Embryonic cuticle establishment: the great (apoplastic) divide
Résumé
The plant cuticle, a dynamic interface between plants and their environment, is formed by the secretion of hydrophobic lipids and waxes into the outer wall of aerial epidermal cells. Cuticle formation is such a ubiquitous feature of epidermal cells, and is of such fundamental importance for plant survival, that identifying and understanding specific developmental roles for this structure has been a major challenge for plant scientists. In recent work, we have tried to understand the functional relationships between a signaling feedback loop required for epidermal cell specification in developing plant embryos, and a seed specific signaling cascade, involving components localized both in the embryo and in the embryo surrounding endosperm, and necessary for embryo cuticle function. Analysis of the strongly synergistic genetic relationships between these 2 independent pathways, combined with mathematical simulations of the behavior of the signaling feedback loop, have allowed us to propose an important, and hitherto unsuspected, role for the embryonic cuticle as an apoplastic diffusion barrier, necessary for preventing the excessive diffusion of developmentally important signaling molecules away from developing embryo into surrounding tissues.