Effect of land application of manure from enrofloxacin-treated chickens on ciprofloxacin resistance of Enterobacteriaceae in soil
Résumé
A field plot experiment was carried out to evaluate the impact of spreading chicken manure containing enrofloxacin (ENR) and its metabolite ciprofloxacin (CIP), on the levels of CIP-resistant Enterobacteriaceae in soil. The manures from chickens treated with ENR and from untreated control chickens were applied on six plots. Total and CIP-resistant Enterobacteriaceae were counted on Violet Red Bile Glucose medium containing 0 to 16 mg L-1 of CIP. A total of 145 isolates were genotyped by enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR). The minimum inhibitory concentration (MIC) of CIP for the isolates of each ERIC-PCR profile was determined. The most frequently isolated Enterobacteriaceae included Escherichia coli, and to a lesser extent, Enterobacter and 5 other genera from environmental origin. The composition of the E. coli community differed between manure and manured soil suggesting that the E. coli genotypes determined by ERIC-PCR varied significantly in their ability to survive in soil. One of these genotypes, including both susceptible and resistant isolates, was detected up to 89 days after the manure was applied. Most of the E. coli isolated in soil amended with manure from treated chickens was resistant to CIP (with a MIC ranging between 2 and 32 mg L-1). In contrast, despite the presence of ENR in soil at concentrations ranging from 13-518 microg kg-1, the environmental Enterobacteriaceae isolates had a CIP MIC