Hierarchical DSmP transformation for decision-making under uncertainty - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Communication Dans Un Congrès Année : 2012

Hierarchical DSmP transformation for decision-making under uncertainty

Jean Dezert
Deqiang Han

Résumé

Dempster-Shafer evidence theory is widely used for approximate reasoning under uncertainty; however, the decision- making is more intuitive and easy to justify when made in the probabilistic context. Thus the transformation to approx- imate a belief function into a probability measure is crucial and important for decision-making based on evidence theory framework. In this paper we present a new transformation of any general basic belief assignment (bba) into a Bayesian belief assignment (or subjective probability measure) based on new proportional and hierarchical principle of uncertainty reduction. Some examples are provided to show the rationality and efficiency of our proposed probability transformation approach.
Fichier principal
Vignette du fichier
HDSmPFusion2012.pdf (643.69 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00720442 , version 1 (24-07-2012)

Identifiants

Citer

Jean Dezert, Deqiang Han, Zhun-Ga Liu, Jean-Marc Tacnet. Hierarchical DSmP transformation for decision-making under uncertainty. Fusion 2012 - 15th International Conference on Information Fusion, Jul 2012, Singapour, Singapore. pp.294-301. ⟨hal-00720442⟩
154 Consultations
169 Téléchargements

Partager

More