The Dependence Receptor UNC5H2/B Triggers Apoptosis via PP2A-Mediated Dephosphorylation of DAP Kinase
Résumé
The UNC5H dependence receptors promote apoptosis in the absence of their ligand, netrin-1, and this is important for neuronal and vascular development and for limitation of cancer progression. UNC5H2 (also called UNC5B) triggers cell death through the activation of the serine-threonine protein kinase DAPk. While performing a siRNA screen to identify genes implicated in UNC5H-induced apoptosis, we identified the structural subunit PR65 beta of the holoenzyme protein phosphatase 2A (PP2A). We show that UNC5H2/B recruits a protein complex that includes PR65 beta and DAPk and retains PP2A activity. PP2A activity is required for UNC5H2/B-induced apoptosis, since it activates DAPk by triggering its dephosphorylation. Moreover, netrin-1 binding to UNC5H2/B prevents this effect through interaction of the PP2A inhibitor CIP2A to UNC5H2/B. Thus we show here that, in the absence of netrin-1, recruitment of PP2A to UNC5H2/B allows the activation of DAPk via a PP2A-mediated dephosphorylation and that this mechanism is involved in angiogenesis regulation.