Combined metabolic activity within an atrazine-mineralizing community enriched from agrochemical factory soil - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Article Dans Une Revue International Biodeterioration and Biodegradation Année : 2007

Combined metabolic activity within an atrazine-mineralizing community enriched from agrochemical factory soil

Résumé

The main objective of this work was to characterize an atrazine-mineralizing community originating from agrochemical factory soil, especially to elucidate the catabolic pathway and individual metabolic and genetic potentials of culturable members. A stable four-member bacterial community, characterized by colony morphology and 16S rDNA sequencing, was rapidly able to mineralize atrazine to CO2 and NH3. Two primary organisms were identified as Arthrobacter species (ATZ1 and ATZ2) and two secondary organisms (CA1 and CA2) belonged to the genera Ochrobactrum and Pseudomonas, respectively. PCR assessment of atrazine-degrading genetic potential of the community, revealed the presence of trzN, trzD, atzB and atzC genes. Isolates ATZ1 and ATZ2 were capable of dechlorinating atrazine to hydroxyatrazine and contained the trzN gene. ATZ2 further degraded hydroxyatrazine to cyanuric acid and contained atzB and atzC genes whereas ATZ1 contained atzC but not atzB. Isolates CA1 and CA2 grew on cyanuric acid and contained the trzD gene. Complete atrazine degradation was a result of the combined metabolic attack on the atrazine molecule, and complex interactions may exist between the community members sharing carbon and nitrogen from atrazine mineralization. Scientific relevance: Despite numerous reports on atrazine degradation by pure bacterial cultures, the pathways and the atrazine-degrading gene combinations harboured by bacterial communities are only poorly described. In this work, we characterized a four-member atrazine-mineralizing community enriched from an agrochemical factory soil, which was capable of rapidly metabolizing atrazine to CO2. This study will contribute towards better understanding of the genetic potential and metabolic activities of atrazine-degrading communities, which are generally considered to be responsible for atrazine mineralization in the natural environment.

Dates et versions

hal-02658110 , version 1 (30-05-2020)

Identifiants

Citer

Nikolina Udiković Kolić, Dubravka Hršak, Ana Begonja Kolar, Ines Petric, Sanja Stipičevic, et al.. Combined metabolic activity within an atrazine-mineralizing community enriched from agrochemical factory soil. International Biodeterioration and Biodegradation, 2007, 60 (4), pp.299-307. ⟨10.1016/j.ibiod.2007.05.004⟩. ⟨hal-02658110⟩
14 Consultations
0 Téléchargements

Altmetric

Partager

More