Sulfonated and sulfated chitosan derivatives for biomedical applications: A review
Résumé
From 20th century, chitosan, a natural polysaccharide, has received much attention for use in biomedical applications thanks to its remarkable properties, such as biodegradability, biocompatibility, hemostasis and antibacterial activity. Over the last decades, many researchers have attempted to generate new chitosan derivatives-based biomaterials though chemical modifications, especially through sulfonation or sulfation reactions in order to tailor the physicochemical and biochemical properties. Due to the presence of residual amino groups, the generated polyampholytic derivatives are characterized by convenient biological properties, such as anti-oxidation, antiviral activity, anticoagulation and bone regeneration, expanding their application scope. This paper provides an overview of the strategies used to chemically modify chitosan by introduction of sulfonate groups on chitosan backbone, focusing on various sulfonating or sulfating agents used and substitution regioselectivity, and highlights their applications in biomedical field.