Skip to Main content Skip to Navigation
Journal articles

Effects of chronic abdominal vagal stimulation of small-diameter neurons on brain metabolism and food intake

Abstract : Background : Abdominal bilateral vagal stimulation reduces food intake in animals. However, the classical square wave, mA range current generator is poorly effective to evoke action potentials on A∂ and C neurons that represent the majority of vagal neurons at the abdominal level. Objective/Hypothesis : (i) To ascertain the capability of very high-frequency stimulation schemes (pulsons) to trigger action potentials in abdominal vagal neurons in anaesthetized pigs. (ii) To compare these stimulation schemes with classical ones using PET imaging of brain metabolism and food intake behaviour in conscious pigs. Methods : The current thresholds for pulsons (S2 & S3) and millisecond pulses (S1) required to trigger action potentials were calculated in 5 anaesthetized pigs using single fibre recording. Similar stimulation protocols were compared chronically to sham stimulation in 24 pigs. After two weeks of chronic stimulation, food intake and brain metabolism were investigated. The electrical characteristics and histology of the vagus nerve were also studied. Results : S3 stimulation required a lower amount of charges to trigger an action potential. Chronically applied S2 & S3 activated the dorsal vagal complex and increased the metabolism of its afferent cortical structures. They also reduced energy intake together with a reduced ingestion of high fat and high sugar diets. All these effects were not observed for the S1 group. The vagal histology for the S1, S2 and S3 groups was not different from that of the sham. Conclusions : These findings demonstrate that pulsons applied bilaterally on the abdominal vagus reduced food intake as a consequence of the activation of the brainstem and higher-order brain areas.
Complete list of metadata

Cited literature [25 references]  Display  Hide  Download
Contributor : David Guiraud Connect in order to contact the contributor
Submitted on : Friday, June 30, 2017 - 11:44:22 AM
Last modification on : Wednesday, October 27, 2021 - 10:12:36 AM
Long-term archiving on: : Monday, January 22, 2018 - 8:15:44 PM


Manuscript_R1_without marks_va...
Files produced by the author(s)





Charles-Henri Malbert, Eric Bobillier, Chloé Picq, Jean-Louis Divoux, David Guiraud, et al.. Effects of chronic abdominal vagal stimulation of small-diameter neurons on brain metabolism and food intake. Brain Stimulation, Elsevier, 2017, 10 (4), pp.735-743. ⟨10.1016/j.brs.2017.04.126⟩. ⟨lirmm-01551445⟩



Record views


Files downloads