The P2S2 segmentation dataset: annotated in-field multi-crop RGB images acquired under various conditions - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Communication Dans Un Congrès Année : 2019

The P2S2 segmentation dataset: annotated in-field multi-crop RGB images acquired under various conditions

Résumé

Images play a vital role in crop phenotyping. Pixel-wise classification (into vegetation/background) or semantic segmentation is a critical step in the computation of several canopy state variables. Current state of the art methodologies based on convolutional neural networks are trained on data acquired under controlled environments. These models are unable to generalize to real-world dataset and hence need to be fine-tuned using new labels. This motivated us to create the P2S2 segmentation dataset – a collection of multi-crop RGB images from different acquisition conditions. We present here the dataset and state of the art results.
Fichier principal
Vignette du fichier
2019_Madec_IAMPS.pdf (268.63 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03140124 , version 1 (12-02-2021)

Licence

Identifiants

  • HAL Id : hal-03140124 , version 1

Citer

Simon Madec, Kamran Irfan, Etienne David, Kaaviya Velumani, Gaetan Daubige, et al.. The P2S2 segmentation dataset: annotated in-field multi-crop RGB images acquired under various conditions. 7th International Workshop on Image Analysis Methods in the Plant Sciences (IAMPS), Jul 2019, Lyon, France. ⟨hal-03140124⟩
147 Consultations
182 Téléchargements

Partager

More