Branching responses of a plagiotropic clonal herb to localised incidence of light simulating that reflected from vegetation
Résumé
Plants sense the presence of neighbouring vegetation through phytochrome photoreceptors perceiving a lowered red to far-red ratio (R:FR) of light reflected from such vegetation. We hypothesised that it would be advantageous for the grassland clonal herb, Trifolium repens, to have an inhibitory branching response to perception by leaves of light reflected from neighbouring vegetation (i.e. light with lowered R:FR ratio) but have no response to interception of such light by the plagiotropic stem. We tested whether photoreception of reflected light by plagiotropic stems resulted in a different branching response to photoreception by leaves and whether leaf ontogeny influenced the response. To simulate light reflected from vegetation, FR light-emitting-diodes were used to supplement controlled environment room Light so that the R:FR ratio, but not the photosynthetic photon fluence rate, of light incident at the stem or leaf of a phytomer of T. repens was lowered from 1.20 to 0.25. The plagiotropic stems were unresponsive to light simulating that reflected from vegetation. This response differs from that of stems of orthotropic species, indicating that plagiotropic stems have evolved an organ-specific photobiology. Treatment of the mature leaf with light of lowered FR ratio reduced phytomer production only of the branch in the axil of the treated leaf. Similar treatment of the immature leaf retarded, in addition, branching at basal phytomers on the same side of the primary stem axis. Thus the response to light simulating that reflected from neighbouring vegetation depended upon whether the light was incident at the stem or the leaf and on the stage of leaf development. We argue that such responses improve the performance and fitness of T. repens within grassland habitats by allowing axillary buds on plagiotropic stems to branch freely when stems are in receipt of Light reflected from vegetation while leaves are in full light.