Reinforcement learning produces dominant strategies for the Iterated Prisoner's Dilemma - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Article Dans Une Revue PLoS ONE Année : 2017

Reinforcement learning produces dominant strategies for the Iterated Prisoner's Dilemma

Résumé

We present tournament results and several powerful strategies for the Iterated Prisoner's Dilemma created using reinforcement learning techniques (evolutionary and particle swarm algorithms). These strategies are trained to perform well against a corpus of over 170 distinct opponents, including many well-known and classic strategies. All the trained strategies win standard tournaments against the total collection of other opponents. The trained strategies and one particular human made designed strategy are the top performers in noisy tournaments also.
Fichier principal
Vignette du fichier
2017_Harper_Plos One_1.pdf (22.61 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02625592 , version 1 (26-05-2020)

Licence

Identifiants

Citer

Marc Harper, Vincent Knight, Martin Jones, Georgios Koutsovoulos, Nikoleta E. Glynatsi, et al.. Reinforcement learning produces dominant strategies for the Iterated Prisoner's Dilemma. PLoS ONE, 2017, 12 (12), pp.1-33. ⟨10.1371/journal.pone.0188046⟩. ⟨hal-02625592⟩
7 Consultations
15 Téléchargements

Altmetric

Partager

More