Skip to Main content Skip to Navigation
Journal articles

Membrane microdomains emergence through non-homogeneous diffusion.

Hédi Soula 1, 2, * Antoine Coulon 3 Guillaume Beslon 4, 1, 5 
* Corresponding author
1 BEAGLE - Artificial Evolution and Computational Biology
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information, Inria Grenoble - Rhône-Alpes, LBBE - Laboratoire de Biométrie et Biologie Evolutive - UMR 5558
5 COMBINING - COMputational BIology and data miNING
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information, Inria Grenoble - Rhône-Alpes
Abstract : BACKGROUND: In the classical view, cell membrane proteins undergo isotropic random motion, that is a 2D Brownian diffusion that should result in an homogeneous distribution of concentration. It is, however, far from the reality: Membrane proteins can assemble into so-called microdomains (sometimes called lipid rafts) which also display a specific lipid composition. We propose a simple mechanism that is able to explain the colocalization of protein and lipid rafts. RESULTS: Using very simple mathematical models and particle simulations, we show that a variation of membrane viscosity directly leads to variation of the local concentration of diffusive particles. Since specific lipid phases in the membrane can account for diffusion variation, we show that, in such a situation, the freely diffusing proteins (or any other component) still undergo a Brownian motion but concentrate in areas of lower diffusion. The amount of this so-called overconcentration at equilibrium issimply related to the ratio of diffusion coefficients between zones of high and low diffusion. Expanding the model to include particle interaction, we show that inhomogeneous diffusion can impact particles clusterization as well. The clusters of particles were more numerous and appear for a lower value of interaction strength in the zones of low diffusion compared to zones of high diffusion. CONCLUSION: Provided we assume stable viscosity heterogeneity in the membrane, our model propose a simple mechanism to explain particle concentration heterogeneity. It has also a non-trivial impact on density of particles when interaction is added. This could potentially have an impact on membrane chemical reactions and oligomerization.
Document type :
Journal articles
Complete list of metadata

Cited literature [58 references]  Display  Hide  Download
Contributor : Ed. BMC Connect in order to contact the contributor
Submitted on : Friday, December 21, 2012 - 9:07:47 PM
Last modification on : Sunday, September 25, 2022 - 3:55:54 AM
Long-term archiving on: : Sunday, December 18, 2016 - 10:27:04 AM



Hédi Soula, Antoine Coulon, Guillaume Beslon. Membrane microdomains emergence through non-homogeneous diffusion.. BMC Biophysics, BioMed Central, 2012, 5 (1), pp.6. ⟨10.1186/2046-1682-5-6⟩. ⟨inserm-00768564⟩



Record views


Files downloads