A MOM-based ensemble method for robustness, subsampling and hyperparameter tuning - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Pré-Publication, Document De Travail Année : 2021

A MOM-based ensemble method for robustness, subsampling and hyperparameter tuning

Résumé

Hyperparameters tuning and model selection are important steps in machine learning. Unfortunately, classical hyperparameter calibration and model selection procedures are sensitive to outliers and heavy-tailed data. In this work, we construct a selection procedure which can be seen as a robust alternative to cross-validation and is based on a median-of-means principle. Using this procedure, we also build an ensemble method which, trained with algorithms and corrupted heavy-tailed data, selects an algorithm, trains it with a large uncorrupted subsample and automatically tune its hyperparameters. The construction relies on a divide-and-conquer methodology, making this method easily scalable for autoML given a corrupted database. This method is tested with the LASSO which is known to be highly sensitive to outliers.
Fichier principal
Vignette du fichier
neurips_2019_1.pdf (303.19 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02786143 , version 1 (04-06-2020)

Licence

Identifiants

Citer

Joon Kwon, Matthieu Lerasle, Guillaume Lecué. A MOM-based ensemble method for robustness, subsampling and hyperparameter tuning. 2019. ⟨hal-02786143⟩

Relations

104 Consultations
58 Téléchargements

Altmetric

Partager

More