Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Pairwise decomposition for combinatorial optimization in graphical models

Abstract : We propose a new additive decomposition of probabilitytables that preserves equivalence of the joint distribution while reducing the size of potentials, without extra variables. We formulate the Most Probable Explanation (MPE) problem in belief networks as a Weighted Constraint Satisfaction Problem (WCSP). Our pairwise decomposition allows to replace a cost function with smaller-arity functions.The resulting pairwise decomposed WCSP is then easier to solve using state-of-the-art WCSP techniques. Although testing pairwise decomposition is equivalent to testing pairwise independence in the original belief network, we show how to efficiently test and enforce it, even in the presence of hard constraints. Furthermore, we infer additional information from the resulting nonbinarycost functions by projecting&subtracting them on binary functions. We observed huge improvements by preprocessing with pairwise decomposition andproject&subtract compared to the current state-ofthe-art solvers on two difficult sets of benchmark.
Type de document :
Communication dans un congrès
Liste complète des métadonnées
Déposant : Migration Prodinra <>
Soumis le : mercredi 3 juin 2020 - 07:57:02
Dernière modification le : lundi 21 septembre 2020 - 19:32:01


IJCAI 2011 - TS_1
Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-02744861, version 1
  • PRODINRA : 164653



Aurélie Favier, Simon de Givry, Andres Legarra, Thomas Schiex. Pairwise decomposition for combinatorial optimization in graphical models. IJCAI 2011 - Twenty-second International Joint Conference on Artificial Intelligence, Labo/service de l'auteur, Ville service, Pays service., 2011, Barcelona, Spain. ⟨hal-02744861⟩



Consultations de la notice


Téléchargements de fichiers