On the impact of bias correcting and conditioning precipitation inputs on seasonal streamflow forecast quality - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Poster De Conférence Année : 2017

On the impact of bias correcting and conditioning precipitation inputs on seasonal streamflow forecast quality

Louise Crochemore
Maria-Helena Ramos
Charles Perrin

Résumé

Skillful seasonal streamflow forecasts are increasingly requested for decision-making in areas such as drought risk assessment or reservoir management. Meteorological forcing can be the major source of uncertainty in seasonal forecasts as early as in the first month of the forecast period. The choice of the hydrological model inputs thus has a major impact on the quality of generated streamflow forecasts. In this study, we assess the impact of two types of precipitation forecast post-treatment: 1) bias correction and 2) conditioning, on streamflow forecast quality.
Fichier principal
Vignette du fichier
pub00054780.pdf (34.9 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02606262 , version 1 (16-05-2020)

Identifiants

Citer

Louise Crochemore, Maria-Helena Ramos, Florian Pappenberger, Charles Perrin. On the impact of bias correcting and conditioning precipitation inputs on seasonal streamflow forecast quality. EGU General Assembly 2017, Apr 2017, Vienna, Austria. Geophysical Research Abstracts, 19, pp.1, 2017. ⟨hal-02606262⟩

Collections

IRSTEA INRAE HYCAR
20 Consultations
6 Téléchargements

Partager

More