From individual to population level effects of toxicants in the tubicifid branchiura sowerbyi using threshold effect models in a bayesian framework - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Accéder directement au contenu
Article Dans Une Revue Environmental Science and Technology Année : 2010

From individual to population level effects of toxicants in the tubicifid branchiura sowerbyi using threshold effect models in a bayesian framework

Résumé

Effects of zinc were studied in the freshwater worm Branchiura sowerbyi using partial and full life-cycle tests. Only newborn and juveniles were sensitive to zinc, displaying effects on survival, growth, and age at first brood tit environmentally relevant concentrations. Threshold effect models were proposed to assess toxic effects on individuals. They were fitted to life-cycle test data using Bayesian inference and adequately described life-history trait data in exposed organisms. The daily asymptotic growth rate of theoretical populations was then simulated with a matrix population model, based upon individual-level outputs. Population-level outputs were in accordance with existing literature for controls. Working in a Bayesian framework allowed incorporating parameter uncertainty in the simulation of the population-level response to zinc exposure, thus increasing the relevance of test results in the context of ecological risk assessment.
Fichier non déposé

Dates et versions

ineris-00963240 , version 1 (21-03-2014)

Identifiants

Citer

Virginie Ducrot, Elise Billoir, Alexandre R.R. Pery, Jeanne Garric, Sandrine Charles. From individual to population level effects of toxicants in the tubicifid branchiura sowerbyi using threshold effect models in a bayesian framework. Environmental Science and Technology, 2010, 44 (9), pp.3566-3571. ⟨10.1021/es903860w⟩. ⟨ineris-00963240⟩
203 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More