Accéder directement au contenu Accéder directement à la navigation
Poster

EasyABC: performing efficient approximate Bayesian computation sampling schemes using R

Abstract : 1.Approximate Bayesian computation (ABC), also called likelihood-free inference, is a family of statistical techniques to perform parameter inference and model comparison. It is increasingly used in ecology and evolution, where the models used can be too complex to be handled with standard likelihood techniques. The essence of ABC techniques is to compare model simulation outputs to observed data, in order to select the model simulations (and their associated parameter values) which best fit the data. ABC techniques therefore require a large number of model simulations. 2.We introduce the R package 'EasyABC' that enables to launch a series of simulations of a computer code from the R platform and to retrieve the simulation outputs in an appropriate format for post-processing treatments. The 'EasyABC' package further implements several efficient parameter sampling schemes to speed up the ABC procedure: on top of the standard prior sampling, it implements various algorithms to perform sequential (ABC-sequential) and Markov chain Monte Carlo (ABC-MCMC) sampling schemes. The package functions can furthermore make use in parallel of several cores of a multi-core computer. 3.The R package 'EasyABC' complements the package 'abc' which enables various post-processing treatments of simulation outputs. 'EasyABC' will make the up-to-date ABC implementations available to the large community of R users in the fields of ecology and evolution. It is a freely available R package under the GPL license, and it can be downloaded at http://cran.r-project.org/web/packages/EasyABC/index.html .
Mots-clés : LOGICIEL R
Type de document :
Poster
Liste complète des métadonnées

Littérature citée [6 références]  Voir  Masquer  Télécharger

https://hal.inrae.fr/hal-02599551
Déposant : Migration Irstea Publications <>
Soumis le : samedi 16 mai 2020 - 03:01:12
Dernière modification le : lundi 18 mai 2020 - 14:34:27

Fichier

pub00040536.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-02599551, version 1
  • IRSTEA : PUB00040536

Collections

Citation

Franck Jabot, Thierry Faure, N. Dumoulin. EasyABC: performing efficient approximate Bayesian computation sampling schemes using R. ABC (Approximate Bayesian Computation), May 2013, Rome, Italy. 2013. ⟨hal-02599551⟩

Partager

Métriques

Consultations de la notice

13

Téléchargements de fichiers

34