Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

A hybrid and exploratory approach to knowledge discovery in metabolomic data

Dhouha Grissa 1 Blandine Comte 1 Mélanie Petera 1 Estelle Pujos-Guillot 1 Amedeo Napoli 2
2 ORPAILLEUR - Knowledge representation, reasonning
Inria Nancy - Grand Est, LORIA - NLPKD - Department of Natural Language Processing & Knowledge Discovery
Abstract : In this paper, we propose a hybrid and exploratory knowledge discovery approach for analyzing metabolomic complex data based on a combination of supervised classifiers, pattern mining and Formal Concept Analysis (FCA). The approach is based on three main operations, preprocessing, classification, and postprocessing. Classifiers are applied to datasets of the form individuals×features and produce sets of ranked features which are further analyzed. Pattern mining and FCA are used to provide a complementary analysis and support for visualization. A practical application of this framework is presented in the context of metabolomic data, where two interrelated problems are considered, discrimination and prediction of class membership. The dataset is characterized by a small set of individuals and a large set of features, in which predictive biomarkers of clinical outcomes should be identified. The problems of combining numerical and symbolic data mining methods, as well as discrimination and prediction, are detailed and discussed. Moreover, it appears that visualization based on FCA can be used both for guiding knowledge discovery and for interpretation by domain analysts.
Liste complète des métadonnées

Littérature citée [46 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-02195463
Déposant : Amedeo Napoli <>
Soumis le : samedi 10 octobre 2020 - 14:01:56
Dernière modification le : mardi 13 octobre 2020 - 03:09:38

Fichier

grissa-etal-dam20.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Dhouha Grissa, Blandine Comte, Mélanie Petera, Estelle Pujos-Guillot, Amedeo Napoli. A hybrid and exploratory approach to knowledge discovery in metabolomic data. Discrete Applied Mathematics, Elsevier, 2019, 273 (SI), pp.103-116. ⟨10.1016/j.dam.2018.11.025⟩. ⟨hal-02195463⟩

Partager

Métriques

Consultations de la notice

214

Téléchargements de fichiers

43