Assessing the variability of soil surface characteristics in row-cropped fields: the case of mediterranean vineyards in southern France
Résumé
Spatial patterns of soil surface characteristics (SSC) are important factors for heterogeneity in runoff and infiltration processes in row-cropped fields. The objective of this paper is to analyse the spatial heterogeneity of SSC in the case of a vineyard in order to propose an adequate sampling strategy. A preliminary field survey was carried out to obtain a quantitative assessment of SSC. The experimental layout consisted of 3 wire-trained vine subplots with 3 different soil treatment. 60 observations per subplot were conducted using the line transect method. Their locations were determined according to a stratified sampling design conceived in accordance with the geometric structure of the vineyard system, defined by the alignment of vine rows and the direction of the main slope. The spatial heterogeneity of SSC was analysed at intra-transect and inter-transect levels using measurements of structural crust, sedimentary crust, grass and organic litter. The characterization of intra-transect heterogeneity, using join-count statistics, allowed patches of homogeneous units of attributes to be detected and hence an appropriate sampling resolution and an adequate transect length to be determined. A sampling resolution of 10 cm on a 1.25 m length transect was found to be appropriate for the observation of homogeneous units of attributes. Analysis of inter-transect heterogeneity, using non-spatial statistics, revealed considerable variability between rows and inter-rows that must be accounted for during field surveys. The role of site topography on spatial patterning of SSC attributes across the plot and the need to stratify the plot into areas with homogeneous slope were also demonstrated. Finally, the t-test procedure indicated that the minimum sample size was found to be 200 transect/ha for a minimum precision rate of 80% in the values of SSC attributes. The proposed sampling protocol is described as a step-by-step procedure and could be applied in sampling designs relevant to SSC monitoring in row-cropped fields.