Phosphorus removal by apatite in horizontal flow constructed wetlands: kinetics and treatment reliability
Résumé
Phosphorus removal in constructed wetlands have received particular attention last decades by using specific materials promoting adsorption/precipitation mechanisms. Recent studies have shown interest in using apatite materials to promote P precipitation onto the particle surface. As previous trials were mainly done by lab experiments, this present study aims to evaluate the real potential of apatites to remove P from wastewater in pilots and a full-scale plant. Two different apatites have been studied in 1.5 m² pilots fed with wastewater from the outlet of a trickling filter. They were monitored to follow inlet/oulet flows, hydraulic gradient, meteorological conditions, pH, temperature, and redox potential. Treatment performances were evaluated by regular complete analysis (COD, BOD, SS, nitrogen and phosphorus forms, Ca) as well as PO4-P by a WTW online analyser. At the same time a full-scale experiment study have been done to point out P retention properties in real conditions over a 2 years period. P retention kinetics of two qualities of apatites are presented and discussed according to the temperature dependence. In this work apatite appears to have high retention capacity and is still an interesting way for P removal in constructed wetlands. However, other qualities of apatite must be studied for a better reliability of treatment.