Effect of plant essential oils and their major constituents on cypermethrin tolerance associated detoxification enzyme activities in spodoptera litura (lepidoptera: noctuidae)
Abstract
Essential oils are well known to act as biopesticides. This research evaluated the acute toxicity and synergistic effect of essential oil compounds in combination with cypermethrin against Spodoptera litura Fabricius (Lepidoptera: Noctuidae). The effects of distillation extracts of essential oils from Alpinia galanga Zingiberaceae (Zingiberales) rhizomes and Ocimum basilicum Lamiaceae (Lamiales) leaves; one of their primary essential oil compounds 1,8-cineole; and linalool were studied on second-instar S. litura by topical application under laboratory conditions. The results showed that A. galanga had the highest control efficiency, whereas1,8-cineole provided a moderate efficacy. The mixtures of linalool, 1,8-cineole, O. basilicum, or A. galanga with cypermethrin were synergistic on mortality. Activity measurements of the main detoxification enzymes show that linalool and 1,8-cineole inhibit the activity of cytochromes P450 and carboxylesterases, which could explain their synergistic effect. Based on our results, the use of these mixtures represents an ideal eco-friendly approach, helping to manage cypermethrin resistance of S. litura.