Benjamin–Bona–Mahony Equations with Memory and Rayleigh Friction - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Article Dans Une Revue Applied Mathematics and Optimization Année : 2021

Benjamin–Bona–Mahony Equations with Memory and Rayleigh Friction

Résumé

This paper is concerned with the integrodifferential Benjamin-Bona-Mahony equation : u(t) - u(txx) + alpha u - integral(infinity)(0)g(s)u(xx)(t - s)ds + (f(u))(x) = h complemented with Dirichlet boundary conditions, in the presence of a possibly large external force h. The nonlinearity f is allowed to exhibit a superquadratic growth, and the dissipation is due to the simultaneous interaction between the nonlocal memory term and the Rayleigh friction. The existence of regular global and exponential attractors of finite fractal dimension is shown
Fichier non déposé

Dates et versions

hal-03287520 , version 1 (15-07-2021)

Identifiants

Citer

Filippo Dell’oro, Youcef Mammeri. Benjamin–Bona–Mahony Equations with Memory and Rayleigh Friction. Applied Mathematics and Optimization, 2021, 83 (2), pp.813-831. ⟨10.1007/s00245-019-09568-z⟩. ⟨hal-03287520⟩
36 Consultations
0 Téléchargements

Altmetric

Partager

More