Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Asymptotic stability of a coupled advection-diffusion-reaction system arising in bioreactor processes

Abstract : In this work, we present an asymptotic analysis of a coupled system of two advection-diffusion-reaction equations with Danckwerts boundary conditions, which models the interaction between a microbial population (e.g., bacteria), called biomass, and a diluted organic contaminant (e.g., nitrates), called substrate, in a continuous flow bioreactor. This system exhibits, under suitable conditions, two stable equilibrium states: one steady state in which the biomass becomes extinct and no reaction is produced, called washout, and another steady state, which corresponds to the partial elimination of the substrate. We use the linearization method to give sufficient conditions for the linear asymptotic stability of the two stable equilibrium configurations. Finally, we compare our asymptotic analysis with the usual asymptotic analysis associated to the continuous bioreactor when it is modeled with ordinary differential equations.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [57 références]  Voir  Masquer  Télécharger
Déposant : Archive Ouverte Prodinra <>
Soumis le : lundi 25 mai 2020 - 16:22:25
Dernière modification le : mardi 7 juillet 2020 - 11:37:34


Fichiers éditeurs autorisés sur une archive ouverte


Distributed under a Creative Commons Paternité - Partage selon les Conditions Initiales 4.0 International License


  • HAL Id : hal-01607898, version 1
  • PRODINRA : 407543
  • WOS : 000407499000001


Maria Crespo Moya, Benjamin Ivorra, Angel Manuel Ramos. Asymptotic stability of a coupled advection-diffusion-reaction system arising in bioreactor processes. Electronic Journal of Differential Equations, Texas State University, Department of Mathematics, 2017, pp.1-26. ⟨hal-01607898⟩



Consultations de la notice


Téléchargements de fichiers