Modulation of Cellulose Nanocrystals Amphiphilic Properties to Stabilize Oil Water Interface
Résumé
Neutral cellulose nanocrystals dispersed in water were shown in a previous work to stabilize oil/water interfaces and produce Pickering emulsions with outstanding stability, whereas sulfated nanocrystals obtained from cotton did not show interfacial properties. To develop a better understanding of the stabilization mechanism, amphiphilic properties of the nanocrystals were modulated by tuning the surface charge density to investigate emulsifying capability on two sources of cellulose: cotton linters (CCN) and bacterial cellulose (BCN). This charge adjustment made it possible to determine the conditions where a low surface charge density, below 0.03 e/nm(2), remains compatible with emulsification, as well as when assisted by charge screening regardless of the source. This study discusses this ability to stabilize oil-in-water emulsions for cellulose nanocrystals varying in crystalline allomorph, morphology, and hydrolysis processes related to the amphiphilic character of nonh! ydrophobized cellulose nanocrystal.