Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

GECKO is a genetic algorithm to classify and explore high throughput sequencing data

Abstract : Comparative analysis of high throughput sequencing data between multiple conditions often involves mapping of sequencing reads to a reference and downstream bioinformatics analyses. Both of these steps may introduce heavy bias and potential data loss. This is especially true in studies where patient transcriptomes or genomes may vary from their references, such as in cancer. Here we describe a novel approach and associated software that makes use of advances in genetic algorithms and feature selection to comprehensively explore massive volumes of sequencing data to classify and discover new sequences of interest without a mapping step and without intensive use of specialized bioinformatics pipelines. We demonstrate that our approach called GECKO for GEnetic Classification using k-mer Optimization is effective at classifying and extracting meaningful sequences from multiple types of sequencing approaches including mRNA, microRNA, and DNA methylome data.
Liste complète des métadonnées

Littérature citée [36 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02163400
Déposant : Alban Mancheron <>
Soumis le : lundi 24 juin 2019 - 11:57:11
Dernière modification le : mercredi 14 octobre 2020 - 04:15:46

Fichier

THOMAS2019.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Aubin Thomas, Sylvain Barriere, Lucile Broseus, Julie Brooke, Claudio Lorenzi, et al.. GECKO is a genetic algorithm to classify and explore high throughput sequencing data. Communications Biology, Nature Publishing Group, 2019, 2 (1), pp.1-8. ⟨10.1038/s42003-019-0456-9⟩. ⟨lirmm-02163400⟩

Partager

Métriques

Consultations de la notice

347

Téléchargements de fichiers

413