A model predicting waterbone cadmium bioaccumulation in Gammarus Pulex : the effects of dissolved organic ligands, calcium and temperature - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Accéder directement au contenu
Article Dans Une Revue Environmental Toxicology and Chemistry Année : 2009

A model predicting waterbone cadmium bioaccumulation in Gammarus Pulex : the effects of dissolved organic ligands, calcium and temperature

Résumé

AbstractMetal bioavailability depends on the presence of organic ligands in the water and on the concentrations of competitive cations. The present study aims at testing whether the diffusive gradient in thin films technique (DGT) could be used to take into account Cd speciation and its consequences on bioavailability in a bioaccumulation model and whether the influences of the Ca concentration and temperature also should be considered. Four kinetic experiments were conducted on Gammarus pulex: a calibration of Cd turnover rates and of the DGT lability in mineral water, a study of the influence of ethylenediaminetetraacetic acid (EDTA) and humic acids (HA) on uptake rates, and two experiments testing the influence of the Ca concentrations and temperature on Cd uptake clearance rates (ku). In mineral water, where Cd was considered fully labile, the ku was 0.46 L g21 d21, and the depuration rate was 0.032 d21. The initial Cd influxes were lowered significantly by additions of 10 mg L21 of EDTA or 10 mg L21 of HA in the water but not at 5 mg L21 HA, even if DGT measurements proved that Cd formed CdHA complexes in that treatment. Increasing Ca concentrations lowered ku values, and a competitive inhibition model between Ca and Cd fitted the data. A 30% enhancement of ku values was observed when the temperature was increased by 8uC, which appeared comparatively as a weak effect. Thus, taking into account the metal speciation and the influence of the Ca concentration should improve Cd bioaccumulation modeling in amphipods. In freshwater, where metal bioavailability is reduced by the presence of dissolved organic matter, forecasting Cd waterborne uptake using the labile concentrations should allow robust comparisons between laboratory and field studies.
Fichier non déposé

Dates et versions

hal-02593023 , version 1 (15-05-2020)

Identifiants

Citer

Bastien Pellet, Olivier Geffard, Céline Lacour, Thomas Kermoal, Catherine Gourlay-Francé, et al.. A model predicting waterbone cadmium bioaccumulation in Gammarus Pulex : the effects of dissolved organic ligands, calcium and temperature. Environmental Toxicology and Chemistry, 2009, 28 (11), pp.2434-2442. ⟨hal-02593023⟩
11 Consultations
0 Téléchargements

Partager

Gmail Facebook X LinkedIn More