Combining Experimental and Modeling Approaches to Understand Genotype x Sowing Date x Environment Interaction Effects on Emergence Rates and Grain Yield of Soybean - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Accéder directement au contenu
Article Dans Une Revue Frontiers in Plant Science Année : 2020

Combining Experimental and Modeling Approaches to Understand Genotype x Sowing Date x Environment Interaction Effects on Emergence Rates and Grain Yield of Soybean

Résumé

Soybean emergence and yield may be affected by many factors. A better understanding of the cultivar x sowing date x environment interactions could shed light into the competitiveness of soybean with other crops, notably, to help manage major biotic and abiotic factors that limit soybean production. We conducted a 2-year field experiments to measure emergence dynamics and final rates of three soybean cultivars from different maturity groups, with early and conventional sowing dates and across three locations. We also measured germination parameter values of the three soybean cultivars from different maturity groups under controlled experiments to parametrize the SIMPLE crop emergence model. This allowed us to assess the prediction quality of the model for emergence rates and to perform simulations. Final emergence rates under field conditions ranged from 62% to 92% and from 51% to 94% for early and conventional sowing, respectively. The model finely predicted emergence courses and final rates (root mean square error of prediction (RMSEP), efficiency (EF), and mean deviation (MD) ranging between 2% to 18%, 0.46% to 0.99%, and −10% to 15%, respectively) across a wide range of the sowing conditions tested. Differences in the final emergence rates were found, not only among cultivars but also among locations for the same cultivar, although no clear trend or consistent ranking was found in this regard. Modeling suggests that seedling mortality rates were dependent on the soil type with up to 35% and 14% of mortality in the silty loam soil, due to a soil surface crust and soil aggregates, respectively. Non-germination was the least important cause of seedling mortality in all soil types (up to 3% of emergence losses), while no seedling mortality due to drought was observed. The average grain yield ranged from 3.1 to 4.0 t ha −1 , and it was significantly affected by the irrigation regime (p < 0.001) and year (p < 0.001) but not by locations, sowing date or cultivars. We conclude that early sowing is unlikely to affect soybean emergence in
Fichier principal
Vignette du fichier
Lamichhane_etal2020_Frontiers.pdf (1.64 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02937487 , version 1 (14-09-2020)

Licence

Paternité

Identifiants

Citer

Jay-Ram Lamichhane, Jean-Noël Aubertot, Luc Champolivier, Philippe Debaeke, Pierre Maury. Combining Experimental and Modeling Approaches to Understand Genotype x Sowing Date x Environment Interaction Effects on Emergence Rates and Grain Yield of Soybean. Frontiers in Plant Science, 2020, 11, 17p. ⟨10.3389/fpls.2020.558855⟩. ⟨hal-02937487⟩
19 Consultations
30 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More