Stimulation of Defense Reactions in Medicago truncatula by Antagonistic Lipopeptides from Paenibacillus sp. Strain B2
Résumé
With the aim of obtaining new strategies to control plant diseases, we investigated the ability of antagonistic lipopolypeptides (paenimyxin) from Paenibacillus sp. strain B2 to elicit hydrogen peroxide (H2O2) production and several defense-related genes in the model legume Medicago truncatula. For this purpose, M. truncatula cell suspensions were used and a pathosystem between M. truncatula and Fusarium acuminatum was established. In M. truncatula cell cultures, the induction of H2O2 reached a maximum 20 min after elicitation with paenimyxin, whereas concentrations higher than 20 µM inhibited H2O2 induction and this was correlated with a lethal effect. In plant roots incubated with different concentrations of paenimyxin for 24 h before inoculation with F. acuminatum, paenimyxin at a low concentration (ca. 1 µM) had a protective effect and suppressed 95% of the necrotic symptoms, whereas a concentration higher than 10 µM had an inhibitory effect on plant growth. Gene responses were quantified in M. truncatula by semiquantitative reverse transcription-PCR (RT-PCR). Genes involved in the biosynthesis of phytoalexins (phenylalanine ammonia-lyase, chalcone synthase, chalcone reductase), antifungal activity (pathogenesis-related proteins, chitinase), or cell wall (invertase) were highly upregulated in roots or cells after paenimyxin treatment. The mechanisms potentially involved in plant protection are discussed.