Skip to Main content Skip to Navigation
Journal articles

TMPRSS2 expression dictates the entry route used by SARS‐CoV‐2 to infect host cells

Abstract : SARS-CoV-2 is a newly emerged coronavirus that caused the global COVID-19 outbreak in early 2020. COVID-19 is primarily associated with lung injury, but many other clinical symptoms such as loss of smell and taste demonstrated broad tissue tropism of the virus. Early SARS-CoV-2-host cell interactions and entry mechanisms remain poorly understood. Investigating SARS-CoV-2 infection in tissue culture, we found that the protease TMPRSS2 determines the entry pathway used by the virus. In the presence of TMPRSS2, the proteolytic process of SARS-CoV-2 was completed at the plasma membrane, and the virus rapidly entered the cells within 10 min in a pH-independent manner. When target cells lacked TMPRSS2 expression, the virus was endocytosed and sorted into endolysosomes, from which SARS-CoV-2 entered the cytosol via acid-activated cathepsin L protease 40-60 min post-infection. Overexpression of TMPRSS2 in non-TMPRSS2 expressing cells abolished the dependence of infection on the cathepsin L pathway and restored sensitivity to the TMPRSS2 inhibitors. Together, our results indicate that SARS-CoV-2 infects cells through distinct, mutually exclusive entry routes and highlight the importance of TMPRSS2 for SARS-CoV-2 sorting into either pathway.
Complete list of metadata
Contributor : Pierre-Yves Lozach <>
Submitted on : Wednesday, September 1, 2021 - 4:34:25 PM
Last modification on : Monday, September 13, 2021 - 10:28:43 AM

Links full text




Jana Koch, Zina Uckeley, Patricio Doldan, Megan Stanifer, Steeve Boulant, et al.. TMPRSS2 expression dictates the entry route used by SARS‐CoV‐2 to infect host cells. EMBO Journal, EMBO Press, 2021, 40 (16), ⟨10.15252/embj.2021107821⟩. ⟨hal-03331369⟩



Record views