Endophytic fungus fine-tunes the persistence strategy of its alpine host grass in response to soil resource levels
Résumé
An understanding of hereditary endophytic fungi, and the effects on grass persistence strategies (i.e. relative investment in sexual reproduction and vegetative growth) under natural conditions may help to predict how some alpine ecosystems will respond to environmental change. Grass persistence and endophyte maintenance in host populations are closely related, but could become independent due to endophyte loss mechanisms. We used native grass and endophyte populations to test the hypothesis that fungal endophytes manipulate grass persistence strategies to secure endophyte maintenance in plant populations. Two conditions were required to verify this hypothesis: 1) the fungus caused alterations in host plant strategies; and 2) plant phenotypic changes induced by the fungal endophyte increased endophyte transmission. We compared symbiotic (S) and non-symbiotic (NS) persistence strategies of Festuca eskia (Poaceae), an alpine grass infected by the asexual form of the fungal endophyte Epichloë festucae. We characterised endophyte transmission efficiency, and described vegetative growth and sexual reproduction in a field population that naturally supports approximately 50% S plants. We built a demographic model to estimate plant vegetative growth rates. A correlation between plant persistence strategy, and fungal maintenance was evaluated by increasing soil resource levels. Under natural conditions, S and NS plants exploited different persistence strategies in the same population; S plants exhibited greater vegetative growth than their NS counterparts, while maintaining the same reproductive output. In response to higher soil resource levels, S plants shifted in persistence strategies and phenology, whereas NS plants maintained the same strategies. Therefore, results suggested the fungal endophyte fine-tuned host persistence strategies according to soil resource level. Finally, we found no direct relationship between the changes induced by fungal endophyte and endophyte transmission. Consequently, fungal endophytes affected host persistence strategies, but did not directly increase endophyte transmission.