Discriminative detection and alignment in volumetric data - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Communication Dans Un Congrès Année : 2013

Discriminative detection and alignment in volumetric data

Résumé

In this paper, we aim for detection and segmentation of Arabidopsis thaliana cells in volumetric image data. To this end, we cluster the training samples by their size and aspect ratio and learn a detector and a shape model for each cluster. While the detector yields good cell hypotheses, additionally aligning the shape model to the image allows to better localize the detections and to reconstruct the cells in case of low quality input data. We show that due to the more accurate localization, the alignment also improves the detection performance.
Fichier non déposé

Dates et versions

hal-02747948 , version 1 (03-06-2020)

Identifiants

  • HAL Id : hal-02747948 , version 1
  • PRODINRA : 411151
  • WOS : 000329236100021

Citer

Dominic Mai, Philipp Fischer, Thomas T. Blein, Jasmin Duerr, Klaus Palme, et al.. Discriminative detection and alignment in volumetric data. 35th German Conference on Pattern Recognition (GCPR), Sep 2013, Saarbrucken, Germany. pp.10. ⟨hal-02747948⟩
79 Consultations
0 Téléchargements

Partager

More