Article Dans Une Revue Frontiers in Plant Science Année : 2020

Novel Insights Into the Hyperaccumulation Syndrome in Pycnandra (Sapotaceae)

Résumé

The discovery of nickel hyperaccumulation, in Pycnandra acuminata, was the start of a global quest in this fascinating phenomenon. Despite recent advances in the physiology and molecular genetics of hyperaccumulation, the mechanisms and tolerance of Ni accumulation in the most extreme example reported to date, P. acuminata, remains enigmatic. We conducted a hydroponic experiment to establish Ni tolerance levels and translocation patterns in roots and shoots of P. acuminata, and analyzed elemental partitioning to gain insights into Ni regulation. We combined a phylogeny and foliar Ni concentrations to assess the incidence of hyperaccumulation within the genus Pycnandra. Hydroponic dosing experiments revealed that P. acuminata can resist extreme Ni concentrations in solution (up to 3,000 µM), and dosing at 100 µM Ni was beneficial to growth. All plant parts were highly enriched in Ni, but the latex had extreme Ni concentrations (124,000 µg g−1). Hyperaccumulation evolved independently in only two subgenera and five species of the genus Pycnandra. The extremely high level of Ni tolerance is posited to derive from the unique properties of laticifers. The evolutionary and ecological significance of Ni hyperaccumulation in Pycnandra is discussed in light of these findings. We suggest that Ni-rich laticifers might be more widespread in the plant kingdom and that more investigation is warranted.
Fichier principal
Vignette du fichier
Isnard_etal_Frontiers_Plant_Sci_2020_11_1333.pdf (2.41 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02940369 , version 1 (16-09-2020)

Identifiants

Citer

Sandrine Isnard, Laurent L’huillier, Adrian Paul, Jérôme Munzinger, Bruno Fogliani, et al.. Novel Insights Into the Hyperaccumulation Syndrome in Pycnandra (Sapotaceae). Frontiers in Plant Science, 2020, 11, ⟨10.3389/fpls.2020.559059⟩. ⟨hal-02940369⟩
138 Consultations
111 Téléchargements

Altmetric

Partager

More