A sub-individual multilevel approach for an integrative assessment of CuO nanoparticle effects on Corbicula fluminea - Archive ouverte HAL Access content directly
Journal Articles Environmental Pollution (1970) Year : 2019

A sub-individual multilevel approach for an integrative assessment of CuO nanoparticle effects on Corbicula fluminea

(1) , (1) , (1) , (1) , (1) , (1) , (2) , (3) , (1)
1
2
3

Abstract

Because they are widely used, copper oxide nanoparticles (CuO NPs) are likely to enter the aquatic environment and then reach the sediment. We have examined the effect of CuO NPs in the freshwater endobenthic bivalve Corbicula fluminea. Some previous studies have investigated effects at biochemical and physiological levels, but molecular endpoints are still poorly studied despite they are sensitive in early detection of NPs effect. In the present study, we have investigated short-term effects (96 h) of CuO NP (12, 30 nm; 0, 20 and 100 mg/L) using molecular endpoints as well as more conventional biochemical and physiological markers. The expression of antioxidant (CuZnSOD, MnSOD, Cat, Se-GPx, Trxr) and antitoxic (GST-Pi, HSP70, MT, Pgp, MRP1) related genes was measured at the mRNA level while anti-oxidant (SOD, TAC) and antitoxic (GST, ACP) defenses, energetic reserves and metabolism (ETS, Tri, LDH), and cellular damages (LPO) were assessed using a biochemical approach. The filtration rate measured at 96 h provided information at the physiological scale. Gene expression and filtration rate were responsive to CuO NPs but the effects differed according to the NP size. The results suggest that defense mechanisms may have been set up following 30 nm-NP exposure. The response to 12 nm-NP was lower but still showed that exposure to 12 nm-NP led to activation of cellular elimination mechanisms. The lowering of the filtration rate may have protected the organisms from the contamination. However, this raised the question of further repercussions on organism biology. Together, the results (i) indicate that CuO NP may exert effects at different levels even after a short-term exposure and (ii) point out the precocity of molecular response.
Fichier principal
Vignette du fichier
S0269749119324066.pdf (536.59 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-02393584 , version 1 (20-07-2022)

Licence

Attribution - NonCommercial - CC BY 4.0

Identifiers

Cite

Vanessa Koehle-Divo, Benedicte Sohm, Laure Giamberini, Daniele Pauly, Justine Flayac, et al.. A sub-individual multilevel approach for an integrative assessment of CuO nanoparticle effects on Corbicula fluminea. Environmental Pollution (1970), 2019, 254 (Part A), pp.112976. ⟨10.1016/j.envpol.2019.112976⟩. ⟨hal-02393584⟩
89 View
10 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More