Predicting genotype environmental range from genome-environment associations - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Accéder directement au contenu
Article Dans Une Revue Molecular Ecology Année : 2018

Predicting genotype environmental range from genome-environment associations

Résumé

Genome–environment association methods aim to detect genetic markers associated with environmental variables. The detected associations are usually analysed separately to identify the genomic regions involved in local adaptation. However, a recent study suggests that single-locus associations can be combined and used in a predictive way to estimate environmental variables for new individuals on the basis of their genotypes. Here, we introduce an original approach to predict the environmental range (values and upper and lower limits) of species genotypes from the genetic markers significantly associated with those environmental variables in an independent set of individuals. We illustrate this approach to predict aridity in a database constituted of 950 individuals of wild beets and 299 individuals of cultivated beets genotyped at 14,409 random single nucleotide polymorphisms (SNPs). We detected 66 alleles associated with aridity and used them to calculate the fraction (I) of aridity-associated alleles in each individual. The fraction I correctly predicted the values of aridity in an independent validation set of wild individuals and was then used to predict aridity in the 299 cultivated individuals. Wild individuals had higher median values and a wider range of values of aridity than the cultivated individuals, suggesting that wild individuals have higher ability to resist to stress-aridity conditions and could be used to improve the resistance of cultivated varieties to aridity.
Fichier non déposé

Dates et versions

hal-02625273 , version 1 (26-05-2020)

Identifiants

Citer

Stéphanie Manel, Marco Andrello, Karine Henry, Daphné Verdelet, Aude Darracq, et al.. Predicting genotype environmental range from genome-environment associations. Molecular Ecology, 2018, 27 (13), pp.2823-2833. ⟨10.1111/mec.14723⟩. ⟨hal-02625273⟩
10 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More