Skip to Main content Skip to Navigation
Journal articles

Multi-omic approaches identify metabolic and autophagy regulators important in ovarian cancer dissemination.

Abstract : High-grade serous ovarian cancers (HGSOCs) arise from exfoliation of transformed cells from the fallopian tube, indicating that survival in suspension, and potentially escape from anoikis, is required for dissemination. We report here the results of a multi-omic study to identify drivers of anoikis escape, including transcriptomic analysis, global non-targeted metabolomics, and a genome-wide CRISPR/Cas9 knockout (GeCKO) screen of HGSOC cells cultured in adherent and suspension settings. Our combined approach identified known pathways, including NOTCH signaling, as well as novel regulators of anoikis escape. Newly identified genes include effectors of fatty acid metabolism, ACADVL and ECHDC2, and an autophagy regulator, ULK1. Knockdown of these genes significantly inhibited suspension growth of HGSOC cells, and the metabolic profile confirmed the role of fatty acid metabolism in survival in suspension. Integration of our datasets identified an anoikis-escape gene signature that predicts overall survival in many carcinomas.
Complete list of metadata

Cited literature [62 references]  Display  Hide  Download
Contributor : Migration Prodinra Connect in order to contact the contributor
Submitted on : Tuesday, May 26, 2020 - 5:14:35 AM
Last modification on : Tuesday, September 7, 2021 - 3:36:11 PM


Publisher files allowed on an open archive


Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License





Lindsay J Wheeler, Zachary L Watson, Lubna Qamar, Tomomi M Yamamoto, Brandon T Sawyer, et al.. Multi-omic approaches identify metabolic and autophagy regulators important in ovarian cancer dissemination.. iScience, Elsevier, 2019, 19, pp.474-491. ⟨10.1016/j.isci.2019.07.049⟩. ⟨hal-02622292⟩



Record views


Files downloads