Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Class Model Normalization Outperforming Formal Concept Analysis approaches with AOC-posets

Abstract : Designing or reengineering class models in the domain of programming or modeling involves capturing technical and domain concepts , finding the right abstractions and avoiding duplications. Making this last task in a systematic way corresponds to a kind of model nor-malization. Several approaches have been proposed, that all converge towards the use of Formal Concept Analysis (FCA). An extension of FCA to linked data, Relational Concept Analysis (RCA) helped to mine better reusable abstractions. But RCA relies on iteratively building concept lattices, which may cause a combinatorial explosion in the number of the built artifacts. In this paper, we investigate the use of an alternative RCA process, relying on a specific sub-order of the concept lattice (AOC-poset) which preserves the most relevant part of the normal form. We measure, on case studies from Java models extracted from Java code and from UML models, the practical reduction that AOC-posets bring to the normal form of the class model.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01220215
Déposant : Marianne Huchard <>
Soumis le : dimanche 25 octobre 2015 - 19:30:01
Dernière modification le : jeudi 2 juillet 2020 - 13:56:28
Archivage à long terme le : : mardi 26 janvier 2016 - 10:46:19

Fichier

paper09.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : lirmm-01220215, version 1
  • IRSTEA : PUB00046627

Citation

André Miralles, Guilhem Molla, Marianne Huchard, Clémentine Nebut, Laurent Deruelle, et al.. Class Model Normalization Outperforming Formal Concept Analysis approaches with AOC-posets. CLA: Concept Lattices and their Applications, Olivier Raynaud, Oct 2015, Clermont-Ferrand, France. pp.111-122. ⟨lirmm-01220215⟩

Partager

Métriques

Consultations de la notice

665

Téléchargements de fichiers

471