Optical image gap filling using deep convolutional autoencoder from optical and radar images - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Access content directly
Conference Papers Year : 2019

Optical image gap filling using deep convolutional autoencoder from optical and radar images

Abstract

A major issue affecting optical imagery is the presence of clouds. The need of cloud-free scenes at specific date is crucial in a number of operational monitoring applications. On the other hand, the cloud-insensitive SAR sensors are a solid asset and they provide orthogonal information with respect to optical satellite, that enable the retrieval of information lost in optical images due to cloud cover. In the context of an increasing availability of both optical and SAR images, thank to the Sentinel constellation, we propose a deep learning method to reconstruct (gap-fill) optical data, polluted by cloud phenomena, exploiting multi-temporal SAR and optical images.
No file

Dates and versions

hal-02968847 , version 1 (16-10-2020)

Identifiers

  • HAL Id : hal-02968847 , version 1
  • WOS : 000519270600053

Cite

Rémi Cresson, Dino Ienco, R. Gaetano, Kenji Ose, Dinh Ho Tong Minh. Optical image gap filling using deep convolutional autoencoder from optical and radar images. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Jul 2019, Yokohama, Japan. pp.218-221. ⟨hal-02968847⟩
72 View
0 Download

Share

Gmail Mastodon Facebook X LinkedIn More