1, u2)− f1(x, t, v1, v2) ≤ −c1(u1 − v1), when u1 ≥ v1,

f2(x, t, u1, u2)− f2(x, t, v1, v2) ≤ −c2(u2 − v2), when u2 ≥ v2.
(2.48)

It is clear that, if there exist bounded functions Ki ≡ Ki(x, t) such that (f1, f2) satisfies the

Lipschitz condition

|fi(x, t, u1, u2)− fi(x, t, v1, v2)| ≤ Ki (|u1 − v1|+ |u2 − v2|) (i = 1, 2), (2.49)

for (u1, u2), (v1, v2) ∈ ⟨û, ũ⟩,
then both conditions (2.47) and (2.48) are satisfied. However, in the hypotheses (2.47) and (2.48) the

functions ci, ci are not required to be positive. This weakened condition plays important role in the

study of the qualitative behaviour of the solution.

Without loss of generality, it as assumed that the functions ci in (2.47) are Hölder continuous in DT .

Then,

Proposition 2.4. The functions F1 and F2 given by

Fi(x, t, u1, u2) = ci(x, t)ui + fi(x, t, u1, u2), (i = 1, 2) (2.50)

are Hölder continuous in DT × ⟨û, ũ⟩ and are monotone nondecreasing in ui.

Define operators Li by:

Liui = (ui)t −Di∇2ui + ciui, (i = 1, 2) (2.51)

then the differential equations in (2.41) are equivalent to

Liui = Fi(t, x, u1, u2) in DT (i = 1, 2). (2.52)

Ph.D Thesis : Modelling tree-grass dynamics in humid savanna ecosystems 38 Tega II Rodrigue © UY1 2024



2.5. Monotone method for Coupled systems of reaction diffusion equations

Starting from a suitable initial iteration (u
(0)
1 , u

(0)
2 ), it is constructed a sequence

{
u(k)

}
=
{
u
(k)
1 , u

(k)
2

}
from the iteration process:

Liu
(k)
i = Fi

(
u
(k−1)
1 , u

(k−1)
2

)
,

Biu
(k)
i = hi(x, t), (i = 1, 2)

u
(k)
i (0, x) = ui,0(x).

(2.53)

The existence of
{
u
(k)
1 , u

(k)
2

}
is guaranteed by Theorem 2.1. To ensure that this sequence is monotone

and converges to a solution of (2.41), it is necessary to choose a suitable initial iteration. The choice

of this function depends on the type of quasimonotone property of (f1, f2).

(i) Quasimonotone nondecreasing function: For this type of quasimonotone function it suffices to

take either (ũ1, ũ2) or (û1, û2) as the initial iteration (u
(0)
1 , u

(0)
2 ). Denotes these two sequences

by
{
u
(k)
1 , u

(k)
2

}
and

{
u
(k)
1 , u

(k)
2

}
respectively where (u

(0)
1 , u

(0)
2 ) = (û1, û2) and (u

(0)
1 , u

(0)
2 ) =

(ũ1, ũ2). The following lemma give the monotone property of these two sequences

Lemma 2.8. For quasimonotone nondecreasing (f1, f2) the two sequences
{
u
(k)
1 , u

(k)
2

}
and{

u
(k)
1 , u

(k)
2

}
possess the monotone property

u
(k)
i ≤ u

(k+1)
i ≤ u

(k+1)
i ≤ u

(k)
i in DT (i = 1, 2) (2.54)

where k = 0, 1, 2, ...

Proof. Let w(0)
i = u

(0)
i − u

(1)
i = ũi − u

(1)
i , i = 1, 2. By the definition 2.5, we have :

Liw
(0)
i = (ũi)t −Di∇2ũi + ciũi − Fi(u

(0)
1 , u

(0)
2 )

= (ũi)t −Di∇2ũi − fi(ũ1, ũ2) ≥ 0,

Biw
(0)
i = Biũi − hi ≥ 0,

w
(0)
i (x, 0) = ũi(x, 0)− ui(x, 0) ≥ 0.

(2.55)

In view of proposition 2.3, w(0)
i ≥ 0, which shows that u(1)i ≤ u

(0)
i . Using the property of a

lower solution the same reasoning gives u(1)i ≥ u
(0)
i . Let w(1)

i = u
(1)
i − u

(1)
i , i = 1, 2. Then by

(2.53) and the monotone property of Fi ,

Liw
(1)
i = Fi(u

(0)
1 , u

(0)
2 )− Fi(u

0
1, u

(0)
2 ) ≥ 0. (2.56)

Since:

Biw
1
(i) = hi − hi = 0, wi(x, 0) = ui,0 − ui,0 = 0, (2.57)

it follows again from proposition 2.3 that w(1)
i ≥ 0. The above conclusions yield the relation
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u
(0)
i ≤ u

(1)
i ≤ u

(1)
i ≤ u

(0)
i for i = 1, 2. Assume, by induction that :

u
(k−1)
i ≤ u

(k)
i ≤ u

(k)
i ≤ u

(k−1)
i (i = 1, 2). (2.58)

Then by (2.53) and the monotone property of Fi the function w(k)
i = u

(k)
i − u

(k+1)
i satisfies the

relation:

Liw
(k)
i = Fi(u

(k−1)
1 , u

(k−1)
2 )− Fi(u

(k)
1 , u

(k)
2 ) ≥ 0, (2.59)

and the boundary and initial conditions in (2.57). This lead to the result u(k+1)
i ≤ u

(k)
i . A similar

argument gives u(k+1)
i ≥ u

(k)
i and u(k+1)

i ≤ u
(k+1)
i for result i = 1, 2. Result (2.54) follows by

induction.

(ii) Quasimonotone nonincreasing function: When the reaction function (f1, f2) is quasimonotone

nonincreasing, it is choose (ũ1, û2) or (û1, ũ2) as the initial iteration in (2.53). The correspond-

ing sequences is denoted by
{
u
(k)
1 , u

(k)
2

}
and

{
u
(k)
1 , u

(k)
2

}
, respectively, where (u

(0)
1 , u

(0)
2 ) =

(ũ1, û2) and (u
(0)
1 , u

(0)
2 ) = (û1, ũ2). The following lemma gives the monotone property of these

sequences:

Lemma 2.9. For quasimonotone nonincreasing (f1, f2) the two sequences
{
u
(k)
1 , u

(k)
2

}
and{

u
(k)
1 , u

(k)
2

}
possess the monotone property in relation (2.54).

Proof. Let w(0)
1 = u

(0)
1 −u(1)1 = ũ1−u(1)1 , w(0)

2 = u
(1)
2 −u(0)2 = u

(1)
2 − û2. By (2.45) and (2.53),

L1w
(0)
1 = (ũ1)t −D1∇2ũ1 + cũ1 − F1

(
u
(0)
1 , u

(0)
2

)
,

= (ũ1)t −D1∇2ũ1 − f1(ũ1, û2) ≥ 0,

L2w
(0)
2 = F2

(
u
(0)
1 , u

(0)
2

)
− ((û)t −D2∇2û2 + c2û2) ,

= f2(ũ1, û2)− ((û2)t −D2∇2û2) .

(2.60)

Since w(0)
i , i = 1, 2 satisfy the boundary and initial inequalities in (2.55) proposition (2.3),

implies that w(0)
i ≥ 0. This proves that u(1)1 ≤ u

(0)
1 , u(1)2 ≥ u

(0)
2 . A similar argument, using the

property of (û1, ũ2), gives u(1)1 ≥ u
(0)
1 , u(1)2 ≤ u

(0)
2 .

Let w(1)
i = u

(1)
i − u

(1)
i , i = 1, 2. By (2.53), w(1)

i satisfies the relation:

L1w
(1)
1 = F1

(
u
(0)
1 , u

(0)
2

)
− F1

(
u
(0)
1 , u

(0)
2

)
,

= [c1 (ũ1, û1) + f1(ũ1, û2)− f1(û1, û2)] + [f1(û1 − û2)− f1(û1, ũ2)] ,

L2w
(1)
2 = F2

(
u
(0)
1 , u

(0)
2

)
− F2

(
u
(0)
1 , u

(0)
2

)
,

= [c2 (ũ2 − û2) + f2(û1, ũ2)− f2(û1, û2)] + [f2(û1, û2)− f2(ũ1, û2)] .

Since by (2.47) and the quasimonotone nonincreasing property of (f1, f2), the right-hand side
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of the above two equations are both nonnegative. Proposition 2.3 ensures that w(1)
i ≥ 0. This

leads to the relation u(0)i ≤ u
(1)
i ≤ u

(1)
i ≤ u

(0)
i , i = 1, 2. The proof for the monotone property

(2.54) follows by a similar induction argument for lemma (2.8).

(iii) Mixed quasimonotone function: The construction of monotone sequences for mixed quasi-

monotone functions requires the use of both upper and lower solutions simultaneously. When

f1 is quasimonotone nonincreasing, and f2 is quasimonotone nondecreasing, the monotone it-

eration process is given by:

L1u
(k)
1 = F1(u

(k−1)
1 , u

(k−1)
2 ), L2u

(k)
2 = F2(u

(k−1)
1 , u

(k−1)
2 )

L1u
(k)
1 = F1(u

(k−1)
1 , u

(k−1)
2 ), L2u

(k)
2 = F2(u

(k−1)
1 , u

(k−1)
2 )

(2.61)

where (u
(0)
1 , u

(0)
2 ) = (ũ1, ũ2) and (u

(0)
1 , u

(0)
2 ) = (û1, û2).

Lemma 2.10. For mixed quasimonotone (f1, f2) the sequences
{
u
(k)
1 , u

(k)
2

}
and

{
u
(k)
1 , u

(k)
2

}
given by (2.61) possess the monotone property (2.54)

Proof. Let w(0)
i = u

(0)
i − u

(1)
i = ũi − u

(1)
i , i = 1, 2. By (2.4) and (2.46),

Lw(0)
1 = (ũ1)t −D1∇2ũ1 − f1(ũ1, û2) ≥ 0,

Lw(0)
2 = (ũ2)t −D2∇2ũ2 − f2(ũ1, ũ2) ≥ 0,

Since w(0)
i satisfies the boundary and initial inequalities in (2.55), Proposition (2.3) implies that

u
(1)
i ≤ u

(0)
i , i = 1, 2. Using the equations for (u(1)1 , u

(1)
2 ) in (2.46) and the property of a lower

solution, a similar argument gives u(1)i ≥ u
(0)
i . Let w(1)

i = u
(1)
i − u

(1)
i , i = 1, 2. By (2.47) and

the mixed quasimonotone property of (f1, f2), :

L1w
(1)
1 = [c1(ũ1 − û1) + f1(ũ1, û2)− f1(û1, û2)] + f1(û1, û2)− f1(û1, ũ2),

≥ 0,

L2w
(1)
2 = [c2(ũ2 − û2) + f2(ũ1, ũ2)− f2(ũ1, û2)] + f2(ũ1, û2)− f2(û1, û2),

≥ 0.

This implies that w(1)
i ≥ 0, which leads to the relation u(1)i ≥ u

(1)
i . The above conclusions

shows that u(0)i ≤ u
(1)
i ≤ u

(1)
i ≤ u

(0)
i , i = 1, 2. Assume by induction that (2.58) holds. Then

by (2.47) and the mixed quasimonotone property of (f1, f2) the functions w(k)
i = u

(k)
i − u

(k+1)
i ,
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i = 1, 2, satisfy the condition (2.57) and the relation:

L1w
(k)
1 =

[
c1(u

(k−1)
1 − u

(k)
1 ) + f1

(
u
(k−1)
1 , u

(k−1)
2

)
− f1

(
u
(k)
1 , u

(k−1)
2

)]
+f1

(
u
(k)
1 , u

(k−1)
2

)
− f1

(
u
(k)
1 , u

(k)
2

)
,

≥ 0,

L2w
(k)
2 =

[
c2(u

(k−1)
2 − u

(k)
2 ) + f2

(
u
(k−1)
1 , u

(k−1)
2

)
− f2

(
u
(k−1)
1 , u

(k)
2

)]
+f2

(
u
(k−1)
1 , u

(k)
2

)
− f2

(
u
(k)
1 , u

(k)
2

)
,

≥ 0.

It follows again from Proposition (2.3) that u(k+1)
i ≤ u

(k)
i . Similar arguments leads to u(k+1)

i ≥
u
(k)
i and u(k+1)

i ≥ u
(k)
i . The conclusion of the lemma follows by induction.

The above construction of monotone sequences yields a sequence of ordered upper and lower solution

for (2.41), which are given the following:

Lemma 2.11. Let (ũ1, ũ2) , (û1, û2) be ordered upper and lower solutions of (2.41) and let (f1, f2)

be quasimonotone and satisfy condition (2.47). Then for each type of quasimonotone (f1, f2), the

corresponding iterations (u(k)1 , u
(k)
2 ) and (u

(k)
1 , u

(k)
2 ) given by Lemmas (2.8) to (2.10) are ordered upper

and lower solutions.

Proof. Consider the case where (f1, f2) is quasimonotone nondecreasing. Then by (2.47) and (2.53),

(u
(k)
i )t −Di∇2u

(k)
i =

[
ci

(
u
(k−1)
i − u

(k)
i

)
+ fi

(
u
(k−1)
1 , u

(k−1)
2

)
− fi

(
u
(k)
1 , u

(k−1)
2

)]
+
[
fi

(
u
(k)
1 , u

(k−1)
2

)
− fi

(
u
(k)
1 , u

(k)
2

)]
+ fi

(
u
(k)
1 , u

(k)
2

)
,

≥ fi

(
u
(k)
1 , u

(k)
2

)
,

for i = 1, and a similar relation holds for i = 2. Since u(k)i satisfies the boundary and initial conditions

in (2.53), the above inequality shows that (u(k)1 , u
(k)
2 ) is an upper solution. The proof for the lower

solution is the same. When (f1, f2) is quasimonotone nonincreasing it suffices to show that the pair

(u
(k)
1 , u

(k)
2 ) and (u

(k)
1 , u

(k)
2 ) satisfy the inequalities in (2.48). Since by the construction of the sequences

for quasimonotone nonincreasing functions,

(u
(k)
1 )t −D1∇2u

(k)
1 =

[
c1

(
u
(k−1)
i − u

(k)
1

)
+ f1

(
u
(k−1)
1 , u

(k−1)
2

)
− f1

(
u
(k)
1 , u

(k−1)
2

)]
+
[
f1

(
u
(k)
1 , u

(k−1)
2

)
− f1

(
u
(k)
1 , u

(k)
2

)]
+ f1

(
u
(k)
1 , u

(k)
2

)
,

(u
(k)
2 )t −D2∇2u

(k)
2 = −

[
c2

(
u
(k)
2 − u

(k−1)
2

)
+ f2

(
u
(k−1)
1 , u

(k)
2

)
− f2

(
u
(k−1)
1 , u

(k−1)
2

)]
+
[
f2

(
u
(k−1)
1 , u

(k)
2

)
− f2

(
u
(k)
1 , u

(k)
2

)]
+ f2

(
u
(k)
1 , u

(k)
2

)
,

condition (2.47) and the quasimonotone nonincreasing property of (f1, f2) imply that:

(u
(k)
1 )t −D1∇2u

(k)
1 ≤ f1

(
u
(k)
1 , u

(k)
2

)
,

(u
(k)
2 )t −D2∇2u

(k)
2 ≥ f2

(
u
(k)
1 , u

(k)
2

)
.
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A similar argument gives:

(u
(k)
1 )t −D1∇2u

(k)
1 ≤ f1

(
u
(k)
1 , u

(k)
2

)
,

(u
(k)
2 )t −D2∇2u

(k)
2 ≥ f2

(
u
(k)
1 , u

(k)
2

)
.

This shows that (u(k)1 , u
(k)
2 ) and (u

(k)
1 , u

(k)
2 ) are ordered upper and lower solutions for quasimonotone

nonincreasing functions. Finaly for mixed quasimonotone (f1, f2), (u
(k)
1 , u

(k)
2 ) and (u

(k)
1 , u

(k)
2 ) are

determined by (2.61). In view of (2.47) and the mixed quasimonotone property of (f1, f2),

(u
(k)
1 )t −D1∇2u

(k)
1 =

[
c1

(
u
(k−1)
i − u

(k)
1

)
+ f1

(
u
(k−1)
1 , u

(k−1)
2

)
− f1

(
u
(k)
1 , u

(k−1)
2

)]
+
[
f1

(
u
(k)
1 , u

(k−1)
2

)
− f1

(
u
(k)
1 , u

(k)
2

)]
+ f1

(
u
(k)
1 , u

(k)
2

)
,

≥ f1

(
u
(k)
1 , u

(k)
2

)
,

(u
(k)
2 )t −D2∇2u

(k)
2 =

[
c2

(
u
(k−1)
2 − u

(k)
2

)
+ f2

(
u
(k−1)
1 , u

(k−1)
2

)
− f2

(
u
(k−1)
1 , u

(k)
2

)]
+
[
f2

(
u
(k−1)
1 , u

(k)
2

)
− f2

(
u
(k)
1 , u

(k)
2

)]
+ f2

(
u
(k)
1 , u

(k)
2

)
,

≥ f2

(
u
(k)
1 , u

(k)
2

)
.

A similar argument gives:

(u
(k)
1 )t −D1∇2u

(k)
1 ≤ f1

(
u
(k)
1 , u

(k)
2

)
,

(u
(k)
2 )t −D2∇2u

(k)
2 ≤ f2

(
u
(k)
1 , u

(k)
2

)
.

This shows that (u(k)1 , u
(k)
2 ) and (u

(k)
1 , u

(k)
2 ) are upper and lower solutions for mixed quasimonotone

functions.This completes the proof of the lemma.

Lemmas (2.8) to (2.10) imply that each type of quasimonotone functions the corresponding se-

quence obtained from (2.54) and (2.61) converge monotonitically to some limit. Define:

lim
k→∞

u
(k)
i (x, t) = ui(x, t), lim

k→∞
u
(k)
i (t, x) = ui(t, x). (2.62)

We show that under conditions (2.47) and (2.48), ui = ui = ui and u = (u1, u2) is the unique solution

of (2.41). The proof result is based of integral representation for reaction-diffusion problems. Since

for each k problem (2.53) is the same as in (2.74), the solution u(k)i is given by:

u
(k)
i (x, t) =

∫
Ω

Γi(x− y, t)ui,0(y)dy +

∫ t

0

∫
Ω

Γi(x− y, t− s)
(
Fi(u

(k−1))
)
(y, s)dyds

+

∫ t

0

∫
∂Ω

Γi(x− y, t− s)Φ
(k−1)
i (y, s)dyds.

(2.63)
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Here the density Φ
(k)
i depends on k and is governed by the integral equation:

Φ
(k)
i (x, t) = 2

∫ t

0

∫
Ω

∂Γi

νx
(x− y, t− s)Φ(k)(y, s)dyds− 2H

(k)
i (x, t), (2.64)

where H(k)
i is given by:

H
(k)
i (x, t) =

∫
Ω

∂Γi

∂νx
(x− y, t)ui,0(y)dy + hi(x, t) +

∫ t

0

∫
Ω

∂Γi

∂νx
(x− y, t− s)

(
Fi(u

(k))
)
(y, s)dyds,

(2.65)

where u(k) = (u
(k)
1 , u

(k)
2 ) and (Fi(u))(x, t) = Fi(x, t, u1(x, t), u2(x, t)).

Following the same argument as in the proof of theorem 2.3 page 35, we have the following existence-

comparison theorems for each of three types of reaction functions.

Theorem 2.4. Let (ũ1, ũ2) , (û1, û2) be ordered upper and lower solutions of (2.41), and let (f1, f2)

be quasimonotone nondecreasing in ⟨û, ũ⟩ and satisfy the conditions (2.47) and (2.48). Then prob-

lem (2.41) has a unique solution u ≡ (u1, u2) in ⟨û, ũ⟩. Moreover, the sequences
{
u
(k)
1 , u

(k)
2

}
,{

u
(k)
1 , u

(k)
2

}
, obtained from (2.53) with (u

(0)
1 , u

(0)
2 ) = (ũ1, ũ2) and (u

(0)
1 , u

(0)
2 ) = (û1, û2) converge

monotonically to (u1, u2) and satisfies the relation:

(û1, û2) ≤ (u
(k)
1 , u

(k)
2 ) ≤ (u1, u2) ≤ (u

(k)
1 , u

(k)
2 ) ≤ (ũ1, ũ2) in DT (2.66)

for every k = 1, 2, ...

Proof. We consider the sequences
{
u
(k)
1 , uk2

}
represents either

{
u
(k)
1 , u

(k)
2

}
or
{
u
(k)
1 , u

(k)
2

}
. Since

by Lemma 2.8, this sequences converge monotonically to some limits (u1, u2) as k −→ +∞. The

continuity and monotonicity property of Fi implies that Fi(u
(k)
1 , u

(k)
2 ) converges monotonically to

Fi(u1, u2). Moreover, the function H(k)
i in (2.65) converge monotonically to the function

Hi(x, t) =

∫
Ω

∂Γi

∂νx
(x−y, t)ui,0(y)dy+hi(x, t)+

∫ t

0

∫
Ω

∂Γi

∂νx
(x−y, t−s) (Fi(u)) (y, s)dyds. (2.67)

The continuity of hi, ui,0 and the boundedness of Fi(u) imply that Hi is continuous on ST . By Propo-

sition 2.2 page 29, the sequences
{
Φ

(k)
i

}
converges to a continuous function Φi which satisfy the

integral equation (2.23). It follows by applying the dominated convergence to the integral representa-

tion (2.63) for
(
u
(k)
1 , u

(k)
2

)
that the limit (u1, u2) satisfy the integral equation:

ui(x, t) =

∫
Ω

Γi(x− y, t)ui,0(y)dy +

∫ t

0

∫
Ω

Γi(x− y, t− s) (Fi(u)) (y, s)dyds

+

∫ t

0

∫
∂Ω

Γi(x− y, t− s)Φi(y, s)dyds.

(2.68)

Using the function q ≡ q(x, t) = Fi(x, t, u1(x, t), u2(x, t)) the same reasoning as in the proof of

Theorem 2.3 page 35, shows that (u1, u2) is a solution of (2.41). To show the uniqueness of the
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solution we observe the function wi = ui − ui satisfies the relation:

(wi)t −Di∇2wi − cwi = fi(x, t, ui)− fi(x, t, ui) + c(ui − ui) ≥ 0,

Biwi = 0.
(2.69)

In view of the proposition 2.3, w ≥ 0 leading to the conclusion u = u.

Theorem 2.5. Let (ũ1, ũ2) , (û1, û2) be ordered upper and lower solutions of (2.41), and let (f1, f2)

be quasimonotone nonincreasing in ⟨û, ũ⟩ and satisfy the conditions (2.47) and (2.48). Then prob-

lem (2.41) has a unique solution u ≡ (u1, u2) in ⟨û, ũ⟩. Moreover, the sequences
{
u
(k)
1 , u

(k)
2

}
,{

u
(k)
1 , u

(k)
2

}
, obtained from (2.53) with (u

(0)
1 , u

(0)
2 ) = (ũ1, û2) and (u

(0)
1 , u

(0)
2 ) = (û1, ũ2) converge

monotonically to (u1, u2). The monotone property of the sequences is in the sense of (2.54).

Theorem 2.6. Let (ũ1, ũ2) , (û1, û2) be ordered upper and lower solutions of (2.41), and let (f1, f2)

be mixed quasimonotone in ⟨û, ũ⟩ and satisfy the conditions (2.47) and (2.48). Then problem (2.41)

has a unique solution u ≡ (u1, u2) in ⟨û, ũ⟩. Moreover, the sequences
{
u
(k)
1 , u

(k)
2

}
,
{
u
(k)
1 , u

(k)
2

}
,

obtained from (2.61) with (u
(0)
1 , u

(0)
2 ) = (ũ1, ũ2) and (u

(0)
1 , u

(0)
2 ) = (û1, û2) converge monotonically

to (u1, u2) and satisfy relation (2.66).

2.6 Coupled of reaction-diffusion equations with Nonquasimono-

tone functions

Let wi = e−γtui, where γ is a positive constant to be chosen. Then problem (2.41) is transformed to

the form:
(wi)t −Di∇2wi + γwi = f ∗

i (x, t,w) in DT ,

Biwi = h∗i (x, t) on ST (i = 1, 2),

wi(x, 0) = ui,o(x) in Ω,

(2.70)

where w = (w1, w2), h∗i = e−γthi and

f ∗
i (x, t,w) = e−γtfi(x, t, e

γtw). (2.71)

It is assumed that there exist some bounded functions Ki ≡ Ki(t, x) ∈ DT such that

|fi(x, t,u)− fi(x, t,v)| ≤ Ki|u− v| for u,v ∈ R2, (2.72)

where |u− v| ≡ |u1 − v1|+ |u2 − v2|, then

Proposition 2.5. f ∗
i satisfies the global Lipschitz condition:

|f ∗
i (x, t,w)− f ∗

i (x, t,v)| ≤ Ki|w − v|. (2.73)
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Given any function w(0) ≡ (w0
1, w

0
2) in Cα(DT ), it is constructed a sequence

{
w(k)

}
≡
{
w

(k)
1 , w

(k)
2

}
successively from the iteration process:(

w
(k)
i

)
t
−Di∇2w

(k)
i + γw

(k)
i = f ∗

i (x, t,w
(k−1)),

Biw
(k)
i = h∗i (x, t),

w
(k)
i (x, 0) = ui,0(x).

(2.74)

It is show that under global Lipschitz condition in (2.73) this sequence converges to a unique solution

of (2.70) for any w(0) ∈ Cα(DT ). The convergence proof is based on contraction mapping theorem

in the banach space C(DT ) equipped with the norm:

||w||0 = sup
(x,t)∈Dτ

max {|w1(x, t)|, |w2(x, t)|} , (w = (w1, w2)).

Let:

• X = C(DT ) ∩ Cα(DT ),

• X = C(DT ) ∩ Cα(DT ),

and defines operators:

Ai : D(Ai) −→ C(DT ) and f ∗
i : X −→ X

by:
Aiwi = (wi)t −Di∇2wi + γwi, (wi ∈ D(Ai)),

f ∗
i (w) = f ∗

i (x, t,w), (w ∈ X ),
(2.75)

where D(Ai) is the domain of Ai given by

D(Ai) =
{
wi ∈ C(DT ) ∩ C1,2(DT ); Bwi = h∗i , wi(x, 0) = ui,0(x)

}
. (2.76)

Clearly Ai is a sublinear operator with domain D(Ai) contained in X and range R(Ai) in C(DT ).

Next it is defined the operators A : D(A) −→ C(DT ) and F : X −→ X by:

Aw = (A1w1, A2w2), (2.77)

and

F(w) = (f ∗
1 (w), f ∗

2 (w)), (2.78)

where D(A) = D(A1)×D(A2).

With the definition problem (2.70) is equivalent to the equation

Aw = F(w), (w ∈ D(A)), (2.79)
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and the sequences of iterations in (2.74) becomes

Aw(k) = F(w(k−1)), (w(k) ∈ D(A)). (2.80)

The following lemma gives some properties of the operators Ai and A.

Lemma 2.12. For any γ > 0 the inverse operators A−1
i , A−1 exits and

|A−1
i wi − A−1

i w′
i|0 ≤ γ−1|wi − w′

i|0,
||A−1wi −A−1w′

i||0 ≤ γ−1||wi −w′
i||0.

(2.81)

Proof. Let v = wi − w′
i and let (xi, ti) be a point in DT such that |v|0 = |v(xi, ti)|, where wi, w′

i are

any two functions in D(Ai). We first show that

v(xi, ti)(Aiwi − Aiw
′
i) ≥ |v|20 (wi, w

′
i ∈ D(Ai)).

This inequality is trivially satisfied when v(xi, ti) = 0. If v(xi, ti) ̸= 0, then v(xi, ti) is either a

positive maximum or a negative minimum in DT . It is obvious from v(xi, 0) = 0 that ti > 0. This

implies that vt(xi, ti) = 0 when ti < T and

v(xi, ti)vt(xi, ti) ≥ 0 when ti = T. (2.82)

Moreover,
∂v

∂ν
(xi, ti) = 0, then xi ∈ Ω. Moreover, vxj

(xi, ti) = 0 for every j = 1, 2, ..., n and

v(xi, ti)

(
Di

n∑
j=1

∂2v(xi, ti)

∂x2j

)
≤ 0. (2.83)

This imply from (2.82) and (2.83) that:

v(xi, ti)
(
vt(xi, ti)−Di∇2v(xi, ti)

)
≥ 0.

It follows from the definition of Ai that:

v(xi, ti) (Aiwi − Aiw
′
i) (xi, ti) ≥ γ|v(xi, ti)|2 = γ|v|20.

By the relation:

|v|0|Aiwi − Aiw
′
i|0 ≥ v(xi, ti) (Aiwi − Aiw

′
i) (xi, ti),

the operator Ai possesses the property:

|Aiwi − Aiw
′
i|0 ≥ γ|wi − w′

i|0. (2.84)

Hence the inverse A−1
i exists on R(Ai) and satisfies the first inequality in (2.81). Since the addition
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over i of the relation (2.84) gives

||Aw −Aw′||0 ≥ γ||w −w′||0, (w,w′ ∈ R(A)), (2.85)

it follows that A−1 exists on R(A) and satisfy the second inequality in (2.81).

In view of lemma (2.12) the equations (2.79) and (2.80) can be written as

w = A−1F(w), (w ∈ D(A)), (2.86)

and

w(k) = A−1F(w(k−1)), (w(k) ∈ D(A)), (2.87)

respectively. Let K = max(K1;K2). The following lemma shows that for γ > K, the operator

A−1F is a contraction mapping in X with respect to the norm in C(DT ).

Lemma 2.13. Let γ > K and consider A−1F as mapping from X into C(DT ). Then A−1F pos-

sesses the contraction property

||A−1F(w)−A−1F(w′)||0 ≤
(
K

γ

)
||w −w′||0, (w,w′ ∈ X ). (2.88)

Proof. For each i and each v ∈ X , the function f ∗
i (v) is in X . Then there exits a unique ui ∈ D(Ai)

such that Aiui = f ∗
i (v). This implies that fi(v) ∈ R(Ai) and thus F(v) ∈ R(A). This implies that

f ∗
i (v) ∈ R(Ai) and thus F(v) ∈ R(A). Hence by Lemma 2.12, A−1F is well defined on X . Since

by (2.73),

|f ∗
i (w)− f ∗

i (w
′)| ≤ Ki|w −w′| ≤ Ki||w −w′||0, (2.89)

the function F satisfies the Lipschitz condition:

||F(w)−F(w′)||0 ≤ K||w −w′||0, (w,w′ ∈ X ). (2.90)

It follows from Lemma 2.12 that,

||A−1F(w)−A−1F(w′)||0 ≤ γ−1||F(w)−F(w′)||0 ≤
(
K/γ

)
||w −w′||0. (2.91)

The contraction property of A−1F and the regularity argument for solutions of integral equations

lead to the following existence-uniqueness result.

Theorem 2.7. Let fi(t, x,u) satisfy the gobal Lipschitz condition (2.73). Then the problem (2.41)

has a unique solution. Moreover, u is the limit of the sequence
{
u(k)

}
given by the equation:(

u
(k)
i

)
t
−Di∇2w

(k)
i = fi(x, t,u

(k−1)) in DT . (2.92)
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Proof. For the existence-uniqueness problem it suffices to show the same result for the transformed

problem (2.70). By the contraction property of A−1F , the sequence
{
w

(k)
1 , w

(k)
2

}
given by (2.87)

converge in C(DT ) to a unique solution w = (w∗
1, w

∗
2) of (2.86), where w(0) is any function in X .

Since (2.87) is equivalent to (2.74), the functions w(k)
i can be represented by the integral formula

(2.63). In this integral representation ci = γ and the functions ui and Fi(u) should be replaced,

respectively by wi and Fi(w),i = 1, 2. By the uniform convergence of
{
w

(k)
1 , w

(k)
2

}
, the limit w∗ =

(w1, w2) is the unique solution of the corresponding integral equation. Since w∗ is continuous in DT

the same argument as in the proof of Theorem (2.4) shows that w∗ is the unique solution of (2.70).

This ensures the existence and uniqueness of a solution u for the problem (2.41). It is easily seen

by letting u(k)i = eγtw
(k)
i that the sequence given by (2.74) is reduced to (2.92). The convergence

of
{
w

(k)
1 , w

(k)
2

}
to w∗ in C(DT ) implies that u(k) −→ u = eγtw∗ as k −→ +∞. This proves the

theorem.

Let D = Ω× [0;∞), D = Ω× [0;∞).

Theorem 2.8. (See Pao [77]) Suppose for each r > 0 there are constants Ki = Ki(r) such that :

|fi(x, t,u)− fi(x, t,v)| ≤ Ki|u− v|, when |u| ≤ r, |v| ≤ r, (x, t) ∈ D. (2.93)

Then there exists T0 ≤ ∞ such that a unique solution u to (2.41) exists in DT0 = Ω × [0;T0).

Moreover, either u exists globally or it blows-up at some finite T0.

We next extend the defintion of coupled upper and lower solution for nonquasimonotone func-

tions.

Definition 2.6. A pair of functions ũ = (ũ1, ũ2), û = (û1, û2) in C2,1(DT ) ∩ C(DT ) are called

generalized coupled upper and lower solutions of (2.41) if ũ ≥ û and if they satisfy the boundary-

initial inequalities in (2.41) and the differential inequalities:

(ũi)t −Diũi ≥ fi(x, t,v), for all v ∈ ⟨û, ũ⟩, with vi = ũi,

(ûi)t −Diûi ≤ fi(x, t,v), for all v ∈ ⟨û, ũ⟩ with vi = ũi,
i = 1, 2. (2.94)

In the following theorem, we show that the existence of generalized coupled upper and lower

solutions ũ, û ensures the existence of a unique solution in v ∈ ⟨û, ũ⟩.

Theorem 2.9. Let ũ, û be generalized coupled upper and lower solution of (2.41), and let f(x, t,u) ≡
(f1(x, t,u), f2(x, t,u)) satisfy the Global Lipschitz condition. Then the problem (2.41) has a unique

solution u∗ ∈ ⟨û, ũ⟩.

Proof. For any z = (z1, z2) ∈ ⟨û, ũ⟩ and any i = 1, 2, let ui be the solution of the linear equation

(ui)t −Di∇2ui +Kiui = Kizi + fi(x, t, z) in DT (2.95)
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under the boundary and initial conditions in (2.41), where Ki is the Lipschitz constant of fi. We show

that u = (u1, u2) ∈ ⟨û, ũ⟩. Let wi = ũi − ui, i = 1, 2. In view of Definition (2.6) and (2.95),

(wi)t −Di∇2wi +Kiwi ≥ Ki(ũi − zi) + fi(x, t,v)− fi(x, t, z),

and Biwi ≥ 0, wi(0, x) ≥ 0, where v is any function in ⟨û, ũ⟩ with vi = ũi. Choose v = (v1, v2)

with vj = zj for all j ̸= i. Then :

fi(x, t,v)− fi(x, t, z) ≥ −Ki|v − z| = −Ki(ũi − zi).

This implies that

(wi)t −Di∇2wi +Kiwi ≥ 0 in DT

By the positivity proposition 2.3, wi ≥ 0 in DT , which yields to ui ≤ ũi, i = 1, 2. This shows that

u ≤ ũ. A similar argument using the property of a lower solution gives u ≥ û in DT . This proves

that u ∈ ⟨û, ũ⟩.
Definie a modified function f̂ = (f̂1, f̂1) such that f̂(x, t,u) = f(x, t,u) for u ∈ ⟨û, ũ⟩ and f̂ satisfies

the global Lipschitz condition (2.73). Then for any u(0) ∈ ⟨û, ũ⟩, Theorem (2.7) implies that the

sequence
{
u(k)

}
=
{
u
(k)
1 ,u

(k)
2

}
determined from the equation

(u
(k)
i )t −Di∇2u

(k)
i +Kiu

(k)
i = Kiu

(k−1)
i + f̂(x, t, z), (2.96)

converges uniformly to a unique solution u∗ of the problem (2.41) where f(x, t,u) is replaced by

f̂(x, t,u). Since for u(0) ∈ ⟨û, ũ⟩ the first iteration
{
u(1)
}

is governed by (2.95) with z = u(0), the

above conclusion shows that u(1) ∈ ⟨û, ũ⟩. It follows by an induction argument that u(k) ∈ ⟨û, ũ⟩ for

every k = 1, 2, .... This implies that u∗ ∈ ⟨û, ũ⟩ and therefore f̂(x, t,u∗) = f(x, t,u∗). Hence u∗ is

the solution of the original problem (2.41). This proves the theorem.
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CHAPTER THREE

AN INTEGRO-DIFFERENTIAL

REACTION-DIFFUSION SYSTEM FOR

PATTERN FORMATION IN HUMID SAVANNAS

Abstract1

FOr about twenty years, the question about the essential factors promoting the long-lasting coex-

istence of trees and grasses in humid savannas is at the center of several mathematical works,

by the construction of deterministic and/or stochastic mathematical models. A closely related topic

is coexistence of open savanna and forest patches at landscape scales, which raises the challenge

of accounting for contrasted spatial patterns under similar climate conditions through fire mediated

tree-grass interaction models. In this chapter, we propose and study a deterministic spatio-temporal

fire-mediated tree-grass interactions model. The model is based on two nonlocal reaction-diffusion

equations with kernels of intra and inter-specific interactions, corresponding to woody and grassy

biomasses. A novelty in this work, is the consideration of a kernel-based nonlocal facilitation of trees

by other trees to promote growth of seedlings/shrubs and, indirectly, limit fire propagation and its

impact. We also take into account a kernel-based nonlocal competition of trees on grasses for light

availability and nutrients. A qualitative analysis of the model is carried out and it reveals several

ecological thresholds that shape the overall dynamics of the system. Depending on these thresholds,

monostability of the forest, grassland or savanna space-homogeneous stationary state and multistabil-

ities (i.e. involving more that one space-homogeneous stationary state) are proven possible. Thanks

to the nonlocal biomasses interactions, our model accounts for the occurrence of space inhomoge-

neous solutions, including a possibly periodic spatial structuring sometimes observed in the humid

savanna zone. Specifically, linear stability analyses, performed in the vicinity of space-homogeneous

stationary states, provides conditions for the appearance of space inhomogeneous solutions including

spatially periodic or aperiodic ones. Finally, numerical simulations are presented to illustrate our the-

oretical results. Notably, we verify that the computed spatial wavelengths were in good agreement

1This chapter is an edited version of Spatio-temporal modelling of tree-grass dynamics in humid savannas: interplay
between nonlocal competition and nonlocal facilitation, published on Applied Mathematical Modelling, Elsevier ( Tega II
et al. [103]).
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with the predictions from the theoretical analysis.

3.1 Introduction

Savannas are complex ecosystems characterized by the co-occurrence of trees and grasses without

one lifeforms excluding the other (Higgins and Bond [50]). They are also defined as a biome that

corresponds to warm mean annual temperatures (> 20◦C) and a broad range of intermediate mean

annual rainfall (Yatat Djeumen et al. [122], Sarmiento [86]). Covering ca. 12% of the global land

surface (February and Higgins [41]), savannas occupy in Africa, ca. 50% of the land area.

Within specific stretches of the rainfall gradient, vegetation may sometimes exhibit plausibly self-

organized physiognomies also termed as patchy vegetation or vegetation mosaics. Indeed, as pointed

out by Yatat Djeumen et al. [123], there are several empirical evidences that highlight the existence

of vegetation mosaics. Patches of vegetation display dense clusters of shrubs, grasses or trees and

can be interpreted as regular spot structures or localized structures (Tlidi et al. [106]). These mosaics

involve either bare soil (“desert”) versus vegetation (herbaceous or woody) in arid, semi-arid regions

(Lefever and Lejeune [62]; Lefever et al. [64]; Lefever and Turner [63]; Couteron and Lejeune [19];

Couteron et al. [20]; HilleRisLambers et al. [52]; Rietkerk et al. [81]; Gilad et al. [43]; Pueyo et al.

[79, 80]; Deblauwe et al. [24] ), or grasslands/savannas versus forests in temperate as well as humid

tropical regions (Youta Happi [126]; Hirota et al. [53]; Jeffery et al. [55]; Xu et al. [120]; Stall et al.

[95] and references therein; see also figure 3.1). Empirical evidences suggest that vegetation mosaics

in humid regions barely feature periodic patterns. Most often, they are aperiodic but, with quite sharp

boundaries like isolated groves or savanna patches encircled by forests.

Observation of these mosaics further motivated several researches that aimed to study and under-

stand how these patterns may arise and the modalities of transitions between vegetation states that

could substantiate or not the theory of abrupt shifts or catastrophic transitions in vegetation ecology

(see for instance Scheffer et al. [88, 89]; Scheffer and Carpenter [87]; Staver et al. [98]; Favier et al.

[39] for more details). It is well-known that at biome scale, vegetation cover displays complex in-

teractions with climate. For instance, any shift from savanna to forest vegetation not only means

increase in vegetation biomass and carbon sequestration but also may translate into changes in the

regional patterns of rainfall (Yatat Djeumen et al. [124]). Therefore, being able to predict or under-

stand the process that shapes savanna dynamics and possible transitions within vegetation patterns

can help to figure out global distribution of savannas, orient their evolution in the face of recurring

climatic changes in Africa (Dohn et al. [30]) and sustainably manage the natural resources provided

by savanna ecosystems.

To understand such self-organized vegetation formations and associated dynamics along the rain-

fall gradient, theoretical approaches are required. Mathematical modelling is a useful tool to describe

dynamics of complex systems and has been used since decades in various fields that include finance,

biology, epidemiology, agronomy, ecology. Despite field observations that point out spatial patterns

of vegetation or vegetation mosaics (see e.g. figure 3.1), how tree-grass interactions proceed in space
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and make vegetation propagate has insufficiently been taken into account in the study of savanna dy-

namics, in contrast to the insights provided by modelling regarding bare soil-vegetation mosaics in

drylands. Indeed, tree-grass interactions in savanna ecosystems (fire-prone or not) have been very of-

ten modelled through frameworks that implicitly acknowledge space (see the review of Yatat Djeumen

et al. [123]). According to Borgogno et al. [16], the modelling of spatial mechanisms of tree-grass

interactions includes discrete kernel-based and partial differential equations (PDE) frameworks. Dis-

crete kernel-based frameworks include cellular automaton (CA) models. CA models have been use

in ecology, to explain formation of patterns in fire-prone savannas (Accatino et al. [3]), in arid and

semi-arid savannas (Borgogno et al. [16], Feagin et al. [40]). Accatino et al. [3] developed a CA

model to investigate how trees can invade the grass stratum in humid savannas despite repeated fires.

Their results show that trees can invade the grass stratum and finally suppress fire spread because one

of the following occurs: (a) trees may frequently resprout and form a population that persists despite

repeated effective fires; (b) trees may be fire-resistant; (c) if trees are fire-vulnerable they may cluster

and grow in density until grass growth is suppressed and fire prevented. One should note that, only

(c) may require spatially-explicit modelling of tree-grass interactions. However, they also show that

fire may be effective in preventing the initiation of the invasion process in the grass stratum. But once

the invasion process has begun, fire alone is not able to reverse it because of the combinated strategies

employed by trees i.e. resprouting, fire resistance or clumping (see also Yatat Djeumen et al. [123]).

However, since CA models are simulation-based and generally involve a fairly large number of

parameters, it is not easy/possible to assess how model parameter variations may influence the model

outcomes. In many cases, it is not easy to use mathematical analysis to thoroughly understand the

behavior and properties of CA models (Yatat Djeumen et al. [122]). Therefore, for the specific case

of fire-prone savannas, it is desirable to provide insights into the dynamical properties of extensive

savanna-forest areas for which data are scarce but that however need decisions in aspects such as fire

management, grazing rules, or wood harvest. Spatially-explicit mathematical models that may allow

mathematical tractability are thus desirable and rely on PDE frameworks.

Most of the works done using PDE, were carried out in the arid or semi-arid environmental con-

text, using a reaction-diffusion-advection system (emphasizing the dynamics of vegetation and water)

or using an integro-differential equation expressing kernel-based modelling of interactions between

plants (see the review of Borgogno et al. [16]). The goal of that type of modelling is to understand

the mechanisms that produce spatial patterns in arid and semi-arid savannas. In reaction-diffusion-

advection systems, authors attribute pattern formation to positive feedback between vegetation (trees

and grasses) and water availability (Klausmeier [58], Gilad et al. [43], Meron et al. [71], Sherratt

[92]). Two main processes are identified as responsible for this positive feedback. The first one is the

flow and infiltration of surface water into vegetated areas and the second feedback process is water

up-take by the plant roots that is longer for larger plants (Meron et al. [71]). Such feedback is cen-

tral to another framework to address vegetation patterns in arid and semi-arid savannas and that is

entirely based on kernels that express nonlocal interactions between plants. Two types of non-local

mechanisms received a particular attention: facilitative interactions between plants, that promote wa-
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ter infiltration and reduce evapotranspiration, and competitive interactions among them for water and

nutrients. It is now acknowledged that pattern formation in arid systems can be explained by a combi-

nation of long distance competition and short distance facilitation (Lefever and Lejeune [62], Lejeune

et al. [65], Lefever et al. [64], Lefever and Turner [63], Couteron et al. [20]). A common point of these

two classes of studies is the view that the pattern formation phenomenon is a symmetry-breaking pro-

cess that induces instability in an uniform vegetation state.

(a) Pattern of spots of forest vegetation within a grassland ma-
trix as observable in Zambia (image from 01/05/2014 accessed
on Google Earth).

(b) Pattern of spots of forest vegetation
within a savanna matrix as observable
in Cameroon (Mpem-Djim National Park)
from an UAV-borne photograph taken on
16/12/2019, P. Couteron).

Figure 3.1: Some vegetation mosaics of trees and grasses in Zambia and in Cameroon.

Only a few mathematically tractable and space-explicit tree-grass interactions models have been

designed for humid environments. For instance, Yatat Djeumen et al. [122] studied a PDE-based

model where dynamics of a forest-grassland pattern were studied by the mean of a bistable travelling

wave. Notably, they showed that depending on the fire frequency, forest could either invade grassland

(i.e. forest encroachment) or recede. Goel et al. [45] examined, using a reaction-diffusion model,

the contribution of dispersal to determining savanna and forest distributions. Their reaction-diffusion

model considered a one-variable (scalar) equation describing the dynamics of tree cover and took into

account fire and mean annual rainfall. Their 2D reaction-diffusion model was able to reproduce the

spatial aggregation of biomes with a stable savanna-forest boundary.

In the same vein, Wuyts et al. [119] proposed a reaction-diffusion model of Amazonian tree cover.

Their model was able to reproduce some observations of spatial distribution of forest versus savanna.

However, as pointed out in Yatat Djeumen et al. [122], modelling biomasses, instead of covers like

in [45, 119], helps to take into account the fact that plant types are not mutually exclusive at a given

point in space since field studies suggested that grass often develops under scattered tree crowns (see

Yatat Djeumen et al. [122] and references therein). Moreover, [45, 119] emphasized the effect of

precipitation on possible vegetation transitions while Yatat Djeumen et al. [124] suggested that, inter-

play between fire and water availability may give more realistic scenarios of vegetation distribution
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or transitions. Recently, Patterson et al. [78] proposed to bridge the gap between ecological models

with macroscopic viewpoints (deterministic models) and microscopic descriptions of stochastic tran-

sitions (stochastic models). They studied a spatial extension of the tropical cover model of Staver

and Levin [97], characterized by nonlocal interactions describing the evolution of the probability for

a patch of landscape to be in a given state (to be understood as, small spatial areas of the typical size

of a single tree, allowing growth of new trees). From an ecological stand point, the analysis of their

model enabled a more thorough understanding of the determinant of forest-savanna boundary, par-

ticularly in the presence of precipitation, resources limitation and climate changes. Notwithstanding

notable exceptions, like Patterson et al. [78], a common point of some of these models is that authors

mainly relied on numerical simulations to render some spatial structures and relate them to processes.

However, due to the absence of qualitative analyses, it is quite difficult to assess how model outcomes

respond to model parameter variations.

In the context of humid savannas, patterns approaching regularity are fairly scarce, but not absent

(see Figure 3.1 pannel (a) and also Lejeune et al. [65] or Tlidi et al. [106]). Another class of patterns

is made of clearly aperiodic groves in the context of a mosaic that often corresponds to savannas

transiting to forests (e.g. see Figure 3.1 pannel (b)).

Our objective in this chapter, is therefore to build a mathematically tractable space-explicit PDE-

like model in order to study dynamics of spatial structuring of vegetation in wet savanna zones (Figure

3.1, pannel (b)). Tractability is an important property because it allows an efficient exploration of all

parts of the parameter space ensuring that interesting situations, notably linked to multistability, are

not missed as it might happen if only relying on computer simulations like in CA-based models

(Yatat Djeumen et al. [124]). Another aim is to identify key mechanisms and bifurcation parameters

that may shape possible transitions of vegetation physiognomy and trigger spatial pattern emergence

in wet savannas. Therefore, based on a mathematical model, we aim to give new insights for the

development of relevant management plans of forest-savanna mosaics. Our model is based on, and

therefore extend, the recent ODE model of Yatat Djeumen et al. [124]. Indeed, based on a minimalistic

(in terms of state variables and parameters) ODE model, Yatat Djeumen et al. [124] analysed fire-

mediated tree-grass interactions and obtained a stability map within the fire vs. mean annual rainfall

parameters space. They delineated regions of monostabilities (i.e. where desert, forest, grassland

or savanna is stable), regions of multistabilities involving forest, grassland and savanna as well as

multistabilities involving several savanna states. In addition, for all levels of rainfall, decreasing

woody biomass with increasing fire frequency was verified contrary to almost all recent works of the

same complexity or less (e.g. Accatino et al. [2]). Our model takes into account the fire resistance

strategy of trees, and the main processes present in Yatat’s model, such as the grass-fire feed-back and

decreasing fire impact with woody biomass. In addition, we incorporate nonlocal interaction terms

of intra and interspecific competition. In fact, intraspecific competition influences the growth of

species (either trees or grasses) and ultimately changes the dynamics of the entire population (Kothari

et al. [60]) and interspecific competition (i.e. asymmetric competition of trees on grasses) leads to a

reduction in grass cover and therefore a reduction in the spread and intensity of fires. Though this
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paper puts emphasis on the conditions for stable, spatially regular patterns, it opens prospects for

studying transient and metastable patterns. The rest of the chapter is organized as follows: section 3.2

presents the construction of the model, section 3.3 deals with the theoretical analyses of the model

including the existence and uniqueness of solutions and linear stability analysis of homogeneous

stationary solutions. Section 3.4 deals with numerical illustrations of theoretical results.

3.2 Model construction

Our model is based on Yatat Djeumen et al. [124] (see chapter 1 at section 1.2.1.7,page 18), where

authors considered two state variables, G(t) and T (t) that stand for the grassy biomass and the woody

biomass at time t, respectively (G in t.ha−1 and T in t.ha−1). In Yatat Djeumen et al. [124], the

following hypotheses are done

• Trees and grasses biomasses have a logistic growth.

• Grass biomass mortality or suppression may result from natural mortality, external factors

(grazing, termites, human actions, etc), interactions with tree biomass and fire.

• Tree biomass mortality may result from natural mortality, external factors (browsers, human

actions, etc) or is fire-induced. In fact, fire momentum is an increasing nonlinear function of G,

while its impact on woody vegetation is a decreasing nonlinear function of woody biomass T .

Starting from these assumptions, we incorporated a spatial component on state variables. Precisely,

G(x, t) and T (x, t) denote the normalized densities (by grass and tree carrying capacities KG and

KT , in t.ha−1) of biomass of grass and tree, respectively, at a spatial point x and at a time t. Then,

0 ≤ T (x, t) ≤ 1 and 0 ≤ G(x, t) ≤ 1. We consider the following assumptions:

• Tree and grass biomasses, have a logistic growth but with an intraspecific competition which

takes place in a nonlocal way, through the respective root systems of the two lifeforms. In fact,

a tree (respectively grass) located at a point x, can consume resources (water, nutriment) at a

point y where, another tree (respectively grass) is located or where its roots are present. Then,

γTT (x, t)

(
1−

∫ +∞

−∞
ϕM2(x− y)T (y, t)dy

)
and γGG(x, t)

(
1−

∫ +∞

−∞
ϕM1(x− y)G(y, t)dy

)
,

(3.1)

describe the logistic growth with intraspecific competition where, for i = 1, 2, the kernel

ϕMi
(x − y) represents, the level of consumption of resources in the area [−Mi;Mi] of the

space domain, γG (respectively, γT ) denotes the intrinsic growth rate of grasses (respectively,

trees).

• According to Craine and Dybzinski [21], trees facilitate the germination and the recruitment

of new trees by improving the conditions under or around the canopy. In fact, sapling estab-

lishment for example depends on tree cover, not just because of seed production but also by
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local facilitation of seedlings and saplings by other trees via hydrological facilitation and shad-

ing (Li. et al. [66]). Then, we assume that there is a factor of cooperation Ω between trees

that promotes regrowth and growth of young trees, helping them to reach a fire and/or browser

non-vulnerability height. Hence the γT coefficient of exponential growth in equation (3.1) is

substituted by γT (1 + ΩT ).

• Trees negatively impact the dynamics of grass biomass in a nonlocal way. Indeed, a tree located

at a point y can, either by its root system or by the shade created by its crown, reduces the

density of grasses located at a point x by reducing the resources (light availability, nutrients) in

x. Then, the term

γTGG(x, t)

∫ +∞

−∞
ϕM2(x− y)T (y, t)dy, (3.2)

describes this nonlocal interspecific impact where γTG = KTηTG and ηTG is the tree-grass

interaction parameter in ha.t−1.yr−1. The consequence here is the reduction of the grass con-

tinuum on the ground, which will reduce the spread of fire. This term will depress grass biomass

growth.

• The function describing the impact of fires, ω(G), on tree biomass depends on G. Indeed, in

savanna ecology it is widely admitted that dried-up grass biomass is the main factor controlling

both fire intensity and spreading capacity. For simplicity, we combined these two properties of

fire in a single (fire momentum), increasing function of grass-biomass, expressing that when

the average herbaceous biomass is in its highest range, fires simultaneously display the highest

intensity and affect all the landscape. Conversely, low grass biomass due to aridity, grazing or

tree competition, will make fires of low intensity and/or unable to reach all locations in a given

year thereby decreasing the actual average frequency (see for instance Yatat Djeumen et al.

[124]). Following Tchuinte et al. [101], Yatat Djeumen et al. [122, 124], we consider a Holling

Type III function

ω(G) =
G2

G2 + g20
, (3.3)

where g0 =
µ

KG

and µ is the grass biomass at which fires reach its half maximal momentum.

• We consider a function of fire-induced tree mortality that decreases with the cumulated woody

biomass around any space point x. If trees are numerous and/or tall, then their mortality due to

fire will be reduced. Indeed, tree parts above the flame zone are immune to topkills. This func-

tion is therefore, a decreasing function of tree biomass. In analogy with the work of Martinez-

Garcia et al. [68], we consider a function of the form :

VT (x) = exp

(
−p
∫ +∞

−∞
ϕM2(x− y)T (y, t)dy

)
, (3.4)

where p = KT δ and δ is a parameter proportional to the inverse of biomass destroyed at in-

termediate level of mortality, in t−1.ha, see also Yatat Djeumen et al. [124] for a nonspatial
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version of VT .

• We also assume, according to Yatat Djeumen et al. [122], that grass biomass and tree biomass,

display local isotropic biomass diffusion in space with the coefficient DG and DT respectively,

that are modelled with Laplace operators. Here, as a first approximation, we consider local

diffusion of biomasses and neglect the long-range seed dispersal.

All of this leads to the following model:

∂G

∂t
= DG

∂2G

∂x2
+ γGG

(
1−

∫ +∞

−∞
ϕM1(x− y)G(y, t)dy

)
− δGG

−γTGG

(∫ +∞

−∞
ϕM2(x− y)T (y, t)dy

)
− λfGfG,

∂T

∂t
= DT

∂2T

∂x2
+ γTT (1 + ΩT )

(
1−

∫ +∞

−∞
ϕM2(x− y)T (y, t)dy

)
− δTT

−λfTfω(G) exp
(
−p
∫ +∞

−∞
ϕM2(x− y)T (y, t)dy

)
T,

(3.5)

where x ∈ K = (−l, l) and t > 0. Parameters are defined in table 3.1 bellow. The initial data are

0 ≤ T (x, 0) = T0(x) and 0 ≤ G(x, 0) = G0(x), (3.6)

where G0(x) and T0(x) are bounded and sufficiently smooth functions. In addition, we also consider

homogeneous Neumann boundary condition:

∂T (x, t)

∂x
=
∂G(x, t)

∂x
= 0 at x = −l and x = l, l > 0. (3.7)

We assume that the kernels ϕMi
, (i = 1, 2) are nonnegative even functions with compact support in

the interval [−Mi,Mi]. Then, for 0 ≤Mi ≤ l, we consider the step function kernels:

ϕMi
(x) =


1

2Mi

, |x| ≤Mi,

0 , |x| > Mi,
i = 1, 2,

with ϕ0 the δ-function and
∫ +∞

−∞
ϕMi

(y)dy = 1. For the chosen kernel function ϕMi
, the strength of

nonlocal interaction is the same with the range [x −Mi, x +Mi]. However, other forms of kernels

have been considered in the literature dedicated to pattern formation, notably Gaussian kernels and

Laplace kernels (see for instance Lefever and Lejeune [62], Lefever et al. [64], Lefever and Turner

[63]).

The choice of the step function kernels in this work was mainly motivated by the type of nonlin-

earities in our model and model’s mathematical analysis. Indeed, we found that Gaussian and Laplace

kernels are not able to induce patterns with our model (see also Remark 3.4, page 105 or Remark 3.6,

page 107).
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Following Yatat Djeumen et al. [124], the f (in yr−1) parameter is taken as constant multiplier of

ω(G) in system (3.5), and we interpret it as a man-induced ‘targeted’ fire frequency (as for instance

in a fire management plan), which will not automatically translate everywhere into actual frequency

of fires of notable intensity (because of ω(G)). With this interpretation, the actual fire regime may

substantially differ from the targeted one, as frequently observed in the field (see for instance Diouf

et al. [27] in southern Niger). We therefore distinguish fire frequency from fire intensity because grass

biomass controls fire spread (see e.g. Govender et al. [46], McNaughton [70], Yatat Djeumen et al.

[122] and references therein).

Symbols Description Units
γG Intrinsic growth of grasses yr−1

δG Grass biomass loss due to human activities and herbivory yr−1

λfG Portion of grass biomass loss due to fire
γTG Tree grass interaction parameter yr−1

γT Intrinsic growth of trees yr−1

δT Tree biomass loss due to human activities yr−1

λfT Portion of tree biomass loss due to fire
p proportional to the inverse of biomass destroyed at intermediate level of mortality
Ω Cooperation factor
f fire frequency yr−1

DG Grass biomass diffusion rate ha2.yr−1

DT Tree biomass diffusion rate ha2.yr−1

M1 Range of grass spatial nonlocal interaction m
M2 Range of tree spatial nonlocal interaction m

Table 3.1: Definition of parameters used in the model.

3.3 Mathematical analysis

3.3.1 Existence and uniqueness of solutions of system (3.5)-(3.7)

Let K = [−l, l] be the closure of K, and for any τ > 0, we set:

Dτ = K × (0, τ ], Dτ = K × [0, τ ], Sτ = ∂K × (0, τ ]. (3.8)

Denote by:

• Cα(Dτ ) the set of Hölder continuous functions in Dτ with the exponent α ∈ (0; 1),

• C(Dτ ), the set of continuous functions in Dτ .

• C2,1(Dτ ) the set of functions that are twice continuously differentiable in x and once continu-

ously differentiable in t.
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The norm in C(Dτ ) is defined by:

∥u∥Dτ
0 = sup

(x,t)∈Dτ

|u(x, t)|. (3.9)

Similar norm is defined for C(Dτ ).

The above spaces for vector-valued functions are denoted respectively Cα(Dτ ), C(Dτ ), C2,1(Dτ ) and

the norm used in C(Dτ ) for any u = (u1, u2) is :

∥u∥Dτ
0 = sup

(x,t)∈Dτ

max {|u1(x, t)|; |u2(x, t)|} . (3.10)

We consider the following functions defined on R4 by:

f1(u1, u2, u3, u4) = γGu1(1− u3)− δGu1 − γTGu1u4 − λfGfu1,

f2(u1, u2, u3, u4) = γTu2(1 + Ωu2)(1− u4)− δTu3 − λfTfω(u1) exp(−pu4)u2,
(3.11)

then system (3.5) can be rewrite in the form:
∂G

∂t
= DG

∂2G

∂x2
+ f1(G(x, t), T (x, t), ϕM1 ∗G(x, t), ϕM2 ∗ T (x, t)),

∂T

∂t
= DT

∂2T

∂x2
+ f2(G(x, t), T (x, t), ϕM1 ∗G(x, t), ϕM2 ∗ T (x, t)),

(3.12)

with (x, t) ∈ Dτ and

(ϕM1 ∗G) (x, t) =
∫ +∞

−∞
ϕM1(x− y)G(y, t)dy and (ϕM2 ∗ T ) (x, t) =

∫ +∞

−∞
ϕM2(x− y)T (y, t)dy

(3.13)

where ϕMi
is a spatial kernel function satisfying:∫ +∞

−∞
ϕMi

(y)dy = 1, i = 1, 2. (3.14)

Definition 3.1. (Tian et al. [104])

A pair of nonnegative functions Ũ = (G̃, T̃ )′ and Û = (Ĝ, T̂ )′ ∈ C(Dτ ) ∩ C2,1(Dτ ) is called upper
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and lower solutions of (3.5) if Ũ ≥ Û and if for (x, t) ∈ Dτ ,

∂G̃(x, t)

∂t
−DG

∂2G̃(x, t)

∂x2
≥ γGG̃(x, t)

(
1− ϕM1 ∗ G̃(x, t)

)
− δGG̃(x, t)− γTGG̃(x, t)

(
ϕM2 ∗ T̂ (x, t)

)
−

λfGfG̃(x, t),

∂T̃ (x, t)

∂t
−DT

∂2T̃ (x, t)

∂x2
≥ γT T̃ (x, t)(1 + ΩT̃ (x, t))

(
1− ϕM2 ∗ T̃ (x, t)

)
− δT T̃ (x, t)− λfTfω(Ĝ(x, t))×

exp
(
−pϕM2 ∗ T̃ (x, t)

)
T̃ (x, t),

∂Ĝ(x, t)

∂t
−DG

∂2Ĝ(x, t)

∂x2
≤ γGĜ(x, t)

(
1− ϕM1 ∗ Ĝ(x, t)

)
− δGĜ(x, t)− γTGĜ(x, t)

(
ϕM2 ∗ T̃ (x, t)

)
−

λfGfĜ(x, t),

∂T̂ (x, t)

∂t
−DT

∂2T̂ (x, t)

∂x2
≤ γT T̂ (x, t)(1 + ΩT̂ (x, t))

(
1− ϕM2 ∗ T̂ (x, t)

)
− δT T̂ (x, t)− λfTfω(G̃(x, t))×

exp
(
−pϕM2 ∗ T̂ (x, t)

)
T̂ (x, t),

(3.15)

and:
∂Ĝ(x, t)

∂t
,
∂T̂ (x, t)

∂t
≤ 0,

∂G̃(x, t)

∂t
,
∂T̃ (x, t)

∂t
≥ 0 on Sτ .

G̃(x, 0) ≥ G(x, 0), T̃ (x, 0) ≥ T (x, 0), Ĝ(x, 0) ≤ G(x, 0) T̂ (x, 0) ≤ T (x, 0) x ∈ K.
(3.16)

The ordering relation Ũ ≥ Û means that G̃(x, t) ≥ Ĝ(x, t) and T̃ (x, t) ≥ T̂ (x, t) for (x, t) ∈
Dτ .

For a given pair of ordered upper and lower solutions Ũ and Û, we set:

⟨Û, Ũ⟩ =
{
U = (G, T )′ ∈ C(Dτ ) : Û ≤ U ≤ Ũ

}
. (3.17)

Definition 3.2. (Tian et al. [104])

fi is called Lipschitz continuous with respect to ⟨Û, Ũ⟩ if there exist a constant ki > 0 for any

U = (G1, T1)
′ V = (G2, T2)

′ ∈ ⟨Û, Ũ⟩ such that:∣∣∣∣fi(G1(x, t), T1(x, t), ϕM1 ∗G1(x, t), ϕM2 ∗ T1(x, t))− fi(G2(x, t), T2(x, t), ϕM1 ∗G2(x, t), ϕM2 ∗ T2(x, t))
∣∣∣∣ ≤

ki

(∣∣∣∣G1(x, t)−G2(x, t)

∣∣∣∣+ ∣∣∣∣T1(x, t)− T2(x, t)

∣∣∣∣+ ϕM1 ∗
∣∣∣∣G1(x, t)−G2(x, t)

∣∣∣∣+ ϕM2 ∗
∣∣∣∣T1(x, t)− T2(x, t)

∣∣∣∣).
(3.18)

for any (x, t) ∈ Dτ .

Furthermore, if f1 and f2 are Lipschitz continuous with respect to ⟨Û, Ũ⟩, then we call f =

(f1; f2)
′ is Lipschitz continuous with respect to ⟨Û, Ũ⟩.
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Proposition 3.1. (Lipschitz constants)
If Û and Ũ are bounded, direct calculations show that there exists constants k1 and k2 such that

f = (f1; f2)
′ defined in (3.11) is Lipschitz continuous with respect to ⟨Û, Ũ⟩, with:

k1 = (γG + δG + λfGf) + (γG + γTG)∥G1∥0 + γG∥G2∥0 + γTG∥T2∥0,
k2 = (γT + δT ) + γT (1 + Ω)(∥T1∥0 + ∥T2∥0) + ΩγT [∥T1∥20 + ∥T2∥20 (∥T1∥0 + ∥T2∥0)]

+λfT (1 + (θ1 + θ2)∥T2∥0) ,

where θ1 and θ2 are respectively the Lipschitz constants of the function ω(G) and exp(−pT ) and

∥Gi∥0 = supDτ
|Gi|, ∥Ti∥0 = supDτ

|Ti|, i = 1, 2.

Proof. Let U = (G1, T1) and V = (G2, T2) ∈ ⟨Û, Ũ⟩, with (x, t) ∈ Dτ . Set:

ηx,t = |G1(x, t)−G2(x, t)|+|T1(x, t)−T2(x, t)|+ϕM1∗|G1(x, t)−G2(x, t)|+ϕM2∗|T1(x, t)−T2(x, t)|
(3.19)

we have:

f1(G1(x, t), T1(x, t), ϕM1 ∗G1(x, t), ϕM2 ∗ T1(x, t))− f1(G2(x, t), T2(x, t), ϕM1 ∗G2(x, t), ϕM2 ∗ T2(x, t)) =
A−B − C −D − E,

where:
A = γG(G1(x, t)−G2(x, t),

B = γG

(
G1(x, t)(ϕM1 ∗G1(x, t))−G2(x, t)(ϕM1 ∗G2(x, t))

)
,

C = δG(G1(x, t)−G2(x, t)),

D = λfGf(G1(x, t)−G2(x, t)),

E = γTG

(
G1(x, t)(ϕM2 ∗ T1(x, t))−G2(x, t)(ϕM2 ∗ T2(x, t))

)
.

Therefore:
|A| ≤ γG|G1(x, t)−G2(x, t)|,

≤ γGηx,t,

|C| ≤ δG|G1(x, t)−G2(x, t)|,
≤ δGηx,t,

|D| ≤ λfGf |G1(x, t)−G2(x, t)|,
≤ λfGfηx,t.
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Furthermore,

B = γG

[
G1(x, t)(ϕM1 ∗G1(x, t))−G2(x, t)(ϕM1 ∗G2(x, t))

]
,

= γG

[
G1(x, t)

(
ϕM1 ∗ (G1(x, t)−G2(x, t))

)
+ (G1(x, t)−G2(x, t))ϕM1 ∗G2(x, t)

]
.

and,

E = γTG

[
G1(x, t)(ϕM1 ∗ T1(x, t))−G2(x, t)(ϕM2 ∗ T2(x, t))

]
,

= γTG

[
G1(x, t)

(
ϕM2 ∗ (T1(x, t)− T2(x, t))

)
+ (G1(x, t)−G2(x, t))ϕM2 ∗ T2(x, t)

]
.

Then,

|B| = γG

∣∣∣∣G1(x, t)(ϕM1 ∗G1(x, t))−G2(x, t)(ϕM1 ∗G2(x, t))

∣∣∣∣,
= γG

∣∣∣∣G1(x, t)

(
ϕM1 ∗ (G1(x, t)−G2(x, t)

)
+ (G1(x, t)−G2(x, t))ϕM1 ∗G2(x, t)

∣∣∣∣,
≤ γG

[
∥G1∥0(ϕM1 ∗ |G1(x, t)−G2(x, t)|) + |G1(x, t)−G2(x, t)|∥G2∥0

]
,

≤ γG(∥G1∥0ηx,t + ∥G2∥0ηx,t),

= γG

(
∥G1∥0 + ∥G2∥0

)
ηx,t.

In the same way:

|E| = γTG

∣∣∣∣G1(x, t)(ϕM2 ∗ T1(x, t))−G2(x, t)(ϕM2 ∗ T2(x, t))
∣∣∣∣,

= γTG

∣∣∣∣G1(x, t)

(
ϕM2 ∗ (T1(x, t)− T2(x, t)

)
+ (G1(x, t)−G2(x, t))ϕM2 ∗ T2(x, t)

∣∣∣∣,
≤ γTG

[
∥G1∥0 (ϕM2 ∗ |T1(x, t)− T2(x, t)|) + |G1(x, t)−G2(x, t)|∥T2∥0

]
,

≤ γTG ((∥G1∥0)η + (∥T2∥0)ηx,t) ,

= γTG

(
∥G1∥0 + ∥T2∥0

)
ηx,t.
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Therefore,∣∣∣∣f1(G1(x, t), T1(x, t), ϕM1 ∗G1(x, t), ϕM2 ∗ T1(x, t))− f1(G2(x, t), T2(x, t), ϕM1 ∗G2(x, t), ϕM2 ∗ T2(x, t))
∣∣∣∣ ≤

|A|+ |B|+ |C|+ |D|+ |E|,

≤ (γG + δG + λfGf) ηx,t + γG (∥G1∥0 + ∥G2∥0) ηx,t + γTG (∥G1∥0 + ∥T2∥0) ηx,t,

=

[
(γG + δG + λfGf) + (γG + γTG) ∥G1∥0 + γG∥G2∥0 + γTG∥T2∥0

]
ηx,t.

= k1ηx,t, where k1 =

[
(γG + δG + λfGf) + (γG + γTG) ∥G1∥0 + γG∥G2∥0 + γTG∥T2∥0.

In the same manner,

f2(G1(x, t), T1(x, t), ϕM1 ∗G1(x, t), ϕM2 ∗ T1(x, t))− f2(G2(x, t), T2(x, t), ϕM1 ∗G2(x, t), ϕM2 ∗ T2(x, t) =
A′ +B′ − C ′ −D′ − E ′ − F ′,

where,

A′ = γT (T1(x, t)− T2(x, t)),

B′ = ΩγT (T
2
1 (x, t)− T 2

2 (x, t)),

C ′ = γT

(
T1(x, t) (ϕM2 ∗ T1(x, t))− T2(x, t) (ϕM2 ∗ T2(x, t))

)
,

D′ = ΩγT

(
T 2
1 (x, t) (ϕM2 ∗ T1(x, t))− T 2

2 (x, t) (ϕM2 ∗ T2(x, t))
)
,

E ′ = λfTf

(
ω(G1(x, t)) exp(−pϕM2 ∗ T1(x, t))T1(x, t)− ω(G2(x, t)) exp(−pϕM2 ∗ T2(x, t))T2(x, t)

)
,

F ′ = δT (T1(x, t)− T2(x, t)).
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We have:

|A′| = γT |T1(x, t)− T2(x, t)|,
≤ γTηx,t,

|B′| = ΩγT |(T 2
1 (x, t)− T 2

2 )(x, t)|,
= ΩγT |T1(x, t)− T2(x, t)| × |T1(x, t) + T2(x, t)|,
≤ ΩγT (∥T1∥0 + ∥T2∥0) |T1(x, t)− T2(x, t)|,
≤ ΩγT (∥T1∥0 + ∥T2∥0) ηx,t,

|C ′| = γT

(
|T1(x, t) (ϕM2 ∗ T1(x, t))− T2(x, t) (ϕM2 ∗ T2(x, t)) |

)
,

= γT

(∣∣∣∣T1(x, t) (ϕM2 ∗ (T1(x, t)− T2(x, t))) + (T1(x, t)− T2(x, t))ϕM2 ∗ T2(x, t)
∣∣∣∣),

≤ γT

(
∥T1∥0 (ϕM2 ∗ (T1(x, t)− T2(x, t))) + ∥T2∥0|T1(x, t)− T2(x, t)|

)
,

≤ γT

(
(∥T1∥0)η + (∥T2∥0)ηx,t

)
,

= γT

(
(∥T1∥0 + ∥T2∥0)

)
ηx,t.

|D′| = ΩγT

(
|T 2

1 (x, t) (ϕM2 ∗ T1(x, t))− T 2
2 (x, t) (ϕM2 ∗ T2(x, t)) |

)
,

= ΩγT

(
|T 2

1 (x, t) (ϕM2 ∗ (T1(x, t)− T2(x, t))) + (T 2
1 (x, t)− T 2

2 (x, t))ϕM2 ∗ T2(x, t)|
)
,

≤ ΩγT

(
(∥T1∥0)2ϕM2 ∗ |T1(x, t)− T2(x, t)|+ |T1(x, t)− T2(x, t)| (∥T1∥0 + ∥T2∥0) ∥T2∥0

)
,

≤ ΩγT

(
(∥T1∥0)2ηx,t + (∥T1∥0 + ∥T2∥0) ∥T2∥0ηx,t

)
,

≤ ΩγT

(
(∥T1∥0)2 + (∥T1∥0 + ∥T2∥0) ∥T2∥0

)
ηx,t,

|F ′| = δT |T1(x, t)− T2(x, t)|,
≤ δTηx,t.

and

|E ′| = λfTf

∣∣∣∣ω(G1(x, t)) exp(−pϕM2 ∗ T1(x, t))T1(x, t)− ω(G2(x, t)) exp(−pϕM2 ∗ T2(x, t))T2(x, t)
∣∣∣∣,

= λfTf

∣∣∣∣ω(G1(x, t)) exp(−pϕM2 ∗ T1(x, t)) (T1 − T2) (x, t)+

T2(x, t)

[
ω(G1(x, t)) exp(−pϕM2 ∗ T1(x, t))− ω(G2(x, t)) exp(−pϕM2 ∗ T2(x, t))

]∣∣∣∣.
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We have:∣∣∣∣ω(G1(x, t)) exp(−pϕM2 ∗ T1(x, t)) (T1 − T2) (x, t)

∣∣∣∣ =

∣∣∣∣ω(G1(x, t))

∣∣∣∣× ∣∣∣∣ exp(−pϕM2 ∗ T1(x, t))
∣∣∣∣×∣∣∣∣(T1 − T2)(x, t)

∣∣∣∣,
≤

∣∣∣∣T1(x, t)− T2(x, t)

∣∣∣∣,
≤ ηx,t.∣∣∣∣ω(G1(x, t)) exp(−pϕM2 ∗ T1(x, t))− ω(G2(x, t)) exp(−pϕM2 ∗ T2(x, t))

∣∣∣∣ = ∣∣∣∣ (ω(G1(x, t))− ω(G2(x, t)))

exp(−pϕM2 ∗ T1(x, t)) + ω(G2(x, t))

[
exp(−pϕM2 ∗ T1(x, t))− exp(−pϕM2 ∗ T2(x, t))

]∣∣∣∣,
≤
∣∣∣∣ (ω(G1(x, t))− ω(G2(x, t)))

∣∣∣∣× ∣∣∣∣ exp(−pϕM2 ∗ T1(x, t))
∣∣∣∣+ ∣∣∣∣ω(G2(x, t))

∣∣∣∣×∣∣∣∣ exp(−pϕM2 ∗ T1(x, t))− exp(−pϕM2 ∗ T2(x, t))
∣∣∣∣,

≤ θ1

∣∣∣∣G1(x, t)−G2(x, t)

∣∣∣∣+ θ2

∣∣∣∣ϕM2 ∗ T1(x, t)− ϕM2 ∗ T2(x, t)
∣∣∣∣,

≤
(
θ1 + θ2

)
ηx,t.

where θ1 and θ2 are respectively the Lipschitz constant of functions ω(G) and exp(−pT ). Then,∣∣∣∣f2(G1(x, t), T1(x, t), ϕM1 ∗G1(x, t), ϕM2 ∗ T1(x, t))− f2(G2(x, t), T2(x, t), ϕM1 ∗G2(x, t), ϕM2 ∗ T2(x, t))
∣∣∣∣

≤ |A′|+ |B′|+ |C ′|+ |D′|+ |E ′|+ |F ′|,

≤
[
(γT + δT ) + γT (1 + Ω) (∥T1∥0 + ∥T2∥0) + ΩγT

(
∥T1∥20 + ∥T2∥0(∥T1∥0 + ∥T2∥0)

)
+

λfT (1 + (θ1 + θ2)∥T2∥0)
]
ηx,t.

= k2ηx,t, where k2 = (γT + δT ) + γT (1 + Ω)(∥T1∥0 + ∥T2∥0) + ΩγT [∥T1∥20 + ∥T2∥20 (∥T1∥0 + ∥T2∥0)]
+λfT (1 + (θ1 + θ2)∥T2∥0) .

Therefore, f = (f1; f2)
′ is Lipschitz continuous with respect to ⟨Û, Ũ⟩.

In addition, we define on C2,1(Dτ ) ∩ C(Dτ ), the following operators L = (L1, L2)
′ and F =
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(F1, F2)
′:

L1G =
∂G

∂t
−DG

∂2G

∂x2
+ k1G,

L2T =
∂T

∂t
−DT

∂2G

∂x2
+ k2T,

F1(G, T ) = k1G+ f1(G, T, ϕM1 ∗G, ϕM2 ∗ T ),

F2(G, T ) = k2T + f2(G, T, ϕM1 ∗G, ϕM2 ∗ T ).

(3.20)

Then the system (3.5) can be reformulated as follows:

L1G = F1(G, T ) in Dτ ,

L2T = F2(G, T ) in Dτ ,

∂G

∂x
=
∂T

∂x
= 0 on Sτ ,

G(x, 0) = G10(x), T (x, 0) = T20(x) in K.

(3.21)

Now we are in position to show that the system (3.21) has a unique global solution. To this aim, we

construct a sequence
{
U(m)

}
≡
{
G(m), T (m)

}
according to the following iteration process:

L1G
(m) = F1(G

(m−1), T (m−1)) in Dτ ,

L2T
(m) = F2(G

(m−1), T (m−1)) in Dτ ,

∂G(m)

∂x
=
∂T (m)

∂x
= 0 on Sτ ,

G(m)(x, 0) = G10(x), T
(m)(x, 0) = T20(x) in K,

(3.22)

with U(0) ∈ Cα(Dτ ) ∩ ⟨Û, Ũ⟩.
To show the convergence of the sequence

{
U(m)

}
, set:{

w1 = e−γtG,

w2 = e−γtT,
(3.23)
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where γ is a positive constant. The system (3.21) is equivalent to the following system:

Liwi + γwi = Hi(w1, w2) for i = 1, 2 in Dτ ,

∂w1

∂x
=
∂w2

∂x
= 0 on Sτ ,

w1(x, 0) = w10(x), w2(x, 0) = w20(x) in K,

(3.24)

where,

w10(x) = G10(x), w20(x) = T20(x),

H1(w1, w2) = k1w1 + γGw1(1− eγtϕM1 ∗ w1)− δGw1 − γTGw1e
γtϕM2 ∗ w2 − λfGfw1,

H2(w1, w2) = k2w2 + γTw2(1 + Ωeγtw2)(1− eγtϕM2 ∗ w2)− δTw2 − λfTfω(w1) exp(−peγtϕM2 ∗ w2)w2,
(3.25)

with ω(w1) =
w2

1

w2
1 + (g0e−γt)2

.

According to (3.24), we can construct sequences w(m) = (w
(m)
1 , w

(m)
2 ) with w(0) = e−γtU(0) via the

following iteration process:

Liw
(m)
i + γw

(m)
i = Hi(w

(m−1)
1 , w

(m−1)
2 ) for i = 1, 2 in Dτ ,

∂w
(m)
1

∂x
=
∂w

(m)
2

∂x
= 0 on Sτ ,

w
(m)
1 (x, 0) = w10(x), w

(m)
2 (x, 0) = w20(x) in K.

(3.26)

In term of the integral representation theory for linear parabolic boundary-value problems as we seen

in chapter 2, the sequence w(m) can be expressed as:

w
(m)
i (x, t) =

∫ t

0

∫
K

Γi(x− y, t− τ)(Hi(w
(m−1)))(y, τ)dydτ

+

∫ t

0

∫
∂K

Γi(x− y, t− τ)(ψi(w
(m−1)))(y, τ)dydτ +

∫
K

Γi(x− y, t)wi0(y)dy,

(3.27)

where Γi is the fundamental solution of the Linear parabolic operator Li + γ and defined like in

chapter 2 by the relation (2.18) page 28, ψi a density function defined by the relation (2.23) in page

29.

We now show that the sequence {w(m)} converges in C(Dτ ) to a unique solution of the associated

integral in (3.27). Set X = X1 ×X2, where :

Xi =
{
wi ∈ Cα(Dτ ) ∩ C(Dτ ) : wi(0, x) = wi0(x) ∈ K

}
for i = 1, 2. (3.28)
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We also consider the vector valued function defined on Cα(Dτ ) ∩ C(Dτ ) by H = (H1, H2) where Hi

(i = 1, 2) are given in (3.25). We have the following properties:

Lemma 3.1. If w and w′ ∈ X , then H(w) ∈ Cα(Dτ ) ∩ C(Dτ ) and:

∥H(w)−H(w′)∥0 ≤ k∥w −w′∥0, (3.29)

where k = 8max{k1, k2}.

Proof. We first show that H(w) = (H1(w), H2(w)) ∈ Cα(Dτ ) ∩ C(Dτ ). Due to the definition of

Hi in (3.25) and without loss of generality, we only need to treat for the case of spatial convolution

and the case for exp(peγtϕM2 ∗ w2), because the plus and multiplication do not change the Hölder

continuous property of the functions.

Recall that :

ϕMi
∗ wi(x, t) =

∫
R
ϕMi

(x− y)wi(y, t)dy =

∫
R
ϕMi

(y)wi(x− y, t)dy, for (x, t) ∈ Dτ .

Let (x, t), (x′, t′) ∈ Dτ and θ2 be the Lipschitz constant of the function defined on R by z 7→ exp(−pz).
By the property of wi, we have:

|ϕMi
∗ wi(x, t)− ϕMi

∗ wi(x
′, t′)| ≤

∫
R
ϕMi

(y)|wi(x− y, t)− wi(x
′ − y, t′)|dy,

≤
∫
R
ci (|x− x′|α + |t− t′|α)ϕMi

(y)dy,

= ci (|x− x′|α + |t− t′|α) ,

for some constant ci and i = 1, 2. This show that ϕMi
∗ wi, is Hölder continuous in Dτ . Similarly,

|exp (−peγtϕM2 ∗ w2(x, t))− exp
(
−peγt′ϕM2 ∗ w2(x

′, t′)
)
| ≤ θ2|eγtϕM2 ∗ w2(x, t)− eγt

′
ϕM2 ∗ w2(x

′, t′)|,

≤ θ2

[
|eγt| × |ϕM2 ∗ w2(x, t)− ϕM2 ∗ w2(x

′, t′)|

+|ϕM2 ∗ w2(x
′, t′)| × |eγt − eγt

′ |
]
,

≤ θ2

[
eγτc2 (|x− x′|α + |t− t′|α) + β∥w2∥0×

(|x− x′|α + |t− t′|α)
]
,

≤ θ2max {eγτc2; β∥w2∥0} (|x− x′|α + |t− t′|α) .

It follows that exp(peγtϕM2 ∗w2) is Hölder continuous in Dτ . Then Hi(w1, w2) is Hölder continuous
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in (x, t) ∈ Dτ . Then Hi(w) is Hölder continuous in Dτ . Secondly,

|Hi(w)−Hi(w
′)| =

∣∣∣∣ki(wi − w′
i) + e−γt

(
fi(e

γtw1, e
γtw2, e

γtϕM1 ∗ w1, e
γtϕM2 ∗ w2)

−fi(eγtw′
1, e

γtw′
2, e

γtϕM1 ∗ w′
1, e

γtϕM2 ∗ w′
2)

)∣∣∣∣,
≤ ki|wi − w′i|+ ki

[
|w1 − w′

1|+ |w2 − w′
2|
]
+ ki

[
ϕM1 ∗ |w1 − w′

1|+ ϕM2 ∗ |w2 − w′
2|
]
,

≤ 2ki

(
|w1 − w′

1|+ |w2 − w′
2|+ ϕM1 ∗ |w1 − w′

1|+ ϕM2 ∗ |w2 − w′
2|
)
.

Then for any (x, t) ∈ Dτ , we have:

|Hi(w)(x, t)−Hi(w
′)(x, t)| ≤ 8ki∥w −w′∥0, i = 1, 2. (3.30)

Consequently,

∥H(w)−H(w′)∥0 ≤ 8max{k1, k2}∥w −w′∥0, (3.31)

Theorem 3.1. Let (Ũ, Û) be a pair of coupled upper and lower solutions of system (3.5). Then

the system (3.5) has a unique solution U∗(x, t) Moreover, if U(0) ∈ Cα(Dτ ) ∩ ⟨Ũ, Û⟩ with U(0) =

(G10(x), T20(x)) in K, the sequence obtained from (3.22) converges to U∗ as m → ∞ and U∗ ∈
⟨Ũ, Û⟩.

Proof. The proof is based on the contraction mapping theorem in the Banach space C(Dτ ). For each

i = 1, 2, we define the operators Ai : D(Ai) → R(Ai) and Hi : X → Cα(Dτ ) ∩ C(Dτ ) by:

Aiwi = Liwi + γwi (wi ∈ D(Ai)),

Hi(w) = Hi(w1, w2) (w ∈ X )
(3.32)

where D(Ai) is the domain of Ai given by:

D(Ai) =

{
wi ∈ C2,1(Dτ ) ∩ C(Dτ ) :

∂wi

∂x
= 0 on Sτ , wi(0, x) = wi0(x) in K

}
. (3.33)

R(Ai) is the range of Ai, and Hi(w1, w2) is given by (3.25). In terms of the operators Ai and Hi, the

iteration process in (3.26) can be written as:

Aiw
(m)
i = Hi(w

(m−1)
1 , w

(m−1)
2 ) (w

(m−1)
i ∈ D(Ai)) for i = 1, 2, (3.34)

and in vector form it becomes:

Aw(m) = H(w(m−1)) (w(m) ∈ D(A)). (3.35)
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From the standard parabolic theorem the inverse operator A−1 exists and possesses the property:

∥A−1w −A−1w′∥0 ≤ γ−1∥w −w′∥0, for w,w′ ∈ Cα(Dτ ) ∩ C(Dτ ) (3.36)

This implies that (3.35) is equivalent to:

w(m) = A−1H(w(m−1)), (w(m−1) ∈ D(A)), (3.37)

which can be considered as a compact form for the integral representation (3.27) in the space

Cα(Dτ )∩C(Dτ ). In term of lemma (3.1), there exists a constant k = 3max {k1, k2}, independent

of γ, such that:

∥H(w)−H(w′)∥0 ≤ k∥w −w′∥0, for w,w′ ∈ X . (3.38)

Combining (3.36) and (3.38), we have:

∥A−1H(w)−A−1H(w′)∥0 ≤ k(γ)−1∥w −w′∥0, for w,w′ ∈ X . (3.39)

By choosing γ > k, we have ∥A−1H(w)−A−1H(w′)∥0 ≤ k(γ)−1∥w−w′∥0 for w,w′ ∈ X . Thus,

the operator A−1H possesses a contraction property in X . This ensures that the sequence
{
w(m)

}
converges in C(Dτ ) to a unique solution w∗ = (w∗

1, w
∗
2) of

A−1H(w) = w. (3.40)

By the equivalence between (3.37) and (3.27) the sequence
{
w

(m)
i

}
given by (3.27) converges in

C(Dτ ) to w∗
i for i = 1, 2.

To show that w∗ is the unique solution of (3.24), we need to raise the regularity of w∗. Letting

m → +∞ in (3.27) , Proposition 2.2 in chapter 2, page 29 shows that the density ψ(m)
i converges

to some continuous function ψ∗
i and then, w∗

i satisfies by the dominated convergence the integral

equation:

w∗
i (x, t) =

∫ t

0

∫
K

Γi(x− y, t− τ)(Hi(w
∗))(y, τ)dydτ

+

∫ t

0

∫
∂K

Γi(x− y, t− τ)(ψi(w
∗))(y, τ)dydτ +

∫
K

Γi(x− y, t)wi0(y)dy.

(3.41)

Since w∗
i is continuous in Dτ , the function Hi(w

∗) is also continuous in Dτ . The continuity of

Hi(w
∗) ensures that the volume potential in (3.41) is Hölder continuity inDT which lead to the Hölder

continuity of w∗. It follow thatHi(w
∗) is Hölder continuity inDT . Theorem 2.1 in chapter 2, page 29

implies that w∗ is the unique solution of (3.24). Since U(m) = eγtw(m), the sequence U(m) governed

by (3.22) converges to a unique solution U∗ = eγtw∗ of the equation (3.21). By the equivalence

between (3.21) and (3.5), U∗ is the unique solution of the system (3.5). Since U(0) ∈ ⟨Ũ, Û⟩ and by

Theorem 2.9 in page 49, U∗ ∈ ⟨Ũ, Û⟩.
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Let us consider the following thresholds:
RG =

γG
δG + fλfG

,

RG,0 =
γG
δG
,

RT,0 =
γT
δT
.

(3.42)

Our model is designed for humid savannas where we assume that rainfall is sufficient to ensure that

RG,0 > 1, and RT,0 > 1. (3.43)

Hence, in the rest of the chapter, we assume that (3.43) holds true.

Theorem 3.2 (Existence and uniqueness of global solution). Assume that the following three con-

ditions are valid.

• RG > 1,

• the initial functions G(x, 0) and T (x, 0) ∈ Cα(Dτ ) ∩ C(Dτ ) and

• 0 ≤ (G0(x), T0(x))
′ ≤ 1.

Then, the nonlocal reaction-diffusion system (3.5)-(3.7) admits a unique global solution U∗(x, t) =

(G∗(x, t), T ∗(x, t))′ for (x, t)′ ∈ K × (0,+∞) and

0 ≤ G∗(x, t) ≤ W1, 0 ≤ T ∗(x, t) ≤ W2, (3.44)

where

W1 = max

{
supK G(0, x), 1−

1

RG

}
,

W2 = max

{
supK T (0, x), 1−

1

RT,0

}
, if Ω = 0,

W2 = max

supK T (0, x),

√
(1− Ω)2 + 4Ω

(
1− 1

RT,0

)
− (1− Ω)

2Ω

 , if Ω > 0.

Proof. In theorem (3.1) we prove that to show the existence and the uniqueness of the solution to the

system (3.5), we only need to find a pair of coupled upper and lower solution Ũ and Û which satisfy

the Lipschitz condition. If we choose Ũ and Û to be constant vectors c̃ = (c̃1, c̃2) and ĉ = (ĉ1, ĉ2),
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these constant need to satisfy:

0 ≥ γGc̃1(1− c̃1)− δGc̃1 − γTGc̃1ĉ2 − λfGf c̃1,

0 ≥ γT c̃2(1 + Ωc̃2)(1− c̃2)− δT c̃2 − λfTfω(c̃1) exp(−pĉ2)c̃2,
0 ≤ γGĉ1(1− ĉ1)− δGĉ1 − γTGĉ1c̃2 − λfGf ĉ1,

0 ≤ γT ĉ2(1 + Ωĉ2)(1− ĉ2)− δT ĉ2 − λfTfω(c̃1) exp(−pĉ2)ĉ2

(3.45)

and
c̃1 ≥ supK G(x, 0),

c̃2 ≥ supK T (x, 0),

ĉ1 ≤ infK G(x, 0),

ĉ2 ≤ infK T (x, 0).

(3.46)

We choose ĉ1 = ĉ2 = 0. Then c̃1 = max

{
supK G(0, x), 1−

δG + λfGf

γG

}
and

c̃2 = max

{
supK T (0, x),

γT − δT
γT

}
, if Ω = 0,

c̃2 = max

supK T (0, x),

√
(1− Ω)2 + 4Ω

(
1− δT

γT

)
− (1− Ω)

2Ω

 , if Ω > 0.

Consequently, system (3.5) has in Dτ an unique local solution which is uniformly bounded. We

therefore end with the conclusion that system (3.5) admits a unique global solution for (x, t) ∈ K ×
(0,+∞).

3.3.2 Space homogeneous steady states and linear stability analysis

Our aim in this section is to derive a condition on spatial convolution such that an equilibrium or

space homogeneous steady state is locally stable in the case M1 = M2 = 0 but unstable for some

Mi > 0, i = 1, 2.
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3.3.2.1 The local case: M1 =M2 = 0

Proposition 3.2. The local spatio-temporal model (LSTM) associated to the system (3.5) is given

by the following system of two reaction-diffusion equations:

∂G

∂t
= DG

∂2G

∂x2
+ φ1(G, T ), x ∈ (−l, l)

∂T

∂T
= DG

∂2T

∂x2
+ φ2(G, T ), x ∈ (−l, l)

∂G

∂x
=

∂T

∂x
= 0 at x = −l and x = l,

(3.47)

where: G(x, 0) = G0(x), T (x, 0) = T0(x), x ∈ K and:

φ1(G, T ) = γGG(1−G)− δGG− γTGTG− λfGfG,

φ2(G, T ) = γTT (1 + ΩT ) (1− T )− δTT − λfTfω(G) exp(−pT )T.
(3.48)

Moreover for G ≥ 0 and T ≥ 0, system (3.47) is quasi-monotone decreasing (or nonincreasing).

For the existence of space homogeneous solution of (3.47) it suffices to remark by the proof of

Theorem 3.2 that G =

1− 1

RG

;

√
(1− Ω)2 + 4Ω

(
1− 1

RT,0

)
− (1− Ω)

2Ω

 and T = (0, 0) are

respectively upper and lower solution of the following system (3.49)
−DG

∂2G

∂x2
= φ1(G, T ),

−DT
∂2T

∂x2
= φ2(G, T ),

(3.49)

when Ω > 0 and G =

(
1− 1

RG

; 1− 1

RT,0

)
, T = (0, 0) when Ω = 0.

Due to the fact that LSTM associated to the system (3.5) is quasi-monotone decreasing (Smith [94]),

we have the two following consequences. First, the LSTM can not lead to pattern formation (see the

remark .5, page 178 in the Appendix .4 dedicated to mathematical process for pattern formation , or

see e.g Kishimoto and Weinberger [57], Banerjee and Volpert [7], [10]) and second, the linear stability

analysis of homogeneous steady states associated to LSTM is the same as for the space-implicit model

i.e., the ODE model associated to system (3.5). The space-implicit ODE model corresponding to

system (3.5) is:
dG

dt
= γGG(1−G)− δGG− γTGTG− λfGfG,

dT

dt
= γTT (1 + ΩT ) (1− T )− δTT − λfTfω(G) exp(−pT )T,

(3.50)
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with non negative initial data.

In this part, we are interested in the behavior of steady states of system (3.50), notably in the

characterization of their stability properties. Recall that steady states of system (3.50) are also space

homogeneous steady states of system (3.5) and/or system (3.47). Steady states of (3.50) are solutions

of system (3.51):{
γGG(1−G)− δGG− γTGTG− λfGfG = 0,

γTT (1 + ΩT )(1− T )− δTT − λfTfω(G) exp(−pT )T = 0.
(3.51)

Recall that we assumed that (3.43) is valid meaning that, the desert (the state with absence of

vegetation) can not be stable. The following result is valid.

Proposition 3.3. (Trivial and semi-trivial steady states of system (3.50))
The system (3.5) admits three homogeneous steady states.

a) a desert steady state E0 = (0, 0)′.

b) a forest steady state such that:

∗ When Ω = 0, then ET1 =

(
0, 1− 1

RT,0

)′

is the forest steady state. This is the case of no

tree-tree facilitation.

∗ When Ω > 0, then ET2 = (0, T2)
′ =

0,

√
(1− Ω)2 + 4Ω

(
1− 1

RT,0

)
− (1− Ω)

2Ω


′

is

the forest steady state. This is the case of tree-tree facilitation.

c) a grassland steady state:

EGe = (Ge, 0)
′ =

(
1− 1

RG

, 0

)′

.

Proof. Trivial and semi-trivial steady states of system (3.50) are those for which at least one of the

components is zero. They satisfy the following system:{
G = 0,

T = 0,
or

{
G = 0,

γT (1 + ΩT )(1− T )− δT = 0,
or

{
γG(1−G)− δG − γTGT − λfGf = 0,

T = 0,

The first system give the trivial steady state E0 = (0; 0). The second system leads to:{
G = 0,

ΩγTT
2 + γT (1− Ω)T − (γT − δT ) = 0,

(3.52)

and for the the second equation of system (3.52) we get the following case:
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• If Ω = 0 we have :  G = 0,

T =
γT − δT
γT

,

and ET1 =

(
0;
γT − δT
γT

)′

is the forest steady state.

• If Ω > 0, the second equation of the system (3.52) have a unique positive solution:

T2 =

√
(1− Ω)2 + 4Ω

(
1− δT

γT

)
− (1− Ω)

2Ω
,

and for all Ω > 0, T2 < 1. Then, ET2 =

0;

√
(1− Ω)2 + 4Ω

(
1− δT

γT

)
− (1− Ω)

2Ω


′

is the

forest steady state.

The system {
γG(1−G)− δG − γTGT − λfGf = 0,

T = 0,

leads to :  Ge = 1− 1

RG

,

T = 0,

with RG =
γG

δG + λfGf
. Then, if RG < 1 then Ge < 0 and we don’t have grassland steady state. If

RG > 1 we have 0 < Ge < 1 and then grassland steady state:

EGe =

(
1− δG

γG
− fλfG

γG
; 0

)′

=

(
1− 1

RG

; 0

)′

.

Remark 3.1. It is straightforward to observe that ET2 is an increasing function of Ω.

We are now interested in the coexistence steady state (savanna steady state); set:

a = −λfGf + δG
γTG

,

b =
γG
γTG

,

θ = 2(a+ b)bΩγT + γT (1− Ω)b,

α = ΩγT b
2,

q = (γT − δT ) + γT (Ω− 1)(a+ b)− ΩγT (a+ b)2,

m = λfTf exp (−p(a+ b)) ,

θ∗ =
24α +mpb ((pb)2 + 6(pb) + 6) exp(pb)

6
,
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and

RT =
γT

δT + λfTfω(Ge)
, RF,f =

γG
δG + λfGf + γTGTi

, R1
Ω =

γT (1− Ω)

pλfTfω(Ge)
. (3.53)

Proposition 3.4. (Savanna steady state)

• case I: f = 0.

If RF,f=0 > 1, then we have a unique savanna steady state Es = (G∗, T ∗)′ such that

G∗ = 1− 1

RF,f=0

and T ∗ = Ti, i = 1, 2. (3.54)

• case II: f > 0 and γTG = 0.

The savanna steady state E∗ = (G∗, T ∗)′ verifies:{
G∗ = Ge

ΩγT (T
∗ − T2)(T

∗ − T2−) + λfTfω(Ge) exp(−pT ∗) = 0
(3.55)

where T2− = −
(1− Ω) +

√
(1− Ω)2 + 4Ω(1− δT

γT
)

2Ω
. Hence:

∗ if R1
Ω > 1, then there may exist 0 or 1 savanna steady state.

∗ if R1
Ω < 1, then there may exist 0, 1 or 2 savanna steady states.

• case III: f > 0 and γTG ̸= 0.

The savanna steady state Es = (G∗, T ∗)′ must satisfy these two relations:

−α(G∗)4 + θ(G∗)3 −m exp(pbG∗)(G∗)2 + (q − αg20)(G
∗)2 + θg20G

∗ + qg20 = 0, (3.56)

and

T ∗ = (a+ b)− bG∗. (3.57)

Moreover G∗ must satisfy the inequality

max

{
Ge −

γTG

γG
; 0

}
< G∗ < Ge. (3.58)

We can therefore summarize the maximum number of savanna steady states according to the

following cases:

• Case 1: θ < mpb

Condition q < m+ αg20 q > m+ αg20
Maximal number of savanna steady states 2 3

Table 3.2: Maximal number of savanna steady states of system (3.50) with θ < mpb
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• Case 2: θ > mpb,

Condition θ < θ∗ θ > θ∗

Maximal number on savanna steady states 4 3

Table 3.3: Maximal number of savanna steady states of system (3.50) with θ > mpb

Proof. A savanna steady state (G∗, T ∗)′ is a solution of the following system of two equations in G

and T : {
γG(1−G)− δG − γTGT − λfGf = 0,

γT (1 + ΩT )(1− T )− δT − λfTfω(G) exp(−PT ) = 0.
(3.59)

If f = 0, savanna steady state (G∗, T ∗)′ is a solution of{
γG(1−G)− δG − γTGT = 0,

γT (1 + ΩT )(1− T )− δT = 0.
(3.60)

The second equation of system (3.60) give :

T ∗ = Ti, i = 1, 2 (depending on the values of Ω).

The first system of (3.60) leads to

G∗ = 1− δG + γTGTi
γG

,

= 1− 1

RF,f=0

.

If f > 0 and γTG = 0, then the savanna equilibrium (G∗;T ∗)′, satisfies:{
G∗ = Ge,

ΩγT (T
∗ − T2)(T

∗ − T2−) + λfTfω(Ge) exp(−pT ∗) = 0.
(3.61)

Let us set J(T ) = ΩγT (T − T2)(T − T2−) + λfTfω(Ge) exp(−pT ), then:

lim
T→0

J(T ) = (δT + λfTfω(Ge)) (1−RT ) . (3.62)

We have also the first derivative of J :

J ′(T ) = ΩγT [2T − T2 − T2−]− pλfTfω(Ge) exp(−pT ),
limT→0 J

′(T ) = pλfTfω(Ge)[R1
Ω − 1],

limT→1 J
′(T ) = pλfTfω(Ge) exp(−p)[R2

Ω − 1],

(3.63)

where R2
Ω =

γT (1 + Ω)

pλfTfω(Ge) exp(−p)
.
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The second derivative:

J”(T ) = 2ΩγT + p2λfTfω(Ge) exp(−pT ) > 0. (3.64)

Therefore, J ′ is increasing on [0; 1].

(I) if R1
Ω > 1, then J ′(T ) > 0 on [0; 1], and J is increasing on [0; 1];

(a) if RT < 1, then J(T ) > 0 on [0; 1].

(b) if RT > 1, then there exists at most one savanna steady state.

(II) if R1
Ω < 1, then limT→0 J

′(T ) < 0 and due to J ′ increasing, we have:

(a) if R2
Ω < 1, then J ′(T ) < 0 on [0; 1] and J is decreasing on that interval. Then

(a1) if RT > 1, then J(T ) < 0 on [0; 1].

(a2) if RT < 1, we have at most one savanna steady state.

(b) if R2
Ω > 1, then by the intermediate value theorem, there exist T0 ∈ [0; 1] such that

J ′(T0) = 0. Then:

(b1) if J(T0) > 0, then J(T ) > 0 on [0; 1].

(b2) if J(T0) < 0, we have at most two savanna steady states (Ge, T
∗
i )

′,i = 1, 2 where

T ∗
1 ∈ [0;T0] and T ∗

2 ∈ [T0; 1]

If f > 0 and γTG ̸= 0, savanna equilibrium is a solution of the system:{
γG(1−G)− δG − γTGT − λfGf = 0,

γT (1 + ΩT )(1− T )− δT − λfTfω(G) exp(−pT ) = 0,
(3.65)

the first equation of system (3.65) gives:

T = −δG + λfGf

γTG

+
γG
γTG

(1−G)

set:

a = −δG + λfGf

γTG

and b =
γG
γTG

then

T = (a+ b)− bG. (3.66)

Using the fact that G, T ∈]0; 1], (3.66) gives that:

a− 1

b
+ 1 < G <

a

b
+ 1.
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Note that
a− 1

b
+ 1 = (1− 1

RG

)− γTG

γG
and

a

b
+ 1 = 1− 1

RG

. Therefore, because RG > 1 then

Ge −
γTG

γG
< G < Ge. (3.67)

The second equation of system (3.65) gives :

λfTfω(G) exp(−pT ) = (γT − δT ) + γT (Ω− 1)T − γTΩT
2. (3.68)

Substituting (3.66) in (3.68) we obtain first:

(γT − δT ) + γT (Ω− 1)T − γTΩT
2 = (γT − δT ) + γT (Ω− 1)(a+ b)− γTΩ(a+ b)2+

(2(a+ b)bγTΩ− bγT (Ω− 1))G− γTΩb
2G2

then,

λfTfω(G) exp(−pT ) = (γT − δT ) + γT (Ω− 1)(a+ b)− γTΩ(a+ b)2+

(2(a+ b)bγTΩ− bγT (Ω− 1))G− γTΩb
2G2.

(3.69)

Set:
q = (γT − δT ) + γT (Ω− 1)(a+ b)− γTΩ(a+ b)2,

θ = 2(a+ b)bγTΩ− bγT (Ω− 1),

α = γTΩb
2.

Then, we obtain in (3.69)

λfTfω(G) exp(−pT ) = q + θG− αG2. (3.70)

Substituting (3.66) in (3.70), we obtain:

λfTf exp (−p(a+ b)) exp(pbG)G2 = qg20 + θg20G+ (q − αg20)G
2 + θG3 − αG4. (3.71)

Set

m = λfTf exp (−p(a+ b)) .

Hence,

−αG4 + θG3 −m exp(pbG)G2 + (q − αg20)G
2 + θg20G+ qg20 = 0. (3.72)

Define the function f by:

f(G) = −αG4 + θG3 −m exp(pbG)G2 + (q − αg20)G
2 + θg20G+ qg20 (3.73)
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and fine the roots of f in the interval [0; 1].
limG→0 f(G) = qg20,

limG→+∞ f(G) = −∞,

limG→1 f(G) = (θ − α + q)(g20 + 1)−m exp(pb).

(3.74)

The first derivative of f is :

f ′(G) = −4αG3 + 3θG2 −mpb exp(pbG)G2 − 2m exp(pbG)G+ 2(q − αg20)G+ θg20 (3.75)

and 
limG→0 f

′(G) = θg20,

limG→+∞ f ′(G) = −∞,

limG→1 f
′(G) = −4α + 3θ + 2(q − αg20) + θg20 −m exp(pb)[pb+ 2].

(3.76)

The second derivative of f is given by:

f ′′(G) = −12αG2 + 6θG−m(pb)2 exp(pbG)G2 − 4mpb exp(pbG)G− 2m exp(pbG) + 2(q − αg20)

(3.77)

and: 
limG→0 f

′′(G) = 2 [q − (m+ αg20)] ,

limG→+∞ f ′′(G) = −∞,

limG→1 f
′′(G) = 6θ + 2(q − αg20)− 12α−m exp(pb) [(pb)2 + 4pb+ 2] .

(3.78)

The third derivative of f is given by:

f ′′′(G) = −24αG+ 6θ −m(pb)3 exp(pbG)G2 − 6m(pb)2 exp(pbG)G− 6m(pb) exp(pbG) (3.79)

and: 
limG→0 f

′′′(G) = 6(θ −mpb),

limG→+∞ f ′′′(G) = −∞,

limG→1 f
′′′(G) = 6θ − [mpb ((pb)2 + 6pb+ 6) exp(pb) + 24α] .

(3.80)

The fourth derivative of f is given by:

f ′′′′(G) = −m(pb)4 exp(pbG)G2 − 8m(pb)3 exp(pbG)G− 6m(pb)2 exp(pbG)− 24α. (3.81)

f ′′′′(G) < 0 on [0,+∞[, therefore on [0; 1]. Then f ′′′ decreases on [0; 1].

(I) if θ < mpb, then f ′′′(G) < 0 in [0; +∞[ and then f ′′ strictly decreases on [0; +∞[. According

to (3.78) we have:
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(I.1) if q < m + αg20 then f ′′(G) < 0 on [0; +∞[. Therefore f ′ strictly decreases on [0; +∞[.

According to (3.76) we have:

(I.1.1) if θ < 0 then f ′(G) < 0 on [0; +∞[ and then f strictly decreases on [0; +∞[. Ac-

cording to (3.74)

(I.1.1.1) If q < 0 then f(G) < 0 on [0; +∞[.

(I.1.1.2) If q > 0 then,

1. if q >
m exp(pb)

g20 + 1
+ α− θ, then f(G) > 0 on [0; 1].

2. if q <
m exp(pb)

g20 + 1
+ α− θ, then ∃G∗

1 ∈ [0; 1] such that f(G∗
1) = 0.

(I.1.2) If θ > 0 then f ′(G) has a positive root on [0; +∞[.

(I.1.2.1) If q >
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]],

then f ′(G) > 0 on [0; 1] and f strictly increases on [0; 1].

(I.1.2.1.1) If q > 0 , then f(G) > 0 on [0; 1].

(I.1.2.1.2) If q < 0, then:

(a) if q <
m exp(pb)

g20 + 1
+ α− θ, then f(G) < 0 on [0; 1].

(b) If q >
m exp(pb)

g20 + 1
+ α− θ, then ∃G∗

2 ∈ [0; 1] such that f(G∗
2) = 0.

(I.1.2.2) If q <
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]],

then ∃G(0) ∈ [0; 1] such that f ′(G(0)) = 0 on and f ′(G) > 0 on [0;G(0)] and

f ′(G) < 0 on [G(0); 1].

(I.1.2.2.1) If f(G(0)) < 0, then f(G) < 0 on [0; 1].

(I.1.2.2.2) If f(G(0)) > 0, then:

(a) If q > 0 and q >
m exp(pb)

g20 + 1
+ α− θ, then f(G) > 0 on [0; 1].

(b) If q < 0 and q >
m exp(pb)

g20 + 1
+α− θ, then ∃G∗

3 ∈ [0;G(0)] is the unique root

of f .

(c) If q > 0 and q <
m exp(pb)

g20 + 1
+ α− θ, then G∗

4 ∈ [G(0); 1] is the unique root

of f on [0; 1].

(d) If q < 0 and q <
m exp(pb)

g20 + 1
+α−θ, then ∃G∗

3 ∈ [0;G(0)] and G∗
4 ∈ [G(0); 1]

such that f(G∗
3) = f(G∗

4) = 0.

(I.2) If q > m+ αg20 then f ′′(G) has a unique positive root on [0; +∞[.

(I.2.1) If q > 6α − 3θ + αg20 +
1

2
m [(pb)2 + 4(pb) + 2] exp(pb) then f ′′(G) > 0 on [0; 1] ,

then f ′ strictly increases on [0; 1].

(I.2.1.1) If θ > 0 then f ′(G) > 0 on [0; 1]. So, f strictly increases on [0; 1].

(I.2.1.1.1) If q > 0, then f(G) > 0 on [0; 1].

(I.2.1.1.1) If q < 0 , then:
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(a) If q <
m exp(pb)

g20 + 1
+ α− θ, then f(G) < 0 on [0; 1].

(b) If q >
m exp(pb)

g20 + 1
+ α− θ, then ∃G∗

5 ∈ [0; 1] such that f(G∗
5) = 0.

(I.2.1.2) If θ < 0, then because f ′ is strictly increasing on [0; 1] we have:

(I.2.1.2.1) If q <
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]], then f ′(G) < 0 on

[0; 1]. Then, f strictly decreases on [0; 1].

(a) If q < 0 then, f(G) < 0 on [0; 1].

(b) If q > 0 then,

(b.1) If q >
m exp(pb)

g20 + 1
+ α− θ, then f(G) > 0 on [0; 1].

(b.2) If q <
m exp(pb)

g20 + 1
+ α− θ, then ∃G∗

6 ∈ [0; 1] such that f(G∗
6) = 0.

(I.2.1.2.2) If q >
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]], then ∃G(00) ∈ [0; 1]

such that f ′(G(00)) = 0 and then f ′(G) < 0 on [0;G(00)] and f ′(G) > 0 on

[G(00); 1].

(a) If f(G(00)) > 0 then f(G) > 0 on [0; 1].

(b) If f(G(00)) < 0 then,

(b.1) If q < 0 and q <
m exp(pb)

g20 + 1
+ α− θ, then f(G) < 0 on [0; 1].

(b.2) If q > 0 and q <
m exp(pb)

g20 + 1
+ α− θ, then ∃G∗

7 ∈ [0;G(00)] such that

f(G∗
7) = 0.

(b.3) If q < 0 and q >
m exp(pb)

g20 + 1
+ α− θ, then ∃G∗

8 ∈ [G(00); 1] such that

f(G∗
8) = 0.

(b.4) If q > 0 and q >
m exp(pb)

g20 + 1
+α− θ, then G∗

7 ∈ [0;G(00)] and G∗
8 ∈

[G(00); 1] are the two roots of f .

(I.2.2) If q < 6α− 3θ + αg20 +
1

2
m [(pb)2 + 4(pb) + 2] exp(pb), then ∃ G(000) ∈ [0; 1] such

that f ′′(G(000)) = 0. Then, f ′′(G) > 0 on [0;G(000)] and f ′′(G) < 0 on [G(000); 1].

(I.2.2.1) If f ′(G(000)) < 0, then f ′(G) < 0 on [0; 1] and f strictly decreases on that

interval.

(a) If q < 0 then f(G) < 0 on [0; 1].

(b) If q > 0, then:

(b.1) If q >
m exp(pb)

g20 + 1
+ α− θ, then f(G) > 0 on [0; 1].

(b.2) If q <
m exp(pb)

g20 + 1
+ α− θ, then, ∃G∗

9 ∈ [0; 1] such that f(G∗
9) = 0.

(I.2.2.2) If f ′(G(000)) > 0, then:

(I.2.2.2.1) If θ > 0 and q >
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]], then

f ′(G) > 0 on [0; 1] and f is increasing on [0; 1].
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(a) If q > 0 then f(G) > 0 on [0; 1].

(b) If q < 0, then :

(b.1) If q <
m exp(pb)

g20 + 1
+ α− θ, then f(G) < 0 on [0; 1].

(b.2) If q >
m exp(pb)

g20 + 1
+α−θ, then ∃G∗

10 ∈ [0; 1] such that f(G∗
10) = 0.

(I.2.2.2.2) If θ < 0 and q >
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]], then

∃G(0000) ∈ [0;G(000)] such that f ′(G(0000)) = 0. Therefore f ′(G) < 0 on

[0;G(0000)] and f ′(G) > 0 on [G(0000); 1].

(a) If f(G(0000)) > 0, then f(G) > 0 on [0; 1].

(b) If f(G(0000)) < 0, then:

(b.1) If q < 0 and q <
m exp(pb)

g20 + 1
+ α− θ, then f(G) < 0 on [0; 1].

(b.2) If q > 0 and q <
m exp(pb)

g20 + 1
+α− θ, then ∃G∗

11 ∈ [0;G(0000)] such

that f(G∗
11) = 0.

(b.3) If q < 0 and q >
m exp(pb)

g20 + 1
+ α− θ then ∃G∗

12 ∈ [G(0000); 1] such

that f(G∗
12) = 0.

(b.4) If q > 0 and q >
m exp(pb)

g20 + 1
+α−θ thenG∗

11 ∈ [0;G(0000)] and G∗
12 ∈

[G(0000); 1] are the two roots of f .

(I.2.2.2.3) If θ > 0 and q <
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]], then

∃G(00000) ∈ [G(000); 1] such that f ′(G(00000)) = 0. Therefore, f ′(G) > 0

on [0;G(00000)] and f ′(G) < 0 on [G(00000); 1].

(a) If f(G(00000) < 0, then f(G) < 0 on [0; 1].

(b) If f(G(00000) > 0, then:

(b.1) If q > 0 and q >
m exp(pb)

g20 + 1
+ α− θ then f(G) > 0 on [0; 1].

(b.2) If q < 0 and q >
m exp(pb)

g20 + 1
+α−θ, then ∃G∗

13 ∈ [0;G(00000)] such

that f(G∗
13) = 0.

(b.3) If q > 0 and q <
m exp(pb)

g20 + 1
+α−θ, then ∃G∗

14 ∈ [G(00000); 1] such

that f(G∗
14) = 0.

(b.4) If q < 0 and q <
m exp(pb)

g20 + 1
+α−θ, thenG∗

13 ∈ [0;G(00000)] and G∗
14 ∈

[G(00000); 1] are the two roots of f .

(I.2.2.2.4) If θ < 0 and q <
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]], then

∃G(0000) ∈ [0;G(000)] and G(00000) ∈ [G(000); 1] such that f ′(G(0000)) =

f ′(G(00000)) = 0. Therefore f ′(G) < 0 on [0;G(0000)] ∪ [G(00000); 1] and

f ′(G) > 0 on [G(0000);G(00000)].

(a) If f(G(0000)) > 0, then
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(a.1) If q >
m exp(pb)

g20 + 1
+ α− θ, then f(G) > 0 on [0; 1].

(a.2) If q <
m exp(pb)

g20 + 1
+ α− θ, G∗

14 ∈ [G(00000); 1] is the unique root of

f .

(b) If f(G(0000)) < 0 and f(G(00000)) < 0 then

(b.1) q < 0 on then f(G) < 0 on [0; 1].

(b.2) q > 0 then ∃G∗
11 ∈ [0;G(0000)] is the unique root of f .

(c) If f(G(0000)) < 0 and f(G(00000)) > 0 then ∃G∗
15 ∈ [G(0000);G(00000)] such

that f(G∗
13) = 0.

(c.1) If q < 0 and q >
m exp(pb)

g20 + 1
+ α− θ then G∗

15 is the unique root of

f in the interval [0; 1].

(c.2) If q < 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then with G∗

15 we have also

G∗
14 ∈ [G(00000); 1] roots of f . Therefore,f(G∗

15) = f(G∗
14) = 0.

(c.3) If q > 0 and q >
m exp(pb)

g20 + 1
+ α − θ,then with G∗

15 we have also

G∗
11 ∈ [0;G(0000)] roots of f . Therefore,f(G∗

15) = f(G∗
11) = 0.

(c.4) If q > 0 and q <
m exp(pb)

g20 + 1
+ α − θ,then with G∗

15 we have also

G∗
11 ∈ [0;G(0000)] andG∗

14 ∈ [G(00000); 1] roots of f . Therefore,f(G∗
15) =

f(G∗
11) = f(G∗

14) = 0.

(II) we suppose that θ > mpb, because f ′′′ is decreasing on [0; 1], by the intermediate value theorem

f ′′′ has a unique positive root on [0; +∞[.

(II.1) If θ >
1

6
[24α +mpb ((pb)2 + 6(pb) + 6) exp(pb)], then f ′′′(G) > 0 on [0; 1] and there-

fore, f ′′ is increasing on [0; 1].

(II.1.1) If q > m+ αg20 , then f ′′(G) > 0 on [0; 1] therefore, f ′ strictly increases on [0; 1].

(II.1.1.1) If θ > 0, then f ′(G) > 0 on [0; 1] and therefore f strictly increases on [0; 1].

(a) If q > 0, then f(G) > 0 on [0; 1].

(b) If q < 0, then:

(b.1) If q <
m exp(pb)

g20 + 1
+ α− θ, then f(G) < 0, on [0; 1].

(b.2) If q >
m exp(pb)

g20 + 1
+ α− θ, then ∃G∗

17 ∈ [0; 1] such that f(G∗
17) = 0.

(II.1.1.2) If θ < 0, then :

(II.1.1.2.1) If q <
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]], then f ′(G) < 0 on

[0; 1] and then f decrease strictly on [0; 1].

(a) If q < 0 then f(G) < 0 on [0; 1].

(b) If q > 0 then:
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(b.1) If q >
m exp(pb)

g20 + 1
+ α− θ, then f(G) > 0 on [0; 1].

(b.2) If q <
m exp(pb)

g20 + 1
+α− θ, then ∃G∗

18 ∈ [0; 1] such that f(G∗
18) =

0.

(II.1.1.2.2) If q >
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]], then ∃G(0) ∈ [0; 1]

such that f ′(G(0)) = 0. Therefore, f ′(G) < 0 on [0;G(0)] and f ′(G) > 0

on [G(0); 1].

(a) If f(G(0)) > 0 then f(G) > 0 on [0; 1].

(b) If f(G(0)) < 0, then:

(b.1) If q < 0 and q <
m exp(pb)

g20 + 1
+ α− θ then f(G) < 0 on [0; 1].

(b.2) If q > 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then G∗

19 ∈ [0;G(0)] such

that f(G∗
19) = 0.

(b.3) If q < 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

20 ∈ [G(0); 1] such

that f(G∗
20) = 0.

(b.4) If q > 0 and q >
m exp(pb)

g20 + 1
+α−θ, thenG∗

19 ∈ [0;G(0)] and G∗
20 ∈

[G(0); 1] are the two roots of f .

(II.1.2) If q < m+ αg20 , then we have the following situations:

(II.1.2.1) If q < 6α− 3θ+αg20 +
1

2
m exp(pb) [(pb)2 + pb+ 2], then f ′′(G) < 0 on [0; 1].

Then f ′ decrease strictly on [0; 1].

(II.1.2.1.1) If θ < 0, then f ′(G) < 0 on [0; 1] and f is therefore decreasing on [0; 1].

(a) If q < 0, then f(G) < 0 on [0; 1].

(b) If q > 0, then:

(b.1) If q >
m exp(pb)

g20 + 1
+ α− θ,then f(G) < 0 on [0; 1].

(b.2) If q <
m exp(pb)

g20 + 1
+α− θ, then ∃G∗

21 ∈ [0; 1] such that f(G∗
21) =

0.

(II.1.2.1.2) If θ > 0, then, we have the following situations:

(a) If q >
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]],then f ′(G) > 0

on [0; 1] and f increase strictly on [0; 1].

(a.1) If q > 0, then f(G) > 0 on [0; 1].

(a.2) If q < 0, then:

(a.2.1) If q <
m exp(pb)

g20 + 1
+ α− θ,then f(G) < 0 on [0; 1].

(a.2.2) If q >
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

22 ∈ [0; 1] such that

f(G∗
22) = 0.
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(b) If q <
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]]. We use the fact

that f ′ is decreasing (strictly) on [0; 1]. By the intermediate values theo-

rem: ∃G(00) ∈ [0; 1] such that f ′(G(00)) = 0. Therefore, f ′(G) > 0 on

[0;G(00)] and f ′(G) < 0 on [G(00); 1].

(b.1) If f(G(00)) < 0, then f(G) < 0 on [0; 1].

(b.2) If f(G(00)) > 0, then:

(b.2.1) If q > 0 and q >
m exp(pb)

g20 + 1
+α− θ then f(G) > 0 on [0; 1].

(b.2.2) If q < 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

23 ∈ [0;G(00)]

such that f(G∗
23) = 0.

(b.2.3) If q > 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then G∗

24 ∈ [G(00); 1]

such that f(G∗
24) = 0.

(b.2.4) If q < 0 and q <
m exp(pb)

g20 + 1
+α−θ, thenG∗

23 ∈ [0;G(00)] and G∗
24 ∈

[G(00); 1] are the two roots of f .

(II.1.2.2) If q > 6α − 3θ + αg20 +
1

2
m exp(pb) [(pb)2 + pb+ 2], because f ′′ increase

strictly on [0; 1], by the intermediate values theorem ∃G(000) ∈ [0; 1] such

that f ′′(G(000)) = 0. So, f ′′(G) < 0 on [0;G(000)] and there f ′′(G) > 0 on

[G(000); 1].

(II.1.2.2.1) If f ′(G(000)) > 0, then f ′(G) > 0 on [0; 1], therefore f is increasing on

that interval.

(a) If q > 0, then f(G) > 0 on [0; 1].

(b) If q < 0, then

(b.1) If q <
m exp(pb)

g20 + 1
+ α− θ, then f(G) < 0 on [0; 1].

(b.2) If q >
m exp(pb)

g20 + 1
+α−θ, then ∃G∗

25 ∈ [0; 1] such that f(G∗
25) =

0.

(II.1.2.2.2) If f ′(G(000)) < 0, then:

(a) If θ < 0 and q <
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]],

then f ′(G) < 0 on [0; 1]. Therefore f strictly decreases on [0; 1].

(a.1) If q < 0, then f(G) < 0 on [0; 1].

(a.2) If q > 0, then:

(a.2.1) If q >
m exp(pb)

g20 + 1
+ α− θ, then f(G) > 0 on [0; 1].

(a.2.2) If q <
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

26 ∈ [0; 1] such that

f(G∗
26) = 0.

(b) If θ > 0 and q <
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]],
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then ∃G(0000) ∈ [0;G(000)] such that f ′(G(0000)) = 0. Therefore f ′(G) >

0 on [0;G(0000)] and f ′(G) < 0 on [G(0000); 1].

(b.1) If f(G(0000)) < 0, then f(G) < 0 on [0; 1].

(b.2) If f(G(0000)) > 0, then:

(b.2.1) If q > 0, and q >
m exp(pb)

g20 + 1
+ α − θ, then f(G) > 0 on

[0; 1].

(b.2.2) If q < 0, and q >
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

27 ∈

[0;G(0000)] such that f(G∗
27) = 0.

(b.2.3) If q > 0, and q <
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

28 ∈

[G(0000); 1] such that f(G∗
28) = 0.

(b.2.4) If q < 0, and q <
m exp(pb)

g20 + 1
+α− θ, then ∗

27 ∈ [0;G(0000)]

and G∗
28 ∈ [G(0000); 1] are the two roots of f .

(c) If θ < 0 and q >
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]],

then ∃G(00000) ∈ [G(000); 1] such that f ′(G(00000)) = 0. Therefore

f ′(G) < 0 on [0;G(00000)] and f ′(G) > 0 on [G(00000); 1].

(c.1) If f(G(00000)) > 0, then f(G) > 0 on [0; 1].

(c.2) If f(G(00000)) < 0:

(c.2.1) If q < 0, and q <
m exp(pb)

g20 + 1
+ α − θ, then f(G) < 0 on

[0; 1].

(c.2.2) If q > 0, and q <
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

29 ∈

[0;G(00000)] such that f(G∗
29) = 0.

(c.2.3) If q < 0, and q >
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

30 ∈

[0;G(00000)] such that f(G∗
30) = 0.

(c.2.4) If q > 0, and q >
m exp(pb)

g20 + 1
+α−θ, thenG∗

29 ∈ [0;G(00000)]

and G∗
30 ∈ [0;G(00000)] are the two roots of f .

(d) If θ > 0 and q >
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]],

then: ∃G(0000) ∈ [0;G(000)] and G(00000) ∈ [G(000); 1] such that

f ′(G(0000)) = f ′(G(00000)) = 0. Therefore f ′(G) > 0 on [0;G(0000)] ∪
[G(00000); 1] and f ′(G) > 0 on [G(0000);G(0000)].

(d.1) If f(G(0000)) < 0,then

(d.1.1) if q <
m exp(pb)

g20 + 1
+ α− θ then f(G) < 0 on [0; 1].

(d.1.2) if q >
m exp(pb)

g20 + 1
+ α − θ, then G∗

30 is the unique root of

f .

(d.2) If f(G(0000)) > 0 and f(G(00000)) > 0, then:
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(d.2.1) If q > 0, then f(G) > 0 on [0; 1].

(d.2.2) If q < 0, then G∗
27 ∈ [0;G(0000)] is the unique root of f .

(d.3) If f(G(0000)) > 0 and f(G(00000)) < 0, then: ∃G∗
31 ∈ [G(0000);G(00000)]

such that f(G∗
31) = 0.

(d.3.1) If q > 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then with G∗

31, we

have also G∗
30 ∈ [G(00000); 1] such that f(G∗

31) = f(G∗
30) = 0.

(d.3.2) If q > 0 and q <
m exp(pb)

g20 + 1
+α−θ, thenG∗

31 is the unique

root of f . Therefore f(G∗
31) = 0.

(d.3.3) If q < 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then with G∗

31, we

have also G∗
27 ∈ [0;G(0000)] such that f(G∗

31) = f(G∗
27) = 0.

(d.3.4) If q < 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then with G∗

31 and

G∗
30 ∈ [G(00000); 1], we have also G∗

27 ∈ [0;G(0000)] such that

f(G∗
29) = f(G∗

30) = f(G∗
32) = 0

(II.2) If θ <
1

6
[24α +mpb ((pb)2 + 6(pb) + 6) exp(pb)], then because of the decreasing of

f ′′′ on [0; 1] and by using the intermediate values theorem, ∃G̃(0) ∈ [0; 1] such that

f ′′′(G̃(0)) = 0. Then f ′′′(G) > 0 on [0; G̃(0)] and f ′′′(G) < 0 on [G̃(0); 1].

(II.2.1) If f ′′(G̃(0)) < 0, then f ′′(G) < 0 on [0; 1]. Therefore f is decreasing on that

interval.

(II.2.1.1) If θ < 0, then f ′(G) < 0 on [0; 1] and f is decreasing on [0; 1].

(II.2.1.1.1) If q < 0, then f(G) < 0 on [0; 1].

(II.2.1.1.2) If q > 0, then:

(a) If q >
m exp(pb)

g20 + 1
+ α− θ, then f(G) > 0 on [0; 1].

(b) If q <
m exp(pb)

g20 + 1
+α− θ, then ∃G∗

33 ∈ [0; 1] such that f(G∗
33) = 0.

(II.2.1.2) If θ > 0, then we have the following cases:

(II.2.1.2.1) If q >
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]], then f ′(G) > 0

on [0; 1]. Therefore f is increasing on [0; 1].

(a) If q > 0, then f(G) > 0 on [0; 1].

(b) If q < 0, then:

(b.1) If q <
m exp(pb)

g20 + 1
+ α− θ, then f(G) < 0 on [0; 1].

(b.2) If q >
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

34 ∈ [0; 1] such that

f(G∗
34) = 0.

Ph.D Thesis : Modelling tree-grass dynamics in humid savanna ecosystems 89 Tega II Rodrigue © UY1 2024



3.3. Mathematical analysis

(II.2.1.2.2) If q <
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]], then ∃G̃(1) ∈

[0; 1] such that f ′(G̃(1)) = 0.Therefore f ′(G) > 0 on [0; G̃(1)] and f ′(G) >

0 on [G̃(1); 1].

(a) If f(G̃(1)) < 0, then f(G) < 0 on [0; 1].

(b) If f(G̃(1)) > 0, then:

(b.1) If q > 0 and q >
m exp(pb)

g20 + 1
+α− θ, then f(G) > 0 on [0; 1].

(b.2) If q < 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

35 ∈ [0; G̃(1)]

such that f(G∗
35) = 0.

(b.3) If q > 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

36 ∈ [G̃(1); 1]

such that f(G∗
36) = 0.

(b.3) If q < 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then G∗

35 and G∗
36 are

the two roots on [0; 1] of f .

(II.2.2) If f ′′(G̃(0)) > 0, then:

(II.2.2.1) If q > m+αg20 and q > 6α− 3θ+αg20 +
1

2
m exp(pb) [(pb)2 + pb+ 2], then

f ′′(G) > 0 on [0; 1].Therefore f ′ is increasing on [0; 1].

(II.2.2.1.1) If θ > 0, then f ′(G) > 0 on [0; 1]. Therefore f is increasing on [0; 1].

(a) If q > 0, then f(G) > 0 on [0; 1].

(b) If q < 0, then:

(b.1) If q <
m exp(pb)

g20 + 1
+ α− θ, then f(G) < 0 on [0; 1].

(b.2) If q >
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

37 ∈ [0; 1] such that

f(G∗
37) = 0.

(II.2.2.1.2) If θ < 0, then:

(a) If q <
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]], then f ′(G) <

0 on [0; 1]. Therefore f is decreasing on [0; 1].

(a.1) If q < 0, then f(G) < 0 on [0; 1].

(a.2) If q > 0, then:

(a.2.1) If q >
m exp(pb)

g20 + 1
+ α− θ, then f(G) > 0 on [0; 1].

(a.2.2) If q <
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

38 ∈ [0; 1] such that

f(G∗
38) = 0.

(b) If q >
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]], then ∃G̃(2) ∈

[0; 1] such that f ′(G̃(2)) = 0. Therefore f ′(G) < 0 on [0; G̃(2)] and

f ′(G) > 0 on [G̃(2); 1].
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(b.1) If f(G̃(2)) > 0, then f(G) > 0 on [0; 1].

(b.2) If f(G̃(2)) < 0, then we have the following cases:

(b.2.1) If q < 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then f(G) < 0 on

[0; 1].

(b.2.2) If q > 0 and q <
m exp(pb)

g20 + 1
+α−θ, then ∃G∗

39 ∈ [0; G̃(2)]

such that f(G∗
39) = 0.

(b.2.3) If q < 0 and q >
m exp(pb)

g20 + 1
+α−θ, then ∃G∗

40 ∈ [G̃(2); 1]

such that f(G∗
40) = 0.

(b.2.4) If q > 0 and q >
m exp(pb)

g20 + 1
+ α− θ, then G∗

39 and G∗
40

are the two roots on [0; 1] of f .

(II.2.2.2) If q < m+αg20 and q > 6α−3θ+αg20+
1

2
m exp(pb) [(pb)2 + pb+ 2], then:

∃G̃(3) ∈ [0; G̃(0)] such that f ′′(G̃(3)) = 0. Therefore f ′′(G) < 0 on [0; G̃(3)]

and f ′′(G) > 0 on [G̃(3); 1].

(II.2.2.2.1) If f ′(G̃(3)) > 0, then f ′(G) > 0 on [0; 1]. Therefore f is increasing on

[0; 1].

(a) If q > 0, then f(G) > 0 on [0; 1].

(b) If q < 0, then:

(b.1) If q <
m exp(pb)

g20 + 1
+ α− θ, then f(G) < 0 on [0; 1].

(b.2) If q >
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

41 ∈ [0; 1] such that

f(G∗
41) = 0.

(II.2.2.2.2) If f ′(G̃(3)) < 0, then we have the following cases:

(a) If θ < 0 and q <
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]],

then f ′(G) < 0 on [0; 1]. Therefore f is decreasing on [0; 1].

(a.1) If q < 0, then f(G) < 0 on [0; 1].

(a.2) If q > 0, then:

(a.2.1) If q >
m exp(pb)

g20 + 1
+ α− θ, then f(G) > 0 on [0; 1].

(a.2.2) If q <
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

42 ∈ [0; 1] such that

f(G∗
42) = 0.

(b) If θ > 0 and q <
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]],

then ∃G̃(4) ∈ [0; G̃3] such that f ′(G̃(4)) = 0. Therefore f ′(G) > 0

on [0; G̃(4)] and f ′(G) < 0 on [G̃(4); 1].

(b.1) If f(G̃(4)) < 0, then f(G) < 0 on [0; 1].

(b.2) If f(G̃(4)) > 0, then:
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(b.2.1) If q > 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then f(G) > 0 on

[0; 1].

(b.2.2) If q < 0 and q >
m exp(pb)

g20 + 1
+α−θ, then ∃G∗

43 ∈ [0; G̃(4)]

such that f(G∗
43) = 0.

(b.2.3) If q > 0 and q <
m exp(pb)

g20 + 1
+α−θ, then ∃G∗

44 ∈ [G̃(4); 1]

such that f(G∗
44) = 0.

(b.2.4) If q < 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then G∗

44 and G∗
43

are the two roots on [0; 1] of f .

(c) If θ < 0 and q >
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]],

then ∃G̃(5) ∈ [G̃3; 1] such that f ′(G̃(5)) = 0. Therefore f ′(G) < 0

on [0; G̃(5)] and f ′(G) > 0 on [G̃(5); 1].

(c.1) If f(G̃(5)) > 0, then f(G) > 0 on [0; 1].

(c.2) If f(G̃(5)) < 0, then:

(c.2.1) If q < 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then f(G) < 0 on

[0; 1].

(c.2.2) If q > 0 and q <
m exp(pb)

g20 + 1
+α−θ, then ∃G∗

45 ∈ [0; G̃(5)]

such that f(G∗
45) = 0.

(c.2.3) If q < 0 and q >
m exp(pb)

g20 + 1
+α−θ, then ∃G∗

46 ∈ [G̃(5); 1]

such that f(G∗
46) = 0.

(c.2.4) If q > 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then G∗

45 and G∗
46

are the two roots of f on [0; 1].

(d) If θ > 0 and q >
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]],

then G̃(4) and G̃(5) are the two roots of f ′. Therefore f ′(G) > 0 on

[0; G̃(4)] ∪ [G̃(5); 1] and f ′(G) < 0 on [G̃(4); G̃(5)].

(d.1) If f(G̃(4)) < 0, then we have the following cases:

(d.1.1) If q <
m exp(pb)

g20 + 1
+ α− θ, then f(G) < 0 on [0; 1].

(d.1.2) If q >
m exp(pb)

g20 + 1
+ α − θ, then G∗

46 is the unique roots

of f .

(d.2) If f(G̃(4)) > 0 and f(G̃(5)) > 0, then:

(d.2.1) If q > 0, then f(G) > 0 on [0; 1].

(d.2.2) If q < 0, then G∗
43 is the unique roots of f .

(d.3) If f(G̃(4)) > 0 and f(G̃(5)) < 0, then: ∃G∗
47 ∈ [G̃(4); G̃(5)]

such that f(G∗
47) = 0.

Ph.D Thesis : Modelling tree-grass dynamics in humid savanna ecosystems 92 Tega II Rodrigue © UY1 2024



3.3. Mathematical analysis

(d.3.1) If q > 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then G∗

47 and G∗
46

are the two roots of f .

(d.3.2) If q > 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then G∗

47 is the

unique root of f .

(d.3.3) If q < 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then G∗

47 and G∗
43

are the two roots of f .

(d.3.4) If q < 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then G∗

47 ,G∗
46 and

G∗
43 are the three roots of f .

(II.2.2.3) If q > m+αg20 and q < 6α−3θ+αg20+
1

2
m exp(pb) [(pb)2 + pb+ 2], then:

∃G̃(6) ∈ [G̃(0); 1] such that f ′′(G̃(6)) = 0. Therefore, f ′′(G) > 0 on [0; G̃(6)]

and f ′′(G) < 0 on [G̃(6); 1].

(II.2.2.3.1) If f ′(G̃(6)) < 0, then f ′(G) < 0 on [0; 1]. Therefore f is decreasing on

[0; 1].

(a) If q < 0, then f(G) < 0 on [0; 1].

(b) If q > 0, then:

(b.1) If q >
m exp(pb)

g20 + 1
+ α− θ, then f(G) > 0 on [0; 1].

(b.2) If q <
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

48 ∈ [0; 1] such that

f(G∗
48) = 0.

(II.2.2.3.2) If f ′(G̃(6)) > 0, then

(a) If θ > 0 and q >
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]],

then f ′(G) > 0 on [0; 1] and therefore f is increasing on [0; 1].

(a.1) If q > 0, then f(G) > 0 on [0; 1].

(a.2) If q < 0, then:

(a.2.1) If q <
m exp(pb)

g20 + 1
+ α− θ, then f(G) < 0 on [0; 1].

(a.2.2) If q >
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

49 ∈ [0; 1] such that

f(G∗
49) = 0.

(b) If θ < 0 and q >
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]],

then ∃G̃(7) ∈ [0; G̃(6)] such that f ′(G̃(7)) = 0. Therefore f ′(G) < 0

on [0; G̃(7)] and f ′(G) > 0 on [G̃(7); 1]

(b.1) If f(G̃(7)) > 0, then f(G) > 0 on [0; 1].

(b.2) If f(G̃(7)) < 0, then:

(b.2.1) If q < 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then f(G) < 0 on

[0; 1].
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(b.2.2) If q > 0 and q <
m exp(pb)

g20 + 1
+α−θ, then ∃G∗

50 ∈ [0; G̃(7)]

such that f(G∗
50) = 0.

(b.2.3) If q < 0 and q >
m exp(pb)

g20 + 1
+α−θ, then ∃G∗

51 ∈ [G̃(7); 1]

such that f(G∗
51) = 0.

(b.2.4) If q > 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then G∗

50 and G∗
51

are the two roots on [0; 1] of f .

(c) If θ > 0 and q <
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]],

then ∃G̃(8) ∈ [G̃(6); 1] such that f ′(G̃(8)) = 0. Therefore f ′(G) > 0

on [0; G̃(8)] and f ′(G) < 0 on [G̃(8); 1]

(c.1) If f(G̃(8)) < 0, then f(G) < 0 on [0; 1].

(c.2) If f(G̃(8)) > 0, then:

(c.2.1) If q > 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then f(G) > 0 on

[0; 1].

(c.2.2) If q < 0 and q >
m exp(pb)

g20 + 1
+α−θ, then ∃G∗

52 ∈ [0; G̃(8)]

such that f(G∗
52) = 0.

(c.2.3) If q > 0 and q <
m exp(pb)

g20 + 1
+α−θ, then ∃G∗

53 ∈ [G̃(8); 1]

such that f(G∗
53) = 0.

(c.2.4) If q < 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then G∗

52 and G∗
53

are the two roots on [0; 1] of f .

(d) If θ < 0 and q <
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]],

then G̃(8) and G̃(7) are the two positive roots of f ′. Therefore

f ′(G) > 0 on [G̃(7); G̃(8)] and f ′(G) < 0 on [0; G̃(7)] ∪ [G̃(8); 1].

(d.1) If f(G̃(7)) > 0, then:

(d.1.1) If q >
m exp(pb)

g20 + 1
+ α− θ, then f(G) > 0 on [0; 1].

(d.1.2) If q <
m exp(pb)

g20 + 1
+ α− θ, then G∗

53 is the unique root of

f .

(d.2) If f(G̃(7)) < 0 and f(G̃(8)) < 0, then :

(d.2.1) If q < 0, then f(G) < 0 on [0; 1].

(d.2.2) If q > 0, then G∗
50 is the unique root of f .

(d.3) If f(G̃(7)) < 0 and f(G̃(8)) > 0, then :∃G∗
54 ∈ [G̃(7); G̃(8)]

such that f(G∗
54) = 0.

(d.3.1) If q < 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then with G∗

54 we

have also G∗
53 as a root of f .
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(d.3.2) If q < 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then G∗

54 is the

unique root of f . .

(d.3.3) If q > 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then with G∗

54 we

have also G∗
50 as a root of f .

(d.3.4) If q > 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then G∗

50, G∗
54 and

G∗
53 are the three roots on [0; 1] of f .

(II.2.2.4) If q < m + αg20 and q < 6α − 3θ + αg20 +
1

2
m exp(pb) [(pb)2 + pb+ 2],

then:G̃(3) and G̃(6) are the two roots of f ′′. Therefore, f ′′(G) > 0 on [G̃(3); G̃(6)]

and f ′′(G) < 0 on [0; G̃(3)] ∪ [G̃(6); 1].

(II.2.2.4.1) If f ′(G̃(3)) > 0, then:

(a) If q >
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]], then f ′(G) >

0 on [0; 1], therefore f is increasing on that interval.

(a.1) If q > 0, then f(G) > 0 on [0; 1].

(a.2) If q < 0, then:

(a.2.1) If q <
m exp(pb)

g20 + 1
+ α− θ, then f(G) < 0 on [0; 1].

(a.2.2) If q >
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

41 ∈ [G̃(6); 1] such

that f(G∗
41) = 0.

(b) If q <
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]], then G̃(8) is

the unique root of f ′. Therefore

(b.1) If f(G̃(8)) < 0, then f(G) < 0 on [0; 1].

(b.2) If f(G̃(8)) > 0, then:

(b.2.1) If q > 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then f(G) > 0 on

[0; 1].

(b.2.2) If q < 0 and q >
m exp(pb)

g20 + 1
+α−θ, then ∃G∗

52 ∈ [0; G̃(8)]

such that f(G∗
52) = 0.

(b.2.3) If q > 0 and q <
m exp(pb)

g20 + 1
+α−θ, then ∃G∗

53 ∈ [G̃(8); 1]

such that f(G∗
53) = 0.

(b.2.4) If q < 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then G∗

52 and G∗
53

are the two roots on [0; 1] of f .

(II.2.2.4.2) If f ′(G̃(3)) < 0 and f ′(G̃(6)) < 0, then we have the following cases:

(a) If θ < 0, then f ′(G) < 0 on [0; 1]. Therefore f is decreasing on

[0; 1].

(a.1) If q < 0, then f(G) < 0 on [0; 1].

(a.2) If q > 0, then :
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(a.2.1) If q >
m exp(pb)

g20 + 1
+ α− θ, then f(G) > 0 on [0; 1].

(a.2.2) If q <
m exp(pb)

g20 + 1
+ α− θ, then G∗

42 is the unique root of

f .

(b) If θ > 0, then G̃(4) is the unique root of f ′. Therefore:

(b.1) If f(G̃(4)) < 0, then f(G) < 0 on [0; 1].

(b.2) If f(G̃(4)) > 0, then:

(b.2.1) If q > 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then f(G) > 0 on

[0; 1].

(b.2.2) If q < 0 and q >
m exp(pb)

g20 + 1
+α−θ, then ∃G∗

43 ∈ [0; G̃(4)]

such that f(G∗
43) = 0.

(b.2.3) If q > 0 and q <
m exp(pb)

g20 + 1
+α−θ, then ∃G∗

44 ∈ [G̃(4); 1]

such that f(G∗
44) = 0.

(b.2.4) If q < 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then G∗

44 and G∗
43

are the two roots on [0; 1] of f .

(II.2.2.4.3) If f ′(G̃(3)) < 0 and f ′(G̃(6)) > 0, then ∃G̃9 ∈ [G̃3; G̃6] such that

f ′(G̃(9)) = 0.

(a) If θ < 0 and q >
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]],

then G̃9 is the unique roots of f ′.

(a.1) If f(G̃9) > 0, then f(G) > 0 on [0; 1].

(a.2) If f(G̃9) < 0, then:

(a.2.1) If q < 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then f(G) < 0 on

[0; 1].

(a.2.2) If q > 0 and q <
m exp(pb)

g20 + 1
+α−θ, then ∃G∗

55 ∈ [0; G̃(9)]

such that f(G∗
55) = 0.

(a.2.3) If q < 0 and q >
m exp(pb)

g20 + 1
+α−θ, then ∃G∗

56 ∈ [G̃(9); 1]

such that f(G∗
56) = 0.

(a.2.4) If q > 0 and q >
m exp(pb)

g20 + 1
+ α− θ, then G∗

55 and G∗
56

are the roots of f .

(b) If θ > 0 and q >
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]],

then with G̃9 we have also G̃4 root of f ′. Therefore f ′(G) < 0 on

[G̃4; G̃9] and f ′(G) > 0 on [0; G̃4] ∪ [G̃9; 1].

(b.1) If f(G̃4) < 0, then:

(b.1.1) If q <
m exp(pb)

g20 + 1
+ α− θ, then f(G) < 0 on [0; 1].
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(b.1.2) If q >
m exp(pb)

g20 + 1
+ α − θ, then G∗

56 ∈ [G̃(9); 1] is the

unique root of f .

(b.2) If f(G̃4) > 0 and f(G̃9) > 0, then:

(b.2.1) If q > 0, then f(G) > 0 on [0; 1].

(b.2.1) If q < 0, then G∗
43 is the unique root of f .

(b.3) If f(G̃4) > 0 and f(G̃9) < 0, then ∃G∗
57 ∈ [G̃4; G̃9] such that

f(G∗
57) = 0.

(b.3.1) If q > 0 and q <
m exp(pb)

g20 + 1
+ α − θ,then G∗

57 is the

unique root of f .

(b.3.2) If q < 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then with G∗

57 we

have also G∗
43 roots of f .

(b.3.3) If q > 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then with G∗

57 we

have also G∗
56 roots of f .

(b.3.4) If q < 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then with G∗

57 we

have also G∗
56 and G∗

43 roots of f .

(c) If θ < 0 and q <
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]],

then with G̃9 we have also G̃8 roots of f ′. Therefore f ′(G) > 0 on

[G̃9; G̃8] and f ′(G) < 0 on [0; G̃9] ∪ [G̃8; 1].

(c.1) If f(G̃9) > 0, then:

(c.1.1) If q >
m exp(pb)

g20 + 1
+ α− θ, then f(G) > 0 on [0; 1].

(c.1.2) If q <
m exp(pb)

g20 + 1
+ α− θ, then G∗

53 is the unique root of

f .

(c.2) If f(G̃9) < 0 and f(G̃8) < 0 then

(c.2.1) If q < 0, then f(G) < 0 on [0; 1].

(c.2.2) If q > 0, then G∗
55 is the unique root of f .

(c.3) If f(G̃9) < 0 and f(G̃8) > 0, then ∃G∗
58 ∈ [G̃9; G̃8] such that

f(G∗
58) = 0.

(c.3.1) If q < 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then G∗

58 is the

unique root of f .

(c.3.2) If q > 0 and q >
m exp(pb)

g20 + 1
+ α − θ,then with G∗

58 we

have also G∗
55 root of f .

(c.3.3) If q < 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then with G∗

58 we

have also G∗
53 root of f .
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(c.3.3) If q > 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then with G∗

58 we

have also G∗
53 and G∗

55 root of f .

(d) If θ > 0 and q <
1

2
[4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]],

then with G̃9 we have also G̃4 and G̃8 roots of f ′. Therefore f ′(G) >

0 on [0; G̃4] ∪ [G̃9; G̃8] and f ′(G) < 0 on [G̃4; G̃9] ∪ [G̃8; 1].

(d.1) If f(G̃4) < 0 and f(G̃8) < 0, then f(G) < 0 on [0; 1].

(d.2) If f(G̃4) > 0 and f(G̃8) < 0, then f(G̃9) < 0 and therefore

∃G∗
59 ∈ [G̃4; G̃9] such that f(G∗

59) = 0. Then:

(d.2.1) If q > 0, then G∗
59 is the unique root of f .

(d.2.2) If q < 0, then with G∗
59, we have also G∗

43 roots of f .

(d.3) If f(G̃4) < 0 and f(G̃8) > 0, then f(G̃9) < 0 and therefore

∃G∗
60 ∈ [G̃9; G̃8] such that f(G∗

60) = 0. Then:

(d.3.1) If q >
m exp(pb)

g20 + 1
+ α− θ, then G∗

60 is the unique root of

f .

(d.3.2) If q <
m exp(pb)

g20 + 1
+ α − θ, with G∗

60 we have also G∗
53

roots of f .

(d.4) If f(G̃4) > 0 and f(G̃8) > 0, then:

(d.4.1) If f(G̃9) > 0, then:

(d.4.1.1) If q > 0 and q >
m exp(pb)

g20 + 1
+α− θ, then f(G) > 0

on [0; 1].

(d.4.1.2) If q > 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then f has an

unique root G∗
53.

(d.4.1.3) If q < 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then f has an

unique root G∗
43.

(d.4.1.4) If q < 0 and q <
m exp(pb)

g20 + 1
+ α − θ, G∗

43 and G∗
53

are the two roots of f .

(d.4.2) If f(G̃9) < 0, then with G∗
59 and G∗

58, we have also:

(d.4.2.1) If q > 0 and q >
m exp(pb)

g20 + 1
+ α − θ, G∗

59 and G∗
58

roots of f .

(d.4.2.2) If q < 0 and q >
m exp(pb)

g20 + 1
+ α− θ,G∗

43. Therefore

G∗
59,G

∗
58,G

∗
43 are the three roots of f .

(d.4.2.3) If q > 0 and q <
m exp(pb)

g20 + 1
+α− θ, G∗

53. Therefore

G∗
59,G

∗
58,G

∗
53 are the three roots of f .

(d.4.2.4) If q < 0 and q <
m exp(pb)

g20 + 1
+ α − θ, G∗

43 and G∗
53.

Therefore G∗
59,G∗

58, G∗
53 and G∗

43 are the fourth roots of f
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Remark 3.2. Let us set

R0
G =

2γG
2λfGf + 2δG + γTG

, RTG =
2γTG

2λfGf + 2δG + γTG

and R∗ =
γT

(
1 + Ω

R0
G

RTG

)
pλfTf exp (−p(a+ b))

.

∗ If R∗ < 1, then θ < mpb and if R∗ > 1, then θ > mpb.

∗ R∗ is the primary production of tree including a portion of tree production due to tree-tree cooperation

and asymmetric tree-grass competition relative to fire induced tree and grass loss.

Now, we want to characterize local stability property of previous steady states. System (3.50) is a

planar, competitive and dissipative system. Hence, based on Smith [94] (Theorem 2.2, page 35), we

deduce that solutions of system (3.50) will always converge toward an equilibrium point. That is, no

stable limit cycles may exist for system (3.50).

Proposition 3.5. (Stability properties of trivial and semi trivial steady states). The following

results are valid for system (3.50).

(a) The desert steady state E0 = (0, 0)′ is always unstable.

(b) If RF < 1 then the forest steady state ETi
is locally asymptotically stable (LAS).

(c) If RT < 1 then the grassland steady state EGe = (Ge; 0)
′ is LAS.

Proof. The Jacobian matrix associated to the system (3.51) is given by:

M(G, T ) =


δG − γG − 2γGG− γTGT − λfGf −γTGG

−λfTfω′(G) exp(−pT )T γT (1 + ΩT )(1− T ) + γTΩT (1− T )− γTT (1 + ΩT )

−δT + pλfTfω(G) exp(−pT )T − λfTfω(G) exp(−pT )

 .

(3.82)

Then:

• For the desert steady state E0 = (0; 0)′ we have:

M(0, 0) =

(
γG − δG − λfGf 0

0 γT − δT

)
,

=

(
(δG + λfGf) [RG − 1] 0

0 γT [1−RT,0]

)
.

(3.83)

Then the eigenvalues of M(0, 0) are (δG + λfGf) [RG − 1] and γT [1−RT,0]. But for RT,0 > 1, and

RG > 1, E0 is unstable.
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• For the forest steady state ETi
= (0;Ti)

′ we have:

M(0, Ti) =

(
γG − δG − λfGf − γTGTi 0

0 γTT [(Ω− 1)− 2ΩTi]

)
,

=

(
A 0

0 B

)
.

(3.84)

If Ω = 0, then B = − (γT − δT ) < 0.

If Ω > 0 then B = −γTT2

√
(1− Ω)2 + 4Ω

(
1− δT

γT

)
< 0.

Then for all case B < 0.

A = (δG + λfGf + γTGTi)

(
γG

δG + λfGf + γTGTi
− 1

)
,

A = (δG + λfGf + γTGTi) (RF − 1) .

A < 0 ⇔ RF < 1.

Consequently, if RF < 1, then A < 0 and therefore ETi
is stable.

• For the grassland steady state EGe = (Ge; 0)
′ we have:

M(Ge; 0) =

(
γG − δG − λfGf − 2γGGe −γTGGe

0 γT − [δT + λfTfω(Ge)]

)
,

=

(
C −γTGGe

0 D

)
.

(3.85)

We have:
C = γG − δG − λfGf − 2γGGe,

= (δG + λfGf)

(
1− γG

δG + λfGf

)
,

= (δG + λfGf) (1−RG) .

Therefore C < 0, due to the fact that RG > 1.

D = γT − [δT + λfTfω(Ge)] ,

= [δT + λfTfω(Ge)]

(
γT

δT + λfTfω(Ge)
− 1

)
,

= [δT + λfTfω(Ge)] (RT − 1) .

Then, if RT < 1, then D < 0. Therefore if RT < 1, EGe is LAS.
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Now we deal with conditions of stability of a savanna steady state when its exists. Set:

R∗
1 =

γT [(1− Ω) + 2ΩT ∗]

pλfTfω(G∗) exp(−pT ∗)
,

R∗
2 =

γTGω
′(G∗)

pγGω(G∗)
.

(3.86)

Proposition 3.6. (Stability condition of a savanna steady state). The stability conditions of a

coexistence steady state, of system (3.50), when it exists are given by the following cases:

• case 1:Assume f = 0, then (G∗, T ∗)′ is LAS.

• case 2: Assume f > 0. If:

R∗
1 −R∗

2 > 1, (3.87)

then (G∗, T ∗)′ is LAS.

Proof. Set:

a11 = −γGG∗,

a12 = −γTGG
∗,

a21 = −λfTfω′(G∗) exp(−pT ∗)T ∗,

a22 = −γT [(1− Ω)T ∗ + 2Ω(T ∗)2] + pλfTfω(G
∗) exp(−pT ∗)T ∗.

For the savanna steady state, we have the Jacobian Matrix:

M(G∗;T ∗) =

(
a11 a12

a21 a22

)
. (3.88)

If f = 0, then:

a11 = −γGG∗,

a12 = −γTGG
∗,

a21 = 0,

a22 = −γT [(1− Ω)T ∗ + 2Ω(T ∗)2] = −γTT ∗ [(1− Ω) + 2ΩT ∗] .

Therefore:

(a) If Ω = 0, then a22 < 0. Consequently a11 < 0 and a22 < 0. So because a21 = 0, (G∗;T ∗) is LAS.

(b) If Ω > 0, then

a22 = −γTT ∗
√

(1− Ω)2 + 4Ω
(
1− δT

γT

)
< 0,

then a11 < 0 and a22 < 0. So, (G∗;T ∗) is LAS.
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If f ̸= 0,
Tr(M(G∗;T ∗)) = a11 + a22,

Det((G∗;T ∗)) = a11a22 − a12a21.

(3.89)

Det(M) > 0 ⇔ a11a22 − a12a21 > 0

a11a22 − a21a12 > 0 ⇔ γGγTG
∗T ∗ [(1− Ω) + 2ΩT ∗]− pγGλfTfω(G

∗) exp(−pT ∗)G∗T ∗

−γTGλfTfω
′(G∗) exp(−pT ∗)G∗T ∗ > 0,

⇔ γT [(1− Ω) + 2ΩT ∗]

pλfTfω(G∗) exp(−pT ∗)
− γTGω

′(G∗)

pγGω(G∗)
> 1.

Second Tr(M(G∗, T ∗)) < 0 ⇔ γGG
∗

pλfTfω(G∗ exp(−pT ∗)T ∗ +
γT [(1− Ω) + 2ΩT ∗]

pλfTfω(G∗ exp(−pT ∗)
> 1.

But,

γT [(1− Ω) + 2ΩT ∗]

pλfTfω(G∗) exp(−pT ∗)
−γTGω

′(G∗)

pγGω(G∗)
> 1 ⇒ γGG

∗

pλfTfω(G∗ exp(−pT ∗)T ∗+
γT [(1− Ω) + 2ΩT ∗]

pλfTfω(G∗ exp(−pT ∗)
> 1.

Consequently, if
γT [(1− Ω) + 2ΩT ∗]

pλfTfω(G∗) exp(−pT ∗)
− γTGω

′(G∗)

pγGω(G∗)
> 1, then (G∗;T ∗) is stable.

Remark 3.3. (thresholds ecological interpretation )

(i) RT,0 =
γT
δT

denotes the primary production of tree biomass relative to tree biomass loss due to human

activities and herbivory.

(ii) RG,0 =
γG
δG

is the primary production of grass biomass relative to grass biomass loss due to human

activities and herbivory.

(iii) RG =
γG

δG + fλfG
denotes the primary production of grass biomass relative to grass biomass loss due

to grazing or human action and additional fire induced biomass loss.

(iv) RT =
γT

δG + λfTfω(Ge)
is the primary production of tree biomass relative to fire-induced biomass

loss at the grassland equilibrium and the additional loss due to herbivory (grazing) or human action.

(v) RF,f =
γG

δG + fλfG + γTGTi
represents the primary production of grass biomass, relative to grass

biomass loss induced by fire, herbivory (grazing) or human action and additional grass suppression

due to tree competition, at the closed forest equilibrium.

3.3.2.2 The nonlocal case (M1 or M2 > 0)

Our aim now is to derive a condition on spatial convolution such that a steady state (Gs, Ts)
′ ∈

{(Ge, 0)
′; (0, T2)

′; (G∗, T ∗)′} is locally asymptotically stable in the case M1 = M2 = 0, but unstable

for some Mi > 0, i = 1, 2.
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In fact, the spatial patterns appearing in the nonlocal savanna model (3.5) can be studied by perform-

ing a linear stability analysis of the stationary homogeneous solution of (3.5) given by the system

(3.51). Linearizing the integro-differential system (3.5) around (Gs;Ts)
′, leads to the following re-

sults:

Proposition 3.7. (linearized system)
Set: g(x, t) = G(x, t) − Gs and h(x, t) = T (x, t) − Ts two perturbations around a non trivial

homogeneous steady state. The system obtained after linearization is:

∂g

∂t
= DG

∂2g

∂x2
+ [γG(1−Gs)− δG − γTGTs − λfGf ] g − γGGs

∫ +∞

−∞
ϕM1(x− y)g(y, t)dy

−γTGGs

∫ +∞

−∞
ϕM2(x− y)h(y, t)dy,

∂h

∂t
= DT

∂2h

∂x2
+ [(γT (1 + ΩTs)(1− Ts)− δT − λfTfω(Gs) exp(−pTs)) + γTΩTs(1− Ts)]h

+(pλfTfω(Gs) exp(−pTs)Ts − γTTs(1 + ΩTs))

∫ +∞

−∞
ϕM2(x− y)h(y, t)dy

−λfTfω′(Gs) exp(−pTs)Tsg.
(3.90)

Proof. h = T − Ts and g = G−Gs, then
∂h

∂t
=
∂T

∂t
and

∂2h

∂x2
=
∂T 2

∂x2

In the same way
∂g

∂t
=
∂G

∂t
and

∂2g

∂x2
=
∂G2

∂x2
, Then:

∂h

∂t
= DT

∂2h

∂x2
+ γT (h+ Ts) (1 + Ω (h+ Ts))

(
1−

∫ +∞

−∞
ϕM2(x− y)(h(t, y) + Ts)dy

)
−δT (h+ Ts)− λfTfω(g +Gs) exp

(
−p
∫ +∞

−∞
ϕM2(x− y)(h(t, y) + Ts)dy

)
(h+ Ts).

(3.91)

Developing the right-hand side of equation (3.91) and neglecting the nonlinear expressions in h we

get:

∂h

∂t
= DT

∂2h

∂x2
+ (γT (1 + ΩTs) + γTΩTs) (1− Ts)h− δTh− λfTfω(Gs) exp(−pTs)h

−λfTfω′(Gs) exp(−pTs)Tsg − γTTs(1 + ΩTs)

∫ +∞

−∞
ϕM2(x− y)h(y, t)dy

+λfTfpω(Gs) exp(−pTs)Ts
∫ +∞

−∞
ϕM2(x− y)h(y, t)dy,

= DT
∂2h

∂x2
+ [(γT (1 + ΩTs)(1− Ts)− δT − λfTfω(Gs) exp(−pTs)) + γTΩTs(1− Ts)]h

+(pλfTfω(Gs) exp(−pTs)Ts − γTTs(1 + ΩTs))

∫ +∞

−∞
ϕM2(x− y)h(y, t)dy

−λfTfω′(Gs) exp(−pTs)Tsg.
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In the same way we have :

∂g

∂t
= DG

∂2g

∂x2
+ γG(g +G∗)

(
1−

∫ +∞

−∞
ϕM1(x− y)(g(y, t) +G∗)dy

)
− δG(g +G∗)− λfGf(g +G∗)

−γTG

(∫ +∞

−∞
ϕM2(x− y)(h(y, t) + T ∗)dy

)
(g +G∗).

(3.92)

Developing the right-hand side of equation (3.92) and neglecting the nonlinear expressions in g we

get:

∂g

∂t
= DG

∂2g

∂x2
+ [γG(1−Gs)− δG − γTGTs − λfGf ] g − γGGs

∫ +∞

−∞
ϕM1(x− y)g(y, t)dy

−γTGGs

∫ +∞

−∞
ϕM2(x− y)h(y, t)dy.

Now we are in position to study linear stability around all non trivial homogeneous steady state.

3.3.2.2.1 Linear stability analysis around the grassland homogeneous steady stateEG = (Ge, 0)
′

Set :
b11 = γGGe,

b12 = γTGGe,

b22 = γT − δT − λfTfω(Ge).

(3.93)

The following results hold:

Proposition 3.8. (Linearized system around the grassland homogeneous steady state)
Let g(x, t) = G(x, t)− Ge and h(x, t) = T (x, t) be two perturbations around the grassland homo-

geneous steady state. The system obtained after linearization is:
∂g

∂t
= DG

∂2g

∂x2
− b11

∫ +∞

−∞
ϕM1(x− y)g(y, t)dy − b12

∫ +∞

−∞
ϕM2(x− y)h(y, t)dy,

∂h

∂t
= DT

∂2h

∂x2
+ b22h.

(3.94)

By the Fourier analysis, we get the eigenvalue problem associated with system (3.94) by setting :

g(x, t) = n exp(λt) exp(ikx) and h(x, t) = q exp(λt) exp(ikx), (3.95)

where λ is the eigenvalue associated with the wavenumber k ≥ 0, n and q are positive constants.

Therefore, using (3.95) in (3.94), we get the following system:{
λn = −DGk

2n− b11ϕM1(k)n− b12ϕM2(k)q,

λq = −DTk
2q + b22q,

(3.96)
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where ϕMi
(k) =

sin kMi

kMi

, is the Fourier transforms of the functions ϕMi
.

Therefore, the system in (3.96) can be written in the matrix form:

λ


n

q

 =


−DGk

2 − b11ϕM1(k) −b12ϕM2(k)

0 −DTk
2 + b22




n

q

 . (3.97)

Let us consider:

M =


−DGk

2 − b11ϕM1(k) −b12ϕM2(k)

0 −DTk
2 + b22

 , (3.98)

Tr(M) = − (DG +DT ) k
2 − b11ϕM1(k) + b22, (3.99)

and

Det(M) = DGDTk
4 +

[
b11DTϕM1(k)− b22DG

]
k2 − b11b22ϕM1(k). (3.100)

Therefore, the grassland homogeneous steady state is locally asymptotic stable if:

Tr(M) < 0, (3.101)

and

Det(M) > 0. (3.102)

If (3.102) is not satisfied then we have an inhomogeneous solution call pattern (deriving from a Turing

bifurcation).

We are now in position to find Turing bifurcation threshold around the grassland homogeneous steady

state. Because of the form of ϕM1(k), we set z = kM1 and denote, for simplicity, ϕM1(k) by ϕ1(z).

Theorem 3.3. (Stability of the Grassland homogeneous steady state)
If RT < 1 and ϕ1(z) ≥ 0 for all z, then the grassland homogeneous steady state is locally asymptoti-

cally stable for system (3.5).

Proof. Assume that RT < 1. Then, b22 < 0 thanks to the stability conditions of the grassland steady

state in the space-implicit model (see for instance proposition 3.5, page 99). Therefore, if ϕ1(z) ≥ 0,

then Tr(M) < 0 and Det(M) > 0.

Remark 3.4. The previous theorem ensures that for this model, the choice of Gaussian kernels can

not lead to pattern formation around the grassland homogeneous steady state. More generally, due to

the type of nonlinearities involved in our model, the class of kernel-functions called “positive-definite

functions" and characterized by a positive Fourier transform (see also Bochner [12] and Tzanakis

[108]) are such that the empirically evidenced vegetation patterns are not reachable with the model.

Then, ϕ1(z) < 0 is a necessary condition for spatial Turing instability around the grassland homoge-

neous steady state and this could happen if ϕ1 has discontinuities.
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Theorem 3.4. (Grassland homogeneous steady state instability)
Assume that RT < 1 and we have a range of positive values of z such that:

ϕ1(z) < 0 (3.103)

holds ; If there exists a critical point MT
1 such that :

M1 > MT
1 ⇒ 1

(M1)2
≤ S1(z1), (3.104)

where

S1(z) =
−ϕ1(z)

z2

(
b11
DG

)
, (3.105)

and z1 is the value of z such that S1(z) takes it global maximum, then the homogeneous grassland

steady state is unstable. Furthermore, system (3.5) undergoes Turing bifurcation at M1 =MT
1 .

Proof. Assume that RT < 1 (then b22 < 0) and we have a range of positive values of z such that:

ϕ1(z) < 0. Writing Det(M) as a binomial expression of
z2

M2
1

implies:

Det(M) = DGDT
z4

M4
1

+
[
b11DTϕ1(z)− b22DG

] z2
M2

1

− b11b22ϕ1(z),

= DGDT

[(
z2

M2
1

+
b11DTϕ1(z)− b22DG

2DGDT

)2

−
(
b11DTϕ1(z)− b22DG

)2
4(DGDT )2

− b11b22ϕ1(z)

DGDT

]

=
1

DGDT

[
DGDT

z2

M2
1

+
b11DTϕ1(z)− b22DG

2

]2
− 1

4DGDT

[ (
b11DTϕ1(z)− b22DG

)2
+4DGDT b11b22ϕ1(z)

]

=
1

DGDT

[
DGDT

z2

M2
1

+
b11DTϕ1(z)− b22DG

2

]2
− 1

4DGDT

[
b11DTϕ1(z) + b22DG

]2
=

1

DGDT

[
DGDT

z2

M2
1

− b22DG

]
×
[
DGDT

z2

M2
1

+ b11DTϕ1(z)

]
.

(3.106)

DGDT
z2

M2
1

− b22DG > 0 because b22 < 0 and therefore Det(M) ≤ 0 gives:

1

(M1)2
≤ −ϕ1(z)

z2

(
b11
DG

)
.

Consequently, (Ge, 0)
′ is unstable. To show that system (3.5) undergoes spatial Turing bifurcation at

MT
1 , we need to verify that spatial Turing bifurcation occurs prior to the temporal Hopf bifurcation

(case where Tr(M) = 0 and Det(M) > 0) as M1 increases to MT
1 . From the above argument, we
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only need to show that if (3.101) fails then (3.102) must have already failed as M1 increases. When

(3.101) fails, we have:

ϕ1(z) =
−(DG +DT )

z2

M2
1
+ b22

b11
. (3.107)

Plugging (3.107) into 3.106), we see that

Det(M) = −
(
DT

z2

(M1)2
+ b22

)2

≤ 0. (3.108)

Thus, (3.102) does not hold and this ends the proof.

Remark 3.5. The space period σG of the spatial structure is given by: σG =
2πM1

z1
(see also Genieys

et al. [42], page 71) where z1 is given in the previous theorem.

3.3.2.2.2 Linear stability analysis around the forest homogeneous steady stateETi
= (0, Ti)

′,i =
1, 2. Set:

m11 = −γG + (δG + λfGf) + γTGTi,

m∗
22 = γTΩTi(1− Ti),

m∗∗
22 = γTTi(1 + ΩTi).

Proposition 3.9. (linearized system around the forest homogeneous steady state)
Set: g(x, t) = G(x, t) and h(x, t) = T (x, t)− Ti two perturbations around the forest homogeneous

steady state. The system obtained after linearization is:
∂g

∂t
= DG

∂2g

∂x2
−m11g,

∂h

∂t
= DT

∂2h

∂x2
+m∗

22h−m∗∗
22

∫ +∞

−∞
ϕM2(x− y)h(y, t)dy.

(3.109)

By considering the eigenvalue problem of the system (3.109) and in the same way like in propo-

sition 3.8, we obtain the following theorem:

Theorem 3.5. (Forest homogeneous steady state stability)

If RF < 1 and ϕ2(z) ≥
m∗

22

m∗∗
22

for all z, then the forest homogeneous steady state is locally asymptoti-

cally stable for system (3.5), where ϕ2(z) denotes the Fourier transform of ϕM2 .

Proof. The proof is done like for theorem 3.3, page 105. Hence, we omitted it.

Remark 3.6. In the case of no tree-tree facilitation, by the previous theorem, the use of Gaussian

kernels can not lead to inhomogeneous patterned solution in the vicinity of forest homogeneous steady

state because with Ω = 0, m∗
22 = 0 and then, the condition (with Gaussian kernels) of local stability

of the forest homogeneous steady state is always verified.
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Theorem 3.6. (Forest homogeneous steady state instability)
Assume that RF,f < 1 and we have a range of positive values of z such that:

ϕ2(z) <
m∗

22

m∗∗
22

(3.110)

holds. If there exist a critical value MT
2 > 0 such that:

M2 > MT
2 ⇒ 1

(M2)2
≤ S2(z2), (3.111)

where

S2(z) = −ϕ2(z)

z2

(
m∗∗

22

DT

)
+

1

z2

(
m∗

22

DT

)
, (3.112)

and z2 is the value of z such that S2(z) takes a global maximum. Then, the forest homogeneous steady

state is unstable and system (3.5) undergoes a Turing bifurcation at M2 =MT
2 .

Proof. The proof is similar to the proof of the theorem 3.4. Therefore, it is omitted.

Remark 3.7. The space period of the spatial structures σT observed in this case is given by σT =
2πM2

z2
(see also Genieys et al. [42]), where z2 is given in the previous theorem.

3.3.2.2.3 Linear stability analysis around the savanna homogeneous steady stateE∗ = (G∗, T ∗)

Set:
a11 = −γGG∗,

a12 = −γTGG
∗,

a21 = −λfTfω′(G∗) exp(−pT ∗)T ∗,

a22 = −γT [(1− Ω)T ∗ + 2Ω(T ∗)2] + pλfTfω(G
∗) exp(−pT ∗)T ∗,

c = γTΩT
∗(1− T ∗).

Proposition 3.10. (Linearized system around the savanna coexistence state)
Let g(x, t) = G(x, t) − G∗ and h(x, t) = T (x, t) − T ∗ be two perturbations around the savanna

homogeneous steady state. The system obtained after linearization is:
∂g

∂t
= DG

∂2g

∂x2
+ a11

∫ +∞

−∞
ϕM1(x− y)g(y, t)dy + a12

∫ +∞

−∞
ϕM2(x− y)h(y, t)dy,

∂h

∂t
= DT

∂2h

∂x2
+ (a22 − c)

∫ +∞

−∞
ϕM2(x− y)h(y, t)dy + ch+ a21g.

(3.113)

Then, proceeding in the same way as it was in system (3.94), we get the following eigenvalue prob-

lem of the system (3.113) by setting g(x, t) = n exp(λt) exp(ikx), and h(x, t) = q exp(λt) exp(ikx),

where λ is the eigenvalue and k the associated wavenumber:{
λn = −DGk

2n+ a11ϕM1(k)n+ a12ϕM2(k)q,

λq = −DTk
2q + cq + (a22 − c)ϕM2(k)q + a21n,

(3.114)
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where ϕMi
(k), i = 1, 2 is the Fourier transforms of the function ϕMi

(x).

Proposition 3.11. (Characteristic equation)
The Characteristic equation of system (3.114) is:

λ2 − Tr(k,M1,M2)λ+Det(k,M1,M2) = 0, (3.115)

where:

Tr(k,M1,M2) = −(DG +DT )k
2 + a11ϕM1(k) + a22ϕM2(k) + (1− ϕM2(k))c, (3.116)

and

Det(k,M1,M2) = DGDTk
4 −

[
a22DGϕM2(k) + a11DTϕM1(k) + cDG(1− ϕM2(k))

]
k2+

a11(a22 − c)ϕM1(k)ϕM2(k) + ca11ϕM1(k)− a12a21ϕM2(k).
(3.117)

From the characteristic equation (3.115), we can write the stability conditions of the savanna

homogeneous steady state (G∗, T ∗)′ as follows:

Tr(k,M1,M2) < 0, (3.118)

and

Det(k,M1,M2) > 0. (3.119)

To determine the stability boundary, we need to determine the thresholds for k, M1, and M2 such that

only one of the eigenvalue of the characteristic equation (3.115) crosses the origin from the left to

the right and other eigenvalues have negative real parts. If (3.118) holds and (3.119) is not satisfied,

then there is a real eigenvalue crossing the origin. Initially (k =M1 =M2 = 0), (3.118) and (3.119)

hold. So we find the thresholds kT , MT
1 and MT

2 so that (3.119) is not satisfied (it is call Turing

Bifurcation). Therefore, we find the value of parameters for which Det(k,M1,M2) is non-negative

for all values of k, M1 and M2 and equals to zero at the points of its minima. Then, these thresholds

correspond to the minima of the stability boundary region and satisfy:

Det(k,M1,M2) = 0,
∂Det(k,M1,M2)

∂M1

= 0,
∂Det(k,M1,M2)

∂M2

= 0,
∂Det(k,M1,M2)

∂k
= 0.

(3.120)

With the given conditions in (3.120) we deduce the following result:

Theorem 3.7. (Stationary pattern condition around the savanna homogeneous steady state)
Consider z1 and z2 two positive solutions of the equation tan(z) = z (z1 < z2) such that: µj =
sin zj
zj

< 0, j = 1, 2. Then, suppose that:

R∗
1 −R∗

2 > 1 and
a11(c− a22)µ1µ2

ca11µ1 − a12a21µ2

< 1. (3.121)
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3.3. Mathematical analysis

Assume also that:

Mj > MT
j := zj

(
DGDT

(a11a22 − ca11)µ1µ2 + ca11µ1 − a12a21µ2

)1/4

, j = 1, 2, (3.122)

and

k > kT :=

(
(a11a22 − ca11)µ1µ2 + ca11µ1 − a12a21µ2

DGDT

)1/4

. (3.123)

Then we have the appearance of periodic solutions in space in the neighborhood of savanna homoge-

neous steady state.

Proof. Suppose that R∗
1 −R∗

2 > 1 and
a11(c− a22)µ1µ2

ca11µ1 − a12a21µ2

< 1, we have:

Det(k,M1,M2) = DGDTk
4 −

[
a22DGϕM2(k) + a11DTϕM1(k) + cDG(1− ϕM2(k))

]
k2+

a11(a22 − c)ϕM1(k)ϕM2(k) + ca11ϕM1(k)− a12a21ϕM2(k)

and

ϕMi
(k) =

sin(kMi)

kMi

, i = 1, 2.

We are interested by the determination of thresholds kT , MT
1 and MT

2 so that:

Det(kT ,MT
1 ,M

T
2 ) = 0.

These thresholds are solutions of the equations:

Det(k,M1,M2) = 0,
∂Det(k,M1,M2)

∂M1

= 0,
∂Det(k,M1,M2)

∂M2

= 0
∂Det(k,M1,M2)

∂k
= 0.

(3.124)

Differentiating Det(k,M1,M2) with respect to M1 and M2 and using the fact that:
∂Det(k,M1,M2)

∂M1

= 0 and
∂Det(k,M1,M2)

∂M2

= 0 we obtain:

(a11a22 − ca11)

(
ϕM2(k) +

ca11 − a11DTk
2

a11a22 − ca11

)
∂ϕM1

∂M1

= 0,

and

(a11a22 − ca11)

(
ϕM1(k)−

DG(a22 − c)k2 + a12a21
a11a22 − ca11

)
∂ϕM2

∂M2

= 0.

Then we have: 
ϕM2(k) =

a11DTk
2 − ca11

a11a22 − ca11
=
DTk

2 − c

a22 − c
or

∂ϕM1

∂M1

= 0,

ϕM1(k) =
DG(a22 − c)k2 + a12a21

a11a22 − ca11
or

∂ϕM2

∂M2

= 0.

(3.125)

Ph.D Thesis : Modelling tree-grass dynamics in humid savanna ecosystems 110 Tega II Rodrigue © UY1 2024



3.3. Mathematical analysis

First, if:

ϕM2(k) =
DTk

2 − c

a22 − c
and ϕM1(k) =

DG(a22 − c)k2 + a12a21
a11a22 − ca11

,

then Det(k,M1,M2) =
a12a21
c− a22

DTk
2 + c

a12a21
a22 − c

. Using the fact that
∂Det(k,M1,M2)

∂k
= 0, we

obtain k = 0 and then we return to the temporal case.

Second, if:

ϕM2(k) =
DTk

2 − c

a22 − c
and

∂ϕM2

∂M2

= 0,

then as previously: Det(k,M1,M2) =
a12a21
c− a22

DTk
2 + c

a12a21
a22 − c

and we can not have Turing bifurca-

tion there.

Third, if:

ϕM1(k) =
DG(a22 − c)k2 + a12a21

a11a22 − ca11
and

∂ϕM2

∂M2

= 0,

then we have the same results as before. Finally, if:

∂ϕM1

∂M1

= 0 and
∂ϕM2

∂M2

= 0,

we obtain

tan(kM1) = kM1 and tan(kM2) = kM2.

Set z1 = kM1 and z2 = kM2, then z1 and z2 are solutions of :

tan(z) = z. (3.126)

Set:

µ1 =
sin(z1)

z1
and µ2 =

sin(z2)

z2
.

Det(k,M1,M2) = 0 gives that:

(kT )2 =
DGa22µ2 + a11DTµ1 + cDG(1− µ2) +

√
Σ

2DGDT

, (3.127)

with:

Σ = (DGa22µ2 + a11DTµ1 + cDG(1− µ2))
2−4DGDT ((a11a22 − ca11)µ1µ2 − a12a21µ2 + ca11µ1) ,

and using the fact that
∂Det(k,M1,M2)

∂k
= 0 we obtain:

(DGa22µ2 + a11DTµ1 + cDG(1− µ2))
2 = 4DGDT ((a11a22 − ca11)µ1µ2 − a12a21µ2 + ca11µ1) .

(3.128)

Note that (a11a22 − ca11)µ1µ2 − a12a21µ2 + ca11µ1 > 0 thanks to the second assumption in (3.121).
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3.4. Numerical illustration

Thus, the relation in (3.128) is well defined and therefore:

(kT )2 =

√
(a11a22 − ca11)µ1µ2 − a12a21µ2 + ca11µ1

DGDT

. (3.129)

The associated values of M1 and M2 are

MT
1 = z1

(
DGDT

(a11a22 − ca11)µ1µ2 + ca11µ1 − a12a21µ2

)1/4

, (3.130)

and

MT
2 = z2

(
DGDT

(a11a22 − ca11)µ1µ2 + ca11µ1 − a12a21µ2

)1/4

. (3.131)

Because of the difficulty of interpretation of the second condition in (3.121), we find a sufficient

condition to the previous one. Set:

R∗
3 =

γT (1 + ΩT ∗)

pλfTfω(G∗) exp(−pT ∗)
.

It is straightforward to observe that R∗
1−R∗

2 < R∗
3 and that R∗

3 > 1 implies that the second condition

of (3.121) is valid. Therefore, the following result holds true:

Theorem 3.8. (Sufficient condition)

If R∗
1 −R∗

2 > 1, then the conclusion of Theorem 3.7 is valid.

Remark 3.8.1. R∗
3 is the primary production of tree biomass and additional production of tree biomass

due to tree-tree facilitation relative to fire induced tree biomass loss.

2. Condition (3.122) gives the range beyond which the nonlocal interactions are sufficient for the coex-

istence of both tree and grass inhomogeneous solutions in the same space domain.

3. Due to the implicit nature of the equation (3.117), it is difficult to provide explicit expression of

Turing bifurcation threshold analytically and hence we have describe one way in previous theorem

to determine a triplet (kT ,MT
1 ,M

T
2 ) as a suitable choice of M1 and M2 to obtain stationary Turing

Pattern (see also Banerjee and Volpert [8]). However the space period of spatial structure is σ =
2π

kmax
where kmax is the most unstable mode, that could be computed numerically.

3.4 Numerical illustration

Our model is designed for humid savannas. Then, carrying capacities considered, before the normal-

ization of biomasses are KG = 17t.ha−1 and KT = 340t.ha−1. These values were obtained from

Yatat Djeumen et al. [124] considering that the mean annual rainfall W is equal to 1500 mm.yr−1.
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3.4. Numerical illustration

We also assume that DG = 0.1 and DT = 1 (see e.g. Yatat Djeumen et al. [122]). The finite dif-

ference method was used to discretize the spatial part and on the other hand, the non standard finite

difference method (Anguelov et al. [4]) was used to discretize the temporal part of the problem given

by the system (3.5).

The numerical scheme for the problem given by system (3.5) is obtained by using non standard

finite method for the discretization of the temporal part of the system and difference finite method for

the spatial part. We subdivided the space domain (0, l) in n+ 1 intervals such that:

x0 = 0 < x1 < x2 < ... < xn < xn+1 = l,

where

∀ j = 1, ..., n ∆x = xj+1 − xj =
l

n+ 1
and xj = j∆x.

In the same way, we subdivided the time interval such that:

t0 < t1 < t2 < ... < ti < tj+1 < ... and ti = i∆t.

We denote by Gi
j and T i

j respectively the value of G and T at the time ti and at the space point xj . Re-

mark first that in non standard method, non linear terms are substituted by a non local approximation.

Second, the standard denominator ∆t in each discrete derivative is replaced by a time-step function

0 < φ(∆t) < 1 such that φ(∆t) = ∆t + O(∆t). The non-standard approximation for the system

(3.5) are given by:

Gi+1
j −Gi

j

φ1(∆t)
= DG

Gi
j+1 +Gi

j−1 − 2Gi
j

∆x2
+ (γG − δG − λfGf)G

i
j −

(
γGϕM1 ∗Gi

j + γTGϕM2 ∗ T i
j

)
Gi+1

j ,

T i+1
j − T i

j

φ2(∆t)
= DT

T i
j+1 + T i

j−1 − 2T i
j

∆x2
+
(
γT − δT + ΩγTT

i
j

)
T i
j −

(
γTϕM2 ∗ T i

j + ΩγTT
i
jϕM2 ∗ T i

j

)
T i+1
j

−λfTfω(Gi
j) exp (−pϕM2 ∗ T i

j )T
i+1
j ,

(3.132)

with 
φ1(∆t) =

e(γG−δG−λfGf)∆t − 1

γG − δG − λfGf
,

φ2(∆t) =
e(γT−δT )∆t − 1

γT − δT
,

(3.133)
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3.4. Numerical illustration

and

∆x ≤ min

(√
2DG

γG − δG − λfGf
;

√
2DT

γT − δT

)
,

∆t ≤ min


ln

[
1 +

γG − δG − λfGf
2DG

∆x2 − (γG − δG − λfGf)

]
γG − δG − λfGf

;

ln

[
1 +

γT − δT
2DT

∆x2 − γT − δT

]
γT − δT

 .

(3.134)

Recall that RG > 1 implies that γG − δG − λfGf > 0 and RT,0 > 1 implies that γT − δT > 0.

Second, in system (3.132) ϕM2 ∗ T i
j is an approximation of the convolution term

∫ +∞

−∞
ϕM2(x −

y)T (y, t)dy, done by the Matlab function “trapz". It is the same for ϕM1 ∗Gi
j .

Our numerical illustrations in this paper are suitable for a 9 hectare (ha) savanna square domain

(for instance, Martinez-Garcia et al. [68] considered for example a square patch of savanna of 1

ha). Due to the fact that we have restricted the mathematical analysis to a domain of dimension 1,

numerical illustrations are carried out in the space interval [0; 300]. The unit of space considered is

meter (m) and unit of time is year (yr).

Parameters DG DT γG δG γT δT λfG λfT p g0 Ω

Values 0.1 1 2.7 0.1 1 0.3 0.7 0.8 3.4 0.14 5

Table 3.4: Parameter values for simulation.

Parameter values (see Table 4.2, page 163) used for model (3.5) are based on (Yatat Djeumen

et al. [123, 124], Accatino et al. [2]). Only Ω, DG and DT are assumed.

We first illustrate a bifurcation diagram, for the space-implicit model related to system (3.5), with

respect to variations of the fire frequency f and γTG, the parameter that shapes the competition of tree

on grass.

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

γ
TG

 [yr
−1

]

f 
[y

r−
1
]

Figure 3.2: Bifurcation diagram according to variations of γTG and f . The blue triangle corresponds
to the savanna monostability, the red square stands for the forest-grassland bistability, the green star
denotes the forest monostability and the yellow circle represents the grassland-savanna bistability.
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3.4. Numerical illustration

From figure 4.2, one deduces that, at least for parameters considered in table 4.2, stable forest state

is easily found, but, for low values of tree-grass competition, savannas are present. We also notice

that when we approach the annual fire regime and proceed beyond we manage to recover the grass-

land state as part of a bistability situation. Then, the increase of the tree-grass competition parameter

γTG, leads to the transition from savanna to forest or grassland-savanna to forest-grassland. In fact,

in humid zone, the vegetation is intrinsically dominated by trees, that exert competition pressure on

grass biomass, such that grass may be easily suppressed.

The increase of fire frequency leads to the reduction of tree biomass but thanks to tree-tree coopera-

tion, trees can perpetuate. Therefore depending on the tree-grass competition parameter, the system

switches are either savanna to grassland-savanna or forest to forest-grassland.

Now we want to illustrate the spatial structuring of trees and grasses in the various cases displayed on

the previous bifurcation diagram (see figure 4.2 in page 163).

3.4.1 Case of forest monostability (f = 0.9 and γTG = 5.1)

With the choice of parameters in table 4.2, the homogeneous forest steady state ET2 = (0, 0.9477)′

is locally asymptotic stable in absence of nonlocal interactions. Based on theorem 3.6, figure

2 4 6 8 10 12 14 16 18 20

z

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

S
2

First Band modes

of instability

Second Band modes

of instability

Figure 3.3: Graph of S2 as a function of z. The parameter values are given in table 4.2. The red

dashed line stands for
1

(M2)2
.

3.3 depicts that the forest homogeneous steady state is unstable for those M2 such that the curve of

S2(z) intersects with the line
1

(M2)2
. For those values, we see that the minimum M2 required for the

emergence of the Turing instability verified approximately
1

(MT
2 )

2
= 0.0798 (see the red dashed line

in figure 3.3), then MT
2 = 3.54m. Therefore, we choose M1 = 0.5m and M2 = 20m and we consider

the initial data as a random perturbation of the forest homogeneous steady state (0, T2)
′:

G(x, 0) = 0 + ϵ1, T (x, 0) = T2 + ϵ2 with 0 ≤ ϵi ≤ 10−3
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(a) Grass distribution in space at t = 8000.
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(b) Tree distribution in space at t = 8000.

Figure 3.4: Illustration of Grass and Tree profiles in space.

We observe from Figure 3.4 that the solution of system (3.5) converges toward a space inhomo-

geneous forest solution, thanks to a Turing bifurcation.

The key thresholds in that situation are RF (the primary production of grass biomass, relative to

grass biomass loss induced by fire, herbivory (grazing) or human action and additional grass suppres-

sion due to tree competition, at the closed forest equilibrium) and M2 the range of nonlocal competi-

tion of trees on grasses. Using a periodogram, we can numerically determine the number of patches

in our inhomogeneous solution and we can therefore compute the associated spatial wavelength.

0 10 20 30 40 50 100 200 300

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 3.5: Graph of a periodogram of forest inhomogeneous solution

From figure 3.5, we have 10 patches in the spatial profile of forest distribution (see also panel

(d) in figure 3.4). Therefore, the numerical wavelength is σT = 300
10

= 30m. However, from the

linear stability analysis and the parameter values considered in this case, the theoretical wavelength

is σT = 31.4m which is quite close of the numerical space period. We also found that for increasing

values of M2, the space period (wavelength) σT increases.
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(a) Trees distribution at t = 8000 with M2 = 30m.
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(b) Periodogram of trees distribution with M2 = 30m
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(c) Trees distribution at t = 8000 with M2 = 40m.
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(d) Periodogram of trees distribution with M2 = 40m

Figure 3.6: Illustration of Trees distribution profiles in final time and the corresponding periodogram.

Figure 3.6 shows that the numerical wavelength of tree distribution is σT = 300
7

= 42.8m with

M2 = 30m and σT = 300
5

= 60m with M2 = 40m. By linear stability analysis, the space period is

σT = 47.1m for M2 = 30m, σT = 62.8m for M2 = 40m

3.4.2 Case of savanna monostability (f = 0.9 and γTG = 1.7)

We find that the savanna steady state E∗ = (0.1345, 0.9453)′ is locally asymptotically stable in the

absence of nonlocal interactions. Moreover, the minimal positive solution of the equation tan(z) = z

is z1 = 4.49. We take z2 = 10.9 which is also solution of tan(z) = z.

From these two values, we find µ1 = −0.22, µ2 = −0.09 and we get the Turing bifurcation condi-

tion: M1 > 5.07m and M2 > 12.32m. For illustration we choose M1 = 5.5m, M2 = 15m and we

consider the initial data as a random perturbation of the savanna equilibrium (G∗, T ∗).
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(a) grass distribution at t = 8000.
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(b) Tree distribution at t = 8000.

Figure 3.7: Illustration of Grass and Tree profiles in space at final times.

We observe from figure 3.7 that, solutions of system (3.5) converge toward a space inhomoge-

neous tree-grass coexistence solution thanks, to a Turing bifurcation. In the same way as before, we
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3.4. Numerical illustration

are interested in the wavelength resulting from this inhomogeneous solution.
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Figure 3.8: Periodogram of savana inhomogeneous solution

Figure 3.8 depicts that the savanna inhomogenous solution illustrated in figure 3.7 has 14 cells.

Then, the numerical wavelength in this case is σ = 300
14

= 21.43m. Theoretically, it is necessary to

determine the most growing mode kmax for wich Det(kmax,M1,M2) < 0 and the wavelength will be

σ =
2π

kmax

.
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Figure 3.9: Graph of Det(k,M1,M2) with M1 = 5.5m and M2 = 15m

From figure 3.9, kmax = 0.28 and then σ = 22.43m.

The value of M1 used previously could be questioned and seen too large. However, note that

the Turing condition that we obtained is only a sufficient condition. Therefore, it may be possible

that outside of these values, we can have a change of sign of Det(k,M1,M2) which leads to a Tur-

ing bifurcation. To illustrate that point, we consider M1 = 0.5m and M2 = 25m and we draw

Det(k,M1,M2).

Ph.D Thesis : Modelling tree-grass dynamics in humid savanna ecosystems 118 Tega II Rodrigue © UY1 2024



3.4. Numerical illustration
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Figure 3.10: Graph of Det(k,M1;M2) with M1 = 0.5m and M2 = 25m.

From figure 3.10, we observe that it is possible to have a Turing bifurcation with M1 = 0.5m and

M2 = 25m due to the change of sign of Det(k,M1,M2). For these values of M1 and M2 we can thus

illustrate the inhomogeneous solution obtained (see figure 3.11).
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(a) Grass distribution at t = 12000.
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(b) Tree distribution at t = 12000.

Figure 3.11: Illustration of Grass and Tree profiles in space at final times.

The graph of periodogram is illustrated in figure 3.12.
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Figure 3.12: Periodogram of savana inhomogeneous solution

From figure 3.12, the numerical space period is σT = 37.5m and the theoretical wavelength is

σT =
2π

0.172
= 36.5m.
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3.4. Numerical illustration

3.4.3 Case of bistability forest-grassland (f = 0.98 and γTG = 5.1)

In this case, in absence of nonlocal interactions we have a bistability situation with two homogeneous

steady states: a grassland steady state EG and a forest steady state ET2 . We may observe the spatial

structuring of the two state variables in two cases: first around the grassland homogeneous steady

state and second around the forest homogeneous steady state.

3.4.3.1 Around the grassland homogeneous steady state

In this section we will consider DG = 0.01 and, for an easy display of figures, we reduce the size of

the domain to 100m, with EG = (0.7089; 0)′.

2 4 6 8 10 12 14 16 18 20

z

-25

-20

-15

-10

-5

0

5

S
1 First instability

band modes

Second instability

band modes

Figure 3.13: Graph of S1 as a function of z with the parameter values given in table 4.2. The red

dashed line stands for
1

(M1)2
.

Based on theorem 3.4, figure 3.13 illustrates that grassland homogeneous steady state is unstable

for values of M1 such that the curve of S1(z) intersects with the line
1

(M1)2
. The minimal value of

M1 such that the grassland equilibrium is unstable verified
1

(MT
1 )

2
= 2.26 (then MT

1 = 0.6647m)

and we choose for illustration around the grassland equilibrium M1 = 1.5m and M2 = 20m.
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(a) Tree-grass distribution at t = 1000.
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(b) Tree-grass distribution at t = 1200.
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(c) Tree-grass distribution at t = 1500.
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(d) Tree-grass distribution at t = 5000.

Figure 3.14: Illustration of Grass and Tree distributions.

Figure 3.14 suggests the existence of a metastable tree-grass pattern. In fact, from panel (a) one

could believe that we have an inhomogeneous solution of coexistence of the two species; but when

we increase the simulation time, we observe that we are moving rather towards the inhomogeneous

forest solution. So in this case we have the coexistence of unstable grassland inhomogenous solution

and stable tree inhomogeneous solution. This type of solution is called a metastable state (see also

Eigentler and Sheratt [35]). However, if we stop at a final time equal to 1000, we observe that the

grassy biomass benefits from the space freed by the trees. We can further illustrate it with figure 3.15

for M1 = 3m and M2 = 20m.
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Figure 3.15: Tree-grass distribution at t = 1000
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3.4.3.2 Around the forest homogeneous steady state

The forest homogeneous steady state is ET2 = (0, 0.9477)′. As previously, to find the Turing bifurca-

tion threshold MT
2 , we need to draw the curve of S2(z).
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Figure 3.16: Graph of S2 as a function of z with the parameter values given in table (4.2)

Figure 3.16 shows that the minimal value of M2 such that the forest homogeneous steady state is

unstable verified
1

(MT
2 )

2
= 0.0798 (then MT

2 = 3.54m). Hence, for illustration, we choose M1 =

0.5m and M2 = 20m.
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(a) Tree-grass distribution at t = 1000.
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(b) Tree-grass distribution at t = 2000.
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(c) Tree-grass distribution at t = 3000.
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(d) Tree-grass distribution at t = 5000.

Figure 3.17: Illustration of Grass and Tree distributions.

Then by figure 3.17 the nonlocal system (3.5) converges toward a forest inhomogeneous stable

solution, and numerical space period is σT = 33.33m while theoretically, the space period is σT =

31.42m.
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3.4.4 Case of bistability savanna-grassland (f = 0.98 and γTG = 1.7)

Considering parameter values in table 4.2, the savanna homogeneous steady stateE∗ and the grassland

homogeneous steady state EG are both locally asymptotically stable for the space implicit model

related to system (3.5). In this section, the space domain is [0, 100] and DG = 0.01

3.4.4.1 Around the savanna homogeneous steady state

Around the savanna homogeneous steady state E∗ = (0.1136, 0.9455)′ the Turing bifurcation condi-

tion are M1 > 2.97m and M2 > 7.21m. To illustrate the appearance of inhomogeneous solution, we

choose M1 = 3m and M2 = 20m. Therefore, we have figure 3.18.
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Figure 3.18: Tree-grass distribution at t = 10000.

The system converges toward a space inhomogeneous tree-grass coexistence solution (savanna)

thanks, to a Turing bifurcation. We also observe that in figure 3.18, we have grass localized solution

in space and regular tree spots.

3.4.4.2 Around the grassland homogeneous steady state

The grassland homogeneous steady state is EG = (0.7089, 0)′ and is the same as before (see section

3.4.3.1). The Turing bifurcation threshold is the same as before. We choose M1 = 1.5m, M2 = 20m

for illustration. Figure 3.19 illustrates the spatial distribution of the inhomogeneous tree-grass (i.e.

savanna) solution.
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Figure 3.19: Tree-grass distributions at t = 10000.

Figure 3.19 shows a high density under the trees which is due to the range of interactions between

the grasses which is quite low. However, if we push this range to M1 = 3m, we obtain the following

figure 3.20 which is similar to the structure obtained around the savanna homogeneous steady state.
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(a) Tree-grass distribution at t = 10000.
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(b) zooming of grass distribution at t = 10000.

Figure 3.20: Illustration of Grass and Tree profiles in space at final times.

3.5 Discussion

We analyzed an integro-differential reaction-diffusion fire-mediated tree-grass interactions model, al-

lowing to reach spatial patterns (namely, regular spotted pattern ) sometimes observed in humid savan-

nas. Starting from the parsimonious 2-dimensional ODE-based model of grassy and woody biomasses

fire-mediated interactions studied in Yatat Djeumen et al. [124], we introduced local biomass propa-

gation through Laplace operators, like in Yatat Djeumen et al. [122], as well as nonlocal interaction

terms. Hence, our model improves and extends previous ODE models (e.g. Yatat Djeumen et al.

[122, 124]) by explicitly taking into account spatial components and nonlocal terms of tree-grass in-

teractions. We showed that the combination of the nonlocal tree-tree facilitation and the nonlocal

tree-tree, grass-grass and tree-grass competition, may induce spatial patterns. In fact, nonlocal inter-

actions break up the homogeneous distribution of tree and grass biomass resulting in the emergence

of a regular spotted pattern (see for instance Tian et al. [104]). Then, novelties in this chapter include

the consideration of nonlocal interaction terms (both facilitation and competition) on both trees and

grasses dynamics. Indeed, in the absence of nonlocal terms, our model is unable to produce spatial
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patterns since the associated reaction-diffusion model is monotone decreasing (see also Yatat Djeu-

men et al. [122]). A key technical point is the requirement on kernels that must be constant functions

with compact supports. Indeed, we show that Gaussian or Laplace-like kernels are not able to produce

patterns in our model. According to Martinez-Garcia et al. [68], kernels whose Fourier transforms

take negative values for some wavenumber values, will lead to clustering in some specific models

with short range facilitation.

On the other hand, it is now acknowledged that fire is one of the key factors that shape the physiog-

nomy of savanna vegetation, in general, and particularly, in humid savannas where rainfall is sufficient

to promote very high grass biomass production which in turn constitutes the principal fuel for fires.

However, as a response to the negative impact of fires, trees have developed ‘defence’ or resilience

mechanisms in order to limit or to reduce the fire-induced tree mortality. Indeed, tree-tree facilitation

or cooperation promotes germination of tree’s seeds, the recruitment of new trees by improving the

conditions under canopy (shading, litter and nutriments, enhanced water infiltration). We modelled

this effect thanks to the Ω parameter that was added to the reference ODE model of Yatat Djeumen

et al. [124] to make the unsaturated logistic growth a non linear function of trees biomass (T ). By

enhancing woody biomass growth, tree-tree facilitation indirectly reduces the grass layer or favours

an heterogeneous spatial distribution of the grass layer which reduces fire intensity along with the

potential of fire to spread all over the landscape.

Based on parameter values used for the bifurcation diagram (see figure 4.2, page 163), we explore

and illustrate in the different regions of the bifurcation diagram, the spatial structuring of trees and

grasses resulting from nonlocal interaction terms. We obtained broadly four types of inhomogeneous

solutions: first, what we call forest inhomogeneous solution (obtained around the monostable forest

space-homogeneous equilibrium) which are characterized by an absence of grass biomass and regular

tree spots in the space domain. Second, the savanna inhomogeneous solutions which featured both

tree and grass spots. Third, the coexistence of “localized" grass pattern and regular tree spots and,

finally, the presence of metastable patterns obtained in the conditions of the forest-grassland bistable

state. In each of these cases we were able to characterize a minimal range of nonlocal interactions for

the appearance of spatial structures. In the case of the forest inhomogeneous state, we note that the

grass biomass does not take advantage of the space between the ligneous plants, where it is absent.

This may result from the fact that grassland space-homogeneous equilibrium is unstable and also from

the strong pressure (competition) led by trees on grasses. We also observe the presence of extinction

zones were none of the two life forms establish (see for example figure 3.4, page 116). In the case of

the savanna inhomogeneous solution, we consider an initial distribution of the vegetation around the

monostable savanna equilibrium. We find that the ligneous plants are in phase with the grass biomass.

Likewise in this case, grasses do not take advantage of the space between the trees and exclusion

zones are also created (see figure 3.7, page 117). On the other hand, we notice that the savanna

inhomogeneous state is favored by the high level of woody biomass due to the fact that R∗
1 − R∗

2 is

an increasing function of T ∗. In fact, one of the necessary conditions for the existence of savanna

inhomogeneous solution is R∗
1 − R∗

2 > 1. We also notice the appearance of metastable structures

Ph.D Thesis : Modelling tree-grass dynamics in humid savanna ecosystems 125 Tega II Rodrigue © UY1 2024



3.5. Discussion

when the initial setting is the forest-grassland bistability. Precisely, we considered vegetation initial

distribution around the stable grassland homogeneous steady state while parameter values ensured

that the forest homogeneous state is also stable. Therefore, for a substantial time of simulation up to

an order of 103 years, we can see that the grass biomass takes advantage of the space between the

trees (see figure 3.15, page 121).

Here, nonlocal competition between the grass tuft is responsible for this configuration. However,

when the final simulation time is high (> 103 years), the previous tree and grass spots configuration is

no longer observed. Instead, we find a regular structure of tree spots (see panel (d) figure 3.14, page

121). In this case, coexistence of tree and grass spots appears as a long transient phase to a tree spots

pattern, which seems qualitatively compatible with the type of pattern illustrated in Fig.1-a). Ac-

cording to Eigentler and Sheratt [35], metatastable pattern is an unstable pattern whose instability is

caused by a very small unstable eigenvalue. In case of savanna-grassland bistability, we numerically

observe another type of structure that we assimilate to a coexistence of localized grass inhomoge-

neous solution and regular tree spots (see figure 3.20, page 124). In fact, Vanag and Epstein [114]

suggested that if the system is in the spatial bistability domain, then we must apply a perturbation of

appropriate shape and sufficient amplitude in order to cause a transition to possibly localized inho-

mogeneous patterns. The necessary and sufficient condition for localized patches is the coexistence

of homogeneous cover and periodic pattern (Tlidi et al. [106], Koga and Kuramoto [59]). In this case,

localized inhomogeneous solutions can be interpreted as a nonlinear front between spatially periodic

tree distribution and aperiodic grass distribution.

Another line of discussion relies on the size of tree patches observed numerically (i.e. σT ) and

its comparison with the size (width) of the tree nonlocal interaction kernel (M2) and the value of

the cooperation factor Ω. Our illustration around, the forest and savanna homogeneous steady states

showed that σT ≈ 1.5M2. Note that, M2 is to be related to the lateral extend of tree roots or tree

canopy. In all cases, where we obtained regular spots, we find that the size of vegetation patches goes

above 20m. In Lejeune et al. [65] for example, the size of vegetation patches in Marahoué National

Park in Ivory Coast, ranges from 10m to 20m. The value of Ω used in our work was chosen for

illustrative purposes. Nevertheless, within the framework of this paper, we noticed that Ω plays a

role on the kinetics of our structures. In fact, for low values of Ω (Ω < 1), the structures take longer

time to set up, while the reverse occurs with Ω at large values. Lefever et al. [64] gave a range of

value for Ω in the case of arid vegetation. Finally in this chapter, first, we choose to work in first

approximation with local operator for spatial propagation (Laplace operators). This choice allows

us, from a mathematical point of view, to find a good characterization of the ranges of nonlocal

interactions enabling the appearance of structures. Without these local operators it would become

difficult to find a mathematical characterization of spatial ranges of nonlocal interactions that can

be easily manipulated numerically. Secondly and as a perspective of this work, it is necessary to

improve our numerical schemes, where for which during the simulations the densities sometimes

exceed the carrying capacities. This ambiguity has also been observed in other models with similar

structures of equations, notably in Banerjee and Volpert [8] and Genieys et al. [42]. It is also necessary

Ph.D Thesis : Modelling tree-grass dynamics in humid savanna ecosystems 126 Tega II Rodrigue © UY1 2024



3.6. Conclusion

to emphasize on the mathematical conditions allowing this model to exhibit localized structures and

metastable patterns, that we observed numerically, and that may be of substantial relevance to account

for field observations.

3.6 Conclusion

In this work, we developed and studied a spatio-temporal tree-grass fire-mediated interactions model

allowing to illustrate the spatial structuring of vegetation in the wet savanna zone, where regular

spotted patterns (tree groves) have been casually reported in presence of high grass production and

frequent fires. To achieve this aim, we extended previous temporal models studied in Yatat Djeu-

men et al. [122, 124] into integro-differential reaction-diffusion systems. We explore in this model,

the combination of nonlocal facilitation and nonlocal competition for the emergence of inhomoge-

neous solutions. In this context, we integrated kernel functions describing the area of influence of

tree and grass roots and the extent of tree canopy-induced shadow effect. Both are modeled like in

Martinez-Garcia et al. [68], Banerjee and Volpert [7, 8], Banerjee and Zhang [9] by a constant func-

tion of finite range. Accordingly, one of the major key in this chapter is the simultaneous presence

of nonlocal tree-tree facilitation along with nonlocal tree-tree, tree-grass and grass-grass competition.

In fact, the associated model that results from the present contribution, takes into account the tree-

tree cooperation mechanisms modelled by the parameter Ω which is not considered in most of the

works dedicated to tree-grass interactions in fire-prone savannas, specifically in Yatat Djeumen et al.

[122, 124]. Thanks to the stability analysis, we found conditions of existence of patterned inhomoge-

neous solutions around space-homogeneous steady states of our system. From a mathematical point

of view, our work summarizes all the methods generally used to capture inhomogeneous solutions in

nonlocal reaction-diffusion systems, and it appeared necessary to include nonlocal terms as to induce

the symmetry breaking instability leading to the patterns. The sequences of patterns observed in this

paper consist of regular spot vegetation (tree and grass spots noticed around the forest and grassland

homogeneous steady state), “localized" grass structures and metastable pattern. In all cases where

we obtained regular spotted patterns, wavelength is an increasing function of the range of tree com-

petitive or tree canopy influence, M2. As a first approximation, we assumed that both grass and tree

biomasses have local propagation through Laplace operators which is in line with rendering clonal

propagation. But in reality, wind or even animals may also favor plant propagation through propagule

dipersion. Thus Pueyo et al. [79] suggested that it is more reasonable to use nonlocal terms to describe

plant dispersal, than diffusion terms. Hence, a line of improvement of the current work could rely on

the consideration of nonlocal dispersion terms. Another important objective is to consider the same

problem in a two-dimensional spatial domain as to reach more realistic prospects on the patterning

processes addressed in the present chapter. In so doing, we may expect to obtain very interesting

multi-scale vegetation patterns.
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CHAPTER FOUR

TRAVELING WAVE SOLUTION IN A

NONLOCAL DISPERSAL TREE-GRASS

SYSTEM

Abstract1

PRediction and characterisation of the possible transitions of the various components of vegetation

mosaics, are two main points for the sustainable management of resources in humid tropical

savannas. These could consequently allow us to anticipate the effect of climate change in ecologi-

cal system. This work attempts to propose the key parameters of processes that induce or possibly

counteract the forest encroachment in grassland/savanna landscape mosaics. For this purpose, we

build a reaction-dispersion model with nonlocal dispersion and we study the long-term dynamics of

forest-grassland mosaic by the mean of a traveling wave solution setting. Precisely, we characterise

the minimal wave speed of the aforementioned forest-grassland traveling wave. We also provide

numerical simulations that depict how some parameters of the model may shape variations of the

minimal speed. Our results suggest that, the increase of tree seeds dispersal range can accelerate

forest encroachment and that, the increase of fire frequency can slow down the progression of the

forest.

4.1 Introduction

Savannas are widely defined as the durable co-existence of a continuous grass-cover with a discon-

tinuous tree-cover which can vary in density depending on the location and context (Whitecross et al.

[117], Scholes and Archer [91]). They represent one of the largest part of the African landscape and

thus play an important role in the livelihoods of millions of people (Devine et al. [25]). Indeed, under

humid climate, environmental conditions characterised by sufficient rainfall may lead in absence of

fire, to a stable forest state (i.e. a dominance of tree layer that almost excludes grasses). It is there-

1This chapter is an edited version of Minimal wave speed of a traveling wave for prediction and control of forest
encroachment in humid tropical savannas, preprint submited to the Journal of Differential Equations and Dynamical
Systems (DEDS), Springer.
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fore acknowledged that fire and herbivory are the major disturbance factors required in order to avoid

canopy closure and maintain savannas under sufficient rainfall (Scholes and Archer [91], Higgins and

Bond [50], Bond et al. [14], Van Langevelde et al. [109], Govender et al. [46], Bond [13], Staver et al.

[98, 99], Jeffery et al. [55], Yatat Djeumen et al. [122] and references therein).

In various locations, the vegetation may display several physiognomies that include one of the

four archetypes, namely desert (or absence of vegetation), grassland, forest and savanna. Grass-

land is characterized by an absence or a total suppression of trees and shrubs. Moreover, many

observations of the spatial structuring of vegetation around the world, in relation to precipitation gra-

dient, reveal the presence of particular physiognomies also termed as mosaics of vegetation where

several of the four archetypes are present at the landscape scale. Specifically iconic vegetation mo-

saics are characterised by the simultaneous presence of bare soil and vegetation (grasses or shrubs)

in arid and semi-arid regions (Lefever and Lejeune [62], HilleRisLambers et al. [52], Couteron

and Lejeune [19], Pueyo et al. [79], Lefever et al. [64], Deblauwe et al. [24], Lefever and Turner

[63], Couteron et al. [20], Yatat Djeumen et al. [122]). Also highly tricking yet less investigated are

grasslands/savannas and forest in the humid regions (Youta Happi [126], Hirota et al. [53], Jeffery

et al. [55], Xu et al. [120], Stall et al. [95], Tega II et al. [103] and references therein). Triggered by

these observations, theoretical studies that aimed to understand the mosaics transition amid vegetation

states (Couteron [18]) and substantiated the theory of abrupt shifts or disastrous transitions in ecology

were carried out (see e.g. Favier et al. [39], Scheffer et al. [89], Zelnik and Meron [129], Yatat Djeu-

men et al. [122], Tega II et al. [103]).

According to Devine et al. [25], growing evidences suggest a continent-wide phenomenon of

savanna and grassland alteration by “woody encroachment" (see e.g figure 4.1, in page 131). For ex-

ample, Jeffery et al. [55] reported in “Lopé National Park" in Gabon that, without fires, forest invades

the savanna. In fact, main drivers for woody encroachment in classical theory of vegetation systems

are climate, soil moisture, herbivory and fire regime. However although promoting increasing carbon

storage, woody encroachment may have adverse effects on pastoral and game resources, and even on

biodiversity (Bond [13]). Specifically, it reduces the landscape diversity and the variety of animal

species presents. From another point of view, biotic interactions such as facilitation (understood as

the mechanism that either enhance or limit the suppression of plant biomass density) and competi-

tion between plants may influence durably the structure of the landscape (Tega II et al. [103] and

references therein). Precisely, water availability and limited resources are the two factors that induce

facilitation and competition and then, structure the physiognomies of landscapes in arid and semi

arid savannas (Lefever and Lejeune [62], Couteron and Lejeune [19], Gilad et al. [43], Pueyo et al.

[79], Lefever et al. [64], Pueyo et al. [80], Lefever and Turner [63], Couteron et al. [20]). Conversely,

in humid savannas, water is not limited due to frequent and abundant rainfall. Then, competition and

facilitation in wet savannas should be based on external factors such as light availability, herbivory

and the resistance of trees in face of recurrent and intense fires. Therefore, facilitation against fire

impacts, inter-specific competition for light or nutriments, intra-specific competition and ranges of

seeds dispersal could be the main mechanisms that promote and maintain such mosaics of vegetation
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in wet ecosystems. Being able to characterise or predict the different transitions in vegetation mosaics

is consequently one of the main objectives in the study of vegetation dynamics.

The mathematical modelling of transition mechanisms in savannas has been the subject of several

works related in particular, to the modelling of the spatial mechanisms of tree-grass interactions tak-

ing into account external disturbances (fire, herbivory). Such work have used discrete kernel models

or cellular automaton (CA) and/or systems of partial differential equations. Notably, Accatino et al.

[3] developed a CA-model able to mimic the invasion of trees in the grass stratum in humid savan-

nas despite repeated fires (see also Yatat Djeumen et al. [123], Tega II et al. [103]). One may note

that, CA-model are principally treated or analysed numerically because they present a lack of math-

ematical tractability. In fact, it is not easy to use mathematical analysis to infer or to understand the

behaviour and properties of CA-Models. Therefore to avoid extensive, yet no always comprehensive

simulations, mathematically tractable models like Partial Differentials Equations (PDE models) could

be advocated. Indeed, tractability is a desirable feature of model since it could help to systematically

identify the possible outcomes of the model in relation to parameters variations.

Yatat Djeumen et al. [122], developed and studied the long term dynamics of mosaics of forest and

grassland by considering local biomass diffusion and local tree-grass interactions. They proposed a

reaction-diffusion model which is an extension of a temporal model that unified Tchuinte Tamen et al.

[102] and Yatat Djeumen et al. [125] works. Specifically, they characterized how model parameters

(like the fire frequency) shape forest to grassland invasion landscape in a context where sharp bound-

aries are observed between forest and grassland. However, Yatat Djeumen et al. [122] did not consider

non-local interactions which are empirically evidenced as mechanisms of plant dispersal, plant com-

petition for light and nutrients as well as plant protection from fires (Pueyo et al. [79], Eigentler and

Sheratt [35]). In a previous paper, Tega II et al. [103] extended the work of Yatat Djeumen et al.

[122], by taking into account nonlocal tree-grass interactions ( facilitation/competition, thanks to ker-

nels of intra and inter specific interactions) as to identify the condition of the emergence of spatial

structuring. However, they assumed as in HilleRisLambers et al. [52], Rietkerk et al. [81], Gilad et al.

[43], Pueyo et al. [80], Yatat Djeumen et al. [122] that, plant biomasses experience a local isotropic

diffusion modelled by Laplace operators which is questionable since plants "do not walk” (see for

instance Lefever et al. [64], Lefever and Turner [63]). Diffusion is widely believed to be inadequate

for modelling plant dispersal due to frequent long range dispersal events like water, wind, animals

(see e.g. figure 4.1).

In this vein, Eigentler and Sheratt [36] proposed and analysed an extension of the reaction-

diffusion-advection model of Klausmeier [58] (which studied the spatio-temporal dynamic of plant

and water density for arid and semi-arid environments) by taking into account nonlocal convolution

terms in order to describe plant seed dispersal. Precisely, Eigentler and Sheratt [36] replaced the dif-

fusion term in Klausmeier [58] by an integral operator (convolution) in the prospect to signify that,

a seed located at a space point x can actually come from a plant situated at a space point y possi-

bly far from x. This convolution term in their model, thus describe the probability for a seed to be

dispersed. The analysis of Eigentler and Sheratt [36] model deals with a mathematical characterisa-
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tion of a threshold (depending of rainfall parameter) value for transition between uniform solution

and non-uniform periodic solution by the means of symmetric breaking instability. Thus their model

end with the comparison in term of model prediction between the local dispersal case and the non-

local one. However, for humid environments, we didn’t find a mathematically tractable model that

deals with PDE formalism and focus on the role of long range seed-dispersal for possible vegetation

physiognomic transitions.

Figure 4.1: Nonlocal forest dispersal/encroachment in a forest-grassland vegetation mosaic in Central
Africa. (Gabon, Wonga Wongue Reserve)

The aims in this paper are first, to identify the key parameters of the process that induces transi-

tions in vegetation mosaics and second, to predict and control the speed of some observed transitions.

Following figure 4.1, we hypothesized the nonlocal tree seed (or propagules) dispersal to be one of the

main process that induce forest encroachment. Therefore, we proposed a reaction-dispersion model

where nonlocal tree and grass seeds dispersal are taken into account and we aim to characterise the

minimal wave speed of the traveling wave front between forest and grassland homogeneous steady

states of the system. This minimal wave speed would latter help us to identify the key parameters of

the model able to control the forest encroachment in grasslands. The rest of the paper is organized as

follows, section 4.2 presents the model construction, section 4.3 is dedicated to the local stability anal-

ysis of homogeneous stationary solutions of the system, section 4.4 deals with the characterisation of

the minimal wave speed of the traveling wave solutions between the forest and the grassland homo-

geneous steady states of the system. Section 4.5 deals with numerical illustrations of our theoretical

results.
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4.2 Model formulation

We consider in this work, the following nonlocal dispersal and fire mediated tree-grass interaction

system adapted for humid tropical ecosystems

∂G(x, t)

∂t
=

G dispersion︷ ︸︸ ︷
DG

(
JLG

∗G(x, t)−G(x, t)

)
+

G logistic growth︷ ︸︸ ︷
γGG(x, t) (1−G(x, t))−

G loss (herbivorie)︷ ︸︸ ︷
δGG(x, t)

−

G loss (interspecific competition)︷ ︸︸ ︷
γTGG(x, t)(ϕM ∗ T (x, t)) −

G loss (fire)︷ ︸︸ ︷
λfGfG(x, t),

∂T (x, t)

∂t
= DT

(
JLT

∗ T (x, t)− T (x, t)

)
︸ ︷︷ ︸

T dispersion

+ γTT (x, t)(1 + ΩT (x, t))(1− T (x, t))︸ ︷︷ ︸
T facilitative logistic growth

− δTT (x, t)︸ ︷︷ ︸
T loss (human activities)

−λfT fω(G) exp(−pϕM ∗ T (x, t))T (x, t)︸ ︷︷ ︸
T loss (facilitation against fire)

,

(4.1)

where:

• G(x, t) and T (x, t) stands respectively for the normalised grass and tree biomasses at the loca-

tion x ∈ R and time t > 0.

• The dispersal coefficients DG and DT , that scale the convolution terms in (4.1), describe the

lifeforms (trees and grasses) dispersal rate by taking into account the seed production, seed

mortality and germination rate and seed establishment ability. They therefore embody par-

ticular aspects of facilitation relating to production and fate of propagule biomass, which is

complementary to tree-tree facilitation expressed by Ω; These two dispersal coefficients are

both dimensionless.

• JLh
∗h(x, t) =

∫
R
JLh

(x−y)h(y, t)dy, h = G, T ; and ϕM∗T (x, t) =
∫
R
ϕM(x−y)T (y, t)dy.

• The kernel function ϕM describes the strength of nonlocal interaction due to the roots system of

trees or to the canopy-induced shadow effect. Specifically, it describes an area of influence of

the root system or of the shadow effect. We modeled this kernel function by constant, precisely:

ϕM(x) =


1

2M
, |x| ≤M,

0 , |x| > M,

with ϕ0 the δ-function and
∫ +∞

−∞
ϕM(y)dy = 1.

• The function ω(G) is on the form of a Holling type III function, describing the potential impact

of fires on tree biomass ("fire momentum”).

• exp (−pϕM ∗ T (x, t)) describe the decrease of tree mortality with cumulative tree biomass.
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System (4.1) is a reformulation of a previous integro-differential reaction-diffusion system studied in

Tega II et al. [103] which however substantially differs in two mains points:

(a) As we pointed out in the introduction, the description of plant species propagation using the

Laplace operator (like it was in Tega II et al. [103]) is not sufficiently relevant in the sense that

this latter is essentially a local behavior. Precisely, it described movements of species between

adjacent spatial locations and does not take into account all processes of long-range dispersal.

In fact, nonlocal processes such as seeds dispersal by e.g. wind or animals is often involved (see

figure 4.1, page 131). Then, referring to Pan [73], Zhang and Li [130], Pan and Lin [75], Yu

and Yuan [128], Zhao et al. [132], Ducrot et al. [33], Dong et al. [32], we consider the following

form of nonlocal dispersal models by assuming isotropic dispersion of seeds:

∂U

∂t
(x, t) = D

(
J ∗U−U

)
(x, t) + f(U), (4.2)

where J ∗U−U models the fact that the diffusion of density U at a point x and time t depends

on all the values of U in a neighborhood of x through the convolution term J ∗U:

J ∗U(x, t) =

∫
R
J(x− y)U(y, t)dy; (4.3)

The kernel function J(x − y) describes the probability per unit of seed generated at any point

y to being dispersed to the space point x.

Therefore, based on Lefever et al. [64], Lefever and Turner [63], we consider for seed dispersal

in system (4.1) Gaussian kernels:

JLh
(x) =

1√
2πLh

e
−
x2

2L2
h , h = G, T, (4.4)

where Lh (h = G, T ) represents the range of tree and grass seed propagation or dispersion

along the space domain. The kernel JLh
defined in (4.4) has the following properties:

(A1) JLh
∈ C1(R), h = G, T.

(A2) JLh
∈ L1(R) and satisfies :∫

R
JLh

(x)dx = 1, JLh
(x) = JLh

(−x), h = G, T. (4.5)

(A3) JLh
is a δ-Dirac function as Lh tends to zero, h = G, T .

(A4) For κ ∈ [0,+∞), ∫
R
JLh

(x)e−κxdx <∞, (4.6)

and
∫
R
JLh

(x)e−κxdx −→ +∞ as κ→ +∞.
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(b) We neglected the nonlocal tree-tree and grass-grass competition present in Tega II et al. [103].

This simplification is done for a mathematical duty. In fact, the presence of nonlocal in-

traspecefic competition terms make the system to be non-monotone and this latter cannot be

turn into a cooperative system. Consequently the different well established methods (theory

of monotone semiflows (Fang and Zhao [37]), upper and lower solution solution method with

Schauder fixed point theorem (Ducrot et al. [33], Hao et al. [49])) for the existence and spread-

ing speed of traveling wave solution cannot be applied. Note that in humid environment, inter-

species competition is not expected to be a driving force but if approaching steric close packing,

ie at a very local scale.

We consider the following thresholds:

RG =
γG

δG + fλfG
,

RG,0 =
γG
δG
,

RT,0 =
γT
δT
,

RT2 =
γTT2 [(1− Ω) + ΩT2]

λfTfω(Ge)
,

RT =
γT

δT + λfTfω(Ge)
,

RF =
γG

δG + λfGf + γTGT2
,

(4.7)

and we assume that RG > 1, RG,0 > 1 and RT,0 > 1 in order to avoid systematic extinction of

biomasses.

System (4.1) has, assuming tree-tree cooperation (i.e Ω > 0), at most four homogeneous steady

states (see also Tega II et al. [103]):

• The desert steady state: E0 = (0, 0)′.

• The Grassland steady state: EGe = (Ge, 0)
′ =

(
1− 1

RG

, 0

)′

.

• The forest steady state ET2 = (0, T2)
′ =

0,

√
(1− Ω)2 + 4Ω

(
1− 1

RT,0

)
− (1− Ω)

2Ω


′

.

• The Savanna steady state E∗ = (G∗, T ∗)′.

Firstly, we will focus on local stability of homogeneous steady state of system (4.1). Secondly,

we will prove the existence of traveling wave solutions of system (4.1) connecting EGe with ET2 ,

through the construction of a truncated problem combining the upper and lower solutions method

and the Schauder’s fixed-point theorem. Finally, we will give some illustrations of traveling wave

solutions of system (4.1).
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Symbols Description Units
γG Intrinsic growth rate of grasses yr−1

δG Portion of grass biomass loss due to human activities and herbivory yr−1

λfG Portion of grass biomass loss due to fire
γTG Tree grass interaction parameter yr−1

γT Intrinsic growth rate of trees yr−1

δT Portion of tree biomass loss due to human activities yr−1

λfT Portion of tree biomass loss due to fire
p Proportional to the inverse of biomass destroyed at intermediate level of mortality
Ω Cooperation factor
f fire frequency yr−1

DG Grass biomass dispersal rate
DT Tree biomass dispersal rate
LG Range of grass-seed dispersion m
LT Range of tree-seed dispersion m
M Range of tree spatial nonlocal interaction m

Table 4.1: Definition of parameters used in the model.

4.3 Local stability analysis

In this section we are interested by the local asymptotic stability of homogeneous steady state of sys-

tem (4.1).

Let us fix (Gs, Ts)
′ ∈ {(Ge, 0)

′; (0;T2)
′; (G∗;T ∗)′}, and consider u(x, t) = G(x, t)−Gs and v(x, t) =

T (x, t) − Ts two spatial perturbations, then linearization of system (4.1) around a non trivial homo-

geneous steady state (Gs, Ts)
′ is given by:

∂u

∂t
= DG (JLG

∗ u− u) + [γG(1−Gs)− δG − γTGTs − λfGf − γGGs]u− γTGGs

∫ +∞

−∞
ϕM (x− y)v(y, t)dy,

∂v

∂t
= DT (JLT

∗ v − v) + [(γT (1 + 2ΩTs)(1− Ts)− γTTs(1 + ΩTs)− δT − λfT fω(Gs) exp(−pTs))] v

+(pλfT fω(Gs) exp(−pTs)Ts)

∫
R
ϕM (x− y)v(y, t)dy − λfT fω

′(Gs) exp(−pTs)Tsu.

(4.8)

We refer the reader to Tega II et al. [103] and Tian et al. [104] for the process of linearization. Let us

set:
a11 = γGGe,

a12 = γTGGe,

a22 = γT − δT − λfTfω(Ge),

b11 = γG − (δG + λfGf) + γTGT2,

b22 = γTT2

√
(1− Ω)2 + 4Ω

(
1− 1

RT,0

)
.
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4.3.1 Stability property of the grassland homogeneous steady state

By replacing in system (4.8) Gs and Ts respectively with Ge and 0, we get the following linearised

system 
∂u

∂t
= DG (JLG

∗ u− u)− a11u− a12

∫ +∞

−∞
ϕM(x− y)v(y, t)dy,

∂v

∂t
= DT (JLT

∗ v − v) + a22v.

(4.9)

Then, by the Fourier analysis, we get the following eigenvalue problem for the system (4.9) by set-

ting u(x, t) = q1 exp(λt) exp(ikx) and v(x, t) = q2 exp(λt) exp(ikx), where λ is the eigenvalue

associated with the wavenumber k ≥ 0, q1 and q2 are two positive constants:{
λq1 = DG

(
JLG

(k)q1 − q1
)
− a11q1 − a12ϕM(k)q2,

λq2 = DT

(
JLT

(k)q2 − q2
)
+ a22q2,

(4.10)

where JLh
(k) = exp

(
−k

2L2
h

2

)
, h = G, T , ϕM(k) =

sin kM

kM
are the Fourier transforms of the

functions JLh
, ϕM respectively.

Now we are able to write the system in (4.10) in the matrix form:

λ


q1

q2

 =


DG

(
JLG

(k)− 1
)
− a11 −a12ϕM(k)

0 DT

(
JLT

(k)− 1
)
+ a22




q1

q2

 , (4.11)

and we denote

Mk =


DG

(
JLG

(k)− 1
)
− a11 −a12ϕM(k)

0 DT

(
JLT

(k)− 1
)
+ a22

 . (4.12)

The set of eigenvalues of Mk, is sp(Mk) =
{
DG

(
JLG

(k)− 1
)
− a11;DT

(
JLT

(k)− 1
)
+ a22

}
, and

we have the following results:

Theorem 4.1. Assume that JLT
(k) < 1− a22

DT

for all k ∈ R, then the grassland homogeneous steady

state is locally asymptotically stable (LAS).

Proof. If JLT
(k) < 1− a22

DT

, then the two eigenvalues values associated to Mk are always negatives,

due to the fact that JLi
(k) < 1, i = G, T .

Remark 4.1.• If RT < 1, the grassland homogeneous steady state is LAS. In fact, in this case we

have a22 < 0 and the condition in Theorem 4.1 is verified.

• If RT > 1, the grassland homogeneous steady state is unstable, because we can find k0 > 0 such that

JLT
(k0) > 1− a22

DT

.
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4.3.2 Stability property of the forest and savanna homogeneous steady states

Now we consider u(x, t) = G(x, t) and v(x, t) = T (x, t)−T2 be two perturbations around the forest

homogeneous steady state. The system obtained after linearization is:
∂u

∂t
= DG (JLG

∗ u− u) + b11u,

∂v

∂t
= DT (JLT

∗ v − v)− b22v.
(4.13)

In the same manner like in the previous subsection, if we consider the eigenvalue problem of the

system (4.13) then we obtain the following theorem:

Theorem 4.2. Assume that JLG
(k) < 1 − b11

DG

for all k ∈ R, then the forest homogeneous steady

state is LAS.

Proof. The proof is done like for Theorem 4.1, page 136.

Remark 4.2.• If RF < 1, the forest homogeneous steady state is LAS. In fact, in this case we have

b11 < 0 and the condition in Theorem 4.2 is verified.

• If RF > 1, the grassland homogeneous steady state is unstable, because we can find k1 > 0 such that

JLG
(k1) > 1− b11

DG

.

Proceeding in a similar way, we deduce conditions for the stability of the savanna homogeneous

steady sate (G∗, T ∗)′. Let us set:

R∗
1 =

γT [(1− Ω) + 2ΩT ∗]

pλfTfω(G∗) exp(−pT ∗)
,

R∗
2 =

γTGω
′(G∗)

pγGω(G∗)
,

(4.14)

then we have the following proposition:

Proposition 4.1. (Stability condition of a savanna steady state).
Assume R∗

1 −R∗
2 > 1, then for all M ∈ R+ the savanna homogeneous steady state (G∗, T ∗)′ is LAS.

Proof. Let us set:

g11 = −γGG∗,

g12 = −γTGG
∗,

g21 = −λfTfω′(G∗) exp(−pT ∗)T ∗,

g22 = −γT [(1− Ω)T ∗ + 2Ω(T ∗)2] + pλfTfω(G
∗) exp(−pT ∗)T ∗,

c = pλfTfω(G
∗) exp(−pT ∗)T ∗,

R∗
1 =

γT [(1− Ω) + 2ΩT ∗]

pλfTfω(G∗) exp(−pT ∗)
,

R∗
2 =

γTGω
′(G∗)

pγGω(G∗)
.

(4.15)
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Recall that if R∗
1 −R∗

2 > 1 then g11g22 − g12g21 > 0 and g22 < 0 (see also Tega II et al. [103]).

We therefore define the following two functions:

Tr(k,M) =

(
DG

(
JLG

(k)− 1
)
+ g11

)
+

(
DT

(
JLT

(k)− 1
)
+ g22 + c

(
ϕM(k)− 1

))
,

Det(k,M) =

(
DG

(
JLG

(k)− 1
)
+ g11

)
×
(
DT

(
JLT

(k)− 1
)
+ g22 + c

(
ϕM(k)− 1

))
−g12g21ϕM(k),

(4.16)

where k,M ∈ R+, JLh
(k) and ϕM(k) are respectively the Fourier transform of JLh

and ϕM , h =

G, T . Moreover for a given value of M , if for all k ∈ R+, Tr(k,M) < 0 and Det(k,M) > 0 then

the savanna homogeneous steady state (G∗, T ∗)′ is stable.

Suppose that R∗
1 −R∗

2 > 1. Remark that JLh
(k) ≤ 1, h = G, T and ϕM(k) ≤ 1 for all k,M ∈ R+.

Therefore:

Tr(k,M) =

<0︷ ︸︸ ︷(
DG

(
JLG

(k)− 1
)
+ g11

)
+

<0︷ ︸︸ ︷(
DT

(
JLT

(k)− 1
)
+ g22 + c

(
ϕM(k)− 1

))
< 0,

and

Det(k,M) =

(
DG

(
JLG

(k)− 1
)
+ g11

)
×
(
DT

(
JLT

(k)− 1
)
+ g22 + c

(
ϕM(k)− 1

))
−g12g21ϕM(k),

=

(
DG

(
JLG

(k)− 1
)
+ g11

)
×
(
DT

(
JLT

(k)− 1
)
+ c
(
ϕM(k)− 1

))
+g22

(
DG

(
JLG

(k)− 1
))

+ g11g22 − g12g21ϕM(k),

≥

<0︷ ︸︸ ︷(
DG

(
JLG

(k)− 1
)
+ g11

)
×

<0︷ ︸︸ ︷(
DT

(
JLT

(k)− 1
)
+ c
(
ϕM(k)− 1

))
+ g22

(
DG

(
JLG

(k)− 1
))

︸ ︷︷ ︸
≥0

+ g11g22 − g12g21︸ ︷︷ ︸
>0

,

> 0

Then for all values of M ∈ R+ (G∗, T ∗)′ is LAS.

In the next section we now address the issue of minimal wave speed by studying the existence of

traveling waves solution for system (4.1).
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4.4 Minimal wave speed

Our aim in this section is to derive by the study of the existence and non existence of a traveling wave

solution for system (4.1) connecting the grassland homogeneous steady state (Ge, 0) to the forest

homogeneous steady state (0, T2), the minimal wave speed of the aforementioned traveling wave.

4.4.1 Preliminaries

Definition 4.1. A solution (G, T ) of system (4.1) is called traveling wave solution if there exists a

constant c ∈ R+ called the wave speed and a pair (φ1, φ2) of positive functions defined on R called

the wave profiles such that:

G(x, t) = φ1(z), T (x, t) = φ2(z) where z = x+ ct. (4.17)

By the Definition 4.1, we rewrite the system (4.1) as follows:

cφ′
1(z) = DG (JLG

∗ φ1(z)− φ1(z)) + γGφ1(z) (1− φ1(z))− δGφ1(z)− γTGφ1(z)ϕM ∗ φ2(z)

−λfGfφ1(z),

cφ′
2(z) = DT (JLT

∗ φ2(z)− φ2(z)) + γTφ2(z) (1 + Ωφ2(z)) (1− φ2(z))− δTφ2(z)

−λfTfω(φ1(z)) exp(−pϕM ∗ φ2(z))φ2(z),
(4.18)

where the prime denotes differentiation with respect to z.

We are interested by the existence of c > 0 and (φ1, φ2) solution of the system (4.18) with the

following asymptotic boundary conditions:

lim
z→−∞

(φ1(z), φ2(z)) = (Ge, 0) and lim
z→+∞

(φ1(z), φ2(z)) = (0, T2). (4.19)

By the change of variables:

φ̃1 = Ge − φ1 and φ̃2 = φ2, (4.20)

system (4.18) and asymptotic boundary assumptions in (4.19) become:
cφ′

1(z) = DG (JLG
∗ φ1(z)− φ1(z))− γG (Ge − φ1(z))φ1(z) + γTG (Ge − φ1(z))ϕM ∗ φ2(z),

cφ′
2(z) = DT (JLT

∗ φ2(z)− φ2(z)) + γTφ2(z) (1 + Ωφ2(z)) (1− φ2(z))− δTφ2(z)

−λfTfω(Ge − φ1(z)) exp(−pϕM ∗ φ2(z))φ2(z),
(4.21)

and

lim
z→−∞

(φ1(z), φ2(z)) = (0, 0) and lim
z→+∞

(φ1(z), φ2(z)) = (Ge, T2), (4.22)
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all of these by dropping the tilde in (4.21) and (4.22) for convenience.

We will get the existence of (φ1, φ2) by using a standard method combining the upper and lower

solution with Schauder fixed point theorem. We refer the reader to Zhang and Li [130], Yu and Yuan

[128], Zhao et al. [132], Ducrot et al. [33], Dong et al. [32], Hao et al. [49] for papers using similar

method. Then we find in a first step the traveling wave solution connecting (0, 0) at z = −∞, to

a nontrivial state at z = +∞, meaning that this traveling wave stays away from zero at z = +∞.

Precisely,

lim inf
z→+∞

φ1(z) > 0 and lim inf
z→+∞

φ2(z) > 0, (4.23)

and

lim sup
z→+∞

φ1(z) ≤ Ge, and lim sup
z→+∞

φ2(z) ≤ T2. (4.24)

In a second step, for the asymptotic condition at +∞, we shall use the condition of local stability of

the forest homogeneous steady state (0, T2) for system (4.1).

Definition 4.2. The pairs of functions (φ1, φ2) and (φ
1
, φ

2
) are respectively called upper and lower

solutions of system (4.21) if they are bounded and satisfy the following inequalities:

DG

(
JLG

∗ φ1(z)− φ1(z)

)
− γG(Ge − φ1(z))φ1(z) + γTG(Ge − φ1(z))ϕM ∗ φ2(z)− cφ1

′(z) ≤ 0,

DT

(
JLT

∗ φ2(z)− φ2(z)

)
+ γTφ2(z)(1 + Ωϕ2(z))(1− φ2(z))− δTφ2(z)

−λfTfω(Ge − φ1(z)) exp(−pϕM ∗ φ2(z))φ2(z)− cφ2
′(z) ≤ 0,

DG

(
JLG

∗ φ1(z)− φ1(z)

)
− γG(Ge − φ1(z))φ1(z) + γTG(Ge − φ1(z))ϕM ∗ φ2(z)− cφ1

′(z) ≥ 0,

DT

(
JLT

∗ φ2(z)− φ2(z)

)
+ γTφ2(z)(1 + Ωϕ2(z))(1− φ2(z))− δTφ2(z)

−λfTfω(Ge − φ1(z)) exp(−pϕM ∗ φ2(z))φ2(z)− cφ2
′(z) ≥ 0,

(4.25)

for z ∈ R\D, with some finite set D = {z1, ..., zm} where φj and φj , j = 1, 2 are differentiable in

R\D.

We also assume that a pair of upper and lower solutions of system (4.21) satisfies:

(C1) (0, 0) ≤ (φ1(z), φ2(z)) ≤ (φ1(z), φ2(z)) ≤ (Ge, T2).

(C2) supz<s φi(z) ≤ infz>s φi(z), ∀i = 1, 2 and infz∈R φ2(z) > 0.

We define :

∆1(λ, c) = DT

(∫
R
JLT

(y)e−λydy − 1

)
− cλ+ (δT + λfTfω(Ge)) (RT − 1) . (4.26)

We assume that RT > 1 and by a simple calculation for λ ≥ 0, c > 0, we have:
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(a) ∆1(0, c) = (δT + λfTfω(Ge)) (RT − 1) and limλ−→+∞ ∆1(λ, c) = +∞.

(b)
∂∆1(λ, c)

∂c
= −λ < 0 and

∂∆1(0, c)

∂λ
= −c < 0.

(c)
∂2∆1(λ, c)

∂λ2
> 0.

(a), (b) and (c) help us to get the following Lemma 4.1.

Lemma 4.1. There exists a unique positive pair of (λ∗T , c
∗
1) such that:

∆1(λ
∗
T , c

∗
1) = 0 and

∂∆1(λ
∗
T , c

∗
1)

∂λ
= 0.

Furthermore,

(i) if c > c∗1, then there exists two positive real numbers λ11 = λ11(c) and λ12 = λ12(c), with 0 < λ11 <

λ∗T < λ12, such that:

∆1(λ, c)


= 0 for λ = λ11 = λ12,

< 0 for λ ∈ (λ11, λ12),

> 0 for λ ∈ (0, λ11) ∪ (λ12,+∞).

(ii) If 0 < c < c∗1, then ∆1(λ, c) > 0 for all λ ∈ (0,+∞).

(iii)

c∗1 = min
λ>0

DT

(∫
R
JLT

(y)e−λydy − 1

)
+ (δT + λfTfω(Ge)) (RT − 1)

λ
. (4.27)

Proof. At first, remark that:

∆1(λ, c) = 0 ⇐⇒ c =
1

λ

(
DT

(∫
R
JLT

(y)e−λydy − 1

)
+ (δT + λfTfω(Ge)) (RT − 1)

)
, (4.28)

and
∂∆1(λ, c)

∂λ
= DT

(∫
R
(−y)JLT

(y)e−λydy

)
− c. (4.29)

Using the fact that:

lim
λ→+∞

∂∆1(λ, c)

∂λ
= +∞,

∂∆1(0, c)

∂λ
< 0, and

∂2∆1(λ, c)

∂λ2
> 0,

by the intermediate values theorem there exist an unique λ∗T ∈ (0,+∞) such that:

∂∆1(λ
∗
T , c)

∂λ
= 0, ∀c > 0. (4.30)
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Inserting λ∗T in (4.28) and by (4.30), we will get:

c = c∗1 =
1

λ∗T

(
DT

(∫
R
JLT

(y)e−λ∗
T ydy − 1

)
+ (δT + λfTfω(Ge)) (RT − 1)

)
, and

 ∆1(λ
∗
T , c

∗
1) = 0,

∂∆(λ∗T , c
∗
1)

∂λ
= 0.

At second, by (4.30) and knowing that
∂2∆1(λ, c)

∂λ2
> 0 (this by the condition (c) in page 141), we

reach to the conclusion that ∆1(λ
∗
T , c) = minλ>0∆1(λ, c).

Furthermore due to the fact that
∂∆1(λ

∗
T , c)

∂c
< 0, we get the following cases :

• for c > c∗1, ∆1(λ
∗
T , c) < ∆1(λ

∗
T , c

∗
1) = 0. Then, with:

∆1(0, c) > 0 and lim
λ→+∞

∆1(λ, c) = +∞,

and using the intermediate values theorem in (0, λ∗T ] and [λ∗T ,+∞), there exist λ11 and λ12, (λ11 <

λ∗T < λ12) such that ∆1(λ11, c) = ∆1(λ12, c) = 0. On the above, we get :

∆1(λ, c)

{
< 0 for λ ∈ (λ11, λ12),

> 0 for λ ∈ (0, λ11) ∪ (λ12,+∞).

• for c < c∗1, ∆1(λ
∗
T , c) > ∆1(λ

∗
T , c

∗
1) = 0, and due to the fact that ∆1(λ

∗
T , c) = minλ>0∆1(λ, c), we

get ∆1(λ, c) > 0, ∀λ ∈ (0;+∞).

At third, we consider the following function of λ defines on (0;+∞) by:

Φ(λ) =
1

λ

[
DT

(∫
R
JLT

(y)e−λydy − 1

)
+ (δT + λfTfω(Ge)) (RT − 1)

]
. (4.31)

Then ∆1(λ, c) = λ [Φ(λ)− c]. We have: limλ→0Φ(λ) = +∞ and limλ→+∞ Φ(λ) = +∞. Moreover,

∂∆1(λ, c)

∂λ
= (Φ(λ)− c) + λΦ′(λ). (4.32)

then: 
∆1(λ, c) = 0,

∂∆1(λ, c)

∂λ
= 0,

⇔


c = Φ(λ),

Φ′(λ) = 0.

(4.33)

λ∗T is therefore the unique critic point of Φ on (0;+∞). Moreover, due to the fact that JLT
is sym-
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metric, compactly supported and
∫
R
JLT

(x)dx = 1 we have:

Φ(λ) = 1
λ

[
DT

(∫
R
JLT

(y)eλydy − 1

)
+ (δT + λfTfω(Ge)) (RT − 1)

]
,

=

DT

(∫
R
JLT

(y)
+∞∑
k=0

(λy)k

k!
dy − 1

)
+ (δT + λfTfω(Ge)) (RT − 1)

λ
,

= DT

∑+∞
k=1

λ
2k−1

∫
R
JLT

(y)y2kdy

(2k)!

+
(δT + λfTfω(Ge)) (RT − 1)

λ
.

Then the second derivative of Φ(λ) is:

Φ′′(λ) = DT

+∞∑
k=1

(2k − 1)(2k − 2)λ2k−3

∫
R
JLT

(y)y2kdy

(2k)!

+
2

λ3
(δT + λfTfω(Ge)) (RT − 1) > 0.

(4.34)

Consequently Φ′′(λ∗T ) > 0, thus λ∗T is the unique point where of the minimum of Φ(λ) occurs in

(0;+∞). Then:

c∗1 = Φ(λ∗T ) = min
λ>0

Φ(λ).

For any λ ≥ 0, we define :

A(λ) = DG

(∫
R
JLG

(y)e−λydy − 1

)
− cλ. (4.35)

Proposition 4.2. There exist λ ∈ (0;λ11) such that A(λ) < 0.

Proof. By a simple calculation, we have: A(0) = 0 and

A′(0) = lim
λ→0

DG

(∫
R
(−y)JLT

(y)e−λydy − 1

)
− c = −c < 0.

Then, there exist λ ∈ (0;λ11) such that A(λ) = DG

(∫
R
JLT

(y)e−λydy − 1

)
− cλ < 0.
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4.4.2 Upper and Lower solution of system (4.21)

Assume that c > c∗1 and let defines the followings continuous functions:

φ1(z) = min(Gee
λ(z−z0), Ge) and φ2(z) = min(T2e

λ11z, T2),

φ1(z) = 0 and φ2(z) =


0 if z ≥ z2,

T2

(
eλ11z − qeηλ11z

)
if z < z2,

with z2 =
log(q)

λ11(1− η)
and:

η ∈
(
1,min

(
2;
λ12
λ11

))
and q = 1 +

γT
−∆(ηλ11, c)

. (4.36)

We choose z0 < 0 such that:(
γTGT2
γGGe

∫
R
ϕM2(y)e

−λ11ydy

)
e(λ11−λ̄)z0 < 1. (4.37)

Therefore, we can observe that:(
γTGT2

∫
R
ϕM2(y)e

−λydy

)
eλ11z < γGGee

λ̄z for all z < z0. (4.38)

Lemma 4.2. The pair (φ1(z), φ2(z)) is a lower solution for system (4.21).

Proof. Recall that: φ1(z) = 0 and φ2(z) =


0 if z ≥ z2,

T2

(
eλ11z − qeηλ11z

)
if z < z2

.

Set:

A1 = DG

(
JLG

∗ φ1(z)− φ1(z)

)
− γG

(
Ge − φ1(z)

)
φ1(z) + γTG

(
Ge − φ1(z)

)
ϕM ∗ φ2(z)− cφ1

′(z),

A2 = DT

(
JLT

∗ φ2(z)− φ2(z)

)
+ γTφ2(z)(1 + Ωφ2(z))(1− φ2(z))− δTφ2(z)

−λfTfω(Ge) exp(−pϕM ∗ φ2(z))φ2(z)− cφ2
′(z).

We have to prove that A1 ≥ 0 and A2 ≥ 0.

If z ≥ z2, then φ1(z) = φ2(z) = 0, and it is easy to show that A1 ≥ 0 and A2 ≥ 0.

If z ≤ z2, then φ1(z) = 0 and φ2(z) = T2

(
eλ11z − qeηλ11z

)
.

Therefore we have, knowing that φ2(z) ≤ T2e
λ11z:
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A1 = γTGGeϕM ∗ φ2(z) ≥ 0.

A2 ≥ DT

(
JLT

∗ φ2(z)− φ2(z)

)
+ γTφ2(z)(1− φ2(z))− δTφ2(z)− λfTfω(Ge)φ2(z)− cφ2

′(z),

= DT

(
JLT

∗ φ2(z)− φ2(z)

)
+ (δT + λfTfω(Ge)) (RT − 1)φ2(z)− γT

(
φ2(z)

)2 − cφ2
′(z),

≥ T2e
λ11z

[
DT

(∫
R
JLT

(y)e−λ11ydy − 1

)
− cλ11 + (δT + λfTfω(Ge)) (RT − 1)

]
−

qT2e
ηλ11z

[
DT

(∫
R
JLT

(y)e−ηλ11ydy − 1

)
− cλ11 + (δT + λfTfω(Ge)) (RT − 1)

]
− γTT2e

2λ11z,

= T2e
λ11z∆1(λ21, c)− qT2e

ηλ11z∆1(ηλ21, c)− γTT2e
2λ21z,

= T2e
ηλ11z

(
−q∆1(ηλ11, c)− γT e

(2−η)λ11z
)
,

≥ T2e
ηλ11z (−q∆(ηλ11, c)− γT ) .

By the choice of q in (4.36) we get:

A2 ≥ −T2eηλ21z∆(ηλ21, c) ≥ 0,

For a given λ > 0 and a ≤ 0 we define the following functions:

Ia(λ) = ΩγTT2 − γTT2(1 + ΩT2)e
aλ + λfTfω(Ge)e

−aλ. (4.39)

Proposition 4.3. Assume that RT2 > 1. There exist λ̃2 > 0 such that for all λ ∈ (0, λ̃2), Ia(λ) < 0.

Proof. Assuming that RT2 > 1, it suffice to remark that: Ia(0) = λfTfω(Ge) (1−RT2) ≤ 0.

Lemma 4.3. Assume that RT2 > 1 and λ11 ∈
(
0, λ̃2

)
, then the pair (φ1(z), φ2(z)) is an upper

solution for system (4.21).

Proof. Set:

B1 = DG (JLG
∗ φ1(z)− φ1(z))− γG(Ge − φ1(z))φ1(z) + γTG(Ge − φ1(z))ϕM ∗ φ2(z)− cφ1

′(z),

B2 = DT (JLT
∗ φ2(z)− φ2(z)) + γTφ2(z)(1 + Ωφ2(z)(1− φ2)− δTφ2(z)

−λfTfω(Ge − φ1(z)) exp(−pϕM ∗ φ2(z))φ2(z)− cφ2
′(z).

We have to prove that B1 ≤ 0 and B2 ≤ 0.

If z > 0, φ1(z) = Ge and φ2(z) = T2 and it is easy to show that B1 ≤ 0 and B2 ≤ 0.

Similarly, if z < 0 and z > z0, φ1(z) = Ge and φ2(z) = T2e
λ11z and it is easy to show that
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B1 ≤ 0.

B2 = DT (JLT
∗ φ2(z)− φ2(z)) + γTφ2(z)(1 + Ωφ2(z))(1− φ2)− δTφ2(z),

= DT (JLT
∗ φ2(z)− φ2(z)) + γTφ2(z)(1 + Ωφ2(z))(1− φ2)− δTφ2(z)− λfTfω(Ge)φ2(z)

+λfTfω(Ge)φ2(z)− cφ2
′(z),

= T2e
λ11z

(
DT

(∫
R
JLT

(y)e−λ11ydy − 1

)
− cλ11 + γT − δT − λfTfω(Ge) + ΩγTT2e

λ11z

)
+T2e

λ11z
(
−γTT2eλ11z(1 + ΩT2e

λ11z) + λfTfω(Ge)
)
,

and then,

B2 = T2e
λ11z

[
∆1(λ11, c) + ΩγTT2e

λ11z − γTT2e
λ11z

(
1 + ΩT2e

λ11z
)
+ λfTfω(Ge)

]
,

= T2e
λ11z

(
∆1(λ11, c) + eλ11zIz(λ11)

)
,

≤ 0 due to the fact that ∆1(λ11, c) = 0 and Iz(λ11) ≤ 0.

If z < 0 and z < z0, φ1(z) = Gee
λ̄(z−z0) and φ2(z) = T2e

λ11z; Then:

DG (JLG
∗ φ1(z)− φ1(z))− cφ1

′(z) = DG

(∫
R
JLG

(y)φ1(z − y)dy −Gee
λ̄(z−z0)

)
,

= Gee
λ̄(z−z0)

[
DG

(∫
R
JLG

(y)e−λ̄ydy − 1

)
− cλ̄

]
,

= Gee
λ̄(z−z0)A(λ̄) < 0.

We also have for z < z0,

(Ge − φ1(z)) (γTGϕM2 ∗ φ2(z)− γGφ1(z)) = (Ge − φ1(z))

(
γTGT2e

λ11z

∫
R
ϕM2(y)e

−λydy

−γGGee
λ̄(z−z0)

)
,

≤ (Ge − φ1(z))
(
γGGee

λ̄z − γGGee
λ̄(z−z0)

)
,

= γGGee
λ̄z(Ge − φ1(z))

(
1− e−λ̄z0

)
,

≤ 0.
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Therefore B1 ≤ 0. In the same vain,

B2 ≤ DT (JLT
∗ φ2(z)− φ2(z)) + γTφ2(z)(1 + Ωφ2(z))(1− φ2)− δTφ2(z)− λfTfω(Ge)φ2(z)

+λfTfω(Ge)φ2(z)− cφ2
′(z),

= T2e
λ11z

(
DT

(∫
R
JLT

(y)e−λ11ydy − 1

)
− cλ11 + γT − δT − λfTfω(Ge) + ΩγTT2e

λ11z

)
+T2e

λ11z
(
γTT2e

λ11z(1 + ΩT2e
λ11z) + λfTfω(Ge)

)
,

= T2e
λ11z

[
∆1(λ11, c) + ΩγTT2e

λ11z − γTT2e
λ11z

(
1 + ΩT2e

λ11z
)
+ λfTfω(Ge)

]
,

= T2e
λ11z

(
∆1(λ11, c) + eλ11zIz(λ11)

)
,

≤ 0 due to the fact that ∆1(λ11, c) = 0 and Iz(λ11) ≤ 0.

4.4.3 Existence of traveling wave for the model

4.4.3.1 The case c > c∗1

Let denote by

X = {Φ = (φ1, φ2) : Φ is bounded and uniformly continuous function from R to R2} . (4.40)

Note that X is a Banach space equipped with the standard sup norm (Pan et al. [76], Pan [73]). Let

|| · || denotes the norm in R2, defined by ||(u, v)|| = max (|u|, |v|) , for all (u, v) ∈ R2.

Set

XGe
T2

= {(φ1, φ2) ∈ X : 0 ≤ φ1(z) ≤ Ge and 0 ≤ φ2(z) ≤ T2 for all z ∈ R} . (4.41)

Consider (φ1, φ2), (φ1
, φ

2
) the upper and lower solutions of system (4.21). We have φ

1
≤ φ1, φ2

≤
φ2 and

for z ∈ R φ
i
(z), φi(z) ∈ XGe

T2
, i = 1, 2. (4.42)

Let us define on R2 and R3 respectively, the two following continuous functions F1 and F2:{
F1(y1, y2) = −γG (Ge − y1) y1 + γTG (Ge − y1) y2,

F2(y1, y2, y3) = γTy2(1 + Ωy2)(1− y2)− δTy2 − λfTω(Ge − y1) exp(−py3)y2.
(4.43)
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We also defines the two following operators H = (H1, H2) and P = (P1, P2), defines on XGe
T2

by:
H1(φ1, φ2)(z) = DG(JLG

∗ φ1(z)− φ1(z)) + F1(φ1, ϕM ∗ φ2)(z) + βφ1(z),

H2(φ1, φ2)(z) = DT (JLT
∗ φ2(z)− φ2(z)) + F2(φ1, φ2, ϕM ∗ φ2)(z) + βφ2(z),

(4.44)

where

β > max (DG + γGGe + γTGT2;DT + γTT2(1 + ΩT2) + λfTf) , (4.45)

and 

P1(φ1, φ2)(z) =
1

c

∫ z

−∞
e
−
β(z − y)

c H1(φ1, φ2)(y)dy,

P2(φ1, φ2)(z) =
1

c

∫ z

−∞
e
−
β(z − y)

c H2(φ1, φ2)(y)dy.

(4.46)

Proposition 4.4. A fixed point of P corresponds to a solution of system (4.21).

Proof. Let (φ1, φ2) ∈ XGe
T2

such that P(φ1, φ2) = (φ1, φ2). Then for all z ∈ R we have

P1(φ1, φ2)(z) = φ1(z) and P2(φ1, φ2)(z) = φ2(z). (4.47)

With the first equality in (4.47) we have:

P1(φ1, φ2)(z) = φ1(z) ⇐⇒ 1
c

∫ z

−∞
e

−β(z−y)
c H1(φ1, φ2)(y)dy = φ1(z),

⇐⇒
∫ z

−∞
e

βy
c H1(φ1, φ2)(y)dy = e

βz
c cφ1(z),

⇐⇒ e
βz
c H1(φ1, φ2)(z) = e

βz
c (βφ1(z) + cφ′

1(z)) ,

⇐⇒ H1(φ1, φ2)(z) = βφ1(z) + cφ′
1(z),

⇐⇒ DG(JLG
∗ φ1(z)− φ1(z)) + F1(φ1, ϕM1 ∗ φ1, ϕM ∗ φ2)(z) = cφ′

1(z).

In the same way, for the second equality in (4.47) we get:

P2(φ1, φ2)(z) = φ2(z) ⇐⇒ DT (JLT
∗ φ2(z)− φ2(z)) + F2(φ1, φ2, ϕM ∗ φ2)(z) = cφ′

1(z),

and then (φ1, φ2) is a solution of system (4.21).
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Let α be a small constant such that 0 < α <
β

c
, and

Bα(R,R2) =

{
(φ1, φ2) ∈ XGe

T2
: sup
z∈R

max (|φ1(z)|, |φ2(z)|) e−α|z| <∞
}
. (4.48)

Then, the following result is valid.

Proposition 4.5. (see Ducrot et al. [33]) Bα(R,R2) is a Banach space equipped with the norm | · |α,

given by:

|(φ1, φ2)|α := sup
z∈R

max (|φ1(z)|, |φ2(z)|) e−α|z|. (4.49)

Let us consider the Γ ⊂ Bα(R,R2) and defined by:

Γ =
{
(φ1, φ2) ∈ X,φ

i
(z) ≤ φi(z) ≤ φ(z), ∀z ∈ R, i = 1, 2

}
. (4.50)

Lemma 4.4. Γ is non empty, bounded, convex and closed with respect to the norm | · |α.

Proof.• Γ is non empty because
(

Ge

1 + e−λ̄(z−z0)
;

T2
1 + e−λ11z

)
∈ Γ.

• Γ is bounded. In fact for any φ = (φ1, φ2) ∈ Γ, we have: |φ|α = supz∈R max (|φ1(z)|, |φ2(z)|) e−α|z|

and then:
|φ|α ≤ supz∈R (φ1(z) + φ2(z)) e

−α|z|,

≤ supz∈R (φ1(z) + φ2(z)) ,

≤ Ge + T2,

≤ 2.

• Clearly Γ is convex.

• Γ is closed. In fact, assume that (φn, ϕn) ∈ Γ such that limn→+∞(φn, ϕn) = (φ, ϕ), then: for all

n ∈ N,we have:

φ
1
(z)e−α|z| ≤ φn(z)e

−α|z| ≤ φ1(z)e
−α|z| and φ

2
(z)e−α|z| ≤ ϕn(z)e

−α|z| ≤ φ2(z)e
−α|z| z ∈ R.

(4.51)

Moreover, for ε > 0, there exits Nε ∈ N such that:

n ≥ Nε =⇒ |(φn, ϕn)− (φ, ϕ)|α < ε,

=⇒ supz∈R
{
max

(
|φn(z)− φ(z)|e−α|z|; |ϕn(z)− ϕ(z)|e−α|z|)} < ε,

=⇒ ∀z ∈ R, |φn(z)e
−α|z| − φ(z)e−α|z|| < ε and |ϕn(z)e

−α|z| − ϕ(z)e−α|z|| < ε.

Consequently the sequence of functions φn(z)e
−α|z|, converge uniformly on R to φ(z)e−α|z|. Simi-

larly, ϕn(z)e
−α|z|, converge uniformly on R to ϕ(z)e−α|z|. Taking the limit n → +∞ in (4.51) we
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have:

φ
1
(z)e−α|z| ≤ φ(z)e−α|z| ≤ φ1(z)e

−α|z| and φ
2
(z)e−α|z| ≤ ϕ(z)e−α|z| ≤ φ2(z)e

−α|z|, (4.52)

therefore:

φ
1
(z) ≤ φ(z) ≤ φ1(z) and φ

2
(z) ≤ ϕ(z) ≤ φ2(z), (4.53)

and (φ, ϕ) ∈ Γ.

Lemma 4.5. If Φ = (φ1, φ2) and Φ = (φ
1
, φ

2
) are upper and lower solutions of (4.21) satisfying

(P1) and (P2) then we have:

φ
1
≤ P1(φ1

, φ
2
) ≤ P1(φ1, φ2) ≤ φ1,

φ
2
≤ P2(φ1

, φ
2
) ≤ P2(φ1, φ2) ≤ φ2.

(4.54)

Consequently, P(Γ) ⊂ Γ.

Proof. By the definition of lower solution and the operator P, it follows that:

H1(φ1, φ2
)(z) ≥ cφ1

′(z) + βφ1(z) z ∈ R \ {zi, i = 1, ...,m} . (4.55)

Letting z0 = −∞ and zm+1 = +∞, then

P1(φ1
, φ

2
)(z) = 1

c

∫ z

−∞
e−

β(z−y)
c H1(φ1, φ2)(y)dy,

≥ 1
c

∫ z

−∞
e−

β(z−y)
c

(
cφ1

′(y) + βφ1(y)
)
dy,

= 1
c
e−

βz
c

{∑m−1
i=1

∫ zi

zi−1

+

∫ z

zm−1

}
e

βy
c

(
cφ1

′(y) + βφ1(y)
)
dy,

= φ1(z),

for zi−1 < z < zi with i = 1, 2, ...,m− 1. By a similar argument, we can prove that:

P1(φ1, φ2)(z) ≤ φ1(z), P2(φ1, φ2)(z) ≥ φ2(z), P2(φ1, φ2)(z) ≤ φ2(z). (4.56)
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Moreover for any (φ1, φ2) in Γ, we have:

H1(φ1, φ2)(z) = DG [JLG
∗ φ1(z)− φ1(z)] + βφ1(z)− γG(Ge − φ1(z))φ1(z)

+γTG(Ge − φ1(z))ϕM ∗ φ2(z),

≥ DG

[
JLG

∗ φ1(z)
]
+ (β −DG − γGGe)φ1(z) + γG

(
φ1(z)

)2
+ γTG (Ge − φ1(z))×

ϕM ∗ φ2(z),

= DG

[
JLG

∗ φ1(z)
]
+
(
β −

(
DG + γGGe + γTGϕM ∗ φ

2
(z)
))

φ1(z) + γG
(
φ1(z)

)2
+

γGGeϕM ∗ φ2(z).

By the definition of β in (4.45), β > DG + γGGe + γTGT2, and then:

H1(φ1, φ2)(z) ≥ H1(φ1, φ2)(z) for all z ∈ R.

Thus,

P1(φ1, φ2)(z) = 1
c

∫ z

−∞
e−

β(z−y)
c H1(φ1, φ2)(y)dy,

≥ 1
c

∫ z

−∞
e−

β(z−y)
c H1(φ1, φ2)(y)dy,

= P1(φ1, φ2)(z).

In the same manner, we get P1(φ1, φ2)(z) ≤ P1(φ1, φ2)(z). Similarly:

H2(φ1, φ2)(z) = DT [JT ∗ φ2(z)− φ2(z)] + βφ2(z) + γTφ2(z) (1 + Ωφ2(z)) (1− φ2(z))−
λfTf exp(−pϕM ∗ φ2(z))φ2(z),

≥ DT

[
JT ∗ φ2(z)

]
+ (β −DT )φ2(z) + γTφ2(z)

(
1 + Ωφ2(z)

)
(1− φ2(z))

−λfTf exp(−pϕM ∗ φ2(z))φ2(z),

= DT

[
JT ∗ φ2(z)

]
+
(
β −

(
DT + γTφ2(z)

(
1 + Ωφ2(z)

)
+ λfTf exp(−pϕM ∗ φ2(z))

))
×

φ2(z) + γTφ2(z)
(
1 + Ωφ2(z)

)
,

Moreover, β > DT + γTT2(1 + ΩT2) + λfTf , then:

H2(φ1, φ2)(z) ≥ H2(φ1, φ2)(z) for all z ∈ R.
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thus,

P2(φ1, φ2)(z) = 1
c

∫ z

−∞
e−

β(z−y)
c H2(φ1, φ2)(y)dy,

≥ 1
c

∫ z

−∞
e−

β(z−y)
c H2(φ1, φ2)(y)dy,

= P2(φ1, φ2)(z).

In the same manner we have P2(φ1, φ2)(z) ≤ P2(φ1, φ2)(z).

Therefore, with β > max(DG + γGGe + γTGT2;DT + γTT2(1 + ΩT2) + λfTf), we have:

φ
1
≤ P1(φ1

, φ
2
) ≤ P1(φ1, φ2) ≤ P1(φ1, φ2) ≤ φ1,

φ
2
≤ P2(φ1

, φ
2
) ≤ P2(φ1, φ2) ≤ P2(φ1, φ2) ≤ φ2.

(4.57)

Therefore, (4.57) leads to P(Γ) ⊂ Γ.

Lemma 4.6. The operator P : Γ −→ Γ is continuous in the sense of | · |α.

Proof. We consider φ = (φ1, φ2) and ψ = (ψ1, ψ2) two pairs of function belong to Γ. We have :

|H1(φ1, φ2)(z)−H1(ψ1, ψ2)(z)| ≤ DG

∫
R
JLG

(z − y)|φ1(y)− ψ1(y)|dy + (β −DG)|φ1(z)− ψ1(z)|

+γGGe|φ1(z)− ψ1(z)|+ γTGGe|ϕM ∗ φ2(z)− ϕM ∗ ψ2(z)|

+γG|(φ1(z))
2 − (ψ1(z))

2|

+γTG|φ1(z)ϕM ∗ φ2(z)− ψ1(z)ϕM ∗ ψ2(z)|,

Due to the definition of XGe
T2

and due to the fact that Γ ⊂ XGe
T2

, we have:

|φ1(z)| ≤ Ge, |ψ1(z)| ≤ Ge and |φ2(z)| ≤ T2, |ψ2(z)| ≤ T2.

Consequently,

|H1(φ1, φ2)(z)−H1(ψ1, ψ2)(z)| ≤ DG

∫
R
JLG

(z − y)|φ1(y)− ψ1(y)|dy + (β −DG + 3γGGe)|φ1(z)− ψ1(z)|

+γTGT2|φ1(z)− ψ1(z)|+ 2γTGGe|ϕM ∗ φ2(z)− ϕM ∗ ψ2(z)|.

Therefore, we deduce that:

|P1(φ1, φ2)(z)− P1(ψ1, ψ2(z)|e−α|z| ≤ Z1 + Z2 + Z3,
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where

Z1 = DG
e−α|z|

c

∫ z

−∞
e−

β(z−y)
c

[∫
R
JLG

(y − s)|φ1(s)− ψ1(s)|ds
]
dy,

Z2 = (β −DG + 3γGGe + γTGT2)
e−α|z|

c

∫ z

−∞
e−

β(z−y)
c |φ1(y)− ψ1(y)|dy,

Z3 = 2γTGGe
e−α|z|

c

∫ z

−∞
e

−β(z−y)
c |ϕM ∗ φ2(y)− ϕM ∗ ψ2(y)|dy.

For Z1 we have:

Z1 = DG
e−α|z|

c

∫ z

−∞
e−

β(z−y)
c

[∫
R
JLG

(s)|φ1(y − s)− ψ1(y − s)|ds
]
dy,

= DG
e−α|z|

c

∫ z

−∞
e−

β(z−y)
c

[∫
R
JLG

(s)eα|y−s||φ1(y − s)− ψ1(y − s)|e−α|y−s|ds

]
dy,

≤ DG|φ− ψ|α
c

∫
R
JLG

(s)eα|s|ds

∫ z

−∞
e

−β(z−y)
c e−α|z|eα|y|dy,

≤ DG

∫
R
JLG

(s)eα|s|ds

(
1

β − cα
+

1

β + cα

)
|φ− ψ|α.

Similarly, for Z2 and Z3, we get the following inequalities:

Z2 ≤ (β −DG + 3γGGe + γTGT2)×
(

1

β − cα
+

1

β + cα

)
|φ− ψ|α,

Z3 ≤
(
2γTGGe

∫
R
ϕM(s)eα|s|ds

)
×
(

1

β − cα
+

1

β + cα

)
|φ− ψ|α.

Let :

K∗
1 =

(
DG

∫
R
JLG

(s)eα|s|ds+ β −DG + 3γGGe + γTGT2 + 2γTGGe

∫
R
ϕM(s)eα|s|ds

)
×
(

1

β − cα
+

1

β + cα

)
,

then,

|P1(φ1, φ2)(z)− P1(ψ1, ψ2)(z)|e−αz ≤ K∗
1 |φ− ψ|α. (4.58)

Proceeding in a analogous way for P2, we get:

|P2(φ1, φ2)(z)− P2(ψ1, ψ2)(z)|e−αz ≤ K∗
2 |φ− ψ|α, (4.59)
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where

K∗
2 =

(
DT

∫
R
JLT

(s)eα|s|ds+ β −DT + γT − δT + 3ΩγTT
2
2 + 2γTT2|1− Ω|+ λfTf + λfTfT2k1

+λfTfpT2k2

∫
R
ϕM(s)eα|s|ds

)
×
(

1

β − cα
+

1

β + cα

)
.

and ki, i = 1, 2 are Lipschitz constant of functions of ω(G) and exp(−pT ).Due to the two inequalities

in (4.58) and (4.59), we deduce the uniform continuity of P with respect to the norm |.|α. Then P is

continuous with respect to the norm |.|α.

For any given n ∈ N, let Rn,− = (−∞, n]. Consider the domain of functions in the space Bα

Bα(Rn,−,R2) =

{
Φ = (φ1, φ2) ∈ XGe

T2
|Rn,− sup

z∈Rn,−

max (|φ1(z)|, |φ2(z)|) e−α|z| <∞

}
. (4.60)

Proposition 4.6. (see Zhao et al. [132]) Bα(Rn,−,R2) is a Banach space equipped with the norm

| · |nα, defined by:

|(φ1, φ2)|nα = sup
z∈Rn,−

max (|φ1(z)|, |φ2(z)|) e−αz. (4.61)

Lemma 4.7. (Corduneanu [17])(see also Zhao et al. [132])

Let E ⊂ Bα(Rn,−,R2) be a set satisfying the following conditions:

(i) E is bounded in Bα(Rn,−,R2).

(ii) the functions belonging to E are equicontinuous on any compact interval of Rn,−.

(iii) The functions in E are equiconvergent.

Then, E is compact in Bα(Rn,−,R2).

Lemma 4.8. P(Γ) is compact in Bα(Rn,−,R2)..

Proof. We define on Γ the operator Pn by:

Pn(Φ)(z) =

{
P(Φ)(n), z > n,

P(Φ)(z), z ∈ (−∞, n],
(4.62)

for any Φ = (φ1, φ2) ∈ Γ, and n ∈ N. It is easy to remark that, Pn(Φ)(z) is compact if P(Φ)(z)|(−∞,n]

is compact. Consequently, we have to show that P(Γ)(z)|(−∞,n] satisfies all the conditions of Cor-

duneanu [17] theorem gives in Lemma 4.7.

In a first step, by Lemma 4.4, P(Γ)|(−∞,n] is bounded, because P(Γ) ⊂ Γ.

In the second step, we aims to prove that, all functions in P(Γ)(z)|(−∞,n] are equicontinous on any

compact intervall of (−∞;n]. Then for any Φ = (φ1, φ2) ∈ Γ and for any z1 < z2 ∈ (−∞;n], we
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have:

|P1(φ1, φ2)(z1)e
−α|z1| − P1(φ1, φ2)(z2)e

−α|z2||

=
1

c

∣∣∣∣e−α|z1|
∫ z1

−∞
e−

β(z1−y)
c H1(φ1, φ2)(y)dy − e−α|z2|

∫ z2

−∞
e−

β(z2−y)
c H1(φ1, φ2)(y)dy

∣∣∣∣,
≤ 1

c

∣∣∣∣e−(α|z1|+β
c
z1)

∫ z1

−∞
e

βy
c H1(φ1, φ2)(y)dy − e−(α|z2|+β

c
z2)

∫ z2

−∞
e−

βy
c H1(φ1, φ2)(y)dy

∣∣∣∣,
≤ 1

c
|e−(α|z1|+β

c
z1) − e−(α|z2|+β

c
z2)| ×

∣∣∣∣ ∫ z1

−∞
e

βy
c H1(φ1, φ2)(y)dy

∣∣∣∣+ 1

c
e−(α|z2|+β

c
z2)

∣∣∣∣ ∫ z2

z1

e
βy
c H1(φ1, φ2)(y)dy

∣∣∣∣,
Due to the fact that 0 ≤ φ1(z) ≤ Ge and 0 ≤ φ2(z) ≤ T2, we have:

|P1(φ1, φ2)(z1)e
−αz1 − P1(φ1, φ2)(z2)e

−αz2| ≤ GeK
∗|z1 − z2|, (4.63)

where K∗ = θ1e
βz1
c + θ2e

−(α|z2|+β
c
z2) and θi, i = 1, 2 are respectively the Lipschitz constant of

e−(α|z|+β
c
z) and ez. In fact it suffice to remark by setting φ̃1(z) = Ge and φ̃2(z) = T2 for all z ∈ R,

that:

DG (JLG
∗ φ̃1(z)− φ̃1(z))− γG (Ge − φ̃1(z)) φ̃1(z) + γTG (Ge − φ̃1(z))ϕM ∗ φ̃2(z)− cφ̃1

′(z) = 0,

and then:

• ∫ z1

−∞
e

βy
c H1(φ1, φ2)(y)dy ≤

∫ z1

−∞
e

βy
c H1(φ̃1, φ̃2)(y)dy = cGee

βz1
c , (4.64)

• ∫ z2

z1

e
βy
c H1(φ1, φ2)(y)dy ≤

∫ z2

z1

e
βy
c H1(φ̃1, φ̃2)(y)dy,

= cGe

(
e

βz2
c − e

βz1
c

)
.

(4.65)

Therefore, by (4.64) and (4.65) it is easy to get (4.63). In the same way we have

|P2(φ1, φ2)(z1)e
−α|z1| − P2(φ1, φ2)(z1)e

−α|z1|| ≤ T2K
∗|z1 − z2|. (4.66)

Then, the relation in (4.63) and (4.66) implies that, the condition (ii) in Lemma 4.7 is satisfied.

In the third step, we prove that P(Γ)(z)|(−∞,n] is equiconvergent. Moreover, using limz→−∞ Φ(z) =

0, then for a given ε > 0, there exist a N(ε) < 0 such that for any z < N(ε) we have: |φ1(z)e
−α|z|| <

ε
2

and |φ2(z)e
−α|z|| < ε

2
. Consequently:

||Φ(z)− Φ(−∞)||e−α|z| < ε,
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whenever z ≤ N(ε). Then in this case, the condition (iii) in Lemma 4.7 is satisfied.

Lemma 4.7 indicates that P(Γ)(z)|(−∞,n] is compact in the sens of |.|nα, so Pn(Φ)(z) is precompact

subset of Bα(Rn,−,R2) with respect to the norm |.|α. Furthermore,

|Pn(Φ)(z)−P(Φ)(z)|α ≤ 2(Ge + T2)e
−αn −→ 0 as n→ +∞. (4.67)

Thus, Pn(Φ)(z) converges to P(Φ)(z) in the sense of the norm |.|α, and compactness of Pn(Φ)(z)

implies that P(Φ)(z) is compact.

We recall some results on Schauder’s fixed point theorem.

Theorem 4.3. (Schauder Fixed Point theorem)[see Gilbarg and Trudinger [44], page 279]
Let Θ be a compact convex set in a Banach space B and let T be a continuous mapping of Θ into

itself. Then T has a fixed point, that is, Tx = x for some x ∈ Θ.

Corollary 4.1 (see Gilbarg and Trudinger [44], page 280). Let Θ be a closed convex set in a Banach

space B and let T be a continuous mapping of Θ into itself such that the image TΘ is precompact.

Then T has a fixed point.

Theorem 4.4. Assume that:

• (A1)− (A4) in page 133 holds,

• RT > 1 and RT2 > 1 .

For any c > c∗1 (where c∗1 is given in (4.85),page 161), system (4.21) has a positive solution φi(z) ∈
XGe

T2
satisfying φi(z) ≤ φi(z) ≤ φi(z)

Proof. It suffices to prove that the operator P defined in (4.46) has a fixed point. We first note by

Lemma 4.4 page 149 that Γ is closed, bounded, convex and nonempty. Moreover, operator P is

continuous (see for instance Lemma 4.6, page 152). With Lemma 4.8 page 154, P(Γ) is relatively

compact on the space Bα since Γ is bounded. Then, according to the corollary 4.1, the operator P has

a fixed point Φ∗ = (φ∗
1, φ

∗
2) ∈ Γ. Due to the Proposition 4.4 page 148, Φ∗ = (φ∗

1, φ
∗
2) is a positive

solution of system (4.21).

Now we are interested by the asymptotic discussion. Thanks to Theorem 4.4, the case z −→ −∞
is quite easy. So we consider the asymptotic boundary condition of traveling wave solution described

in Theorem 4.4 as z −→ +∞. Let (φ∗
1, φ

∗
2) be a traveling wave connecting (0, 0) and a nontrivial

state.

Proposition 4.7. If RF < 1, then limz→+∞(φ∗
1, φ

∗
2) = (Ge, T2).

Proof. Suppose RF < 1, then the forest homogeneous steady state (0, T2) for the system (4.1) is

LAS and therefore by the Definition 4.1 and the change of variables in (4.20), we have the result.

For the case where RF ≥ 1 we use the following proposition:
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Proposition 4.8. Assume that the limit:

(g, h) = lim
z−→+∞

(φ∗
1, φ

∗
2)(z)

exist. Then (g, h) = (Ge, T2).

Proof. We remark first by the assumption in (4.23) that 0 < g < 1 and 0 < h < 1. The proposition

4.8 follows if we can show that

(JLG
∗ φ∗

1) (z) −→ g and (JLT
∗ φ∗

2) (z) −→ h as z −→ +∞, (4.68)

since the only nontrivial solution of{
−γG(Ge − φ∗

1)φ
∗
1 + γTG(Ge − φ∗

1)ϕM ∗ φ∗
2 = 0,

γT (1 + Ωφ∗
2)(1− φ∗

2)− δT − λfTfω(Ge − φ∗
1) exp(−pϕM ∗ φ∗

2) = 0,

is (Ge, T2).

Then, we need only to treat the case of the first limit in (4.68) since the proof of the second is similar

to the first one.

For ε ∈ (0, g), since φ∗
1(+∞) = g and

∫
R
JLG

(y)dy = 1, there exist a > 0 such that:

∫ +∞

a

JLG
(y)dy <

ε

2
and g − ε

2
< φ∗

1(z) < g +
ε

2
, ∀z > a.

Therefore:∫
R
JLG

(z′)φ∗
1(z−z′)dz′ =

∫ a

−∞
JLG

(z′)φ∗
1(z−z′)dz′+

∫ +∞

a

JLG
(z′)φ∗

1(z−z′)dz′ := C1(z)+C2(z).

Evaluating C1 and C2, we yields in a first step to:

C1(z) + C2(z) ≤
(
g +

ε

2

)
+
ε

2
= g + ε, (4.69)

for all z ≥ 2a, by using z − z′ ≥ a for z′ ≤ a and z ≥ 2a,
∫
R
JLG

(y)dy = 1 and φ∗
1 ≤ 1. In a second

step, we have:

C1(z) + C2(z) ≥ C1(z) ≥ (g − ε

2
)(1− ε

2
) ≥ g − ε. (4.70)

for all z ≥ 2a by using g ≤ 1. Combining (4.69) and (4.70) we have shown that (JLG
∗ φ∗

1) (z) −→ g

as z −→ +∞ and so (4.68) follows.

4.4.3.2 The case c = c∗1

We consider, in this subsection the existence of a positive solution of system (4.21) if c = c∗1, by

referring to Lin [67] and Dong et al. [32].
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Lemma 4.9. Let (φ1, φ2) be the positive solution of system 4.21 with the speed c > c∗1 obtained in

theorem 4.4. We have, φ1, φ2, φ
′
1, φ

′
2 are uniformly bounded and equicontinuous.

Proof. Since (φ1, φ2) ∈ Γ, we get φ1, φ2 ∈ C(R) and 0 ≤ φ1(z) ≤ Ge and 0 ≤ φ2(z) ≤ T2,

for all z ∈ R. Then by system (4.21), we get φ′
1 φ′

2 ∈ R and 0 ≤ φ′
1(z) ≤ Ge

c
(DG + γTGT2),

0 ≤ φ′
2(z) ≤ T2

c
DT . Then, by the virtue of the derivative of variable z on both side of the system

(4.21) we have φ′
1, φ

′
2 are uniformly bounded .

Lemma 4.10. Let (φ1, φ2) be the nonnegative solution of system 4.21 with the speed c > c∗1, we

have:

lim
z→−∞

φ′
2(z)

φ2(z)
= λ∗T (4.71)

Proof. For c > c∗1, we have φ2(z) > 0 for z ∈ R. In fact, if there exist z0 ∈ R such that φ2(z0) = 0,

then φ′
2(z0) = 0 and by the second equation of system (4.21), we obtain JLT

∗ φ2(z0) =, which

implies that φ2(z) = 0 for all z ∈ R. This leads to a contradiction, hence φ2(z) > 0 for all z ∈ R.

Let:

θ(z) =
φ′
2(z)

φ2(z)
and B(z) = γT (1 + Ωφ2(z)) (1−φ2(z))−δT−λfTfω(Ge−φ1(z)) exp(−pϕM2∗φ2(z))

(4.72)

It follows from the second equation in system (4.21), that :

cθ(z) = DT

(∫
R
JLT

(y)e
∫ z−y
z θ(s)dsdy − 1

)
+B(z). (4.73)

and

lim
z→−∞

B(z) = (δT + λfTfω(Ge)) (RT − 1) , (4.74)

Referring to Zhang et al. [131] (proposition 3.7), λ = limz→−∞ θ(z) exist and satisfies:

cλ = DT

(∫
R
JLT

(y)e−λydy − 1

)
+ (δT + λfTfω(Ge)) (RT − 1) . (4.75)

By lemma 4.1, we have λ = λ∗T .

Lemma 4.11. (Arzelà-Ascoli theorem)
Let K ⊆ RN be compact and let fn a sequence in C(K) which is uniformly bounded and equicontin-

uous. Then fn has a subsequnce which converge uniformly on K to a function f in C(K).

Remark 4.3. The proof of lemma 4.11, involve sequences of sequences of functions and what is

sometimes called Diagonalization argument.

Lemma 4.12. (Barbalat theorem) Let t 7−→ F (t) be a differentiable function with a finite limit as

t→ ∞. If F is uniformly continue, then F (t) → 0 as t→ ∞.

Theorem 4.5. Assume that min (RT ,Ω) > 1 and c = c∗1. Then system 4.21 has a positive non

trivial solution satisfying 4.22.
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Proof. Assume RT > 1 and Ω > 1. We consider a decreasing sequence cn ∈ (c∗1, c
∗
1 + 1) such

that limn→+∞ cn = c∗1. For each cn following Theorem 4.4, there exists a traveling wave (φ1n, φ2n)

satisfying system (4.21) and the asymptotic condition at z −→ −∞ in (4.22). By Lemma 4.10

φ′
2n(z) > 0 for z << −1. Note that a traveling wave solution is invariant in the sense of phase shift

(Pan and Lin [75]), so we can assume that

φ2n(0) = δ, φ2n(z) ≤ δ for z < 0, (4.76)

and δ is small enough such that 0 < δ < 1− 1
Ω

.

By the Arzela-Ascoli theorem (Green and Valentine [47]), we can find a subsequence of (φ1n, φ2n)

again denoted by (φ1n, φ2n) such that (φ1n, φ2n) and (φ′
1n, φ

′
2n) converge uniformly on every bounded

interval (and so point-wise on R) to bounded functions (φ1, φ2) and (φ′
1, φ

′
2) respectively. Moreover,

by the dominated convergence theorem we have:

(a) limn→+∞ JLG
∗ φ1n = JLG

∗ φ1,

(b) limn→+∞ JLT
∗ φ2n = JLT

∗ φ2,

(c) limn→+∞ ϕM2 ∗ φ2n = ϕM2 ∗ φ2,

on every bounded interval. Therefore it follows that (φ1, φ2) satisfies system (4.21) and is bounded.

Proposition 4.8 is independant of c, then when c = c∗1, we can use this proposition for the asymptotic

condition at z = +∞.

Denote limz→−∞ φ1(z) = φ−
1 and limz→−∞ φ2(z) = φ−

2 . By the Barbalat theorem (Farkas and

Wegner [38]), we have φ′
1(−∞) = 0 and φ′

2(−∞) = 0. Then using the dominated convergence

theorem in the first equation of system (4.21), we get:

γTGφ
−
2 = γGφ

−
1 . (4.77)

Using the dominated convergence theorem in the second equation of system (4.21), we have the

following possible conclusion:

φ−
2 = 0 or γT (1 + Ωφ−

2 )(1− φ−
2 ) = δT + λfTfω(Ge − φ−

1 ) exp(−pϕM ∗ φ−
2 ). (4.78)

If the second equation in 4.78 hold then we get:

(δT + λfTf)(RT − 1) + γTΩφ
−
2

[(
1− 1

Ω

)
− φ−

2

]
< 0, (4.79)

and this inequality in (4.79) can not hold due to the fact that RT > 1 and φ−
2 < 1− 1

Ω
.

Therefore, φ−
2 = 0 and by the relation in (4.77), φ−

1 = 0. This ends the proof.
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4.4.4 Non existence of traveling wave when c < c∗1

In this section we shall prove that if c < c∗1, then system (4.21) does not have a positive solution

satisfying the asymptotic boundary condition. We consider the following initial value problem:
∂g(x, t)

∂t
= (J ∗ g(x, t)− g(x, t)) + γg(x, t)(1− g(x, t)),

g(x, 0) = Λ(x), x ∈ R,
(4.80)

where:

• J satisfies condition (A2), and γ is a positive constant.

• Λ(x) is uniformly continuous and bounded .

Lemma 4.13. (see also Jin and Zhao [56], Zhao et al. [132], Ducrot et al. [33], Dong et al. [32])

Assume that 0 ≤ Λ(x) ≤ 1. Then system (4.80) admits a solution for all x ∈ R and t > 0. If h(x, 0)

is uniformly continuous and bounded, and h(x, 0) satisfies
∂h(x, t)

∂t
≥ (≤) (J ∗ h(x, t)− h(x, t)) + γh(x, t)(1− h(x, t)),

h(x, 0) ≥ (≤) Λ(x), x ∈ R.
(4.81)

then, there holds:

h(x, t) ≥ (≤)g(x, t), x ∈ R, t > 0.

Define

c∗ = inf
λ>0

∫
R
J(x)e−λxdx+ γ − 1

λ
.

Lemma 4.14. (see also Jin and Zhao [56], Zhao et al. [132], Ducrot et al. [33] and Dong et al. [32]

) Assume that Λ(x) > 0, then for 0 < c < c∗, we have

lim
t→+∞

inf
|x|<ct

g(x, t) = lim
t→+∞

sup
|x|<ct

g(x, t) = 1.

Referring to the comparison principle in Lemma 4.13 and 4.14 we get the condition for the non-

existence of travelling wave for system (4.18).

Theorem 4.6. Assume that RT > 1. For any 0 < c < c∗1, there exists no nontrivial positive solution

(φ1(z), φ2(z)) of system (4.18) satisfying

lim
z→−∞

(φ1, φ2) = (Ge, 0) and lim
z→+∞

(φ1, φ2) = (0, T2). (4.82)

Proof. By contradiction, we assume that there exists some c̃1 < c∗1, such that system (4.18) has a
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positive solution (φ1(z), φ2(z)) satisfying (4.82). Then T (x, t) = φ2(x+ c̃1t) satisfies:
∂T (x, t)

∂t
≥ DT (JLT

∗ T (x, t)− T (x, t)) + γTT (x, t)

(
1− 1

RT

− T (x, t)

)
,

T (x, 0) = φ2(x) > 0.

(4.83)

Let x(t) = − c̃1 + c∗1
2

t, then |x(t)| = c̃1 + c∗1
2

t < c∗1t. From Lemmas 4.13 and 4.14, we have :

lim
t→+∞

inf
|x|=

c̃1+c∗1
2

t

T (x, t) ≥ 1− 1

RT

> 0. (4.84)

On the other land let x(t) + c̃1t =
c̃1 − c∗1

2
t, then

z = x+ c̃1t −→ −∞ as t→ +∞,

and

lim
t→+∞

supT (x(t), t) = lim
z→−∞

φ2(z) = 0,

which yields a contradiction.

Remark 4.4. From the two previous subsections 4.4.3 and 4.4.4, it follows that c∗1 is the minimal

wave speed connecting the grassland to the forest homogeneous steady states of the system. Then

referring to the Lemma 4.1, we have:

c∗1 = min
λ>0

DT

(∫
R
JLT

(y)e−λydy − 1

)
+ (δT + λfTfω(Ge)) (RT − 1)

λ
,

c∗1 = min
λ>0

DT

(
exp

{
(LTλ)

2

2

}
− 1

)
+ (δT + λfTfω(Ge)) (RT − 1)

λ
.

(4.85)

Proposition 4.9. Direct calculations show that :

∂c∗1
∂LT

> 0;
∂c∗1
∂DT

> 0;
∂c∗1
∂γT

> 0;
∂c∗1
∂f

< 0;
∂c∗1
∂δT

< 0. (4.86)
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Proof. Recall that:

c∗1 = min
λ>0

DT

(∫
R
JLT

(y)e−λydy − 1

)
+ (δT + λfTfω(Ge)) (RT − 1)

λ
,

=

DT

(∫
R
JLT

(y)e−λ∗
T ydy − 1

)
+ (δT + λfTfω(Ge)) (RT − 1)

λ∗T
,

=

DT

(∫
R
JLT

(y)e−λ∗
T ydy − 1

)
+ γT − δT − λfTfω(Ge)

λ∗T
,

=

DT

(
exp

{
(LTλ

∗
T )

2

2

}
− 1

)
+ γT − δT − λfTfω(Ge)

λ∗T
.

Then:
∂c∗1
∂f

= −λfTω(Ge)

λ∗T
< 0,

∂c∗1
∂δT

= − 1

λ∗T
< 0 and

∂c∗1
∂γT

=
1

λ∗T
> 0. (4.87)

Similarly,

∂c∗1
∂LT

= DTLTλ
∗
T exp

(
L2
T (λ

∗
T )

2

2

)
> 0 and

∂c∗1
∂DT

=
1

λ∗T

(
exp

{
(LTλ

∗
T )

2

2

}
− 1

)
> 0. (4.88)

From Proposition 4.9, we deduce that an increase of the tree seeds dispersal range LT enhances

the forest encroachment. Same conclusion holds for the tree biomass dispersal rate (DT ) and the

intrinsic growth rate of the tree biomass (γT ). Conversely, increasing the human activity-induced tree

biomass loss parameter (δT ) or the fire frequency (f ) will slow down the forest expansion.

4.5 Numerical illustration

4.5.1 Illustration of some traveling waves

We consider for numerical illustration that:

• the space interval is [0; 300].

• The unit of space considered is meter (m) and unit of time is year (yr).

• The finite difference method is used to discretize the spatial part and on the other hand, the non

standard finite difference method (Anguelov et al. [4]) is used to discretize the temporal part of
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the problem given by the system (4.1).

By considering the value of parameters in table 4.2 page 163, we obtain the bifurcation diagram

presented in figure 4.2, page 163.

Parameters DG DT γG δG γT δT λfG λfT p g0 Ω LG LT

Values 0.01 0.1 2.7 0.1 1 0.3 0.7 0.8 3.4 0.14 5 50 50

Table 4.2: Parameter values for simulation, see also [103, 122].

Figure 4.2: A bifurcation diagram for system (4.1) according to the parameter space (γTG − f). The
blue zone corresponds to the savanna monostability, the green zone stands for the forest monostability,
the red zone denotes the forest-grassland bistability and the yellow zone depicts the grassland-savanna
bistability area.

For the rest of numerical illustration, we consider γTG = 3.5 and we fix M = 15m. We are

interested by the wave speed variation, in relation to fire frequency (f ), tree seeds dispersal range

(LT ) and tree biomass dispersal rate (DT ) as we noted in Proposition 4.9, page 161.

4.5.1.1 Illustration of wave speed variation with increasing value of fire frequency

We first consider f = 0.85. In this case, the forest homogeneous steady state ET2 = (0; 0.9477)

is locally asymptotically stable and the grassland homogeneous steady state EGe = (0.7426; 0) is

unstable (see for instance figure 4.2, page 163). Then we have the following configuration after 10

years (figure 4.3-(a)), 14 years (figure 4.3-(b)) and 30 years (figure 4.3-(c)):
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(a) Tree-grass distribution at t = 10 years.
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(b) Tree-grass distribution at t = 14 years.
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(c) Tree-grass distribution at t = 30 years.

Figure 4.3: Grass and Tree distributions illustrating the progressive elimination of grassland by forest.

Figure 4.3 illustrates the fact that after thirty (30) years, the forest has completely replaced the

grassland. In fact in this case, the traveling wave is monostable because (ET2) is the only stable

homogeneous steady state of system (4.1), and it is clear that the forest would take over the grassland

and the reverse can’t be observed. Figure 4.3 will serve as a basic configuration to illustrate the

variations of the wave speed.

Now we increase the fire frequency and we consider f = 1.5. Then for the value of parameters

in table 4.2, EGe = (0.5741; 0) and ET2 = (0; 0.9477) are both LAS (see the bifurcation diagram in

figure 4.2, page 163). We have the following configuration after 10 years (figure 4.4-(a)), 30 years

(figure 4.4-(b)) and 50 years (figure 4.4-(c)):
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(a) Tree-grass distribution at t = 10 years.
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(b) Tree-grass distribution at t = 30 years.
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(c) Tree-grass distribution at t = 50 years.

Figure 4.4: Grass and Tree distributions illustrating the progressive elimination of grassland by forest
with fire frequency f = 1.5.

From figure 4.4, we observe that the progression of forest into grassland is slowed down when

the fire frequency increases. However, in nearly fifty years, the forest has completely replaced the

grassland but it took more longer compared to the previous case in figure 4.3 (see for instance panel

(b) of figure 4.4 and panel (c) of figure 4.3). Therefore, figures 4.3 and 4.4 illustrate the fact that the

speed c∗1 of the wave could be a decreasing function of the fire frequency.

4.5.1.2 Illustration of wave speed variation with increasing values of LT

In this subsection, we illustrate the fact that, when the range of tree seed dispersal LT increases, it

accelerates the forest encroachment. We fix the final time of illustration at t = 30 years and we

consider different values of LT (LT = 10m, 25m, 50m). For f = 0.85 as we saw in the subsection

4.5.1.1, the forest homogeneous steady stateET2 = (0; 0.9477) is locally asymptotically stable and the

grassland homogeneous steady state EGe = (0.7426; 0) is unstable. Therefore we have the following

configuration:
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(a) Tree-grass distribution at t = 30 yr and LT = 10m.
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(b) Tree-grass distribution at t = 30 yr and LT = 25m.
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(c) Tree-grass distribution at t = 30 yr and LT = 50m.

Figure 4.5: Illustration of Grass and Tree distributions with different values of LT .

Then, from the panel (a) to the panel (c) of figure 4.5, we observe that the length of tree seed

dispersal LT plays a crucial role on the speed c∗1 of the wave. More precisely, higher values of LT

favor the encroachment of the forest on the grassland patch. In fact, LT integrates ranges of different

mechanisms, since the convolution kernel embodies not only seed dispersal stricto sensu but also

facilitative influences of extant tree biomass on germination and seedling survival (probably the most

influential mechanism).

4.5.1.3 Illustration of wave speed variation with increasing values of DT

As in the previous subsection, we consider f = 0.85 with the final time t = 30 years. Our aim is

to illustrate the ability of DT to provide a quick increase of the wave speed. Therefore for different

values of DT , we have the following configuration:
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(a) Tree-grass distribution at t = 30 yr and DT = 0.02.
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(b) Tree-grass distribution at t = 30 yr and DT = 0.04.
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(c) Tree-grass distribution at t = 30 yr and DT = 0.1.

Figure 4.6: Illustration of Grass and Tree distributions with different values of DT and LT = 50m.

Then, from the panel (a) to the panel (c) of figure 4.6, we observe that, the wave speed increases

with increasing DT and favour the encroachment of the forest into the grassland patch. In fact DT

integrates tree seed germination production along with establishment ability and these could facilitate

the extension for forest.

4.6 Discussion

We developed and analysed a reaction-dispersion fire-meditated tree-grass interactions model in order

to capture the forest-grassland distribution or transition observable in the climatic context of humid

savannas. We proposed an integro-differential model based on Tega II et al. [103] by taking into

account, nonlocal dispersal terms in both dynamics of tree and grass biomasses, which is the novelty in

this paper. We focus on the potential transition between grassland and forest by studying the existence

of a traveling wave that involves the grassland (EGe) and the forest (ET2) homogeneous steady states

of our system. The key technical point is the construction of a nice pair of upper and lower solutions

of the system, and the application of the Schauder fixed point theorem (Pan [73, 74], Zhao et al.

[132]). Due to the consideration of nonlocal seed dispersal terms, it is important to asses the role of

the ranges of nonlocal dispersal (LG and LT ), in the existence of traveling wave and/or on the speed of

the wave. Therefore we investigated through numerical simulation , the impact of tree seed dispersal

range LT , tree biomass dispersal rate DT and the fire frequency f in the variation of the wave speed.

One may remark that in the context of humid vegetation, current climatic conditions favor the forest

expansion (Sagang et al. [83]). Then, to perpetuate the existing vegetation mosaics and preserve land
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cover diversity, it is necessary to control the speed of the forest invasion wave connecting the forest

and the grassland/savanna states.

Based on the mathematical analysis, we proved the existence of a traveling wave with respect

to our reaction-dispersion tree-grass system (4.1), connecting EGe and ET2 . We indeed showed that

there exists a real number c∗1 which is the minimal wave speed of the traveling wave connecting the

forest to grassland homogeneous steady states of system (4.1). In Lemma 4.1, we proved that the

minimal speed c∗1 depends on the tree biomass dispersal rate DT , the tree seed dispersal range LT , the

fire frequency f , the tree biomass mortality due to human activities δT and the tree biomass intrinsic

growth rate γT (see Remark 4.4, page 161). In fact according to Proposition 4.9, page 161, we have:

∂c∗1
∂f

< 0;
∂c∗1
∂δT

< 0;
∂c∗1
∂DT

> 0;
∂c∗1
∂γT

> 0;
∂c∗1
∂LT

> 0. (4.89)

We further illustrated the fact that, the increase of LT or DT promotes the invasion of grassland by

forest (see figures 4.5 and 4.6, pages 166 and 167). Conversely, the increase of fire frequency is able to

slow down the progression of forest (see figures 4.3 and 4.4, pages 164 and 165). For a management

plan, it is now acknowledged that fire is one of the key disturbances that shapes the physiognomy of

vegetation in humid tropical savannas where rainfall is sufficient to promote very high grass biomass

production which in turn constitutes the principal fuel for fires during the dry seasons (Tega II et al.

[103] and references therein).

In this paper, for mathematical simplicity and as a first attempt, we choose to work with local

intraspecific competition between trees. We were able with this choice, to give from a mathematical

point of view, a tractable characterization for the existence of the traveling wave solutions involving

EGe and ET2 , and the corresponding minimal wave speed. In fact, if we consider the nonlocal in-

traspecific competition in the growth term of tree biomass dynamics, it would become difficult (to our

knowledge) to show that, the operator P defined in (4.46), page 148, verify the property P(Γ) ⊂ Γ

for the application of Schauder’s fixed point theorem that allow proving the existence of the traveling

wave. Therefore, another process has to be constructed/advocated to address that case. On the other

hand, non-local tree-tree competition is not expected to be a pervasive process in the humid savanna

context where rainfall are a priori sufficient to sustain a close canopy forest.

4.7 Conclusion

Understanding the behaviour of forest-grassland dynamics in the humid part of the savanna biome,

is fundamental to manage and preserve the current vegetation mosaics against rapid unexpected tran-

sitions. In this work, we developed and studied a reaction-dispersion model allowing to render the

transitions of vegetation in the humid part of the savanna biome, where forest encroachment has been

reported in spite of recurrent fires (Sagang et al. [83] and references therein). Then, we proved the

existence of a monostable traveling wave connecting the forest homogeneous steady state to the grass-

land homogeneous steady state of our system, and, we also characterized the minimal speed of that
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traveling wave solution. The existence of traveling wave solutions is proved by constructing some

suitable upper and lower solutions with the help of the Schauder’s fixed-point theorem (see e.g., Pan

[74], Zhao et al. [132], Ducrot et al. [33]). On the other hand, the conditions for the nonexistence of

traveling wave solutions are obtained by applying the theory of asymptotic spreading for scalar equa-

tions. We therefore end up with a characterization of the minimal speed of possible forest-grassland

traveling wave. Thereby, we proved that the forest encroachment is shaped by some influential pa-

rameters including the fire frequency, the tree biomass mortality, the range of tree seed dispersal and

the tree biomass dispersal rate. A line of improvement of this work resides on the consideration of

anisotropic seed dispersal in our system (4.1). In fact dispersal of seed and plant propagules are often

directional (van Putten et al. [111]) and these latter can be highlighted from a mathematical point

of view by the presence of asymmetric kernels functions (Dong et al. [31]) in the dispersal terms of

system (4.1).
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THis thesis focused on the mathematical modelling of the spatio-temporal dynamics of vegetation

in humid savannas, with a special attention concerning the effects of fires forcing on spatial

self-organisation of vegetation. In fact, many researches dedicated to the description of different

archetypes of vegetation landscapes has thrived the past three decades, principally in water limited

regions (arid and semi-arid savannas). However, there have been a little use of spatial explicit and

tractable mathematical models dedicated to vegetation physiognomies and transitions in humid envi-

ronmental context. But to understand the self-organization of vegetation along the rainfall gradient,

theoretical approaches are required and mathematical modelling is a useful tool to describe dynamics

of complex systems. The main objectives in this dissertation were to construct and analyse math-

ematical tractable models able to give some informations about: (i) the ecological mechanisms that

induced periodic vegetation physiognomies and (ii) phenomena of vegetations transitions, specifically

on forest encroachment observed in several humid environmental ecosystems.

The first step of this dissertation was to carried out in Chapter 1, a deep literature review about

ecological processes that shape the tree-grass coexistence in tropical ecosystems, notably the role of

fire, herbivory, competition in term of intra and interspecific relations between trees and grasses, and

finally facilitation mechanisms due to recurrent fires. This state of art further support a discussion

on existing mathematical models of savannas vegetations and allows us to observe that spatial in-

teractions mechanisms have been scarcely considered in the study of tree-grass dynamics in humid

savannas where vegetation mosaics have been regularly reported. Consequently, our modelling choice

in chapters 3 and 4, was made in order to be in agreement with the empirical evidence reported and

to provide realistic predictions of vegetations physiognomies and transitions in humid environmental

contexts. In the second step of this dissertation in chapter 2, we focused on a mathematical method for

the existence and uniqueness of solution for reaction-diffusions equations. This chapter gives some

important theorems that would help the readability of the rest of the manuscript.

The first contribution presented in chapter 3, is an integro-differential reaction diffusion model

able to describe the spatial structuring of vegetation in wet savannas. We considered in this chapter,

two states variables (tree and grass) and we assumed that these variables denote the density of tree

and grass biomasses. The model developed in chapter 3 is an extension of a previous temporal model

studied in Yatat Djeumen et al. [124], by integrating a space variable and kernel functions on both

tree and grass dynamic. The aims of nonlocal terms was to describe firstly the area of tree and grass
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competitive mechanisms, secondly the tree canopy induced shadow effect, and finally to describe

the consequence of fire-effect on tree mortality. The main objective of the model was to illustrate

by the existence of inhomogeneous solution, the spatial structuring of vegetation in wet savannas

area where regular spotted pattern (tree groves) have been casually reported with the presence of

high grass production and frequent fires. We showed that the interplay between nonlocal competition

and nonlocal facilitation is one of the key mechanisms for the emergence of inhomogeneous space

solutions for the model. In fact, thanks to linear stability analysis, we characterized the minimal range

of nonlocal interactions for the emergence of patterned space solutions in the model. Moreover in all

cases where regular spot pattern were obtained, we characterized the wavelength of the associated

periodic solution and we verified that the numerical wavelengths, were in good agreements with

theoretical ones.

The second contribution in this dissertation is presented in chapter 4. Precisely, in the previous

chapter, we consider as first approximation that both tree and grass biomasses have local propagation

through Laplace operator. In fact for mathematical simplicity, plant dispersal is commonly described

through diffusion in PDE models. However, diffusion is a local process that neglects nonlocal mecha-

nism involved in the dispersal of seed or propagules. However, comprehensive empirical data on seed

dispersal kernels, probability density functions describing the distribution of seed dispersal distances

are available. Therefore, we investigate by the mean of a reaction dispersion model the impact of seed

dispersal and fire on the process of forest encroachment reported in wet savannas. Mathematically,

these empirical observations can be interpreted as a travelling wave that connects a forest state to a

grassland state. Therefore, in chapter 4, we focus in a first step, on the existence of travelling wave

connecting the forest and the grassland homogeneous steady states of the constructed reaction disper-

sion model and in second step on the characterisation of the minimal speed of this wave. We proved

the existence of travelling wave by : (i) constructing some suitable upper and lower solution, (ii) us-

ing the Schauder fixed point theorem. We also provides, the condition of non existence of travelling

wave. We therefore end up with the characterisation of the minimal wave speed connecting the two

semi-trivial homogeneous steady states (forest and grassland) of the model. Our results imply that the

increase of the length of tree seeds dispersal accelerates the wave speed and conversely, the increase

of the fire frequency slows down the encroachment of the forest along the domain.

The first line of improvement of this dissertation may consists on the consideration of fire acting

as a discrete event. In fact, as pointed out by Tchuinte et al. [101] and Yatat Djeumen et al. [121]

fire is not a forcing that continuously removes a small fraction of biomass through time. Instead fire

actually suppresses a substantial fraction of biomass at once through punctual outbreaks that shape

the ecosystem aspect and immediate post-fire functioning. This principle was implemented with time

discrete recurrence equation models, but another framework of impulsive differential equation also

proved relevant to gain realism regarding nature and consequences of fire. To our knowledges, there

is a lack of theories that deals with pattern formation and travelling wave for impulsive reaction

dispersion equation. Hence it is desirable to study a space explicit model with nonlocal diffusion

and impulsive fire events in a context on forest-savanna bistability in humid ecosystem. Moreover,
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in the analyse of the reaction-dispersion model developed in chapter 4, we numerically found that

it is possible to obtain a travelling wave connecting a homogeneous solution to an inhomogeneous

one, while considering nonlocal terms in the reaction part of the model. Then in our future work, we

think to propose and analyse a mathematical model that deals with nucleation process and transition

between homogeneous savannas and regular dense cluster of tree groves when nonlocal facilitation

and nonlocal competition are simultaneous put in place.

Another challenging outlook of our PhD dissertation is the construction of mathematical models

that put an emphasis on the dynamics of boundary between forest and savanna/grassland. In fact one

way to circumvent the study of invasion process via travelling wave is to think about the modelling

of the dynamics of the boundary between the observed mosaics. From a mathematical point of view,

we think to use PDE with moving boundary. Finally, it is also important to improve our numerical

schemes done in this dissertation in a one spatial domain (1D). One may obtain multi-scale vegetations

pattern on 2D spatial domain.
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.1 Space of continuous functions

Let C(Ω) denote the vector space of all continuous functions defined on Ω, where (Ω, d) is a met-

ric space. In order to turn continuous functions into normed space we need to restrict to bounded

functions. For this purpose, let:

Cb(Ω) = {f : f ∈ C(Ω), |f(x)| ≤M, for some M} .

Proposition .10. Cb(Ω) is a metric space under the metric induced by the sup-norm. In other words,

d∞(f, g) = ||f − g||∞, ∀f, g ∈ Cb(Ω).

Now we gives some basic property of Cb(Ω).

Proposition .11. Cb(Ω) is a complete metric space.

Proof. Let {fn} be a Cauchy sequence on Cb(Ω). For ϵ > 0, there exist n0 such that ||fn − fm|| <
ϵ/4 for all n,m ≥ n0. In particular, it means that {fn(x)} is a Cauchy sequence on R. By the

completeness of R,the limn→+∞ fn(x) exists and we define f(x) ≡ limn→+∞ fn(x). Assuming f ∈
Cb(Ω), by taking m → +∞ in the inequality above, we immediately obtain ||fn − f || < ϵ/4 < ϵ,

hence fn −→ f ∈ Cb(Ω). To show f ∈ Cb(Ω), we let m → +∞ in ||fn − fm|| < ϵ/4 to get

||fn − f || < ϵ/4 < ϵ for all n ≥ n0. Taking n = n0, we get |f(x)| ≤ |f(x) − fn0(x)| + |fn0(x)| ≤
ϵ/4 + ||fn0||∞, hence f is bounded. On the other hand as fn0 is continuous, for each x, we can find δ

such that |fn0(y)− f(x)| ≤ ϵ/4, whenever d(y, x) ≤ δ. It follows that for all d(y, x) ≤ δ,

|f(y)− f(x)| ≤ |f(y)− fn0(y)|+ |fn0(y)− fn0(x)|+ |fn0(x)− f(x)| ≤ ϵ/4 < ϵ.

Proposition .12. Cb(Ω) = C(Ω) when (Ω, d) is a compact metric space.

Proof. We need to show that every continuous function on a compact set is bounded. Assume on the

contrary that for some continuous function f , there are points {xk} such that |f(xk)| −→ +∞. By
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compactness there exists a subsequence
{
xkj
}

such that limj−→+∞ xkj = z. But by the continuity of

f , we would have limj−→+∞ |f(xkj)| = |f(z)| <∞, contradiction holds.

.2 Hölder functions spaces

Let Ω be a bounded or an unbounded open domain in Rn, and let ∂Ω be the boundary of Ω. For each

T > 0, let DT = (0, T ]× Ω, ST = (0, T ]× ∂Ω. Denote by:

• Cm(Ω), the set of all continuous functions, whose partial derivatives up to the mth order are

continuous in Ω.

• C l,m(DT ) the set of functions whose l-times derivatives in t and m-times derivatives in x are

continuous in DT .

Similar notations are used for Cm(Ω̄) and C l,m(D̄T ), where Ω̄, D̄T are the respective closure of Ω and

DT . When m = 0 whe denote by C(Ω), C(Ω̄), C(DT ), C(D̄T ) the set of continuous functions in Ω,

Ω̄, DT and D̄T respectively. The norms in C(Ω) and C(DT ) are defined by:

|u|Ω0 = sup
x∈Ω

|u(x)| and |u|DT
0 = sup

(t,x)∈DT

|u(t, x)| (90)

Similar norms with respect to Ω̄, D̄T are defined for C(Ω̄) and C(D̄T ).

Definition .3. A function u ∈ C(Ω) is said to be Hölder continuous of order α ∈ (0, 1) if

Hα ≡ sup

{
|u(x)− u(ξ)|

|x− ξ|α
; x, ξ ∈ Ω andx ̸= ξ

}
<∞

The Hölder norm of u is defined by

|u|α = |u|Ω0 +Hα (91)

Let Dm
x be nay partial derivative of order m with respect to the variables x1, ..., xm and define:

• |u|m ≡ |u|0 +
∑

|Dxu|0 + ...+
∑

|Dm
x u|0,

• |u|1+α ≡ |u|0 +
∑

|Dxu|α,

• |u|2+α ≡ |u|0 +
∑

|Dxu|α +
∑

|D2
xu|α,

where the sums are taken over all partial derivatives of the indicated order.

Proposition .13. The sets of all functions u for which |u|m <∞, |u|1+α <∞, and |u|2+α <∞,

are denoted respectively, by Cm(Ω), C1+α(Ω), and C2+α(Ω).

The set of Hölder-continuous functions in Ω with finite norm is denoted by Cα(Ω).
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Proposition .14. When the domain Ω is replaced by DT we defined the Hölder constant by

Hα ≡ sup

{
|u(t, x)− u(τ, ξ)|

(|t− τ |α + |x− ξ|α)
; x, ξ ∈ Ω andx ̸= ξ

}
<∞

and the set of all Hölder-continuous functions in DT with finite Hölder norm is denoted by Cα(DT ).

.3 Contraction mapping theorem

The following theorem is called contraction mapping theorem or Banach fixed point theorem. Let

(X, d) be a metric space.

Theorem .7. If T : X −→ X is a contraction mapping on a complete metric space (X, d), then

there is exactly one solution x ∈ X of :

T (x) = x. (92)

Moreover, if y ∈ X is arbitrarily chosen, then the iterates (xn)n∈N, given by:

x0 = y and xn+1 = T (xn), n ≥ 1, (93)

have the property that: limn→+∞ xn = x.

.4 A mathematical process for pattern formation: Diffusion driven

instability

Spatial or spatio-temporal heterogeneities are one of the characteristic of many ecological systems

and have profound effects on the dynamics of invasion, population growth and persistence. These

heterogeneities are determining factors of the self-organisation of the studied system. The identifi-

cation of factors and parameters making it possible, to pass from the stable homogeneous state to

the emergence of spatial or spatio temporal patterns is a mater of great importance in the study of

biological process or in understanding the evolution of ecosystems. In this paragraph, we are going to

give for a model of two species, conditions allowing the formation of non-homogeneous structures.

In fact, in the study of non linear chemical system, Turing found that the diffusion of two species may

lead to the pattern formation when, they have different diffusion. In the absence of diffusion, both

species reach a stable and spatially uniform steady state, while diffusion may be able to destabilize

this state (diffusion driven instability) leading to the formation of spatial pattern.

We consider a system of two reaction diffusion equation describe in a one spatial domain the
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spatial dynamics on two species U and V :
∂U

∂t
= DU

∂2U

∂x2
+ F (U, V ),

∂V

∂t
= DV

∂2V

∂x2
+G(U, V ),

(94)

where F andG described the intra and interspecific dynamic of each species U and V ;DU andDV are

the diffusion coefficients. We are interesting, on the study of pattern formation induced by diffusion.

For this, we suppose that (U∗, V ∗) is a stable homogeneous steady state for the system (94). We set:

U(x, t) = U∗ + u(x, t) and V (x, t) = V ∗ + v(x, t), (95)

where

|U(x, t)| << U∗, |V (x, t)| << V ∗.

Linearising system (94) around (U∗, V ∗) by using Taylor’s expansion, we get the following system:
∂u

∂t
= DU

∂2u

∂x2
+
∂F

∂U
(U∗, V ∗)u+

∂F

∂V
(U∗, V ∗)v,

∂v

∂t
= DV

∂2v

∂x2
+
∂G

∂U
(U∗, V ∗)u+

∂G

∂V
(U∗, V ∗)v.

(96)

By the Fourier analysis, we can compute:

u(x, t) = u0e
σt+ikx and v(x, t) = v0e

σt+ikx, (97)

where u0, v0 are constant and the function eikx is periodic and bounded, and k is a wave number, that

would indicated the wavelength of emergence of spatial structure:

• ifRe(σ(k)) < 0 for all k, then the solution of system (94) converges to the homogeneous steady

state (U∗, V ∗).

• if there exits k0 such that for a range of values of k > k0, Re(σ(k)) > 0, then (U∗, V ∗) is

unstable.

Substituting (97) in (94), we get :
σu0 = −DUk

2u0 +
∂F

∂U
(U∗, V ∗)u0 +

∂F

∂V
(U∗, V ∗)v0,

σv0 = −DV k
2v0 +

∂G

∂U
(U∗, V ∗)u0 +

∂G

∂V
(U∗, V ∗)v0,

(98)
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We put the previous system in (98) in a matrix form:
σ +DUk

2 − ∂F

∂U
(U∗, V ∗) −∂F

∂V
(U∗, V ∗)

−∂G
∂U

(U∗, V ∗) σ +DV k
2 − ∂G

∂V
(U∗, V ∗).




u0

v0

 =


0

0

 . (99)

By setting

M(k) = DUDV k
4 −

(
DU

∂G

∂V
(U∗, V ∗) +DV

∂F

∂U
(U∗, V ∗)

)
k2 +

∂F

∂U
(U∗, V ∗)

∂G

∂V
(U∗, V ∗)

−∂F
∂V

(U∗, V ∗)
∂G

∂U
(U∗, V ∗),

we get the relation between eigenvalue σ and the wave number k, knows as dispersion relation:

σ2 +

[
(DU +DV ) k

2 −
(
∂F

∂U
(U∗, V ∗) +

∂G

∂V
(U∗, V ∗)

)]
σ +M(k) = 0. (100)

The process of "diffusion driven instability" required that the homogeneous steady state (U∗, V ∗) be

locally asymptotic stable (LAS) for k = 0 (i.e LAS in the space implicit system associated to the

system (94)), and become unstable (due to the diffusion of two species) for a certain k. Then, we are

aimed to establish conditions for the system without diffusion and with diffusion.

∗ For k = 0, (U∗, V ∗) is stable if:
∂G

∂V
(U∗, V ∗) +

∂F

∂U
(U∗, V ∗) < 0,

∂F

∂U
(U∗, V ∗)

∂G

∂V
(U∗, V ∗)− ∂F

∂V
(U∗, V ∗)

∂G

∂U
(U∗, V ∗) > 0

(101)

∗ For k > 0. To haveRe(σ(k)) > 0, for a certain k it is necessary thatM(k) < 0. But, examining

M(k) we have: DUDV k
4 > 0 for all k ∈ R.

∂F

∂U
(U∗, V ∗)

∂G

∂V
(U∗, V ∗)− ∂F

∂V
(U∗, V ∗)

∂G

∂U
(U∗, V ∗) > 0,

(102)

and then, M(k) < 0, if only if

DU
∂G

∂V
(U∗, V ∗) +DV

∂F

∂U
(U∗, V ∗) > 0 (103)
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and(
DU

∂G

∂V
(U∗, V ∗) +DV

∂F

∂U
(U∗, V ∗)

)
k2 > DUDV k

4 +
∂F

∂U
(U∗, V ∗)

∂G

∂V
(U∗, V ∗)−

∂F

∂V
(U∗, V ∗)

∂G

∂U
(U∗, V ∗).

(104)

Therefore, we can summarize the necessary conditions for instability in the following system:

∂G

∂V
(U∗, V ∗) +

∂F

∂U
(U∗, V ∗) < 0,

∂F

∂U
(U∗, V ∗)

∂G

∂V
(U∗, V ∗)− ∂F

∂V
(U∗, V ∗)

∂G

∂U
(U∗, V ∗) > 0,

DU
∂G

∂V
(U∗, V ∗) +DV

∂F

∂U
(U∗, V ∗) > 0,

(
DU

∂G

∂V
(U∗, V ∗) +DV

∂F

∂U
(U∗, V ∗)

)
k2 > DUDV k

4 +
∂F

∂U
(U∗, V ∗)

∂G

∂V
(U∗, V ∗)−

∂F

∂V
(U∗, V ∗)

∂G

∂U
(U∗, V ∗).

(105)

Remark .5. It is easy to see that:

a) If DU = DV , then the first and the third inequality in system (105) contradicts. Then for pattern

formation it is necessary that DU ̸= DV .

b)
∂F

∂U
(U∗, V ∗) and

∂G

∂V
(U∗, V ∗) has different sign. It follows the same for

∂F

∂V
(U∗, V ∗) and

∂G

∂U
(U∗, V ∗).

c) The conclusion in b) induced that cooperative and competitive model can’t lead to pattern formation

via diffusion. In these particular cases it is necessary to think about another mechanisms to break

up the stability of the homogeneous steady state two give rise to pattern (see the model develops in

chapter 3).
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