Mg and Ca root uptake and vertical transfer in soils assessed by an in situ ecosystem-scale multi-isotopic (Mg-26 & Ca-44) tracing experiment in a beech stand (Breuil-Chenue, France) - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Accéder directement au contenu
Article Dans Une Revue Plant and Soil Année : 2013

Mg and Ca root uptake and vertical transfer in soils assessed by an in situ ecosystem-scale multi-isotopic (Mg-26 & Ca-44) tracing experiment in a beech stand (Breuil-Chenue, France)

Résumé

The sustainability of forest ecosystems may be at stake especially in forests on base-poor soils due to reduced nutrient deposition and intensified silvicultural practices. Understanding nutrient availability and cycling is therefore essential to manage forest soil fertility. This study aims to assess in a beech plot Mg and Ca vertical transfer in soil and root uptake using an isotopic tracing experiment. A simulated rainfall containing a small amount (960 g Mg.ha(-1); 530 g Ca.ha(-1)) of highly enriched Mg-26 and Ca-44 was sprayed on the forest floor of a 35-yr-old beech plot. The isotopic composition of fine roots and of the soil exchangeable Mg and Ca pool was monitored during 1 year. A pool and flux model (IsoMod) was developed to predict the labeling of the soil and vertical transfer of tracers. Tracers (Ca-44 and Mg-26) were immediately retained in the thin litter layer. During the following year, Mg and to a lesser extent Ca were progressively released. After 1 year, the exchangeable Mg and Ca pools of the upper mineral layer (0-5 cm) were strongly labeled (similar to 660 aEuro degrees, representing similar to 55 % of the tracer input and similar to 370 aEuro degrees, similar to 41 % of the tracer input respectively). A significant proportion (similar to 8 % Mg-26, similar to 2 % Ca-44) of tracer was leached through the soil, below 10 cm. This amount was much larger than what was predicted using a simple mixing model. The Ca and Mg isotopic composition of fine roots at all depths was close or lower than that of exchangeable Ca and Mg respectively. An in situ ecosystem-scale Mg-26 and Ca-44 isotopic tracing experiment was successfully carried out. Tracers were at first strongly retained in the litter layer, then progressively transferred to soil horizons below. Nutrient cycling of Mg and Ca were proven to be very different. Mg had a higher mobility in the soil than Ca, and nutrient uptake sources were proven to be different.

Dates et versions

hal-02648796 , version 1 (29-05-2020)

Identifiants

Citer

Gregory van Der Heijden, Arnaud A. Legout, Andrew J. Midwood, Carol-Ann Craig, Benoit Pollier, et al.. Mg and Ca root uptake and vertical transfer in soils assessed by an in situ ecosystem-scale multi-isotopic (Mg-26 & Ca-44) tracing experiment in a beech stand (Breuil-Chenue, France). Plant and Soil, 2013, 369 (1-2), pp.33 - 45. ⟨10.1007/s11104-012-1542-7⟩. ⟨hal-02648796⟩
10 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More