Simulating yield datasets : an opportunity to improve data filtering algorithms
Résumé
Yield maps are a powerful tool with regard to managing upcoming crop productions but can contain a large amount of defective data that might result in misleading decisions. The objective of this work is to help improve and compare yield data filtering algorithms by generating simulated datasets as if they had been acquired directly in the field. Two stages were implemented during the simulation process (i) the creation of spatially correlated datasets and (ii) the addition of known yield sources of errors to these datasets. A previously published yield filtering algorithm was applied on these simulated datasets to demonstrate the applicability of the methodology. These simulated datasets allow results of yield data filtering methods to be compared and improved.