Decomposition in soil microcosms of leaves of the metallophyte Arabidopsis halleri: effect of leaf-associated heavy metals on biodegradation - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Article Dans Une Revue Environmental Pollution Année : 2005

Decomposition in soil microcosms of leaves of the metallophyte Arabidopsis halleri: effect of leaf-associated heavy metals on biodegradation

Résumé

More knowledge is needed concerning the disturbance of soil organic matter cycling due to heavy metal pollution. The present study deals with the impact of heavy metal pollution on litter breakdown. Our aim was to assess whether heavy metals initially present in the leaves of the metallophyte Arabidopsis halleri: (i) slow down the rate of C mineralization, in relation to metal toxicity towards microflora, and/or (ii) increase the amount of organic C resistant to biodegradation, in relation to an intrinsic resistance of metallophyte residues to biodegradation. We incubated uncontaminated soil samples with either metal-free or metal-rich plant material. Metal-free material was grown in a greenhouse, and metal-rich material was collected in situ. During the 2-month period of incubation, we measured evolved CO2-C and residual plant C in the coarse organic fraction. Our results of CO2-C evolution showed a similar mineralization from the microcosms amended with highly metal-rich leaves of A. halleri and the microcosms amended with the metal-free but otherwise similar plant material. Measuring residual plant C in its input size-fraction gave a more precise insight. Our results suggest that only the large pool of easily decomposable C mineralized similarly from metal-free and from metal-rich plant residues. The pool of less decomposable C seemed on the contrary to be preferentially preserved in the case of metal-rich material. These results support the hypothesis of an annual extra-accumulation in situ of such a slowly decomposable fraction of plant residues which could account to some extent for the observed accumulation of metallophyte litter on the surface of highly metal-polluted soils.

Dates et versions

hal-02682220 , version 1 (01-06-2020)

Identifiants

Citer

Uriel Boucher, May Balabane, Isabelle Lamy, Philippe P. Cambier. Decomposition in soil microcosms of leaves of the metallophyte Arabidopsis halleri: effect of leaf-associated heavy metals on biodegradation. Environmental Pollution, 2005, 135 (2), pp.187-194. ⟨10.1016/j.envpol.2004.10.020⟩. ⟨hal-02682220⟩

Collections

INRA INRAE
13 Consultations
0 Téléchargements

Altmetric

Partager

More