Molecular analysis of the bovine anaphylatoxin C5a receptor
Résumé
Recruitment of phagocytes to inflammatory sites involves the coordinated action of several chemoattractants, including the anaphylatoxin C5a. While the C5a receptor (C5aR) has been well characterized in humans and rodents, little is known about the bovine C5aR. Here, we report cloning of bovine C5R1, the gene encoding bovine C5aR. We also analyzed genomic sequence upstream of the C5R1 translation start site. Although the bovine C5aR amino acid sequence was well conserved among species, significant differences in conserved features were found, including major differences in the N terminus, intracellular loop 3, and transmembrane domain VII. Analysis of C5aR expression by flow cytometry and confocal microscopy demonstrated high levels of C5aR on all bovine neutrophils and a subset of bovine monocytes. C5aR was not expressed on resting or activated bovine lymphocytes, although C5aR message was present in these cells. C5aR was also expressed on a small subset of bovine mammary epithelial cells. Pharmacological analysis of bovine C5aR-mediated responses showed that bovine C5a and C5a(desArg) both induced dose-dependent calcium fluxes and chemotaxis in bovine neutrophils, with similar efficacy for both agonists. Treatment of bovine neutrophils with C5a or C5a(desArg) resulted in homologous desensitization of bovine C5aR and cross-desensitization to interleukin 8 (IL-8) and platelet-activating factor (PAF); whereas, treatment with IL-8 or PAF did not cross-desensitize the cells to C5a or C5a(desArg). Overall, these studies provide important information regarding distinct structural and functional features that may contribute to the unique pharmacological properties of bovine C5aR.