Change detection in categorical evolving data streams - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Communication Dans Un Congrès Année : 2014

Change detection in categorical evolving data streams

Détection des changement dans des flots de données qualitatives

Résumé

Detecting change in evolving data streams is a central issue for accurate adaptive learning. In real world applications, data streams have categorical features, and changes induced in the data distribution of these categorical features have not been considered extensively so far. Previous work on change detection focused on detecting changes in the accuracy of the learners, but without considering changes in the data distribution. To cope with these issues, we propose a new unsupervised change detection method, called CDCStream (Change Detection in Categorical Data Streams), well suited for categorical data streams. The proposed method is able to detect changes in a batch incremental scenario. It is based on the two following characteristics: (i) a summarization strategy is proposed to compress the actual batch by extracting a descriptive summary and (ii) a new segmentation algorithm is proposed to highlight changes and issue warnings for a data stream. To evaluate our proposal we employ it in a learning task over real world data and we compare its results with state of the art methods. We also report qualitative evaluation in order to show the behavior of CDCStream.
Fichier principal
Vignette du fichier
sac2014.pdf (505.11 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02600407 , version 1 (11-12-2020)

Identifiants

Citer

Dino Ienco, Albert Bifet, Bernhard Pfahringer, Pascal Poncelet. Change detection in categorical evolving data streams. SAC 2014 - 29th Annual ACM Symposium on Applied Computing, Mar 2014, Gyeongju, South Korea. pp.792-797, ⟨10.1145/2554850.2554864⟩. ⟨hal-02600407⟩
68 Consultations
52 Téléchargements

Altmetric

Partager

More