Skip to Main content Skip to Navigation
Journal articles

Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips - Part 2: model coupling, application, factor importance, and uncertainty

Abstract : Vegetative filter strips are often used for protecting surface waters from pollution transferred by surface runoff in agricultural watersheds. In Europe, they are often prescribed along the stream banks, --where a seasonal shallow water table (WT) could decrease the buffer zone efficiency. In spite of this potentially important effect, there are no systematic experimental or theoretical studies on the effect of this soil boundary condition on the VFS efficiency. In the companion paper (Munoz-Carpena et al., 2018), we developed a physically based numerical algorithm (SWINGO) that allows the representation of soil infiltration with a shallow water table. Here we present the dynamic coupling of SWINGO with VFSMOD, an overland flow and transport mathematical model to study the WT influence on VFS efficiency in terms of reductions of overland flow, sediment, and pesticide transport. This new version of VFSMOD was applied to two contrasted benchmark field studies in France (sandy-loam soil in a Mediterranean semicontinental climate, and silty clay in a temperate oceanic climate), --where limited testing of the model with field data on one of the sites showed promising results. The application showed that for the conditions of the studies, VFS efficiency decreases markedly when the water table is 0 to 1.5 m from the surface. In order to evaluate the relative importance of WT among other input factors controlling VFS efficiency, global sensitivity and uncertainty analysis (GSA) was applied on the benchmark studies. The most important factors found for VFS overland flow reduction were saturated hydraulic conductivity and WT depth, added to sediment characteristics and VFS dimensions for sediment and pesticide reductions. The relative importance of WT varied as a function of soil type (most important at the silty-clay soil) and hydraulic loading (rainfall + incoming runoff) at each site. The presence of WT introduced more complex responses dominated by strong interactions in the modeled system response, reducing the typical predominance of saturated hydraulic conductivity on infiltration under deep water table conditions. This study demonstrates that when present, the WT should be considered as a key hydrologic factor in buffer design and evaluation as a water quality mitigation practice.
Complete list of metadata

Cited literature [81 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01825210
Contributor : Import Ws Irstea Connect in order to contact the contributor
Submitted on : Thursday, June 28, 2018 - 10:44:19 AM
Last modification on : Tuesday, September 7, 2021 - 3:54:16 PM
Long-term archiving on: : Thursday, September 27, 2018 - 7:55:25 AM

File

ly2018-pub00056287.pdf
Publisher files allowed on an open archive

Identifiers

Collections

Citation

Claire Lauvernet, R Munoz Carpena. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips - Part 2: model coupling, application, factor importance, and uncertainty. Hydrology and Earth System Sciences, European Geosciences Union, 2018, 22, pp.71-87. ⟨10.5194/hess-22-71-2018⟩. ⟨hal-01825210⟩

Share

Metrics

Record views

173

Files downloads

353