Skip to Main content Skip to Navigation
New interface
Journal articles

Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes

Abstract : Lateral gene transfer from prokaryotes to animals is poorly understood, and the scarce documented examples generally concern genes of uncharacterized role in the receiver organism. In contrast, in plant-parasitic nematodes, several genes, usually not found in animals and similar to bacterial homologs, play essential roles for successful parasitism. Many of these encode plant cell wall-degrading enzymes that constitute an unprecedented arsenal in animals in terms of both abundance and diversity. Here we report that independent lateral gene transfers from different bacteria, followed by gene duplications and early gain of introns, have shaped this repertoire. We also show protein immunolocalization data that suggest additional roles for some of these cell wall-degrading enzymes in the late stages of these parasites' life cycle. Multiple functional acquisitions of exogenous genes that provide selective advantage were probably crucial for the emergence and proficiency of plant parasitism in nematodes
Document type :
Journal articles
Complete list of metadata

Cited literature [44 references]  Display  Hide  Download
Contributor : Migration ProdInra Connect in order to contact the contributor
Submitted on : Sunday, May 31, 2020 - 2:18:48 PM
Last modification on : Tuesday, May 31, 2022 - 10:20:16 AM


Publisher files allowed on an open archive


Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License


  • HAL Id : hal-02669078, version 1
  • PRODINRA : 37196
  • WOS : 000282809700039



Etienne Danchin, Marie-Noelle Rosso, Paulo Vieira, Janice de Almeida-Engler, Pedro M Coutinho, et al.. Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107 (41), pp.17651-17656. ⟨hal-02669078⟩



Record views


Files downloads